| //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements target-independent rewrites as 1->N patterns. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| |
| #include <cstdint> |
| #include <functional> |
| #include <optional> |
| #include <type_traits> |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/SCF/IR/SCF.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Utils/IndexingUtils.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/ImplicitLocOpBuilder.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Interfaces/VectorInterfaces.h" |
| #include "mlir/Support/LogicalResult.h" |
| |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #define DEBUG_TYPE "vector-to-vector" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| template <typename IntType> |
| static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { |
| return llvm::to_vector<4>(llvm::map_range( |
| arrayAttr.getAsRange<IntegerAttr>(), |
| [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); |
| } |
| |
| // Helper to find an index in an affine map. |
| static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) { |
| for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| int64_t idx = map.getDimPosition(i); |
| if (idx == index) |
| return i; |
| } |
| return std::nullopt; |
| } |
| |
| namespace { |
| |
| /// ShapeCastOpFolder folds cancelling ShapeCastOps away. |
| // |
| // Example: |
| // |
| // The following MLIR with cancelling ShapeCastOps: |
| // |
| // %0 = source : vector<5x4x2xf32> |
| // %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32> |
| // %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32> |
| // %3 = user %2 : vector<5x4x2xf32> |
| // |
| // Should canonicalize to the following: |
| // |
| // %0 = source : vector<5x4x2xf32> |
| // %1 = user %0 : vector<5x4x2xf32> |
| // |
| struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp, |
| PatternRewriter &rewriter) const override { |
| // Check if 'shapeCastOp' has vector source/result type. |
| auto sourceVectorType = |
| dyn_cast_or_null<VectorType>(shapeCastOp.getSource().getType()); |
| auto resultVectorType = |
| dyn_cast_or_null<VectorType>(shapeCastOp.getResult().getType()); |
| if (!sourceVectorType || !resultVectorType) |
| return failure(); |
| |
| // Check if shape cast op source operand is also a shape cast op. |
| auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>( |
| shapeCastOp.getSource().getDefiningOp()); |
| if (!sourceShapeCastOp) |
| return failure(); |
| auto operandSourceVectorType = |
| cast<VectorType>(sourceShapeCastOp.getSource().getType()); |
| auto operandResultVectorType = sourceShapeCastOp.getType(); |
| |
| // Check if shape cast operations invert each other. |
| if (operandSourceVectorType != resultVectorType || |
| operandResultVectorType != sourceVectorType) |
| return failure(); |
| |
| rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource()); |
| return success(); |
| } |
| }; |
| |
| /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. |
| /// Ex: |
| /// ``` |
| /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> |
| /// %1 = vector.multi_reduction add, %0 [1] |
| /// : vector<8x32x16xf32> to vector<8x16xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| struct MultiReduceToContract |
| : public OpRewritePattern<vector::MultiDimReductionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, |
| PatternRewriter &rewriter) const override { |
| if (reduceOp.getKind() != vector::CombiningKind::ADD) |
| return failure(); |
| Operation *mulOp = reduceOp.getSource().getDefiningOp(); |
| if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) |
| return failure(); |
| SmallVector<bool> reductionMask = reduceOp.getReductionMask(); |
| auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); |
| SmallVector<AffineExpr> exprs; |
| SmallVector<vector::IteratorType> iteratorTypes; |
| for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { |
| if (!isReduceDim.value()) { |
| iteratorTypes.push_back(vector::IteratorType::parallel); |
| exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); |
| } else { |
| iteratorTypes.push_back(vector::IteratorType::reduction); |
| } |
| } |
| auto dstMap = AffineMap::get(/*dimCount=*/reductionMask.size(), |
| /*symCount=*/0, exprs, reduceOp.getContext()); |
| rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( |
| reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), reduceOp.getAcc(), |
| rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), |
| rewriter.getArrayAttr(llvm::to_vector(llvm::map_range( |
| iteratorTypes, [&](IteratorType t) -> mlir::Attribute { |
| return IteratorTypeAttr::get(rewriter.getContext(), t); |
| })))); |
| return success(); |
| } |
| }; |
| |
| /// Merge LHS/RHS (A/B) TransposeOp into ContractionOp user. |
| /// Ex: |
| /// ``` |
| /// %0 = vector.transpose %arg0, [2, 0, 1] |
| /// : vector<32x16x8xf32> to vector<8x32x16xf32> |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %arg0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| struct CombineContractABTranspose final |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<AffineMap> maps = |
| llvm::to_vector<4>(contractOp.getIndexingMapsArray()); |
| Value lhs = contractOp.getLhs(); |
| Value rhs = contractOp.getRhs(); |
| size_t index = 0; |
| bool changed = false; |
| for (Value *operand : {&lhs, &rhs}) { |
| AffineMap &map = maps[index++]; |
| auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); |
| if (!transposeOp) |
| continue; |
| AffineMap permutationMap = AffineMap::getPermutationMap( |
| extractVector<unsigned>(transposeOp.getTransp()), |
| contractOp.getContext()); |
| map = inversePermutation(permutationMap).compose(map); |
| *operand = transposeOp.getVector(); |
| changed = true; |
| } |
| if (!changed) |
| return failure(); |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| contractOp, lhs, rhs, contractOp.getAcc(), |
| rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); |
| return success(); |
| } |
| }; |
| |
| /// Merges accumulator and result transposes into contract. |
| /// |
| /// For example: |
| /// ```mlir |
| /// %accT = vector.transpose %acc, [0, 2, 1] |
| /// : vector<2x8x4xf32> to vector<2x4x8xf32> |
| /// %contract = vector.contract { |
| /// indexing_maps = [ |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> |
| /// ], |
| /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], |
| /// kind = #vector.kind<add> |
| /// } %lhs, %rhs, %accT |
| /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x4x8xf32> |
| /// %0 = vector.transpose %contract, [0, 2, 1] |
| /// : vector<2x4x8xf32> to vector<2x8x4> |
| /// ``` |
| /// Becomes: |
| /// ```mlir |
| /// %0 = vector.contract { |
| /// indexing_maps = [ |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, |
| /// affine_map<(d0, d1, d2, d3) -> (d0, d2, d1)> |
| /// ], |
| /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], |
| /// kind = #vector.kind<add> |
| /// } %lhs, %rhs, %acc |
| /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x8x4xf32> |
| /// ``` |
| struct CombineContractResultTranspose final |
| : public OpRewritePattern<vector::TransposeOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransposeOp resTOp, |
| PatternRewriter &rewriter) const override { |
| auto contractOp = resTOp.getVector().getDefiningOp<vector::ContractionOp>(); |
| if (!contractOp || !contractOp->hasOneUse()) |
| return failure(); |
| |
| auto accTOp = contractOp.getAcc().getDefiningOp<vector::TransposeOp>(); |
| if (!accTOp) |
| return failure(); |
| |
| MLIRContext *context = contractOp.getContext(); |
| auto maps = llvm::to_vector<3>(contractOp.getIndexingMapsArray()); |
| AffineMap contractMap = maps.back(); |
| |
| // Accumulator transpose performs f(A) -> B. Contract performs g(C) -> B. |
| // To index into A in contract, we need revert(f)(g(C)) -> A. |
| auto accTMap = AffineMap::getPermutationMap( |
| extractVector<unsigned>(accTOp.getTransp()), context); |
| |
| // Contract performs g(C) -> D. Result transpose performs h(D) -> E. |
| // To index into E in contract, we need h(g(C)) -> E. |
| auto resTMap = AffineMap::getPermutationMap( |
| extractVector<unsigned>(resTOp.getTransp()), context); |
| auto combinedResMap = resTMap.compose(contractMap); |
| |
| // The accumulator and result share the same indexing map. So they should be |
| // the same to be able to merge. This means combinedResMap is the same as |
| // inversePermutation(accTMap).compose(contractMap), which means |
| if (inversePermutation(accTMap) != resTMap) |
| return failure(); |
| maps.back() = combinedResMap; |
| |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| resTOp, contractOp.getLhs(), contractOp.getRhs(), accTOp.getVector(), |
| rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); |
| return success(); |
| } |
| }; |
| |
| /// Merge BroadcastOp into ContractionOp user. |
| /// Ex: |
| /// ``` |
| /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %0, %arg1, %cst_f0 |
| /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %1 = vector.contract {indexing_maps = [ |
| /// affine_map<(d0, d1, d2) -> (d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| /// affine_map<(d0, d1, d2) -> (d0, d1)>], |
| /// iterator_types = ["parallel", "parallel", "reduction"], |
| /// kind = add} %arg0, %arg1, %cst_f0 |
| /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> |
| /// ``` |
| struct CombineContractBroadcast |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| PatternRewriter &rewriter) const override { |
| SmallVector<AffineMap> maps = |
| llvm::to_vector<4>(contractOp.getIndexingMapsArray()); |
| Value lhs = contractOp.getLhs(); |
| Value rhs = contractOp.getRhs(); |
| size_t index = 0; |
| bool changed = false; |
| for (Value *operand : {&lhs, &rhs}) { |
| AffineMap &map = maps[index++]; |
| auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); |
| if (!broadcast) |
| continue; |
| // contractionOp can only take vector as operands. |
| auto srcType = dyn_cast<VectorType>(broadcast.getSourceType()); |
| if (!srcType || |
| srcType.getRank() == broadcast.getResultVectorType().getRank()) |
| continue; |
| int64_t rankDiff = |
| broadcast.getResultVectorType().getRank() - srcType.getRank(); |
| bool innerDimBroadcast = false; |
| SmallVector<AffineExpr> originalDims; |
| for (const auto &dim : llvm::enumerate(srcType.getShape())) { |
| if (dim.value() != broadcast.getResultVectorType().getDimSize( |
| rankDiff + dim.index())) { |
| innerDimBroadcast = true; |
| break; |
| } |
| originalDims.push_back( |
| rewriter.getAffineDimExpr(dim.index() + rankDiff)); |
| } |
| // Contract doesn't support inner dimension broadcast. Once this is |
| // relaxed we can remove this case. |
| if (innerDimBroadcast) |
| continue; |
| |
| // It would be incorrect to fold a broadcast onto a reduction dimension |
| // of non-unit size. |
| bool nonUnitDimReductionBroadcast = false; |
| for (int64_t i = 0; i < rankDiff; ++i) { |
| if (broadcast.getResultVectorType().getDimSize(i) != 1 && |
| isReductionIterator(contractOp.getIteratorTypes() |
| .getValue()[map.getDimPosition(i)])) { |
| nonUnitDimReductionBroadcast = true; |
| break; |
| } |
| } |
| if (nonUnitDimReductionBroadcast) |
| continue; |
| |
| AffineMap broadcastMap = |
| AffineMap::get(broadcast.getResultVectorType().getRank(), 0, |
| originalDims, contractOp.getContext()); |
| map = broadcastMap.compose(map); |
| *operand = broadcast.getSource(); |
| changed = true; |
| } |
| |
| if (!changed) |
| return failure(); |
| |
| // Determine which dims are usused, now that the maps have been composed |
| // with the broadcast maps. |
| llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps); |
| // Compress unused dims. |
| for (auto &m : maps) |
| m = compressDims(m, unusedDimsBitVector); |
| // Compute the combined iterators. |
| SmallVector<Attribute> iterators; |
| for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) { |
| if (!unusedDimsBitVector.test(i)) |
| iterators.push_back(contractOp.getIteratorTypes().getValue()[i]); |
| } |
| // Check that compressing unused dims isn't removing all reduction dimension |
| // pairs. For example, if the vector.contract had only one reduction |
| // iterator and that was a unit-dimension created by a broadcast, |
| // then we should bail here, otherwise we would create a contract without |
| // a reduction dimension pair. |
| bool hasReductionIteratorApplyingOnBothSides = false; |
| for (unsigned i = 0; i < iterators.size(); ++i) { |
| if (!isReductionIterator(iterators[i])) |
| continue; |
| if (getResultIndex(maps[0], i) && getResultIndex(maps[1], i)) { |
| hasReductionIteratorApplyingOnBothSides = true; |
| break; |
| } |
| } |
| if (!hasReductionIteratorApplyingOnBothSides) |
| return failure(); |
| |
| // If the compressed maps have a dimension that is not used by either LHS or |
| // RHS then the ContractionOp verifier would fail. |
| if (getUnusedDimsBitVector({maps[0], maps[1]}).any()) |
| return failure(); |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| contractOp, lhs, rhs, contractOp.getAcc(), |
| rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators)); |
| return success(); |
| } |
| }; |
| |
| /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and |
| /// contraction ops closer, which kicks in CombineContractBroadcast pattern when |
| /// casting ops are around these operations. |
| /// Ex: |
| /// ``` |
| /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> |
| /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> |
| /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> |
| /// ``` |
| struct ReorderCastOpsOnBroadcast |
| : public OpInterfaceRewritePattern<CastOpInterface> { |
| using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; |
| |
| LogicalResult matchAndRewrite(CastOpInterface op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumOperands() != 1) |
| return failure(); |
| auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); |
| if (!bcastOp) |
| return failure(); |
| |
| Type castResTy = getElementTypeOrSelf(op->getResult(0)); |
| if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType())) |
| castResTy = VectorType::get(vecTy.getShape(), castResTy); |
| auto *castOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), |
| bcastOp.getSource(), castResTy, op->getAttrs()); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| op, op->getResult(0).getType(), castOp->getResult(0)); |
| return success(); |
| } |
| }; |
| |
| /// Reorders elementwise(transpose) to transpose(elementwise). This makes |
| /// transpose ops and contraction ops closer, which kicks in |
| /// CombineContractABTranspose pattern when elementwise ops are between these |
| /// operations. Ex: |
| /// ``` |
| /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32> |
| /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32> |
| /// %r = arith.addf %at, %bt : vector<2x4xf32> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %0 = arith.addf %a, %b : vector<4x2xf32> |
| /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32> |
| /// ``` |
| struct ReorderElementwiseOpsOnTranspose final |
| : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| using OpTraitRewritePattern::OpTraitRewritePattern; |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumResults() != 1 || op->getNumRegions() != 0) |
| return failure(); |
| |
| // Make sure all operands are transpose/constant ops and collect their |
| // transposition maps. |
| SmallVector<ArrayAttr> transposeMaps; |
| transposeMaps.reserve(op->getNumOperands()); |
| // Record the initial type before transposition. We'll use its shape later. |
| // Any type will do here as we will check all transpose maps are the same. |
| VectorType srcType; |
| for (Value operand : op->getOperands()) { |
| auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); |
| if (transposeOp) { |
| transposeMaps.push_back(transposeOp.getTransp()); |
| srcType = transposeOp.getSourceVectorType(); |
| } else if (!matchPattern(operand, m_Constant())) { |
| return failure(); |
| } |
| } |
| if (transposeMaps.empty()) |
| return failure(); |
| // This is an elementwise op, so all transposed operands should have the |
| // same type. We need to additionally check that all transposes uses the |
| // same map. |
| if (!llvm::all_equal(transposeMaps)) |
| return rewriter.notifyMatchFailure(op, "different transpose map"); |
| |
| SmallVector<Value> srcValues; |
| srcValues.reserve(op->getNumOperands()); |
| |
| // If there are constant operands, we need to insert inverse transposes for |
| // them. Calculate the inverse order first. |
| auto order = extractVector<unsigned>(transposeMaps.front()); |
| SmallVector<int64_t> invOrder(order.size()); |
| for (int i = 0, e = order.size(); i < e; ++i) |
| invOrder[order[i]] = i; |
| |
| for (Value operand : op->getOperands()) { |
| auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); |
| if (transposeOp) { |
| srcValues.push_back(transposeOp.getVector()); |
| } else { |
| // This is a constant. Create a reverse transpose op for it. |
| auto vectorType = VectorType::get( |
| srcType.getShape(), |
| cast<VectorType>(operand.getType()).getElementType()); |
| srcValues.push_back(rewriter.create<vector::TransposeOp>( |
| operand.getLoc(), vectorType, operand, |
| rewriter.getI64ArrayAttr(invOrder))); |
| } |
| } |
| |
| auto vectorType = VectorType::get( |
| srcType.getShape(), |
| cast<VectorType>(op->getResultTypes()[0]).getElementType()); |
| Operation *elementwiseOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, |
| vectorType, op->getAttrs()); |
| rewriter.replaceOpWithNewOp<vector::TransposeOp>( |
| op, op->getResultTypes()[0], elementwiseOp->getResult(0), |
| transposeMaps.front()); |
| return success(); |
| } |
| }; |
| |
| // Returns the values in `arrayAttr` as an integer vector. |
| static SmallVector<int64_t> getIntValueVector(ArrayAttr arrayAttr) { |
| return llvm::to_vector<4>( |
| llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), |
| [](IntegerAttr attr) { return attr.getInt(); })); |
| } |
| |
| // Shuffles vector.bitcast op after vector.extract op. |
| // |
| // This transforms IR like: |
| // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> |
| // %1 = vector.extract %0[3] : f16 from vector<8xf16> |
| // Into: |
| // %0 = vector.extract %src[1] : f32 from vector<4xf32> |
| // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> |
| // %2 = vector.extract %1[1] : f16 from vector<2xf16> |
| struct BubbleDownVectorBitCastForExtract |
| : public OpRewritePattern<vector::ExtractOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractOp extractOp, |
| PatternRewriter &rewriter) const override { |
| // Only support extracting scalars for now. |
| if (extractOp.getSourceVectorType().getRank() != 1) |
| return failure(); |
| |
| auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); |
| if (!castOp) |
| return failure(); |
| |
| VectorType castSrcType = castOp.getSourceVectorType(); |
| VectorType castDstType = castOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| |
| // Fail to match if we only have one element in the cast op source. |
| // This is to avoid infinite loop given that this pattern can generate |
| // such cases. |
| if (castSrcType.getNumElements() == 1) |
| return failure(); |
| |
| // Only support casting to a larger number of elements or now. |
| // E.g., vector<4xf32> -> vector<8xf16>. |
| if (castSrcType.getNumElements() > castDstType.getNumElements()) |
| return failure(); |
| |
| unsigned expandRatio = |
| castDstType.getNumElements() / castSrcType.getNumElements(); |
| |
| auto getFirstIntValue = [](ArrayRef<OpFoldResult> values) -> uint64_t { |
| assert(values[0].is<Attribute>() && "Unexpected non-constant index"); |
| return cast<IntegerAttr>(values[0].get<Attribute>()).getInt(); |
| }; |
| |
| uint64_t index = getFirstIntValue(extractOp.getMixedPosition()); |
| |
| // Get the single scalar (as a vector) in the source value that packs the |
| // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> |
| Location loc = extractOp.getLoc(); |
| Value packedValue = rewriter.create<vector::ExtractOp>( |
| loc, castOp.getSource(), index / expandRatio); |
| Type packedVecType = VectorType::get(/*shape=*/{1}, packedValue.getType()); |
| Value zero = rewriter.create<arith::ConstantOp>( |
| loc, packedVecType, rewriter.getZeroAttr(packedVecType)); |
| packedValue = rewriter.create<vector::InsertOp>(loc, packedValue, zero, |
| /*position=*/0); |
| |
| // Cast it to a vector with the desired scalar's type. |
| // E.g. f32 -> vector<2xf16> |
| VectorType packedType = |
| VectorType::get({expandRatio}, castDstType.getElementType()); |
| Value castedValue = |
| rewriter.create<vector::BitCastOp>(loc, packedType, packedValue); |
| |
| // Finally extract the desired scalar. |
| rewriter.replaceOpWithNewOp<vector::ExtractOp>(extractOp, castedValue, |
| index % expandRatio); |
| return success(); |
| } |
| }; |
| |
| // Shuffles vector.bitcast op after vector.extract_strided_slice op. |
| // |
| // This transforms IR like: |
| // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> |
| // %0 = vector.extract_strided_slice %cast { |
| // offsets = [4], sizes = [4], strides = [1] |
| // } : vector<8xf16> to vector<4xf16> |
| // Into: |
| // %0 = vector.extract_strided_slice %src { |
| // offsets = [2], sizes = [2], strides = [1] |
| // } : vector<4xf32> to vector<2xf32> |
| // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> |
| struct BubbleDownBitCastForStridedSliceExtract |
| : public OpRewritePattern<vector::ExtractStridedSliceOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, |
| PatternRewriter &rewriter) const override { |
| auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); |
| if (!castOp) |
| return failure(); |
| |
| VectorType castSrcType = castOp.getSourceVectorType(); |
| VectorType castDstType = castOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| // Require casting to more elements for now; other cases to be implemented. |
| if (castSrcLastDim > castDstLastDim) |
| return failure(); |
| |
| // Only accept all one strides for now. |
| if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(), |
| [](const APInt &val) { return !val.isOne(); })) |
| return failure(); |
| |
| unsigned rank = extractOp.getSourceVectorType().getRank(); |
| assert(castDstLastDim % castSrcLastDim == 0); |
| int64_t expandRatio = castDstLastDim / castSrcLastDim; |
| |
| // If we have a less number of offsets than the rank, then implicitly we |
| // are selecting the full range for the last bitcasted dimension; other |
| // dimensions aren't affected. Otherwise, we need to scale down the last |
| // dimension's offset given we are extracting from less elements now. |
| ArrayAttr newOffsets = extractOp.getOffsets(); |
| if (newOffsets.size() == rank) { |
| SmallVector<int64_t> offsets = getIntValueVector(newOffsets); |
| if (offsets.back() % expandRatio != 0) |
| return failure(); |
| offsets.back() = offsets.back() / expandRatio; |
| newOffsets = rewriter.getI64ArrayAttr(offsets); |
| } |
| |
| // Similarly for sizes. |
| ArrayAttr newSizes = extractOp.getSizes(); |
| if (newSizes.size() == rank) { |
| SmallVector<int64_t> sizes = getIntValueVector(newSizes); |
| if (sizes.back() % expandRatio != 0) |
| return failure(); |
| sizes.back() = sizes.back() / expandRatio; |
| newSizes = rewriter.getI64ArrayAttr(sizes); |
| } |
| |
| SmallVector<int64_t> dims = |
| llvm::to_vector<4>(cast<VectorType>(extractOp.getType()).getShape()); |
| dims.back() = dims.back() / expandRatio; |
| VectorType newExtractType = |
| VectorType::get(dims, castSrcType.getElementType()); |
| |
| auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( |
| extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets, |
| newSizes, extractOp.getStrides()); |
| |
| rewriter.replaceOpWithNewOp<vector::BitCastOp>( |
| extractOp, extractOp.getType(), newExtractOp); |
| |
| return success(); |
| } |
| }; |
| |
| // Shuffles vector.bitcast op before vector.insert_strided_slice op. |
| // |
| // This transforms IR like: |
| // %0 = vector.insert_strided_slice %src, %dst { |
| // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> |
| // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> |
| // Into: |
| // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> |
| // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> |
| // %2 = vector.insert_strided_slice %src, %dst { |
| // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> |
| struct BubbleUpBitCastForStridedSliceInsert |
| : public OpRewritePattern<vector::BitCastOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| PatternRewriter &rewriter) const override { |
| VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| VectorType castDstType = bitcastOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| // Skip 0-D vector which will not from InsertStridedSliceOp. |
| if (castSrcType.getRank() == 0) |
| return failure(); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| // Require casting to less elements for now; other cases to be implemented. |
| if (castSrcLastDim < castDstLastDim) |
| return failure(); |
| |
| assert(castSrcLastDim % castDstLastDim == 0); |
| int64_t shrinkRatio = castSrcLastDim / castDstLastDim; |
| |
| auto insertOp = |
| bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>(); |
| if (!insertOp) |
| return failure(); |
| |
| // Only accept all one strides for now. |
| if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(), |
| [](const APInt &val) { return !val.isOne(); })) |
| return failure(); |
| |
| unsigned rank = insertOp.getSourceVectorType().getRank(); |
| // Require insert op to have the same rank for the source and destination |
| // vector; other cases to be implemented. |
| if (rank != insertOp.getDestVectorType().getRank()) |
| return failure(); |
| |
| // Requires that shape of insert op src is castable to dstType. |
| unsigned sourceWidth = castSrcType.getElementType().getIntOrFloatBitWidth(); |
| unsigned destinationWidth = |
| castDstType.getElementType().getIntOrFloatBitWidth(); |
| unsigned numElements = destinationWidth / sourceWidth; |
| if (insertOp.getSourceVectorType().getNumElements() % numElements != 0) |
| return failure(); |
| |
| ArrayAttr newOffsets = insertOp.getOffsets(); |
| assert(newOffsets.size() == rank); |
| SmallVector<int64_t> offsets = getIntValueVector(newOffsets); |
| if (offsets.back() % shrinkRatio != 0) |
| return failure(); |
| offsets.back() = offsets.back() / shrinkRatio; |
| newOffsets = rewriter.getI64ArrayAttr(offsets); |
| |
| SmallVector<int64_t> srcDims = |
| llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); |
| srcDims.back() = srcDims.back() / shrinkRatio; |
| VectorType newCastSrcType = |
| VectorType::get(srcDims, castDstType.getElementType()); |
| |
| auto newCastSrcOp = rewriter.create<vector::BitCastOp>( |
| bitcastOp.getLoc(), newCastSrcType, insertOp.getSource()); |
| |
| SmallVector<int64_t> dstDims = |
| llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); |
| dstDims.back() = dstDims.back() / shrinkRatio; |
| VectorType newCastDstType = |
| VectorType::get(dstDims, castDstType.getElementType()); |
| |
| auto newCastDstOp = rewriter.create<vector::BitCastOp>( |
| bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); |
| |
| rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( |
| bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, |
| insertOp.getStrides()); |
| |
| return success(); |
| } |
| }; |
| |
| // Breaks down vector.bitcast op |
| // |
| // This transforms IR like: |
| // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> |
| // Into: |
| // %cst = vector.splat %c0_f32 : vector<4xf32> |
| // %1 = vector.extract_strided_slice %0 { |
| // offsets = [0], sizes = [4], strides = [1] |
| // } : vector<8xf16> to vector<4xf16> |
| // %2 = vector.bitcast %1 : vector<4xf16> to vector<2xf32> |
| // %4 = vector.insert_strided_slice %2, %cst { |
| // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> |
| // %5 = vector.extract_strided_slice %0 { |
| // offsets = [4], sizes = [4], strides = [1] |
| // } : vector<8xf16> to vector<4xf16> |
| // %6 = vector.bitcast %5 : vector<4xf16> to vector<2xf32> |
| // %7 = vector.insert_strided_slice %6, %cst { |
| // offsets = [2], strides = [1]} : vector<2xf32> into vector<4xf32> |
| struct BreakDownVectorBitCast : public OpRewritePattern<vector::BitCastOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| public: |
| BreakDownVectorBitCast(MLIRContext *context, |
| std::function<bool(vector::BitCastOp)> controlFn, |
| PatternBenefit benefit) |
| : OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {} |
| |
| LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, |
| PatternRewriter &rewriter) const override { |
| |
| if (controlFn && !controlFn(bitcastOp)) |
| return failure(); |
| |
| VectorType castSrcType = bitcastOp.getSourceVectorType(); |
| VectorType castDstType = bitcastOp.getResultVectorType(); |
| assert(castSrcType.getRank() == castDstType.getRank()); |
| |
| // Only support rank 1 case for now. |
| if (castSrcType.getRank() != 1) |
| return failure(); |
| |
| int64_t castSrcLastDim = castSrcType.getShape().back(); |
| int64_t castDstLastDim = castDstType.getShape().back(); |
| // Require casting to less elements for now; other cases to be implemented. |
| if (castSrcLastDim < castDstLastDim) |
| return failure(); |
| |
| assert(castSrcLastDim % castDstLastDim == 0); |
| int64_t shrinkRatio = castSrcLastDim / castDstLastDim; |
| // Nothing to do if it is already bitcasting to a single element. |
| if (castSrcLastDim == shrinkRatio) |
| return failure(); |
| |
| Location loc = bitcastOp.getLoc(); |
| Type elemType = castDstType.getElementType(); |
| assert(elemType.isSignlessIntOrIndexOrFloat()); |
| |
| Value zero = rewriter.create<arith::ConstantOp>( |
| loc, elemType, rewriter.getZeroAttr(elemType)); |
| Value res = rewriter.create<SplatOp>(loc, castDstType, zero); |
| |
| SmallVector<int64_t> sliceShape{castDstLastDim}; |
| SmallVector<int64_t> strides{1}; |
| VectorType newCastDstType = |
| VectorType::get(SmallVector<int64_t>{castDstLastDim / shrinkRatio}, |
| castDstType.getElementType()); |
| |
| for (int i = 0, e = shrinkRatio; i < e; ++i) { |
| Value extracted = rewriter.create<ExtractStridedSliceOp>( |
| loc, bitcastOp.getSource(), ArrayRef<int64_t>{i * castDstLastDim}, |
| sliceShape, strides); |
| Value bitcast = |
| rewriter.create<BitCastOp>(loc, newCastDstType, extracted); |
| res = rewriter.create<InsertStridedSliceOp>( |
| loc, bitcast, res, |
| ArrayRef<int64_t>{i * castDstLastDim / shrinkRatio}, strides); |
| } |
| rewriter.replaceOp(bitcastOp, res); |
| return success(); |
| } |
| |
| private: |
| std::function<bool(BitCastOp)> controlFn; |
| }; |
| |
| /// Reorders elementwise(broadcast/splat) to broadcast(elementwise). Ex: |
| /// ``` |
| /// %a = vector.broadcast %arg1 : index to vector<1x4xindex> |
| /// %b = vector.broadcast %arg2 : index to vector<1x4xindex> |
| /// %r = arith.addi %a, %b : vector<1x4xindex> |
| /// ``` |
| /// Gets converted to: |
| /// ``` |
| /// %r = arith.addi %arg0, %arg1 : index |
| /// %b = vector.broadcast %r : index to vector<1x4xindex> |
| /// ``` |
| /// |
| /// Both `vector.broadcast` and `vector.splat` are supported as broadcasting |
| /// ops. |
| struct ReorderElementwiseOpsOnBroadcast final |
| : public OpTraitRewritePattern<OpTrait::Elementwise> { |
| using OpTraitRewritePattern::OpTraitRewritePattern; |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (op->getNumResults() != 1) |
| return failure(); |
| if (!llvm::isa<ShapedType>(op->getResults()[0].getType())) |
| return failure(); |
| if (!OpTrait::hasElementwiseMappableTraits(op)) |
| return failure(); |
| if (op->getNumOperands() == 0 || |
| op->getResults()[0].getType() != op->getOperand(0).getType()) { |
| return failure(); |
| } |
| // Avoid operations that only accept vector types, since broadcast |
| // source might be scalar types. |
| if (isa<vector::FMAOp>(op)) { |
| return failure(); |
| } |
| |
| // Get the type of the lhs operand |
| auto *lhsBcastOrSplat = op->getOperand(0).getDefiningOp(); |
| if (!lhsBcastOrSplat || |
| !isa<vector::BroadcastOp, vector::SplatOp>(*lhsBcastOrSplat)) |
| return failure(); |
| auto lhsBcastOrSplatType = lhsBcastOrSplat->getOperand(0).getType(); |
| |
| // Make sure that all operands are broadcast from identical types: |
| // * scalar (`vector.broadcast` + `vector.splat`), or |
| // * vector (`vector.broadcast`). |
| // Otherwise the re-ordering wouldn't be safe. |
| if (!llvm::all_of(op->getOperands(), [&lhsBcastOrSplatType](Value val) { |
| auto bcast = val.getDefiningOp<vector::BroadcastOp>(); |
| if (bcast) |
| return (bcast.getOperand().getType() == lhsBcastOrSplatType); |
| auto splat = val.getDefiningOp<vector::SplatOp>(); |
| if (splat) |
| return (splat.getOperand().getType() == lhsBcastOrSplatType); |
| return false; |
| })) { |
| return failure(); |
| } |
| |
| // Collect the source values before broadcasting |
| SmallVector<Value> srcValues; |
| srcValues.reserve(op->getNumOperands()); |
| for (Value operand : op->getOperands()) { |
| srcValues.push_back(operand.getDefiningOp()->getOperand(0)); |
| } |
| |
| // Create the "elementwise" Op |
| Operation *elementwiseOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, |
| lhsBcastOrSplatType, op->getAttrs()); |
| |
| // Replace the original Op with the elementwise Op |
| auto vectorType = op->getResultTypes()[0]; |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>( |
| op, vectorType, elementwiseOp->getResults()); |
| |
| return success(); |
| } |
| }; |
| |
| // Helper that returns a vector comparison that constructs a mask: |
| // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] |
| // |
| // If `dim == 0` then the result will be a 0-D vector. |
| // |
| // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, |
| // much more compact, IR for this operation, but LLVM eventually |
| // generates more elaborate instructions for this intrinsic since it |
| // is very conservative on the boundary conditions. |
| static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, |
| bool force32BitVectorIndices, int64_t dim, |
| Value b, Value *off = nullptr) { |
| auto loc = op->getLoc(); |
| // If we can assume all indices fit in 32-bit, we perform the vector |
| // comparison in 32-bit to get a higher degree of SIMD parallelism. |
| // Otherwise we perform the vector comparison using 64-bit indices. |
| Type idxType = |
| force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); |
| DenseIntElementsAttr indicesAttr; |
| if (dim == 0 && force32BitVectorIndices) { |
| indicesAttr = DenseIntElementsAttr::get( |
| VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); |
| } else if (dim == 0) { |
| indicesAttr = DenseIntElementsAttr::get( |
| VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); |
| } else if (force32BitVectorIndices) { |
| indicesAttr = rewriter.getI32VectorAttr( |
| llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))); |
| } else { |
| indicesAttr = rewriter.getI64VectorAttr( |
| llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))); |
| } |
| Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); |
| // Add in an offset if requested. |
| if (off) { |
| Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off); |
| Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); |
| indices = rewriter.create<arith::AddIOp>(loc, ov, indices); |
| } |
| // Construct the vector comparison. |
| Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b); |
| Value bounds = |
| rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); |
| return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, |
| bounds); |
| } |
| |
| template <typename ConcreteOp> |
| struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { |
| public: |
| explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt, |
| PatternBenefit benefit = 1) |
| : mlir::OpRewritePattern<ConcreteOp>(context, benefit), |
| force32BitVectorIndices(enableIndexOpt) {} |
| |
| LogicalResult matchAndRewrite(ConcreteOp xferOp, |
| PatternRewriter &rewriter) const override { |
| if (!xferOp.hasOutOfBoundsDim()) |
| return failure(); |
| |
| if (xferOp.getVectorType().getRank() > 1 || xferOp.getIndices().empty()) |
| return failure(); |
| |
| Location loc = xferOp->getLoc(); |
| VectorType vtp = xferOp.getVectorType(); |
| |
| // Create the in-bounds mask with all elements between [0 .. dim - offset) |
| // set and [dim - offset .. vector_length) unset. |
| // |
| // TODO: when the leaf transfer rank is k > 1, we need the last `k` |
| // dimensions here. |
| unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1; |
| Value off = xferOp.getIndices()[lastIndex]; |
| Value dim = |
| vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex); |
| Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); |
| Value mask = rewriter.create<vector::CreateMaskOp>( |
| loc, |
| VectorType::get(vtp.getShape(), rewriter.getI1Type(), |
| vtp.getScalableDims()), |
| b); |
| if (xferOp.getMask()) { |
| // Intersect the in-bounds with the mask specified as an op parameter. |
| mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask()); |
| } |
| |
| rewriter.updateRootInPlace(xferOp, [&]() { |
| xferOp.getMaskMutable().assign(mask); |
| xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true})); |
| }); |
| |
| return success(); |
| } |
| |
| private: |
| const bool force32BitVectorIndices; |
| }; |
| |
| /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). |
| class VectorCreateMaskOpConversion |
| : public OpRewritePattern<vector::CreateMaskOp> { |
| public: |
| explicit VectorCreateMaskOpConversion(MLIRContext *context, |
| bool enableIndexOpt, |
| PatternBenefit benefit = 1) |
| : mlir::OpRewritePattern<vector::CreateMaskOp>(context, benefit), |
| force32BitVectorIndices(enableIndexOpt) {} |
| |
| LogicalResult matchAndRewrite(vector::CreateMaskOp op, |
| PatternRewriter &rewriter) const override { |
| auto dstType = op.getType(); |
| if (cast<VectorType>(dstType).isScalable()) |
| return failure(); |
| int64_t rank = dstType.getRank(); |
| if (rank > 1) |
| return failure(); |
| rewriter.replaceOp( |
| op, buildVectorComparison(rewriter, op, force32BitVectorIndices, |
| rank == 0 ? 0 : dstType.getDimSize(0), |
| op.getOperand(0))); |
| return success(); |
| } |
| |
| private: |
| const bool force32BitVectorIndices; |
| }; |
| |
| /// Returns true if all the `i1` elements of `constantOp` are set to `value`. |
| static bool allI1ConstantValuesSetTo(arith::ConstantOp constantOp, bool value) { |
| auto denseAttr = dyn_cast<DenseIntElementsAttr>(constantOp.getValue()); |
| // TODO: Support non-dense constant. |
| if (!denseAttr) |
| return false; |
| |
| assert(denseAttr.getElementType().isInteger(1) && "Unexpected type"); |
| return denseAttr.isSplat() && denseAttr.getSplatValue<bool>() == value; |
| } |
| |
| /// Folds a select operation between an all-true and all-false vector. For now, |
| /// only single element vectors (i.e., vector<1xi1>) are supported. That is: |
| /// |
| /// %true = arith.constant dense<true> : vector<1xi1> |
| /// %false = arith.constant dense<false> : vector<1xi1> |
| /// %result = arith.select %cond, %true, %false : i1, vector<1xi1> |
| /// => |
| /// %result = vector.broadcast %cond : i1 to vector<1xi1> |
| /// |
| /// InstCombine seems to handle vectors with multiple elements but not the |
| /// single element ones. |
| struct FoldI1Select : public OpRewritePattern<arith::SelectOp> { |
| using OpRewritePattern<arith::SelectOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(arith::SelectOp selectOp, |
| PatternRewriter &rewriter) const override { |
| auto vecType = dyn_cast<VectorType>(selectOp.getType()); |
| if (!vecType || !vecType.getElementType().isInteger(1)) |
| return failure(); |
| |
| // Only scalar conditions can be folded. |
| Value cond = selectOp.getCondition(); |
| if (isa<VectorType>(cond.getType())) |
| return failure(); |
| |
| // TODO: Support n-D and scalable vectors. |
| if (vecType.getRank() != 1 || vecType.isScalable()) |
| return failure(); |
| |
| // TODO: Support vectors with multiple elements. |
| if (vecType.getShape()[0] != 1) |
| return failure(); |
| |
| auto trueConst = selectOp.getTrueValue().getDefiningOp<arith::ConstantOp>(); |
| if (!trueConst || !allI1ConstantValuesSetTo(trueConst, true)) |
| return failure(); |
| |
| auto falseConst = |
| selectOp.getFalseValue().getDefiningOp<arith::ConstantOp>(); |
| if (!falseConst || !allI1ConstantValuesSetTo(falseConst, false)) |
| return failure(); |
| |
| // Replace select with its condition broadcasted to single element vector. |
| auto elemType = rewriter.getIntegerType(vecType.getNumElements()); |
| auto bcastType = VectorType::get(/*shape=*/{1}, elemType); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(selectOp, bcastType, cond); |
| return success(); |
| } |
| }; |
| |
| // Drop inner most contiguous unit dimensions from transfer_read operand. |
| class DropInnerMostUnitDims : public OpRewritePattern<vector::TransferReadOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferReadOp readOp, |
| PatternRewriter &rewriter) const override { |
| // TODO: support 0-d corner case. |
| if (readOp.getTransferRank() == 0) |
| return failure(); |
| |
| // TODO: support mask. |
| if (readOp.getMask()) |
| return failure(); |
| |
| auto srcType = dyn_cast<MemRefType>(readOp.getSource().getType()); |
| if (!srcType || !srcType.hasStaticShape()) |
| return failure(); |
| |
| if (!readOp.getPermutationMap().isMinorIdentity()) |
| return failure(); |
| |
| auto targetType = readOp.getVectorType(); |
| if (targetType.getRank() <= 1) |
| return failure(); |
| |
| SmallVector<int64_t> srcStrides; |
| int64_t srcOffset; |
| if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) |
| return failure(); |
| |
| // According to vector.transfer_read semantics, the result can be a slice. |
| // It pads the indices with `1` starting from beginning. Thus, we have to |
| // offset the check index with `rankDiff` in `srcStrides` and source dim |
| // sizes. |
| size_t dimsToDrop = 0; |
| int rankDiff = srcType.getRank() - targetType.getRank(); |
| for (int64_t i = 0, e = targetType.getRank(); i < e; ++i) { |
| // Check that the inner dim size is 1 for both memref/tensor type and |
| // vector slice. It can be folded only if they are 1 and the stride is 1. |
| int dim = targetType.getRank() - i - 1; |
| if (srcStrides[dim + rankDiff] == 1 && |
| srcType.getDimSize(dim + rankDiff) == 1 && |
| targetType.getDimSize(dim) == 1) { |
| dimsToDrop++; |
| } else { |
| break; |
| } |
| } |
| if (dimsToDrop == 0) |
| return failure(); |
| |
| auto resultTargetVecType = |
| VectorType::get(targetType.getShape().drop_back(dimsToDrop), |
| targetType.getElementType()); |
| |
| MemRefType resultMemrefType; |
| MemRefLayoutAttrInterface layout = srcType.getLayout(); |
| if (isa<AffineMapAttr>(layout) && layout.isIdentity()) { |
| resultMemrefType = MemRefType::get( |
| srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), |
| nullptr, srcType.getMemorySpace()); |
| } else { |
| MemRefLayoutAttrInterface updatedLayout; |
| if (auto strided = dyn_cast<StridedLayoutAttr>(layout)) { |
| auto strides = |
| llvm::to_vector(strided.getStrides().drop_back(dimsToDrop)); |
| updatedLayout = StridedLayoutAttr::get(strided.getContext(), |
| strided.getOffset(), strides); |
| } else { |
| AffineMap map = srcType.getLayout().getAffineMap(); |
| int numSymbols = map.getNumSymbols(); |
| for (size_t i = 0; i < dimsToDrop; ++i) { |
| int dim = srcType.getRank() - i - 1; |
| map = map.replace(rewriter.getAffineDimExpr(dim), |
| rewriter.getAffineConstantExpr(0), |
| map.getNumDims() - 1, numSymbols); |
| } |
| } |
| resultMemrefType = MemRefType::get( |
| srcType.getShape().drop_back(dimsToDrop), srcType.getElementType(), |
| updatedLayout, srcType.getMemorySpace()); |
| } |
| |
| auto loc = readOp.getLoc(); |
| SmallVector<int64_t> offsets(srcType.getRank(), 0); |
| SmallVector<int64_t> strides(srcType.getRank(), 1); |
| |
| ArrayAttr inBoundsAttr = |
| readOp.getInBounds() |
| ? rewriter.getArrayAttr( |
| readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)) |
| : ArrayAttr(); |
| Value rankedReducedView = rewriter.create<memref::SubViewOp>( |
| loc, resultMemrefType, readOp.getSource(), offsets, srcType.getShape(), |
| strides); |
| auto permMap = getTransferMinorIdentityMap( |
| cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); |
| Value result = rewriter.create<vector::TransferReadOp>( |
| loc, resultTargetVecType, rankedReducedView, |
| readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), |
| readOp.getPadding(), |
| // TODO: support mask. |
| /*mask=*/Value(), inBoundsAttr); |
| rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, |
| result); |
| return success(); |
| } |
| }; |
| |
| /// Canonicalization of a `vector.contraction %a, %b, %c` with row-major matmul |
| /// semantics to a contraction suitable for MMT (matrix matrix multiplication |
| /// with the RHS transposed) lowering. |
| struct CanonicalizeContractMatmulToMMT final |
| : OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| using FilterConstraintType = |
| std::function<LogicalResult(vector::ContractionOp op)>; |
| |
| CanonicalizeContractMatmulToMMT(MLIRContext *context, PatternBenefit benefit, |
| FilterConstraintType constraint) |
| : OpRewritePattern<vector::ContractionOp>(context, benefit), |
| filter(std::move(constraint)) {} |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp op, |
| PatternRewriter &rewriter) const override { |
| if (failed(filter(op))) |
| return failure(); |
| |
| Location loc = op.getLoc(); |
| Value lhs = op.getLhs(); |
| Value rhs = op.getRhs(); |
| Value res = op.getAcc(); |
| |
| // Set up the parallel/reduction structure in right form. |
| using MapList = ArrayRef<ArrayRef<AffineExpr>>; |
| auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; |
| AffineExpr m; |
| AffineExpr n; |
| AffineExpr k; |
| bindDims(rewriter.getContext(), m, n, k); |
| static constexpr std::array<int64_t, 2> perm = {1, 0}; |
| auto iteratorTypes = op.getIteratorTypes().getValue(); |
| SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray(); |
| if (iteratorTypes.size() != 3 || |
| !vector::isParallelIterator(iteratorTypes[0]) || |
| !vector::isParallelIterator(iteratorTypes[1]) || |
| !vector::isReductionIterator(iteratorTypes[2])) |
| return rewriter.notifyMatchFailure(op, "contraction is not a gemm"); |
| |
| // The canonical form is "TNT" = A row-major, B col-major, C row-major. |
| const auto canonicalForm = infer({{m, k}, {n, k}, {m, n}}); |
| if (maps == canonicalForm) |
| return rewriter.notifyMatchFailure(op, "already in the canonical form"); |
| |
| // Create a vector transpose making sure to emit zero/sign-extend at the |
| // end. |
| auto createTranspose = [&rewriter, loc](Value mat) -> Value { |
| if (auto sext = mat.getDefiningOp<arith::ExtSIOp>()) { |
| Value trans = |
| rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm); |
| VectorType newType = |
| VectorType::get(cast<VectorType>(trans.getType()).getShape(), |
| cast<VectorType>(mat.getType()).getElementType()); |
| return rewriter.create<arith::ExtSIOp>(loc, newType, trans); |
| } |
| if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) { |
| Value trans = |
| rewriter.create<vector::TransposeOp>(loc, zext.getIn(), perm); |
| VectorType newType = |
| VectorType::get(cast<VectorType>(trans.getType()).getShape(), |
| cast<VectorType>(mat.getType()).getElementType()); |
| return rewriter.create<arith::ExtUIOp>(loc, newType, trans); |
| } |
| return rewriter.create<vector::TransposeOp>(loc, mat, perm); |
| }; |
| |
| if (maps == infer({{m, k}, {k, n}, {m, n}})) { |
| rhs = createTranspose(rhs); |
| } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { |
| rhs = createTranspose(rhs); |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { |
| std::swap(rhs, lhs); |
| rhs = createTranspose(rhs); |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { |
| std::swap(rhs, lhs); |
| rhs = createTranspose(rhs); |
| } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { |
| std::swap(lhs, rhs); |
| lhs = createTranspose(lhs); |
| } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { |
| std::swap(lhs, rhs); |
| } else { |
| return rewriter.notifyMatchFailure(op, "unhandled contraction form"); |
| } |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| op, lhs, rhs, res, rewriter.getAffineMapArrayAttr(canonicalForm), |
| op.getIteratorTypes()); |
| return success(); |
| }; |
| |
| private: |
| FilterConstraintType filter; |
| }; |
| |
| /// Pattern to fold arithmetic extensions on floating point data types into |
| /// vector contraction operations. linalg.matmul introduces arithmetic |
| /// extensions on its operands. Please mlir snippets below for more details. |
| /// ```mlir |
| /// "linalg.matmul"(%lhs, %rhs, %acc) ({ |
| /// ^bb0(%arg1: f16, %arg2: f16, %arg3: f32): |
| /// %lhs_f32 = "arith.extf"(%arg1) : (f16) -> f32 |
| /// %rhs_f32 = "arith.extf"(%arg2) : (f16) -> f32 |
| /// %mul = "arith.mulf"(%lhs_f32, %rhs_f32) : (f32, f32) -> f32 |
| /// %acc = "arith.addf"(%arg3, %mul) : (f32, f32) -> f32 |
| /// "linalg.yield"(%acc) : (f32) -> () |
| /// }) |
| /// ``` |
| /// This restricts the native usage of mixed precision NVIDIA Ampere Tensor |
| /// Cores, i.e, `mma.sync.*.f32.f16.f16.f32` and `mma.sync.*.f32.bf16.bf16.f32`. |
| /// This pattern folds the arithmetic extensions into the vector contraction and |
| /// enables the usage of native mixed precision Tensor Core instructions. |
| struct FoldArithExtIntoContractionOp |
| : public OpRewritePattern<vector::ContractionOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ContractionOp contractOp, |
| PatternRewriter &rewriter) const override { |
| |
| auto lhsDefOp = contractOp.getLhs().getDefiningOp<arith::ExtFOp>(); |
| auto rhsDefOp = contractOp.getRhs().getDefiningOp<arith::ExtFOp>(); |
| |
| if (!lhsDefOp || !rhsDefOp) { |
| return rewriter.notifyMatchFailure(contractOp, |
| "no defining op on contract operands"); |
| } |
| |
| rewriter.replaceOpWithNewOp<vector::ContractionOp>( |
| contractOp, lhsDefOp->getOperand(0), rhsDefOp->getOperand(0), |
| contractOp.getAcc(), contractOp.getIndexingMapsAttr(), |
| contractOp.getIteratorTypesAttr()); |
| |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::vector::populateFoldArithExtensionPatterns( |
| RewritePatternSet &patterns) { |
| patterns.add<FoldArithExtIntoContractionOp>(patterns.getContext()); |
| } |
| |
| void mlir::vector::populateVectorMaskMaterializationPatterns( |
| RewritePatternSet &patterns, bool force32BitVectorIndices, |
| PatternBenefit benefit) { |
| patterns.add<VectorCreateMaskOpConversion, |
| MaterializeTransferMask<vector::TransferReadOp>, |
| MaterializeTransferMask<vector::TransferWriteOp>>( |
| patterns.getContext(), force32BitVectorIndices, benefit); |
| patterns.add<FoldI1Select>(patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateShapeCastFoldingPatterns(RewritePatternSet &patterns, |
| PatternBenefit benefit) { |
| patterns.add<ShapeCastOpFolder>(patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateBubbleVectorBitCastOpPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<BubbleDownVectorBitCastForExtract, |
| BubbleDownBitCastForStridedSliceExtract, |
| BubbleUpBitCastForStridedSliceInsert>(patterns.getContext(), |
| benefit); |
| } |
| |
| void mlir::vector::populateBreakDownVectorBitCastOpPatterns( |
| RewritePatternSet &patterns, |
| std::function<bool(vector::BitCastOp)> controlFn, PatternBenefit benefit) { |
| patterns.add<BreakDownVectorBitCast>(patterns.getContext(), |
| std::move(controlFn), benefit); |
| } |
| |
| void mlir::vector::populateVectorContractCanonicalizeMatmulToMMT( |
| RewritePatternSet &patterns, |
| std::function<LogicalResult(vector::ContractionOp)> constraint, |
| PatternBenefit benefit) { |
| patterns.add<CanonicalizeContractMatmulToMMT>(patterns.getContext(), benefit, |
| std::move(constraint)); |
| } |
| |
| void mlir::vector::populateVectorReductionToContractPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<MultiReduceToContract, CombineContractBroadcast, |
| CombineContractABTranspose, CombineContractResultTranspose, |
| ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnTranspose>( |
| patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector:: |
| populateVectorTransferCollapseInnerMostContiguousDimsPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<DropInnerMostUnitDims>(patterns.getContext(), benefit); |
| } |
| |
| void mlir::vector::populateSinkVectorBroadcastPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnBroadcast>( |
| patterns.getContext(), benefit); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TableGen'd enum attribute definitions |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Vector/Transforms/VectorTransformsEnums.cpp.inc" |