| //===------- Interp.cpp - Interpreter for the constexpr VM ------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interp.h" |
| #include "Function.h" |
| #include "InterpFrame.h" |
| #include "InterpShared.h" |
| #include "InterpStack.h" |
| #include "Opcode.h" |
| #include "PrimType.h" |
| #include "Program.h" |
| #include "State.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <limits> |
| #include <vector> |
| |
| using namespace clang; |
| |
| using namespace clang; |
| using namespace clang::interp; |
| |
| static bool RetValue(InterpState &S, CodePtr &Pt, APValue &Result) { |
| llvm::report_fatal_error("Interpreter cannot return values"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Jmp, Jt, Jf |
| //===----------------------------------------------------------------------===// |
| |
| static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset) { |
| PC += Offset; |
| return true; |
| } |
| |
| static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset) { |
| if (S.Stk.pop<bool>()) { |
| PC += Offset; |
| } |
| return true; |
| } |
| |
| static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset) { |
| if (!S.Stk.pop<bool>()) { |
| PC += Offset; |
| } |
| return true; |
| } |
| |
| static void diagnoseMissingInitializer(InterpState &S, CodePtr OpPC, |
| const ValueDecl *VD) { |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) << VD; |
| S.Note(VD->getLocation(), diag::note_declared_at) << VD->getSourceRange(); |
| } |
| |
| static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC, |
| const ValueDecl *VD); |
| static bool diagnoseUnknownDecl(InterpState &S, CodePtr OpPC, |
| const ValueDecl *D) { |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| |
| if (isa<ParmVarDecl>(D)) { |
| if (S.getLangOpts().CPlusPlus11) { |
| S.FFDiag(E, diag::note_constexpr_function_param_value_unknown) << D; |
| S.Note(D->getLocation(), diag::note_declared_at) << D->getSourceRange(); |
| } else { |
| S.FFDiag(E); |
| } |
| return false; |
| } |
| |
| if (!D->getType().isConstQualified()) |
| diagnoseNonConstVariable(S, OpPC, D); |
| else if (const auto *VD = dyn_cast<VarDecl>(D); |
| VD && !VD->getAnyInitializer()) |
| diagnoseMissingInitializer(S, OpPC, VD); |
| |
| return false; |
| } |
| |
| static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC, |
| const ValueDecl *VD) { |
| if (!S.getLangOpts().CPlusPlus) |
| return; |
| |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| if (const auto *VarD = dyn_cast<VarDecl>(VD); |
| VarD && VarD->getType().isConstQualified() && |
| !VarD->getAnyInitializer()) { |
| diagnoseMissingInitializer(S, OpPC, VD); |
| return; |
| } |
| |
| // Rather random, but this is to match the diagnostic output of the current |
| // interpreter. |
| if (isa<ObjCIvarDecl>(VD)) |
| return; |
| |
| if (VD->getType()->isIntegralOrEnumerationType()) { |
| S.FFDiag(Loc, diag::note_constexpr_ltor_non_const_int, 1) << VD; |
| S.Note(VD->getLocation(), diag::note_declared_at); |
| return; |
| } |
| |
| S.FFDiag(Loc, |
| S.getLangOpts().CPlusPlus11 ? diag::note_constexpr_ltor_non_constexpr |
| : diag::note_constexpr_ltor_non_integral, |
| 1) |
| << VD << VD->getType(); |
| S.Note(VD->getLocation(), diag::note_declared_at); |
| } |
| |
| static bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| if (Ptr.isActive()) |
| return true; |
| |
| // Get the inactive field descriptor. |
| const FieldDecl *InactiveField = Ptr.getField(); |
| |
| // Walk up the pointer chain to find the union which is not active. |
| Pointer U = Ptr.getBase(); |
| while (!U.isActive()) { |
| U = U.getBase(); |
| } |
| |
| // Find the active field of the union. |
| const Record *R = U.getRecord(); |
| assert(R && R->isUnion() && "Not a union"); |
| const FieldDecl *ActiveField = nullptr; |
| for (unsigned I = 0, N = R->getNumFields(); I < N; ++I) { |
| const Pointer &Field = U.atField(R->getField(I)->Offset); |
| if (Field.isActive()) { |
| ActiveField = Field.getField(); |
| break; |
| } |
| } |
| |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_access_inactive_union_member) |
| << AK << InactiveField << !ActiveField << ActiveField; |
| return false; |
| } |
| |
| static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| if (auto ID = Ptr.getDeclID()) { |
| if (!Ptr.isStaticTemporary()) |
| return true; |
| |
| if (Ptr.getDeclDesc()->getType().isConstQualified()) |
| return true; |
| |
| if (S.P.getCurrentDecl() == ID) |
| return true; |
| |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; |
| S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (auto ID = Ptr.getDeclID()) { |
| if (!Ptr.isStatic()) |
| return true; |
| |
| if (S.P.getCurrentDecl() == ID) |
| return true; |
| |
| S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_modify_global); |
| return false; |
| } |
| return true; |
| } |
| |
| namespace clang { |
| namespace interp { |
| static void popArg(InterpState &S, const Expr *Arg) { |
| PrimType Ty = S.getContext().classify(Arg).value_or(PT_Ptr); |
| TYPE_SWITCH(Ty, S.Stk.discard<T>()); |
| } |
| |
| void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC) { |
| assert(S.Current); |
| const Function *CurFunc = S.Current->getFunction(); |
| assert(CurFunc); |
| |
| if (CurFunc->isUnevaluatedBuiltin()) |
| return; |
| |
| // Some builtin functions require us to only look at the call site, since |
| // the classified parameter types do not match. |
| if (CurFunc->isBuiltin()) { |
| const auto *CE = |
| cast<CallExpr>(S.Current->Caller->getExpr(S.Current->getRetPC())); |
| for (int32_t I = CE->getNumArgs() - 1; I >= 0; --I) { |
| const Expr *A = CE->getArg(I); |
| popArg(S, A); |
| } |
| return; |
| } |
| |
| if (S.Current->Caller && CurFunc->isVariadic()) { |
| // CallExpr we're look for is at the return PC of the current function, i.e. |
| // in the caller. |
| // This code path should be executed very rarely. |
| unsigned NumVarArgs; |
| const Expr *const *Args = nullptr; |
| unsigned NumArgs = 0; |
| const Expr *CallSite = S.Current->Caller->getExpr(S.Current->getRetPC()); |
| if (const auto *CE = dyn_cast<CallExpr>(CallSite)) { |
| Args = CE->getArgs(); |
| NumArgs = CE->getNumArgs(); |
| } else if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) { |
| Args = CE->getArgs(); |
| NumArgs = CE->getNumArgs(); |
| } else |
| assert(false && "Can't get arguments from that expression type"); |
| |
| assert(NumArgs >= CurFunc->getNumWrittenParams()); |
| NumVarArgs = NumArgs - CurFunc->getNumWrittenParams(); |
| for (unsigned I = 0; I != NumVarArgs; ++I) { |
| const Expr *A = Args[NumArgs - 1 - I]; |
| popArg(S, A); |
| } |
| } |
| |
| // And in any case, remove the fixed parameters (the non-variadic ones) |
| // at the end. |
| S.Current->popArgs(); |
| } |
| |
| bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (!Ptr.isExtern()) |
| return true; |
| |
| if (Ptr.isInitialized() || |
| (Ptr.getDeclDesc()->asVarDecl() == S.EvaluatingDecl)) |
| return true; |
| |
| if (!S.checkingPotentialConstantExpression() && S.getLangOpts().CPlusPlus) { |
| const auto *VD = Ptr.getDeclDesc()->asValueDecl(); |
| diagnoseNonConstVariable(S, OpPC, VD); |
| } |
| return false; |
| } |
| |
| bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (!Ptr.isUnknownSizeArray()) |
| return true; |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.FFDiag(E, diag::note_constexpr_unsized_array_indexed); |
| return false; |
| } |
| |
| bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| if (Ptr.isZero()) { |
| const auto &Src = S.Current->getSource(OpPC); |
| |
| if (Ptr.isField()) |
| S.FFDiag(Src, diag::note_constexpr_null_subobject) << CSK_Field; |
| else |
| S.FFDiag(Src, diag::note_constexpr_access_null) << AK; |
| |
| return false; |
| } |
| |
| if (!Ptr.isLive()) { |
| const auto &Src = S.Current->getSource(OpPC); |
| bool IsTemp = Ptr.isTemporary(); |
| |
| S.FFDiag(Src, diag::note_constexpr_lifetime_ended, 1) << AK << !IsTemp; |
| |
| if (IsTemp) |
| S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here); |
| else |
| S.Note(Ptr.getDeclLoc(), diag::note_declared_at); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
| assert(Desc); |
| |
| auto IsConstType = [&S](const VarDecl *VD) -> bool { |
| if (VD->isConstexpr()) |
| return true; |
| |
| QualType T = VD->getType(); |
| if (S.getLangOpts().CPlusPlus && !S.getLangOpts().CPlusPlus11) |
| return (T->isSignedIntegerOrEnumerationType() || |
| T->isUnsignedIntegerOrEnumerationType()) && |
| T.isConstQualified(); |
| |
| if (T.isConstQualified()) |
| return true; |
| |
| if (const auto *RT = T->getAs<ReferenceType>()) |
| return RT->getPointeeType().isConstQualified(); |
| |
| if (const auto *PT = T->getAs<PointerType>()) |
| return PT->getPointeeType().isConstQualified(); |
| |
| return false; |
| }; |
| |
| if (const auto *D = Desc->asVarDecl(); |
| D && D->hasGlobalStorage() && D != S.EvaluatingDecl && !IsConstType(D)) { |
| diagnoseNonConstVariable(S, OpPC, D); |
| return S.inConstantContext(); |
| } |
| |
| return true; |
| } |
| |
| static bool CheckConstant(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (!Ptr.isBlockPointer()) |
| return true; |
| return CheckConstant(S, OpPC, Ptr.getDeclDesc()); |
| } |
| |
| bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| CheckSubobjectKind CSK) { |
| if (!Ptr.isZero()) |
| return true; |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_null_subobject) |
| << CSK << S.Current->getRange(OpPC); |
| |
| return false; |
| } |
| |
| bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| if (!Ptr.isOnePastEnd()) |
| return true; |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_access_past_end) |
| << AK << S.Current->getRange(OpPC); |
| return false; |
| } |
| |
| bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| CheckSubobjectKind CSK) { |
| if (!Ptr.isElementPastEnd()) |
| return true; |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_past_end_subobject) |
| << CSK << S.Current->getRange(OpPC); |
| return false; |
| } |
| |
| bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| CheckSubobjectKind CSK) { |
| if (!Ptr.isOnePastEnd()) |
| return true; |
| |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_past_end_subobject) |
| << CSK << S.Current->getRange(OpPC); |
| return false; |
| } |
| |
| bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| uint32_t Offset) { |
| uint32_t MinOffset = Ptr.getDeclDesc()->getMetadataSize(); |
| uint32_t PtrOffset = Ptr.getByteOffset(); |
| |
| // We subtract Offset from PtrOffset. The result must be at least |
| // MinOffset. |
| if (Offset < PtrOffset && (PtrOffset - Offset) >= MinOffset) |
| return true; |
| |
| const auto *E = cast<CastExpr>(S.Current->getExpr(OpPC)); |
| QualType TargetQT = E->getType()->getPointeeType(); |
| QualType MostDerivedQT = Ptr.getDeclPtr().getType(); |
| |
| S.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
| << MostDerivedQT << TargetQT; |
| |
| return false; |
| } |
| |
| bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| assert(Ptr.isLive() && "Pointer is not live"); |
| if (!Ptr.isConst() || Ptr.isMutable()) |
| return true; |
| |
| // The This pointer is writable in constructors and destructors, |
| // even if isConst() returns true. |
| // TODO(perf): We could be hitting this code path quite a lot in complex |
| // constructors. Is there a better way to do this? |
| if (S.Current->getFunction()) { |
| for (const InterpFrame *Frame = S.Current; Frame; Frame = Frame->Caller) { |
| if (const Function *Func = Frame->getFunction(); |
| Func && (Func->isConstructor() || Func->isDestructor()) && |
| Ptr.block() == Frame->getThis().block()) { |
| return true; |
| } |
| } |
| } |
| |
| if (!Ptr.isBlockPointer()) |
| return false; |
| |
| const QualType Ty = Ptr.getType(); |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_modify_const_type) << Ty; |
| return false; |
| } |
| |
| bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| assert(Ptr.isLive() && "Pointer is not live"); |
| if (!Ptr.isMutable()) |
| return true; |
| |
| // In C++14 onwards, it is permitted to read a mutable member whose |
| // lifetime began within the evaluation. |
| if (S.getLangOpts().CPlusPlus14 && |
| Ptr.block()->getEvalID() == S.Ctx.getEvalID()) |
| return true; |
| |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| const FieldDecl *Field = Ptr.getField(); |
| S.FFDiag(Loc, diag::note_constexpr_access_mutable, 1) << AK_Read << Field; |
| S.Note(Field->getLocation(), diag::note_declared_at); |
| return false; |
| } |
| |
| bool CheckVolatile(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| assert(Ptr.isLive()); |
| |
| // FIXME: This check here might be kinda expensive. Maybe it would be better |
| // to have another field in InlineDescriptor for this? |
| if (!Ptr.isBlockPointer()) |
| return true; |
| |
| QualType PtrType = Ptr.getType(); |
| if (!PtrType.isVolatileQualified()) |
| return true; |
| |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| if (S.getLangOpts().CPlusPlus) |
| S.FFDiag(Loc, diag::note_constexpr_access_volatile_type) << AK << PtrType; |
| else |
| S.FFDiag(Loc); |
| return false; |
| } |
| |
| bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| assert(Ptr.isLive()); |
| |
| if (Ptr.isInitialized()) |
| return true; |
| |
| if (const auto *VD = Ptr.getDeclDesc()->asVarDecl(); |
| VD && VD->hasGlobalStorage()) { |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| if (VD->getAnyInitializer()) { |
| S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD; |
| S.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| diagnoseMissingInitializer(S, OpPC, VD); |
| } |
| return false; |
| } |
| |
| if (!S.checkingPotentialConstantExpression()) { |
| S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_uninit) |
| << AK << /*uninitialized=*/true << S.Current->getRange(OpPC); |
| } |
| return false; |
| } |
| |
| bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (Ptr.isInitialized()) |
| return true; |
| |
| assert(S.getLangOpts().CPlusPlus); |
| const auto *VD = cast<VarDecl>(Ptr.getDeclDesc()->asValueDecl()); |
| if ((!VD->hasConstantInitialization() && |
| VD->mightBeUsableInConstantExpressions(S.getCtx())) || |
| (S.getLangOpts().OpenCL && !S.getLangOpts().CPlusPlus11 && |
| !VD->hasICEInitializer(S.getCtx()))) { |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD; |
| S.Note(VD->getLocation(), diag::note_declared_at); |
| } |
| return false; |
| } |
| |
| bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| if (!CheckLive(S, OpPC, Ptr, AK)) |
| return false; |
| if (!CheckConstant(S, OpPC, Ptr)) |
| return false; |
| |
| if (!CheckDummy(S, OpPC, Ptr, AK)) |
| return false; |
| if (!CheckExtern(S, OpPC, Ptr)) |
| return false; |
| if (!CheckRange(S, OpPC, Ptr, AK)) |
| return false; |
| if (!CheckActive(S, OpPC, Ptr, AK)) |
| return false; |
| if (!CheckInitialized(S, OpPC, Ptr, AK)) |
| return false; |
| if (!CheckTemporary(S, OpPC, Ptr, AK)) |
| return false; |
| if (!CheckMutable(S, OpPC, Ptr)) |
| return false; |
| if (!CheckVolatile(S, OpPC, Ptr, AK)) |
| return false; |
| return true; |
| } |
| |
| bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (!CheckLive(S, OpPC, Ptr, AK_Assign)) |
| return false; |
| if (!CheckDummy(S, OpPC, Ptr, AK_Assign)) |
| return false; |
| if (!CheckExtern(S, OpPC, Ptr)) |
| return false; |
| if (!CheckRange(S, OpPC, Ptr, AK_Assign)) |
| return false; |
| if (!CheckGlobal(S, OpPC, Ptr)) |
| return false; |
| if (!CheckConst(S, OpPC, Ptr)) |
| return false; |
| return true; |
| } |
| |
| bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (!CheckLive(S, OpPC, Ptr, AK_MemberCall)) |
| return false; |
| if (!Ptr.isDummy()) { |
| if (!CheckExtern(S, OpPC, Ptr)) |
| return false; |
| if (!CheckRange(S, OpPC, Ptr, AK_MemberCall)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| if (!CheckLive(S, OpPC, Ptr, AK_Assign)) |
| return false; |
| if (!CheckRange(S, OpPC, Ptr, AK_Assign)) |
| return false; |
| return true; |
| } |
| |
| bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F) { |
| |
| if (F->isVirtual() && !S.getLangOpts().CPlusPlus20) { |
| const SourceLocation &Loc = S.Current->getLocation(OpPC); |
| S.CCEDiag(Loc, diag::note_constexpr_virtual_call); |
| return false; |
| } |
| |
| if (F->isConstexpr() && F->hasBody() && |
| (F->getDecl()->isConstexpr() || F->getDecl()->hasAttr<MSConstexprAttr>())) |
| return true; |
| |
| // Implicitly constexpr. |
| if (F->isLambdaStaticInvoker()) |
| return true; |
| |
| const SourceLocation &Loc = S.Current->getLocation(OpPC); |
| if (S.getLangOpts().CPlusPlus11) { |
| const FunctionDecl *DiagDecl = F->getDecl(); |
| |
| // Invalid decls have been diagnosed before. |
| if (DiagDecl->isInvalidDecl()) |
| return false; |
| |
| // If this function is not constexpr because it is an inherited |
| // non-constexpr constructor, diagnose that directly. |
| const auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); |
| if (CD && CD->isInheritingConstructor()) { |
| const auto *Inherited = CD->getInheritedConstructor().getConstructor(); |
| if (!Inherited->isConstexpr()) |
| DiagDecl = CD = Inherited; |
| } |
| |
| // FIXME: If DiagDecl is an implicitly-declared special member function |
| // or an inheriting constructor, we should be much more explicit about why |
| // it's not constexpr. |
| if (CD && CD->isInheritingConstructor()) { |
| S.FFDiag(Loc, diag::note_constexpr_invalid_inhctor, 1) |
| << CD->getInheritedConstructor().getConstructor()->getParent(); |
| S.Note(DiagDecl->getLocation(), diag::note_declared_at); |
| } else { |
| // Don't emit anything if the function isn't defined and we're checking |
| // for a constant expression. It might be defined at the point we're |
| // actually calling it. |
| bool IsExtern = DiagDecl->getStorageClass() == SC_Extern; |
| if (!DiagDecl->isDefined() && !IsExtern && DiagDecl->isConstexpr() && |
| S.checkingPotentialConstantExpression()) |
| return false; |
| |
| // If the declaration is defined, declared 'constexpr' _and_ has a body, |
| // the below diagnostic doesn't add anything useful. |
| if (DiagDecl->isDefined() && DiagDecl->isConstexpr() && |
| DiagDecl->hasBody()) |
| return false; |
| |
| S.FFDiag(Loc, diag::note_constexpr_invalid_function, 1) |
| << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; |
| S.Note(DiagDecl->getLocation(), diag::note_declared_at); |
| } |
| } else { |
| S.FFDiag(Loc, diag::note_invalid_subexpr_in_const_expr); |
| } |
| |
| return false; |
| } |
| |
| bool CheckCallDepth(InterpState &S, CodePtr OpPC) { |
| if ((S.Current->getDepth() + 1) > S.getLangOpts().ConstexprCallDepth) { |
| S.FFDiag(S.Current->getSource(OpPC), |
| diag::note_constexpr_depth_limit_exceeded) |
| << S.getLangOpts().ConstexprCallDepth; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This) { |
| if (!This.isZero()) |
| return true; |
| |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| |
| bool IsImplicit = false; |
| if (const auto *E = dyn_cast_if_present<CXXThisExpr>(Loc.asExpr())) |
| IsImplicit = E->isImplicit(); |
| |
| if (S.getLangOpts().CPlusPlus11) |
| S.FFDiag(Loc, diag::note_constexpr_this) << IsImplicit; |
| else |
| S.FFDiag(Loc); |
| |
| return false; |
| } |
| |
| bool CheckPure(InterpState &S, CodePtr OpPC, const CXXMethodDecl *MD) { |
| if (!MD->isPureVirtual()) |
| return true; |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << MD; |
| S.Note(MD->getLocation(), diag::note_declared_at); |
| return false; |
| } |
| |
| bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result, |
| APFloat::opStatus Status) { |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| |
| // [expr.pre]p4: |
| // If during the evaluation of an expression, the result is not |
| // mathematically defined [...], the behavior is undefined. |
| // FIXME: C++ rules require us to not conform to IEEE 754 here. |
| if (Result.isNan()) { |
| S.CCEDiag(E, diag::note_constexpr_float_arithmetic) |
| << /*NaN=*/true << S.Current->getRange(OpPC); |
| return S.noteUndefinedBehavior(); |
| } |
| |
| // In a constant context, assume that any dynamic rounding mode or FP |
| // exception state matches the default floating-point environment. |
| if (S.inConstantContext()) |
| return true; |
| |
| FPOptions FPO = E.asExpr()->getFPFeaturesInEffect(S.Ctx.getLangOpts()); |
| |
| if ((Status & APFloat::opInexact) && |
| FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { |
| // Inexact result means that it depends on rounding mode. If the requested |
| // mode is dynamic, the evaluation cannot be made in compile time. |
| S.FFDiag(E, diag::note_constexpr_dynamic_rounding); |
| return false; |
| } |
| |
| if ((Status != APFloat::opOK) && |
| (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || |
| FPO.getExceptionMode() != LangOptions::FPE_Ignore || |
| FPO.getAllowFEnvAccess())) { |
| S.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
| return false; |
| } |
| |
| if ((Status & APFloat::opStatus::opInvalidOp) && |
| FPO.getExceptionMode() != LangOptions::FPE_Ignore) { |
| // There is no usefully definable result. |
| S.FFDiag(E); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC) { |
| if (S.getLangOpts().CPlusPlus20) |
| return true; |
| |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.CCEDiag(E, diag::note_constexpr_new); |
| return true; |
| } |
| |
| bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, bool NewWasArray, |
| bool DeleteIsArray, const Descriptor *D, |
| const Expr *NewExpr) { |
| if (NewWasArray == DeleteIsArray) |
| return true; |
| |
| QualType TypeToDiagnose; |
| // We need to shuffle things around a bit here to get a better diagnostic, |
| // because the expression we allocated the block for was of type int*, |
| // but we want to get the array size right. |
| if (D->isArray()) { |
| QualType ElemQT = D->getType()->getPointeeType(); |
| TypeToDiagnose = S.getCtx().getConstantArrayType( |
| ElemQT, APInt(64, static_cast<uint64_t>(D->getNumElems()), false), |
| nullptr, ArraySizeModifier::Normal, 0); |
| } else |
| TypeToDiagnose = D->getType()->getPointeeType(); |
| |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.FFDiag(E, diag::note_constexpr_new_delete_mismatch) |
| << DeleteIsArray << 0 << TypeToDiagnose; |
| S.Note(NewExpr->getExprLoc(), diag::note_constexpr_dynamic_alloc_here) |
| << NewExpr->getSourceRange(); |
| return false; |
| } |
| |
| bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source, |
| const Pointer &Ptr) { |
| if (Source && isa<CXXNewExpr>(Source)) |
| return true; |
| |
| // Whatever this is, we didn't heap allocate it. |
| const SourceInfo &Loc = S.Current->getSource(OpPC); |
| S.FFDiag(Loc, diag::note_constexpr_delete_not_heap_alloc) |
| << Ptr.toDiagnosticString(S.getCtx()); |
| |
| if (Ptr.isTemporary()) |
| S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here); |
| else |
| S.Note(Ptr.getDeclLoc(), diag::note_declared_at); |
| return false; |
| } |
| |
| /// We aleady know the given DeclRefExpr is invalid for some reason, |
| /// now figure out why and print appropriate diagnostics. |
| bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR) { |
| const ValueDecl *D = DR->getDecl(); |
| return diagnoseUnknownDecl(S, OpPC, D); |
| } |
| |
| bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| AccessKinds AK) { |
| if (!Ptr.isDummy()) |
| return true; |
| |
| const Descriptor *Desc = Ptr.getDeclDesc(); |
| const ValueDecl *D = Desc->asValueDecl(); |
| if (!D) |
| return false; |
| |
| if (AK == AK_Read || AK == AK_Increment || AK == AK_Decrement) |
| return diagnoseUnknownDecl(S, OpPC, D); |
| |
| assert(AK == AK_Assign); |
| if (S.getLangOpts().CPlusPlus11) { |
| const SourceInfo &E = S.Current->getSource(OpPC); |
| S.FFDiag(E, diag::note_constexpr_modify_global); |
| } |
| return false; |
| } |
| |
| bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F, |
| const CallExpr *CE, unsigned ArgSize) { |
| auto Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); |
| auto NonNullArgs = collectNonNullArgs(F->getDecl(), Args); |
| unsigned Offset = 0; |
| unsigned Index = 0; |
| for (const Expr *Arg : Args) { |
| if (NonNullArgs[Index] && Arg->getType()->isPointerType()) { |
| const Pointer &ArgPtr = S.Stk.peek<Pointer>(ArgSize - Offset); |
| if (ArgPtr.isZero()) { |
| const SourceLocation &Loc = S.Current->getLocation(OpPC); |
| S.CCEDiag(Loc, diag::note_non_null_attribute_failed); |
| return false; |
| } |
| } |
| |
| Offset += align(primSize(S.Ctx.classify(Arg).value_or(PT_Ptr))); |
| ++Index; |
| } |
| return true; |
| } |
| |
| // FIXME: This is similar to code we already have in Compiler.cpp. |
| // I think it makes sense to instead add the field and base destruction stuff |
| // to the destructor Function itself. Then destroying a record would really |
| // _just_ be calling its destructor. That would also help with the diagnostic |
| // difference when the destructor or a field/base fails. |
| static bool runRecordDestructor(InterpState &S, CodePtr OpPC, |
| const Pointer &BasePtr, |
| const Descriptor *Desc) { |
| assert(Desc->isRecord()); |
| const Record *R = Desc->ElemRecord; |
| assert(R); |
| |
| // Fields. |
| for (const Record::Field &Field : llvm::reverse(R->fields())) { |
| const Descriptor *D = Field.Desc; |
| if (D->isRecord()) { |
| if (!runRecordDestructor(S, OpPC, BasePtr.atField(Field.Offset), D)) |
| return false; |
| } else if (D->isCompositeArray()) { |
| const Descriptor *ElemDesc = Desc->ElemDesc; |
| assert(ElemDesc->isRecord()); |
| for (unsigned I = 0; I != Desc->getNumElems(); ++I) { |
| if (!runRecordDestructor(S, OpPC, BasePtr.atIndex(I).narrow(), |
| ElemDesc)) |
| return false; |
| } |
| } |
| } |
| |
| // Destructor of this record. |
| if (const CXXDestructorDecl *Dtor = R->getDestructor(); |
| Dtor && !Dtor->isTrivial()) { |
| const Function *DtorFunc = S.getContext().getOrCreateFunction(Dtor); |
| if (!DtorFunc) |
| return false; |
| |
| S.Stk.push<Pointer>(BasePtr); |
| if (!Call(S, OpPC, DtorFunc, 0)) |
| return false; |
| } |
| |
| // Bases. |
| for (const Record::Base &Base : llvm::reverse(R->bases())) { |
| if (!runRecordDestructor(S, OpPC, BasePtr.atField(Base.Offset), Base.Desc)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool RunDestructors(InterpState &S, CodePtr OpPC, const Block *B) { |
| assert(B); |
| const Descriptor *Desc = B->getDescriptor(); |
| |
| if (Desc->isPrimitive() || Desc->isPrimitiveArray()) |
| return true; |
| |
| assert(Desc->isRecord() || Desc->isCompositeArray()); |
| |
| if (Desc->isCompositeArray()) { |
| const Descriptor *ElemDesc = Desc->ElemDesc; |
| assert(ElemDesc->isRecord()); |
| |
| Pointer RP(const_cast<Block *>(B)); |
| for (unsigned I = 0; I != Desc->getNumElems(); ++I) { |
| if (!runRecordDestructor(S, OpPC, RP.atIndex(I).narrow(), ElemDesc)) |
| return false; |
| } |
| return true; |
| } |
| |
| assert(Desc->isRecord()); |
| return runRecordDestructor(S, OpPC, Pointer(const_cast<Block *>(B)), Desc); |
| } |
| |
| void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED, |
| const APSInt &Value) { |
| llvm::APInt Min; |
| llvm::APInt Max; |
| |
| if (S.EvaluatingDecl && !S.EvaluatingDecl->isConstexpr()) |
| return; |
| |
| ED->getValueRange(Max, Min); |
| --Max; |
| |
| if (ED->getNumNegativeBits() && |
| (Max.slt(Value.getSExtValue()) || Min.sgt(Value.getSExtValue()))) { |
| const SourceLocation &Loc = S.Current->getLocation(OpPC); |
| S.report(Loc, diag::warn_constexpr_unscoped_enum_out_of_range) |
| << llvm::toString(Value, 10) << Min.getSExtValue() << Max.getSExtValue() |
| << ED; |
| } else if (!ED->getNumNegativeBits() && Max.ult(Value.getZExtValue())) { |
| const SourceLocation &Loc = S.Current->getLocation(OpPC); |
| S.report(Loc, diag::warn_constexpr_unscoped_enum_out_of_range) |
| << llvm::toString(Value, 10) << Min.getZExtValue() << Max.getZExtValue() |
| << ED; |
| } |
| } |
| |
| bool Interpret(InterpState &S, APValue &Result) { |
| // The current stack frame when we started Interpret(). |
| // This is being used by the ops to determine wheter |
| // to return from this function and thus terminate |
| // interpretation. |
| const InterpFrame *StartFrame = S.Current; |
| assert(!S.Current->isRoot()); |
| CodePtr PC = S.Current->getPC(); |
| |
| // Empty program. |
| if (!PC) |
| return true; |
| |
| for (;;) { |
| auto Op = PC.read<Opcode>(); |
| CodePtr OpPC = PC; |
| |
| switch (Op) { |
| #define GET_INTERP |
| #include "Opcodes.inc" |
| #undef GET_INTERP |
| } |
| } |
| } |
| |
| } // namespace interp |
| } // namespace clang |