|  | //===- MachineSink.cpp - Sinking for machine instructions -----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass moves instructions into successor blocks when possible, so that | 
|  | // they aren't executed on paths where their results aren't needed. | 
|  | // | 
|  | // This pass is not intended to be a replacement or a complete alternative | 
|  | // for an LLVM-IR-level sinking pass. It is only designed to sink simple | 
|  | // constructs that are not exposed before lowering and instruction selection. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/MachineCycleAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachinePostDominators.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/RegisterPressure.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "machine-sink" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | SplitEdges("machine-sink-split", | 
|  | cl::desc("Split critical edges during machine sinking"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseBlockFreqInfo("machine-sink-bfi", | 
|  | cl::desc("Use block frequency info to find successors to sink"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> SplitEdgeProbabilityThreshold( | 
|  | "machine-sink-split-probability-threshold", | 
|  | cl::desc( | 
|  | "Percentage threshold for splitting single-instruction critical edge. " | 
|  | "If the branch threshold is higher than this threshold, we allow " | 
|  | "speculative execution of up to 1 instruction to avoid branching to " | 
|  | "splitted critical edge"), | 
|  | cl::init(40), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( | 
|  | "machine-sink-load-instrs-threshold", | 
|  | cl::desc("Do not try to find alias store for a load if there is a in-path " | 
|  | "block whose instruction number is higher than this threshold."), | 
|  | cl::init(2000), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> SinkLoadBlocksThreshold( | 
|  | "machine-sink-load-blocks-threshold", | 
|  | cl::desc("Do not try to find alias store for a load if the block number in " | 
|  | "the straight line is higher than this threshold."), | 
|  | cl::init(20), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | SinkInstsIntoCycle("sink-insts-to-avoid-spills", | 
|  | cl::desc("Sink instructions into cycles to avoid " | 
|  | "register spills"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> SinkIntoCycleLimit( | 
|  | "machine-sink-cycle-limit", | 
|  | cl::desc("The maximum number of instructions considered for cycle sinking."), | 
|  | cl::init(50), cl::Hidden); | 
|  |  | 
|  | STATISTIC(NumSunk,      "Number of machine instructions sunk"); | 
|  | STATISTIC(NumCycleSunk,  "Number of machine instructions sunk into a cycle"); | 
|  | STATISTIC(NumSplit,     "Number of critical edges split"); | 
|  | STATISTIC(NumCoalesces, "Number of copies coalesced"); | 
|  | STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MachineSinking : public MachineFunctionPass { | 
|  | const TargetSubtargetInfo *STI = nullptr; | 
|  | const TargetInstrInfo *TII = nullptr; | 
|  | const TargetRegisterInfo *TRI = nullptr; | 
|  | MachineRegisterInfo *MRI = nullptr;      // Machine register information | 
|  | MachineDominatorTree *DT = nullptr;      // Machine dominator tree | 
|  | MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree | 
|  | MachineCycleInfo *CI = nullptr; | 
|  | MachineBlockFrequencyInfo *MBFI = nullptr; | 
|  | const MachineBranchProbabilityInfo *MBPI = nullptr; | 
|  | AliasAnalysis *AA = nullptr; | 
|  | RegisterClassInfo RegClassInfo; | 
|  |  | 
|  | // Remember which edges have been considered for breaking. | 
|  | SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> | 
|  | CEBCandidates; | 
|  | // Remember which edges we are about to split. | 
|  | // This is different from CEBCandidates since those edges | 
|  | // will be split. | 
|  | SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; | 
|  |  | 
|  | DenseSet<Register> RegsToClearKillFlags; | 
|  |  | 
|  | using AllSuccsCache = | 
|  | DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; | 
|  |  | 
|  | /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is | 
|  | /// post-dominated by another DBG_VALUE of the same variable location. | 
|  | /// This is necessary to detect sequences such as: | 
|  | ///     %0 = someinst | 
|  | ///     DBG_VALUE %0, !123, !DIExpression() | 
|  | ///     %1 = anotherinst | 
|  | ///     DBG_VALUE %1, !123, !DIExpression() | 
|  | /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that | 
|  | /// would re-order assignments. | 
|  | using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; | 
|  |  | 
|  | /// Record of DBG_VALUE uses of vregs in a block, so that we can identify | 
|  | /// debug instructions to sink. | 
|  | SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; | 
|  |  | 
|  | /// Record of debug variables that have had their locations set in the | 
|  | /// current block. | 
|  | DenseSet<DebugVariable> SeenDbgVars; | 
|  |  | 
|  | DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> | 
|  | HasStoreCache; | 
|  |  | 
|  | DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, | 
|  | SmallVector<MachineInstr *>> | 
|  | StoreInstrCache; | 
|  |  | 
|  | /// Cached BB's register pressure. | 
|  | DenseMap<const MachineBasicBlock *, std::vector<unsigned>> | 
|  | CachedRegisterPressure; | 
|  |  | 
|  | bool EnableSinkAndFold; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  |  | 
|  | MachineSinking() : MachineFunctionPass(ID) { | 
|  | initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<MachinePostDominatorTree>(); | 
|  | AU.addRequired<MachineCycleInfoWrapperPass>(); | 
|  | AU.addRequired<MachineBranchProbabilityInfo>(); | 
|  | AU.addPreserved<MachineCycleInfoWrapperPass>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | if (UseBlockFreqInfo) | 
|  | AU.addRequired<MachineBlockFrequencyInfo>(); | 
|  | AU.addRequired<TargetPassConfig>(); | 
|  | } | 
|  |  | 
|  | void releaseMemory() override { | 
|  | CEBCandidates.clear(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool ProcessBlock(MachineBasicBlock &MBB); | 
|  | void ProcessDbgInst(MachineInstr &MI); | 
|  | bool isWorthBreakingCriticalEdge(MachineInstr &MI, | 
|  | MachineBasicBlock *From, | 
|  | MachineBasicBlock *To); | 
|  |  | 
|  | bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, | 
|  | MachineInstr &MI); | 
|  |  | 
|  | /// Postpone the splitting of the given critical | 
|  | /// edge (\p From, \p To). | 
|  | /// | 
|  | /// We do not split the edges on the fly. Indeed, this invalidates | 
|  | /// the dominance information and thus triggers a lot of updates | 
|  | /// of that information underneath. | 
|  | /// Instead, we postpone all the splits after each iteration of | 
|  | /// the main loop. That way, the information is at least valid | 
|  | /// for the lifetime of an iteration. | 
|  | /// | 
|  | /// \return True if the edge is marked as toSplit, false otherwise. | 
|  | /// False can be returned if, for instance, this is not profitable. | 
|  | bool PostponeSplitCriticalEdge(MachineInstr &MI, | 
|  | MachineBasicBlock *From, | 
|  | MachineBasicBlock *To, | 
|  | bool BreakPHIEdge); | 
|  | bool SinkInstruction(MachineInstr &MI, bool &SawStore, | 
|  | AllSuccsCache &AllSuccessors); | 
|  |  | 
|  | /// If we sink a COPY inst, some debug users of it's destination may no | 
|  | /// longer be dominated by the COPY, and will eventually be dropped. | 
|  | /// This is easily rectified by forwarding the non-dominated debug uses | 
|  | /// to the copy source. | 
|  | void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, | 
|  | MachineBasicBlock *TargetBlock); | 
|  | bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *DefMBB, bool &BreakPHIEdge, | 
|  | bool &LocalUse) const; | 
|  | MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, | 
|  | bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); | 
|  |  | 
|  | void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, | 
|  | SmallVectorImpl<MachineInstr *> &Candidates); | 
|  | bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); | 
|  |  | 
|  | bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *SuccToSinkTo, | 
|  | AllSuccsCache &AllSuccessors); | 
|  |  | 
|  | bool PerformTrivialForwardCoalescing(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB); | 
|  |  | 
|  | bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> & | 
|  | GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, | 
|  | AllSuccsCache &AllSuccessors) const; | 
|  |  | 
|  | std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); | 
|  |  | 
|  | bool registerPressureSetExceedsLimit(unsigned NRegs, | 
|  | const TargetRegisterClass *RC, | 
|  | const MachineBasicBlock &MBB); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char MachineSinking::ID = 0; | 
|  |  | 
|  | char &llvm::MachineSinkingID = MachineSinking::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, | 
|  | "Machine code sinking", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, | 
|  | "Machine code sinking", false, false) | 
|  |  | 
|  | /// Return true if a target defined block prologue instruction interferes | 
|  | /// with a sink candidate. | 
|  | static bool blockPrologueInterferes(const MachineBasicBlock *BB, | 
|  | MachineBasicBlock::const_iterator End, | 
|  | const MachineInstr &MI, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const TargetInstrInfo *TII, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; | 
|  | ++PI) { | 
|  | // Only check target defined prologue instructions | 
|  | if (!TII->isBasicBlockPrologue(*PI)) | 
|  | continue; | 
|  | for (auto &MO : MI.operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | if (MO.isUse()) { | 
|  | if (Reg.isPhysical() && | 
|  | (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) | 
|  | continue; | 
|  | if (PI->modifiesRegister(Reg, TRI)) | 
|  | return true; | 
|  | } else { | 
|  | if (PI->readsRegister(Reg, TRI)) | 
|  | return true; | 
|  | // Check for interference with non-dead defs | 
|  | auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); | 
|  | if (DefOp && !DefOp->isDead()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) { | 
|  | if (!MI.isCopy()) | 
|  | return false; | 
|  |  | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | if (!SrcReg.isVirtual() || !DstReg.isVirtual() || | 
|  | !MRI->hasOneNonDBGUse(SrcReg)) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); | 
|  | const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); | 
|  | if (SRC != DRC) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *DefMI = MRI->getVRegDef(SrcReg); | 
|  | if (DefMI->isCopyLike()) | 
|  | return false; | 
|  | LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); | 
|  | LLVM_DEBUG(dbgs() << "*** to: " << MI); | 
|  | MRI->replaceRegWith(DstReg, SrcReg); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | // Conservatively, clear any kill flags, since it's possible that they are no | 
|  | // longer correct. | 
|  | MRI->clearKillFlags(SrcReg); | 
|  |  | 
|  | ++NumCoalesces; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, | 
|  | MachineBasicBlock *MBB) { | 
|  | if (MI.isCopy() || MI.mayLoadOrStore() || | 
|  | MI.getOpcode() == TargetOpcode::REG_SEQUENCE) | 
|  | return false; | 
|  |  | 
|  | // Don't sink instructions that the target prefers not to sink. | 
|  | if (!TII->shouldSink(MI)) | 
|  | return false; | 
|  |  | 
|  | // Check if it's safe to move the instruction. | 
|  | bool SawStore = true; | 
|  | if (!MI.isSafeToMove(AA, SawStore)) | 
|  | return false; | 
|  |  | 
|  | // Convergent operations may not be made control-dependent on additional | 
|  | // values. | 
|  | if (MI.isConvergent()) | 
|  | return false; | 
|  |  | 
|  | // Don't sink defs/uses of hard registers or if the instruction defines more | 
|  | // than one register. | 
|  | // Don't sink more than two register uses - it'll cover most of the cases and | 
|  | // greatly simplifies the register pressure checks. | 
|  | Register DefReg; | 
|  | Register UsedRegA, UsedRegB; | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || | 
|  | MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || | 
|  | MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) | 
|  | continue; | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | if (Reg.isVirtual()) { | 
|  | if (MO.isDef()) { | 
|  | if (DefReg) | 
|  | return false; | 
|  | DefReg = Reg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (UsedRegA == 0) | 
|  | UsedRegA = Reg; | 
|  | else if (UsedRegB == 0) | 
|  | UsedRegB = Reg; | 
|  | else | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Reg.isPhysical() && | 
|  | (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) | 
|  | continue; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Scan uses of the destination register. Every use, except the last, must be | 
|  | // a copy, with a chain of copies terminating with either a copy into a hard | 
|  | // register, or a load/store instruction where the use is part of the | 
|  | // address (*not* the stored value). | 
|  | using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; | 
|  | SmallVector<SinkInfo> SinkInto; | 
|  | SmallVector<Register> Worklist; | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(DefReg); | 
|  | const TargetRegisterClass *RCA = | 
|  | UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); | 
|  | const TargetRegisterClass *RCB = | 
|  | UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); | 
|  |  | 
|  | Worklist.push_back(DefReg); | 
|  | while (!Worklist.empty()) { | 
|  | Register Reg = Worklist.pop_back_val(); | 
|  |  | 
|  | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { | 
|  | ExtAddrMode MaybeAM; | 
|  | MachineInstr &UseInst = *MO.getParent(); | 
|  | if (UseInst.isCopy()) { | 
|  | Register DstReg; | 
|  | if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) | 
|  | DstReg = O.getReg(); | 
|  | if (DstReg == 0) | 
|  | return false; | 
|  | if (DstReg.isVirtual()) { | 
|  | Worklist.push_back(DstReg); | 
|  | continue; | 
|  | } | 
|  | // If we are going to replace a copy, the original instruction must be | 
|  | // as cheap as a copy. | 
|  | if (!TII->isAsCheapAsAMove(MI)) | 
|  | return false; | 
|  | // The hard register must be in the register class of the original | 
|  | // instruction's destination register. | 
|  | if (!RC->contains(DstReg)) | 
|  | return false; | 
|  | } else if (UseInst.mayLoadOrStore()) { | 
|  | ExtAddrMode AM; | 
|  | if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) | 
|  | return false; | 
|  | MaybeAM = AM; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (UseInst.getParent() != MI.getParent()) { | 
|  | // If the register class of the register we are replacing is a superset | 
|  | // of any of the register classes of the operands of the materialized | 
|  | // instruction don't consider that live range extended. | 
|  | const TargetRegisterClass *RCS = MRI->getRegClass(Reg); | 
|  | if (RCA && RCA->hasSuperClassEq(RCS)) | 
|  | RCA = nullptr; | 
|  | else if (RCB && RCB->hasSuperClassEq(RCS)) | 
|  | RCB = nullptr; | 
|  | if (RCA || RCB) { | 
|  | if (RCA == nullptr) { | 
|  | RCA = RCB; | 
|  | RCB = nullptr; | 
|  | } | 
|  |  | 
|  | unsigned NRegs = !!RCA + !!RCB; | 
|  | if (RCA == RCB) | 
|  | RCB = nullptr; | 
|  |  | 
|  | // Check we don't exceed register pressure at the destination. | 
|  | const MachineBasicBlock &MBB = *UseInst.getParent(); | 
|  | if (RCB == nullptr) { | 
|  | if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) | 
|  | return false; | 
|  | } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || | 
|  | registerPressureSetExceedsLimit(1, RCB, MBB)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SinkInto.emplace_back(&UseInst, MaybeAM); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SinkInto.empty()) | 
|  | return false; | 
|  |  | 
|  | // Now we know we can fold the instruction in all its users. | 
|  | for (auto &[SinkDst, MaybeAM] : SinkInto) { | 
|  | MachineInstr *New = nullptr; | 
|  | LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; | 
|  | SinkDst->dump()); | 
|  | if (SinkDst->isCopy()) { | 
|  | // TODO: After performing the sink-and-fold, the original instruction is | 
|  | // deleted. Its value is still available (in a hard register), so if there | 
|  | // are debug instructions which refer to the (now deleted) virtual | 
|  | // register they could be updated to refer to the hard register, in | 
|  | // principle. However, it's not clear how to do that, moreover in some | 
|  | // cases the debug instructions may need to be replicated proportionally | 
|  | // to the number of the COPY instructions replaced and in some extreme | 
|  | // cases we can end up with quadratic increase in the number of debug | 
|  | // instructions. | 
|  |  | 
|  | // Sink a copy of the instruction, replacing a COPY instruction. | 
|  | MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); | 
|  | Register DstReg = SinkDst->getOperand(0).getReg(); | 
|  | TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); | 
|  | New = &*std::prev(InsertPt); | 
|  | if (!New->getDebugLoc()) | 
|  | New->setDebugLoc(SinkDst->getDebugLoc()); | 
|  |  | 
|  | // The operand registers of the "sunk" instruction have their live range | 
|  | // extended and their kill flags may no longer be correct. Conservatively | 
|  | // clear the kill flags. | 
|  | if (UsedRegA) | 
|  | MRI->clearKillFlags(UsedRegA); | 
|  | if (UsedRegB) | 
|  | MRI->clearKillFlags(UsedRegB); | 
|  | } else { | 
|  | // Fold instruction into the addressing mode of a memory instruction. | 
|  | New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); | 
|  |  | 
|  | // The registers of the addressing mode may have their live range extended | 
|  | // and their kill flags may no longer be correct. Conservatively clear the | 
|  | // kill flags. | 
|  | if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) | 
|  | MRI->clearKillFlags(R); | 
|  | if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) | 
|  | MRI->clearKillFlags(R); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "yielding"; New->dump()); | 
|  | // Clear the StoreInstrCache, since we may invalidate it by erasing. | 
|  | if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) | 
|  | StoreInstrCache.clear(); | 
|  | SinkDst->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Collect operands that need to be cleaned up because the registers no longer | 
|  | // exist (in COPYs and debug instructions). We cannot delete instructions or | 
|  | // clear operands while traversing register uses. | 
|  | SmallVector<MachineOperand *> Cleanup; | 
|  | Worklist.push_back(DefReg); | 
|  | while (!Worklist.empty()) { | 
|  | Register Reg = Worklist.pop_back_val(); | 
|  | for (MachineOperand &MO : MRI->use_operands(Reg)) { | 
|  | MachineInstr *U = MO.getParent(); | 
|  | assert((U->isCopy() || U->isDebugInstr()) && | 
|  | "Only debug uses and copies must remain"); | 
|  | if (U->isCopy()) | 
|  | Worklist.push_back(U->getOperand(0).getReg()); | 
|  | Cleanup.push_back(&MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Delete the dead COPYs and clear operands in debug instructions | 
|  | for (MachineOperand *MO : Cleanup) { | 
|  | MachineInstr *I = MO->getParent(); | 
|  | if (I->isCopy()) { | 
|  | I->eraseFromParent(); | 
|  | } else { | 
|  | MO->setReg(0); | 
|  | MO->setSubReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AllUsesDominatedByBlock - Return true if all uses of the specified register | 
|  | /// occur in blocks dominated by the specified block. If any use is in the | 
|  | /// definition block, then return false since it is never legal to move def | 
|  | /// after uses. | 
|  | bool MachineSinking::AllUsesDominatedByBlock(Register Reg, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *DefMBB, | 
|  | bool &BreakPHIEdge, | 
|  | bool &LocalUse) const { | 
|  | assert(Reg.isVirtual() && "Only makes sense for vregs"); | 
|  |  | 
|  | // Ignore debug uses because debug info doesn't affect the code. | 
|  | if (MRI->use_nodbg_empty(Reg)) | 
|  | return true; | 
|  |  | 
|  | // BreakPHIEdge is true if all the uses are in the successor MBB being sunken | 
|  | // into and they are all PHI nodes. In this case, machine-sink must break | 
|  | // the critical edge first. e.g. | 
|  | // | 
|  | // %bb.1: | 
|  | //   Predecessors according to CFG: %bb.0 | 
|  | //     ... | 
|  | //     %def = DEC64_32r %x, implicit-def dead %eflags | 
|  | //     ... | 
|  | //     JE_4 <%bb.37>, implicit %eflags | 
|  | //   Successors according to CFG: %bb.37 %bb.2 | 
|  | // | 
|  | // %bb.2: | 
|  | //     %p = PHI %y, %bb.0, %def, %bb.1 | 
|  | if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { | 
|  | MachineInstr *UseInst = MO.getParent(); | 
|  | unsigned OpNo = MO.getOperandNo(); | 
|  | MachineBasicBlock *UseBlock = UseInst->getParent(); | 
|  | return UseBlock == MBB && UseInst->isPHI() && | 
|  | UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; | 
|  | })) { | 
|  | BreakPHIEdge = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { | 
|  | // Determine the block of the use. | 
|  | MachineInstr *UseInst = MO.getParent(); | 
|  | unsigned OpNo = &MO - &UseInst->getOperand(0); | 
|  | MachineBasicBlock *UseBlock = UseInst->getParent(); | 
|  | if (UseInst->isPHI()) { | 
|  | // PHI nodes use the operand in the predecessor block, not the block with | 
|  | // the PHI. | 
|  | UseBlock = UseInst->getOperand(OpNo+1).getMBB(); | 
|  | } else if (UseBlock == DefMBB) { | 
|  | LocalUse = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that it dominates. | 
|  | if (!DT->dominates(MBB, UseBlock)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if this machine instruction loads from global offset table or | 
|  | /// constant pool. | 
|  | static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { | 
|  | assert(MI.mayLoad() && "Expected MI that loads!"); | 
|  |  | 
|  | // If we lost memory operands, conservatively assume that the instruction | 
|  | // reads from everything.. | 
|  | if (MI.memoperands_empty()) | 
|  | return true; | 
|  |  | 
|  | for (MachineMemOperand *MemOp : MI.memoperands()) | 
|  | if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) | 
|  | if (PSV->isGOT() || PSV->isConstantPool()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MachineSinking::FindCycleSinkCandidates( | 
|  | MachineCycle *Cycle, MachineBasicBlock *BB, | 
|  | SmallVectorImpl<MachineInstr *> &Candidates) { | 
|  | for (auto &MI : *BB) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); | 
|  | if (!TII->shouldSink(MI)) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " | 
|  | "target\n"); | 
|  | continue; | 
|  | } | 
|  | if (!isCycleInvariant(Cycle, MI)) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); | 
|  | continue; | 
|  | } | 
|  | bool DontMoveAcrossStore = true; | 
|  | if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); | 
|  | continue; | 
|  | } | 
|  | if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); | 
|  | continue; | 
|  | } | 
|  | if (MI.isConvergent()) | 
|  | continue; | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(0); | 
|  | if (!MO.isReg() || !MO.getReg() || !MO.isDef()) | 
|  | continue; | 
|  | if (!MRI->hasOneDef(MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); | 
|  | Candidates.push_back(&MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); | 
|  |  | 
|  | STI = &MF.getSubtarget(); | 
|  | TII = STI->getInstrInfo(); | 
|  | TRI = STI->getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | DT = &getAnalysis<MachineDominatorTree>(); | 
|  | PDT = &getAnalysis<MachinePostDominatorTree>(); | 
|  | CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); | 
|  | MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; | 
|  | MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | RegClassInfo.runOnMachineFunction(MF); | 
|  | TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); | 
|  | EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); | 
|  |  | 
|  | bool EverMadeChange = false; | 
|  |  | 
|  | while (true) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Process all basic blocks. | 
|  | CEBCandidates.clear(); | 
|  | ToSplit.clear(); | 
|  | for (auto &MBB: MF) | 
|  | MadeChange |= ProcessBlock(MBB); | 
|  |  | 
|  | // If we have anything we marked as toSplit, split it now. | 
|  | for (const auto &Pair : ToSplit) { | 
|  | auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); | 
|  | if (NewSucc != nullptr) { | 
|  | LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " | 
|  | << printMBBReference(*Pair.first) << " -- " | 
|  | << printMBBReference(*NewSucc) << " -- " | 
|  | << printMBBReference(*Pair.second) << '\n'); | 
|  | if (MBFI) | 
|  | MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); | 
|  |  | 
|  | MadeChange = true; | 
|  | ++NumSplit; | 
|  | CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); | 
|  | } else | 
|  | LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); | 
|  | } | 
|  | // If this iteration over the code changed anything, keep iterating. | 
|  | if (!MadeChange) break; | 
|  | EverMadeChange = true; | 
|  | } | 
|  |  | 
|  | if (SinkInstsIntoCycle) { | 
|  | SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), | 
|  | CI->toplevel_end()); | 
|  | for (auto *Cycle : Cycles) { | 
|  | MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); | 
|  | if (!Preheader) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); | 
|  | continue; | 
|  | } | 
|  | SmallVector<MachineInstr *, 8> Candidates; | 
|  | FindCycleSinkCandidates(Cycle, Preheader, Candidates); | 
|  |  | 
|  | // Walk the candidates in reverse order so that we start with the use | 
|  | // of a def-use chain, if there is any. | 
|  | // TODO: Sort the candidates using a cost-model. | 
|  | unsigned i = 0; | 
|  | for (MachineInstr *I : llvm::reverse(Candidates)) { | 
|  | if (i++ == SinkIntoCycleLimit) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Limit reached of instructions to " | 
|  | "be analysed."); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!SinkIntoCycle(Cycle, *I)) | 
|  | break; | 
|  | EverMadeChange = true; | 
|  | ++NumCycleSunk; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | HasStoreCache.clear(); | 
|  | StoreInstrCache.clear(); | 
|  |  | 
|  | // Now clear any kill flags for recorded registers. | 
|  | for (auto I : RegsToClearKillFlags) | 
|  | MRI->clearKillFlags(I); | 
|  | RegsToClearKillFlags.clear(); | 
|  |  | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { | 
|  | if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) | 
|  | return false; | 
|  |  | 
|  | // Don't bother sinking code out of unreachable blocks. In addition to being | 
|  | // unprofitable, it can also lead to infinite looping, because in an | 
|  | // unreachable cycle there may be nowhere to stop. | 
|  | if (!DT->isReachableFromEntry(&MBB)) return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Cache all successors, sorted by frequency info and cycle depth. | 
|  | AllSuccsCache AllSuccessors; | 
|  |  | 
|  | // Walk the basic block bottom-up.  Remember if we saw a store. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | --I; | 
|  | bool ProcessedBegin, SawStore = false; | 
|  | do { | 
|  | MachineInstr &MI = *I;  // The instruction to sink. | 
|  |  | 
|  | // Predecrement I (if it's not begin) so that it isn't invalidated by | 
|  | // sinking. | 
|  | ProcessedBegin = I == MBB.begin(); | 
|  | if (!ProcessedBegin) | 
|  | --I; | 
|  |  | 
|  | if (MI.isDebugOrPseudoInstr()) { | 
|  | if (MI.isDebugValue()) | 
|  | ProcessDbgInst(MI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Can't sink anything out of a block that has less than two successors. | 
|  | if (MBB.succ_size() <= 1) | 
|  | continue; | 
|  |  | 
|  | if (PerformTrivialForwardCoalescing(MI, &MBB)) { | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SinkInstruction(MI, SawStore, AllSuccessors)) { | 
|  | ++NumSunk; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // If we just processed the first instruction in the block, we're done. | 
|  | } while (!ProcessedBegin); | 
|  |  | 
|  | SeenDbgUsers.clear(); | 
|  | SeenDbgVars.clear(); | 
|  | // recalculate the bb register pressure after sinking one BB. | 
|  | CachedRegisterPressure.clear(); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | void MachineSinking::ProcessDbgInst(MachineInstr &MI) { | 
|  | // When we see DBG_VALUEs for registers, record any vreg it reads, so that | 
|  | // we know what to sink if the vreg def sinks. | 
|  | assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); | 
|  |  | 
|  | DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), | 
|  | MI.getDebugLoc()->getInlinedAt()); | 
|  | bool SeenBefore = SeenDbgVars.contains(Var); | 
|  |  | 
|  | for (MachineOperand &MO : MI.debug_operands()) { | 
|  | if (MO.isReg() && MO.getReg().isVirtual()) | 
|  | SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); | 
|  | } | 
|  |  | 
|  | // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. | 
|  | SeenDbgVars.insert(Var); | 
|  | } | 
|  |  | 
|  | bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, | 
|  | MachineBasicBlock *From, | 
|  | MachineBasicBlock *To) { | 
|  | // FIXME: Need much better heuristics. | 
|  |  | 
|  | // If the pass has already considered breaking this edge (during this pass | 
|  | // through the function), then let's go ahead and break it. This means | 
|  | // sinking multiple "cheap" instructions into the same block. | 
|  | if (!CEBCandidates.insert(std::make_pair(From, To)).second) | 
|  | return true; | 
|  |  | 
|  | if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) | 
|  | return true; | 
|  |  | 
|  | if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= | 
|  | BranchProbability(SplitEdgeProbabilityThreshold, 100)) | 
|  | return true; | 
|  |  | 
|  | // MI is cheap, we probably don't want to break the critical edge for it. | 
|  | // However, if this would allow some definitions of its source operands | 
|  | // to be sunk then it's probably worth it. | 
|  | for (const MachineOperand &MO : MI.all_uses()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | // We don't move live definitions of physical registers, | 
|  | // so sinking their uses won't enable any opportunities. | 
|  | if (Reg.isPhysical()) | 
|  | continue; | 
|  |  | 
|  | // If this instruction is the only user of a virtual register, | 
|  | // check if breaking the edge will enable sinking | 
|  | // both this instruction and the defining instruction. | 
|  | if (MRI->hasOneNonDBGUse(Reg)) { | 
|  | // If the definition resides in same MBB, | 
|  | // claim it's likely we can sink these together. | 
|  | // If definition resides elsewhere, we aren't | 
|  | // blocking it from being sunk so don't break the edge. | 
|  | MachineInstr *DefMI = MRI->getVRegDef(Reg); | 
|  | if (DefMI->getParent() == MI.getParent()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, | 
|  | MachineBasicBlock *FromBB, | 
|  | MachineBasicBlock *ToBB, | 
|  | bool BreakPHIEdge) { | 
|  | if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) | 
|  | return false; | 
|  |  | 
|  | // Avoid breaking back edge. From == To means backedge for single BB cycle. | 
|  | if (!SplitEdges || FromBB == ToBB) | 
|  | return false; | 
|  |  | 
|  | MachineCycle *FromCycle = CI->getCycle(FromBB); | 
|  | MachineCycle *ToCycle = CI->getCycle(ToBB); | 
|  |  | 
|  | // Check for backedges of more "complex" cycles. | 
|  | if (FromCycle == ToCycle && FromCycle && | 
|  | (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) | 
|  | return false; | 
|  |  | 
|  | // It's not always legal to break critical edges and sink the computation | 
|  | // to the edge. | 
|  | // | 
|  | // %bb.1: | 
|  | // v1024 | 
|  | // Beq %bb.3 | 
|  | // <fallthrough> | 
|  | // %bb.2: | 
|  | // ... no uses of v1024 | 
|  | // <fallthrough> | 
|  | // %bb.3: | 
|  | // ... | 
|  | //       = v1024 | 
|  | // | 
|  | // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: | 
|  | // | 
|  | // %bb.1: | 
|  | // ... | 
|  | // Bne %bb.2 | 
|  | // %bb.4: | 
|  | // v1024 = | 
|  | // B %bb.3 | 
|  | // %bb.2: | 
|  | // ... no uses of v1024 | 
|  | // <fallthrough> | 
|  | // %bb.3: | 
|  | // ... | 
|  | //       = v1024 | 
|  | // | 
|  | // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 | 
|  | // flow. We need to ensure the new basic block where the computation is | 
|  | // sunk to dominates all the uses. | 
|  | // It's only legal to break critical edge and sink the computation to the | 
|  | // new block if all the predecessors of "To", except for "From", are | 
|  | // not dominated by "From". Given SSA property, this means these | 
|  | // predecessors are dominated by "To". | 
|  | // | 
|  | // There is no need to do this check if all the uses are PHI nodes. PHI | 
|  | // sources are only defined on the specific predecessor edges. | 
|  | if (!BreakPHIEdge) { | 
|  | for (MachineBasicBlock *Pred : ToBB->predecessors()) | 
|  | if (Pred != FromBB && !DT->dominates(ToBB, Pred)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ToSplit.insert(std::make_pair(FromBB, ToBB)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::vector<unsigned> & | 
|  | MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { | 
|  | // Currently to save compiling time, MBB's register pressure will not change | 
|  | // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's | 
|  | // register pressure is changed after sinking any instructions into it. | 
|  | // FIXME: need a accurate and cheap register pressure estiminate model here. | 
|  | auto RP = CachedRegisterPressure.find(&MBB); | 
|  | if (RP != CachedRegisterPressure.end()) | 
|  | return RP->second; | 
|  |  | 
|  | RegionPressure Pressure; | 
|  | RegPressureTracker RPTracker(Pressure); | 
|  |  | 
|  | // Initialize the register pressure tracker. | 
|  | RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), | 
|  | /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); | 
|  |  | 
|  | for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), | 
|  | MIE = MBB.instr_begin(); | 
|  | MII != MIE; --MII) { | 
|  | const MachineInstr &MI = *std::prev(MII); | 
|  | if (MI.isDebugInstr() || MI.isPseudoProbe()) | 
|  | continue; | 
|  | RegisterOperands RegOpers; | 
|  | RegOpers.collect(MI, *TRI, *MRI, false, false); | 
|  | RPTracker.recedeSkipDebugValues(); | 
|  | assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); | 
|  | RPTracker.recede(RegOpers); | 
|  | } | 
|  |  | 
|  | RPTracker.closeRegion(); | 
|  | auto It = CachedRegisterPressure.insert( | 
|  | std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); | 
|  | return It.first->second; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::registerPressureSetExceedsLimit( | 
|  | unsigned NRegs, const TargetRegisterClass *RC, | 
|  | const MachineBasicBlock &MBB) { | 
|  | unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; | 
|  | const int *PS = TRI->getRegClassPressureSets(RC); | 
|  | std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); | 
|  | for (; *PS != -1; PS++) | 
|  | if (Weight + BBRegisterPressure[*PS] >= | 
|  | TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isProfitableToSinkTo - Return true if it is profitable to sink MI. | 
|  | bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *SuccToSinkTo, | 
|  | AllSuccsCache &AllSuccessors) { | 
|  | assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); | 
|  |  | 
|  | if (MBB == SuccToSinkTo) | 
|  | return false; | 
|  |  | 
|  | // It is profitable if SuccToSinkTo does not post dominate current block. | 
|  | if (!PDT->dominates(SuccToSinkTo, MBB)) | 
|  | return true; | 
|  |  | 
|  | // It is profitable to sink an instruction from a deeper cycle to a shallower | 
|  | // cycle, even if the latter post-dominates the former (PR21115). | 
|  | if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) | 
|  | return true; | 
|  |  | 
|  | // Check if only use in post dominated block is PHI instruction. | 
|  | bool NonPHIUse = false; | 
|  | for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { | 
|  | MachineBasicBlock *UseBlock = UseInst.getParent(); | 
|  | if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) | 
|  | NonPHIUse = true; | 
|  | } | 
|  | if (!NonPHIUse) | 
|  | return true; | 
|  |  | 
|  | // If SuccToSinkTo post dominates then also it may be profitable if MI | 
|  | // can further profitably sinked into another block in next round. | 
|  | bool BreakPHIEdge = false; | 
|  | // FIXME - If finding successor is compile time expensive then cache results. | 
|  | if (MachineBasicBlock *MBB2 = | 
|  | FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) | 
|  | return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); | 
|  |  | 
|  | MachineCycle *MCycle = CI->getCycle(MBB); | 
|  |  | 
|  | // If the instruction is not inside a cycle, it is not profitable to sink MI to | 
|  | // a post dominate block SuccToSinkTo. | 
|  | if (!MCycle) | 
|  | return false; | 
|  |  | 
|  | // If this instruction is inside a Cycle and sinking this instruction can make | 
|  | // more registers live range shorten, it is still prifitable. | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | // Ignore non-register operands. | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | if (Reg.isPhysical()) { | 
|  | // Don't handle non-constant and non-ignorable physical register uses. | 
|  | if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Users for the defs are all dominated by SuccToSinkTo. | 
|  | if (MO.isDef()) { | 
|  | // This def register's live range is shortened after sinking. | 
|  | bool LocalUse = false; | 
|  | if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, | 
|  | LocalUse)) | 
|  | return false; | 
|  | } else { | 
|  | MachineInstr *DefMI = MRI->getVRegDef(Reg); | 
|  | if (!DefMI) | 
|  | continue; | 
|  | MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); | 
|  | // DefMI is defined outside of cycle. There should be no live range | 
|  | // impact for this operand. Defination outside of cycle means: | 
|  | // 1: defination is outside of cycle. | 
|  | // 2: defination is in this cycle, but it is a PHI in the cycle header. | 
|  | if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && | 
|  | Cycle->getHeader() == DefMI->getParent())) | 
|  | continue; | 
|  | // The DefMI is defined inside the cycle. | 
|  | // If sinking this operand makes some register pressure set exceed limit, | 
|  | // it is not profitable. | 
|  | if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), | 
|  | *SuccToSinkTo)) { | 
|  | LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If MI is in cycle and all its operands are alive across the whole cycle or | 
|  | // if no operand sinking make register pressure set exceed limit, it is | 
|  | // profitable to sink MI. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Get the sorted sequence of successors for this MachineBasicBlock, possibly | 
|  | /// computing it if it was not already cached. | 
|  | SmallVector<MachineBasicBlock *, 4> & | 
|  | MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, | 
|  | AllSuccsCache &AllSuccessors) const { | 
|  | // Do we have the sorted successors in cache ? | 
|  | auto Succs = AllSuccessors.find(MBB); | 
|  | if (Succs != AllSuccessors.end()) | 
|  | return Succs->second; | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); | 
|  |  | 
|  | // Handle cases where sinking can happen but where the sink point isn't a | 
|  | // successor. For example: | 
|  | // | 
|  | //   x = computation | 
|  | //   if () {} else {} | 
|  | //   use x | 
|  | // | 
|  | for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { | 
|  | // DomTree children of MBB that have MBB as immediate dominator are added. | 
|  | if (DTChild->getIDom()->getBlock() == MI.getParent() && | 
|  | // Skip MBBs already added to the AllSuccs vector above. | 
|  | !MBB->isSuccessor(DTChild->getBlock())) | 
|  | AllSuccs.push_back(DTChild->getBlock()); | 
|  | } | 
|  |  | 
|  | // Sort Successors according to their cycle depth or block frequency info. | 
|  | llvm::stable_sort( | 
|  | AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { | 
|  | uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; | 
|  | uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; | 
|  | bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; | 
|  | return HasBlockFreq ? LHSFreq < RHSFreq | 
|  | : CI->getCycleDepth(L) < CI->getCycleDepth(R); | 
|  | }); | 
|  |  | 
|  | auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); | 
|  |  | 
|  | return it.first->second; | 
|  | } | 
|  |  | 
|  | /// FindSuccToSinkTo - Find a successor to sink this instruction to. | 
|  | MachineBasicBlock * | 
|  | MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, | 
|  | bool &BreakPHIEdge, | 
|  | AllSuccsCache &AllSuccessors) { | 
|  | assert (MBB && "Invalid MachineBasicBlock!"); | 
|  |  | 
|  | // loop over all the operands of the specified instruction.  If there is | 
|  | // anything we can't handle, bail out. | 
|  |  | 
|  | // SuccToSinkTo - This is the successor to sink this instruction to, once we | 
|  | // decide. | 
|  | MachineBasicBlock *SuccToSinkTo = nullptr; | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (!MO.isReg()) continue;  // Ignore non-register operands. | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  |  | 
|  | if (Reg.isPhysical()) { | 
|  | if (MO.isUse()) { | 
|  | // If the physreg has no defs anywhere, it's just an ambient register | 
|  | // and we can freely move its uses. Alternatively, if it's allocatable, | 
|  | // it could get allocated to something with a def during allocation. | 
|  | if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) | 
|  | return nullptr; | 
|  | } else if (!MO.isDead()) { | 
|  | // A def that isn't dead. We can't move it. | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // Virtual register uses are always safe to sink. | 
|  | if (MO.isUse()) continue; | 
|  |  | 
|  | // If it's not safe to move defs of the register class, then abort. | 
|  | if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) | 
|  | return nullptr; | 
|  |  | 
|  | // Virtual register defs can only be sunk if all their uses are in blocks | 
|  | // dominated by one of the successors. | 
|  | if (SuccToSinkTo) { | 
|  | // If a previous operand picked a block to sink to, then this operand | 
|  | // must be sinkable to the same block. | 
|  | bool LocalUse = false; | 
|  | if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, | 
|  | BreakPHIEdge, LocalUse)) | 
|  | return nullptr; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, we should look at all the successors and decide which one | 
|  | // we should sink to. If we have reliable block frequency information | 
|  | // (frequency != 0) available, give successors with smaller frequencies | 
|  | // higher priority, otherwise prioritize smaller cycle depths. | 
|  | for (MachineBasicBlock *SuccBlock : | 
|  | GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { | 
|  | bool LocalUse = false; | 
|  | if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, | 
|  | BreakPHIEdge, LocalUse)) { | 
|  | SuccToSinkTo = SuccBlock; | 
|  | break; | 
|  | } | 
|  | if (LocalUse) | 
|  | // Def is used locally, it's never safe to move this def. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If we couldn't find a block to sink to, ignore this instruction. | 
|  | if (!SuccToSinkTo) | 
|  | return nullptr; | 
|  | if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It is not possible to sink an instruction into its own block.  This can | 
|  | // happen with cycles. | 
|  | if (MBB == SuccToSinkTo) | 
|  | return nullptr; | 
|  |  | 
|  | // It's not safe to sink instructions to EH landing pad. Control flow into | 
|  | // landing pad is implicitly defined. | 
|  | if (SuccToSinkTo && SuccToSinkTo->isEHPad()) | 
|  | return nullptr; | 
|  |  | 
|  | // It ought to be okay to sink instructions into an INLINEASM_BR target, but | 
|  | // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in | 
|  | // the source block (which this code does not yet do). So for now, forbid | 
|  | // doing so. | 
|  | if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) | 
|  | return nullptr; | 
|  |  | 
|  | if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) | 
|  | return nullptr; | 
|  |  | 
|  | return SuccToSinkTo; | 
|  | } | 
|  |  | 
|  | /// Return true if MI is likely to be usable as a memory operation by the | 
|  | /// implicit null check optimization. | 
|  | /// | 
|  | /// This is a "best effort" heuristic, and should not be relied upon for | 
|  | /// correctness.  This returning true does not guarantee that the implicit null | 
|  | /// check optimization is legal over MI, and this returning false does not | 
|  | /// guarantee MI cannot possibly be used to do a null check. | 
|  | static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; | 
|  |  | 
|  | auto *MBB = MI.getParent(); | 
|  | if (MBB->pred_size() != 1) | 
|  | return false; | 
|  |  | 
|  | auto *PredMBB = *MBB->pred_begin(); | 
|  | auto *PredBB = PredMBB->getBasicBlock(); | 
|  |  | 
|  | // Frontends that don't use implicit null checks have no reason to emit | 
|  | // branches with make.implicit metadata, and this function should always | 
|  | // return false for them. | 
|  | if (!PredBB || | 
|  | !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand *BaseOp; | 
|  | int64_t Offset; | 
|  | bool OffsetIsScalable; | 
|  | if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) | 
|  | return false; | 
|  |  | 
|  | if (!BaseOp->isReg()) | 
|  | return false; | 
|  |  | 
|  | if (!(MI.mayLoad() && !MI.isPredicable())) | 
|  | return false; | 
|  |  | 
|  | MachineBranchPredicate MBP; | 
|  | if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) | 
|  | return false; | 
|  |  | 
|  | return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && | 
|  | (MBP.Predicate == MachineBranchPredicate::PRED_NE || | 
|  | MBP.Predicate == MachineBranchPredicate::PRED_EQ) && | 
|  | MBP.LHS.getReg() == BaseOp->getReg(); | 
|  | } | 
|  |  | 
|  | /// If the sunk instruction is a copy, try to forward the copy instead of | 
|  | /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if | 
|  | /// there's any subregister weirdness involved. Returns true if copy | 
|  | /// propagation occurred. | 
|  | static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, | 
|  | Register Reg) { | 
|  | const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); | 
|  | const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Copy DBG_VALUE operand and set the original to undef. We then check to | 
|  | // see whether this is something that can be copy-forwarded. If it isn't, | 
|  | // continue around the loop. | 
|  |  | 
|  | const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; | 
|  | auto CopyOperands = TII.isCopyInstr(SinkInst); | 
|  | if (!CopyOperands) | 
|  | return false; | 
|  | SrcMO = CopyOperands->Source; | 
|  | DstMO = CopyOperands->Destination; | 
|  |  | 
|  | // Check validity of forwarding this copy. | 
|  | bool PostRA = MRI.getNumVirtRegs() == 0; | 
|  |  | 
|  | // Trying to forward between physical and virtual registers is too hard. | 
|  | if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) | 
|  | return false; | 
|  |  | 
|  | // Only try virtual register copy-forwarding before regalloc, and physical | 
|  | // register copy-forwarding after regalloc. | 
|  | bool arePhysRegs = !Reg.isVirtual(); | 
|  | if (arePhysRegs != PostRA) | 
|  | return false; | 
|  |  | 
|  | // Pre-regalloc, only forward if all subregisters agree (or there are no | 
|  | // subregs at all). More analysis might recover some forwardable copies. | 
|  | if (!PostRA) | 
|  | for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) | 
|  | if (DbgMO.getSubReg() != SrcMO->getSubReg() || | 
|  | DbgMO.getSubReg() != DstMO->getSubReg()) | 
|  | return false; | 
|  |  | 
|  | // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register | 
|  | // of this copy. Only forward the copy if the DBG_VALUE operand exactly | 
|  | // matches the copy destination. | 
|  | if (PostRA && Reg != DstMO->getReg()) | 
|  | return false; | 
|  |  | 
|  | for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { | 
|  | DbgMO.setReg(SrcMO->getReg()); | 
|  | DbgMO.setSubReg(SrcMO->getSubReg()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; | 
|  | /// Sink an instruction and its associated debug instructions. | 
|  | static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, | 
|  | MachineBasicBlock::iterator InsertPos, | 
|  | ArrayRef<MIRegs> DbgValuesToSink) { | 
|  | // If we cannot find a location to use (merge with), then we erase the debug | 
|  | // location to prevent debug-info driven tools from potentially reporting | 
|  | // wrong location information. | 
|  | if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) | 
|  | MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), | 
|  | InsertPos->getDebugLoc())); | 
|  | else | 
|  | MI.setDebugLoc(DebugLoc()); | 
|  |  | 
|  | // Move the instruction. | 
|  | MachineBasicBlock *ParentBlock = MI.getParent(); | 
|  | SuccToSinkTo.splice(InsertPos, ParentBlock, MI, | 
|  | ++MachineBasicBlock::iterator(MI)); | 
|  |  | 
|  | // Sink a copy of debug users to the insert position. Mark the original | 
|  | // DBG_VALUE location as 'undef', indicating that any earlier variable | 
|  | // location should be terminated as we've optimised away the value at this | 
|  | // point. | 
|  | for (const auto &DbgValueToSink : DbgValuesToSink) { | 
|  | MachineInstr *DbgMI = DbgValueToSink.first; | 
|  | MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); | 
|  | SuccToSinkTo.insert(InsertPos, NewDbgMI); | 
|  |  | 
|  | bool PropagatedAllSunkOps = true; | 
|  | for (unsigned Reg : DbgValueToSink.second) { | 
|  | if (DbgMI->hasDebugOperandForReg(Reg)) { | 
|  | if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { | 
|  | PropagatedAllSunkOps = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!PropagatedAllSunkOps) | 
|  | DbgMI->setDebugValueUndef(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hasStoreBetween - check if there is store betweeen straight line blocks From | 
|  | /// and To. | 
|  | bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, | 
|  | MachineBasicBlock *To, MachineInstr &MI) { | 
|  | // Make sure From and To are in straight line which means From dominates To | 
|  | // and To post dominates From. | 
|  | if (!DT->dominates(From, To) || !PDT->dominates(To, From)) | 
|  | return true; | 
|  |  | 
|  | auto BlockPair = std::make_pair(From, To); | 
|  |  | 
|  | // Does these two blocks pair be queried before and have a definite cached | 
|  | // result? | 
|  | if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) | 
|  | return It->second; | 
|  |  | 
|  | if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) | 
|  | return llvm::any_of(It->second, [&](MachineInstr *I) { | 
|  | return I->mayAlias(AA, MI, false); | 
|  | }); | 
|  |  | 
|  | bool SawStore = false; | 
|  | bool HasAliasedStore = false; | 
|  | DenseSet<MachineBasicBlock *> HandledBlocks; | 
|  | DenseSet<MachineBasicBlock *> HandledDomBlocks; | 
|  | // Go through all reachable blocks from From. | 
|  | for (MachineBasicBlock *BB : depth_first(From)) { | 
|  | // We insert the instruction at the start of block To, so no need to worry | 
|  | // about stores inside To. | 
|  | // Store in block From should be already considered when just enter function | 
|  | // SinkInstruction. | 
|  | if (BB == To || BB == From) | 
|  | continue; | 
|  |  | 
|  | // We already handle this BB in previous iteration. | 
|  | if (HandledBlocks.count(BB)) | 
|  | continue; | 
|  |  | 
|  | HandledBlocks.insert(BB); | 
|  | // To post dominates BB, it must be a path from block From. | 
|  | if (PDT->dominates(To, BB)) { | 
|  | if (!HandledDomBlocks.count(BB)) | 
|  | HandledDomBlocks.insert(BB); | 
|  |  | 
|  | // If this BB is too big or the block number in straight line between From | 
|  | // and To is too big, stop searching to save compiling time. | 
|  | if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || | 
|  | HandledDomBlocks.size() > SinkLoadBlocksThreshold) { | 
|  | for (auto *DomBB : HandledDomBlocks) { | 
|  | if (DomBB != BB && DT->dominates(DomBB, BB)) | 
|  | HasStoreCache[std::make_pair(DomBB, To)] = true; | 
|  | else if(DomBB != BB && DT->dominates(BB, DomBB)) | 
|  | HasStoreCache[std::make_pair(From, DomBB)] = true; | 
|  | } | 
|  | HasStoreCache[BlockPair] = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (MachineInstr &I : *BB) { | 
|  | // Treat as alias conservatively for a call or an ordered memory | 
|  | // operation. | 
|  | if (I.isCall() || I.hasOrderedMemoryRef()) { | 
|  | for (auto *DomBB : HandledDomBlocks) { | 
|  | if (DomBB != BB && DT->dominates(DomBB, BB)) | 
|  | HasStoreCache[std::make_pair(DomBB, To)] = true; | 
|  | else if(DomBB != BB && DT->dominates(BB, DomBB)) | 
|  | HasStoreCache[std::make_pair(From, DomBB)] = true; | 
|  | } | 
|  | HasStoreCache[BlockPair] = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (I.mayStore()) { | 
|  | SawStore = true; | 
|  | // We still have chance to sink MI if all stores between are not | 
|  | // aliased to MI. | 
|  | // Cache all store instructions, so that we don't need to go through | 
|  | // all From reachable blocks for next load instruction. | 
|  | if (I.mayAlias(AA, MI, false)) | 
|  | HasAliasedStore = true; | 
|  | StoreInstrCache[BlockPair].push_back(&I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // If there is no store at all, cache the result. | 
|  | if (!SawStore) | 
|  | HasStoreCache[BlockPair] = false; | 
|  | return HasAliasedStore; | 
|  | } | 
|  |  | 
|  | /// Sink instructions into cycles if profitable. This especially tries to | 
|  | /// prevent register spills caused by register pressure if there is little to no | 
|  | /// overhead moving instructions into cycles. | 
|  | bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); | 
|  | MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); | 
|  | assert(Preheader && "Cycle sink needs a preheader block"); | 
|  | MachineBasicBlock *SinkBlock = nullptr; | 
|  | bool CanSink = true; | 
|  | const MachineOperand &MO = I.getOperand(0); | 
|  |  | 
|  | for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Analysing use: " << MI); | 
|  | if (!Cycle->contains(MI.getParent())) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Use not in cycle, can't sink.\n"); | 
|  | CanSink = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // FIXME: Come up with a proper cost model that estimates whether sinking | 
|  | // the instruction (and thus possibly executing it on every cycle | 
|  | // iteration) is more expensive than a register. | 
|  | // For now assumes that copies are cheap and thus almost always worth it. | 
|  | if (!MI.isCopy()) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Use is not a copy\n"); | 
|  | CanSink = false; | 
|  | break; | 
|  | } | 
|  | if (!SinkBlock) { | 
|  | SinkBlock = MI.getParent(); | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Setting sink block to: " | 
|  | << printMBBReference(*SinkBlock) << "\n"); | 
|  | continue; | 
|  | } | 
|  | SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); | 
|  | if (!SinkBlock) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Can't find nearest dominator\n"); | 
|  | CanSink = false; | 
|  | break; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "CycleSink:   Setting nearest common dom block: " << | 
|  | printMBBReference(*SinkBlock) << "\n"); | 
|  | } | 
|  |  | 
|  | if (!CanSink) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); | 
|  | return false; | 
|  | } | 
|  | if (!SinkBlock) { | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); | 
|  | return false; | 
|  | } | 
|  | if (SinkBlock == Preheader) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); | 
|  | return false; | 
|  | } | 
|  | if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); | 
|  | SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, | 
|  | I); | 
|  |  | 
|  | // Conservatively clear any kill flags on uses of sunk instruction | 
|  | for (MachineOperand &MO : I.operands()) { | 
|  | if (MO.isReg() && MO.readsReg()) | 
|  | RegsToClearKillFlags.insert(MO.getReg()); | 
|  | } | 
|  |  | 
|  | // The instruction is moved from its basic block, so do not retain the | 
|  | // debug information. | 
|  | assert(!I.isDebugInstr() && "Should not sink debug inst"); | 
|  | I.setDebugLoc(DebugLoc()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SinkInstruction - Determine whether it is safe to sink the specified machine | 
|  | /// instruction out of its current block into a successor. | 
|  | bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, | 
|  | AllSuccsCache &AllSuccessors) { | 
|  | // Don't sink instructions that the target prefers not to sink. | 
|  | if (!TII->shouldSink(MI)) | 
|  | return false; | 
|  |  | 
|  | // Check if it's safe to move the instruction. | 
|  | if (!MI.isSafeToMove(AA, SawStore)) | 
|  | return false; | 
|  |  | 
|  | // Convergent operations may not be made control-dependent on additional | 
|  | // values. | 
|  | if (MI.isConvergent()) | 
|  | return false; | 
|  |  | 
|  | // Don't break implicit null checks.  This is a performance heuristic, and not | 
|  | // required for correctness. | 
|  | if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: This should include support for sinking instructions within the | 
|  | // block they are currently in to shorten the live ranges.  We often get | 
|  | // instructions sunk into the top of a large block, but it would be better to | 
|  | // also sink them down before their first use in the block.  This xform has to | 
|  | // be careful not to *increase* register pressure though, e.g. sinking | 
|  | // "x = y + z" down if it kills y and z would increase the live ranges of y | 
|  | // and z and only shrink the live range of x. | 
|  |  | 
|  | bool BreakPHIEdge = false; | 
|  | MachineBasicBlock *ParentBlock = MI.getParent(); | 
|  | MachineBasicBlock *SuccToSinkTo = | 
|  | FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); | 
|  |  | 
|  | // If there are no outputs, it must have side-effects. | 
|  | if (!SuccToSinkTo) | 
|  | return false; | 
|  |  | 
|  | // If the instruction to move defines a dead physical register which is live | 
|  | // when leaving the basic block, don't move it because it could turn into a | 
|  | // "zombie" define of that preg. E.g., EFLAGS. | 
|  | for (const MachineOperand &MO : MI.all_defs()) { | 
|  | Register Reg = MO.getReg(); | 
|  | if (Reg == 0 || !Reg.isPhysical()) | 
|  | continue; | 
|  | if (SuccToSinkTo->isLiveIn(Reg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); | 
|  |  | 
|  | // If the block has multiple predecessors, this is a critical edge. | 
|  | // Decide if we can sink along it or need to break the edge. | 
|  | if (SuccToSinkTo->pred_size() > 1) { | 
|  | // We cannot sink a load across a critical edge - there may be stores in | 
|  | // other code paths. | 
|  | bool TryBreak = false; | 
|  | bool Store = | 
|  | MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; | 
|  | if (!MI.isSafeToMove(AA, Store)) { | 
|  | LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); | 
|  | TryBreak = true; | 
|  | } | 
|  |  | 
|  | // We don't want to sink across a critical edge if we don't dominate the | 
|  | // successor. We could be introducing calculations to new code paths. | 
|  | if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { | 
|  | LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); | 
|  | TryBreak = true; | 
|  | } | 
|  |  | 
|  | // Don't sink instructions into a cycle. | 
|  | if (!TryBreak && CI->getCycle(SuccToSinkTo) && | 
|  | (!CI->getCycle(SuccToSinkTo)->isReducible() || | 
|  | CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { | 
|  | LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); | 
|  | TryBreak = true; | 
|  | } | 
|  |  | 
|  | // Otherwise we are OK with sinking along a critical edge. | 
|  | if (!TryBreak) | 
|  | LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); | 
|  | else { | 
|  | // Mark this edge as to be split. | 
|  | // If the edge can actually be split, the next iteration of the main loop | 
|  | // will sink MI in the newly created block. | 
|  | bool Status = | 
|  | PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); | 
|  | if (!Status) | 
|  | LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " | 
|  | "break critical edge\n"); | 
|  | // The instruction will not be sunk this time. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BreakPHIEdge) { | 
|  | // BreakPHIEdge is true if all the uses are in the successor MBB being | 
|  | // sunken into and they are all PHI nodes. In this case, machine-sink must | 
|  | // break the critical edge first. | 
|  | bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, | 
|  | SuccToSinkTo, BreakPHIEdge); | 
|  | if (!Status) | 
|  | LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " | 
|  | "break critical edge\n"); | 
|  | // The instruction will not be sunk this time. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine where to insert into. Skip phi nodes. | 
|  | MachineBasicBlock::iterator InsertPos = | 
|  | SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); | 
|  | if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { | 
|  | LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Collect debug users of any vreg that this inst defines. | 
|  | SmallVector<MIRegs, 4> DbgUsersToSink; | 
|  | for (auto &MO : MI.all_defs()) { | 
|  | if (!MO.getReg().isVirtual()) | 
|  | continue; | 
|  | if (!SeenDbgUsers.count(MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | // Sink any users that don't pass any other DBG_VALUEs for this variable. | 
|  | auto &Users = SeenDbgUsers[MO.getReg()]; | 
|  | for (auto &User : Users) { | 
|  | MachineInstr *DbgMI = User.getPointer(); | 
|  | if (User.getInt()) { | 
|  | // This DBG_VALUE would re-order assignments. If we can't copy-propagate | 
|  | // it, it can't be recovered. Set it undef. | 
|  | if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) | 
|  | DbgMI->setDebugValueUndef(); | 
|  | } else { | 
|  | DbgUsersToSink.push_back( | 
|  | {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // After sinking, some debug users may not be dominated any more. If possible, | 
|  | // copy-propagate their operands. As it's expensive, don't do this if there's | 
|  | // no debuginfo in the program. | 
|  | if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) | 
|  | SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); | 
|  |  | 
|  | performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); | 
|  |  | 
|  | // Conservatively, clear any kill flags, since it's possible that they are no | 
|  | // longer correct. | 
|  | // Note that we have to clear the kill flags for any register this instruction | 
|  | // uses as we may sink over another instruction which currently kills the | 
|  | // used registers. | 
|  | for (MachineOperand &MO : MI.all_uses()) | 
|  | RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void MachineSinking::SalvageUnsunkDebugUsersOfCopy( | 
|  | MachineInstr &MI, MachineBasicBlock *TargetBlock) { | 
|  | assert(MI.isCopy()); | 
|  | assert(MI.getOperand(1).isReg()); | 
|  |  | 
|  | // Enumerate all users of vreg operands that are def'd. Skip those that will | 
|  | // be sunk. For the rest, if they are not dominated by the block we will sink | 
|  | // MI into, propagate the copy source to them. | 
|  | SmallVector<MachineInstr *, 4> DbgDefUsers; | 
|  | SmallVector<Register, 4> DbgUseRegs; | 
|  | const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); | 
|  | for (auto &MO : MI.all_defs()) { | 
|  | if (!MO.getReg().isVirtual()) | 
|  | continue; | 
|  | DbgUseRegs.push_back(MO.getReg()); | 
|  | for (auto &User : MRI.use_instructions(MO.getReg())) { | 
|  | if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) | 
|  | continue; | 
|  |  | 
|  | // If is in same block, will either sink or be use-before-def. | 
|  | if (User.getParent() == MI.getParent()) | 
|  | continue; | 
|  |  | 
|  | assert(User.hasDebugOperandForReg(MO.getReg()) && | 
|  | "DBG_VALUE user of vreg, but has no operand for it?"); | 
|  | DbgDefUsers.push_back(&User); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Point the users of this copy that are no longer dominated, at the source | 
|  | // of the copy. | 
|  | for (auto *User : DbgDefUsers) { | 
|  | for (auto &Reg : DbgUseRegs) { | 
|  | for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { | 
|  | DbgOp.setReg(MI.getOperand(1).getReg()); | 
|  | DbgOp.setSubReg(MI.getOperand(1).getSubReg()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // This pass is not intended to be a replacement or a complete alternative | 
|  | // for the pre-ra machine sink pass. It is only designed to sink COPY | 
|  | // instructions which should be handled after RA. | 
|  | // | 
|  | // This pass sinks COPY instructions into a successor block, if the COPY is not | 
|  | // used in the current block and the COPY is live-in to a single successor | 
|  | // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the | 
|  | // copy on paths where their results aren't needed.  This also exposes | 
|  | // additional opportunites for dead copy elimination and shrink wrapping. | 
|  | // | 
|  | // These copies were either not handled by or are inserted after the MachineSink | 
|  | // pass. As an example of the former case, the MachineSink pass cannot sink | 
|  | // COPY instructions with allocatable source registers; for AArch64 these type | 
|  | // of copy instructions are frequently used to move function parameters (PhyReg) | 
|  | // into virtual registers in the entry block. | 
|  | // | 
|  | // For the machine IR below, this pass will sink %w19 in the entry into its | 
|  | // successor (%bb.1) because %w19 is only live-in in %bb.1. | 
|  | // %bb.0: | 
|  | //   %wzr = SUBSWri %w1, 1 | 
|  | //   %w19 = COPY %w0 | 
|  | //   Bcc 11, %bb.2 | 
|  | // %bb.1: | 
|  | //   Live Ins: %w19 | 
|  | //   BL @fun | 
|  | //   %w0 = ADDWrr %w0, %w19 | 
|  | //   RET %w0 | 
|  | // %bb.2: | 
|  | //   %w0 = COPY %wzr | 
|  | //   RET %w0 | 
|  | // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be | 
|  | // able to see %bb.0 as a candidate. | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  |  | 
|  | class PostRAMachineSinking : public MachineFunctionPass { | 
|  | public: | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | static char ID; | 
|  | PostRAMachineSinking() : MachineFunctionPass(ID) {} | 
|  | StringRef getPassName() const override { return "PostRA Machine Sink"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Track which register units have been modified and used. | 
|  | LiveRegUnits ModifiedRegUnits, UsedRegUnits; | 
|  |  | 
|  | /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an | 
|  | /// entry in this map for each unit it touches. The DBG_VALUE's entry | 
|  | /// consists of a pointer to the instruction itself, and a vector of registers | 
|  | /// referred to by the instruction that overlap the key register unit. | 
|  | DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; | 
|  |  | 
|  | /// Sink Copy instructions unused in the same block close to their uses in | 
|  | /// successors. | 
|  | bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, | 
|  | const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | char PostRAMachineSinking::ID = 0; | 
|  | char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; | 
|  |  | 
|  | INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", | 
|  | "PostRA Machine Sink", false, false) | 
|  |  | 
|  | static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | LiveRegUnits LiveInRegUnits(*TRI); | 
|  | LiveInRegUnits.addLiveIns(MBB); | 
|  | return !LiveInRegUnits.available(Reg); | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock * | 
|  | getSingleLiveInSuccBB(MachineBasicBlock &CurBB, | 
|  | const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, | 
|  | unsigned Reg, const TargetRegisterInfo *TRI) { | 
|  | // Try to find a single sinkable successor in which Reg is live-in. | 
|  | MachineBasicBlock *BB = nullptr; | 
|  | for (auto *SI : SinkableBBs) { | 
|  | if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { | 
|  | // If BB is set here, Reg is live-in to at least two sinkable successors, | 
|  | // so quit. | 
|  | if (BB) | 
|  | return nullptr; | 
|  | BB = SI; | 
|  | } | 
|  | } | 
|  | // Reg is not live-in to any sinkable successors. | 
|  | if (!BB) | 
|  | return nullptr; | 
|  |  | 
|  | // Check if any register aliased with Reg is live-in in other successors. | 
|  | for (auto *SI : CurBB.successors()) { | 
|  | if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) | 
|  | return nullptr; | 
|  | } | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | static MachineBasicBlock * | 
|  | getSingleLiveInSuccBB(MachineBasicBlock &CurBB, | 
|  | const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, | 
|  | ArrayRef<unsigned> DefedRegsInCopy, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | MachineBasicBlock *SingleBB = nullptr; | 
|  | for (auto DefReg : DefedRegsInCopy) { | 
|  | MachineBasicBlock *BB = | 
|  | getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); | 
|  | if (!BB || (SingleBB && SingleBB != BB)) | 
|  | return nullptr; | 
|  | SingleBB = BB; | 
|  | } | 
|  | return SingleBB; | 
|  | } | 
|  |  | 
|  | static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, | 
|  | SmallVectorImpl<unsigned> &UsedOpsInCopy, | 
|  | LiveRegUnits &UsedRegUnits, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | for (auto U : UsedOpsInCopy) { | 
|  | MachineOperand &MO = MI->getOperand(U); | 
|  | Register SrcReg = MO.getReg(); | 
|  | if (!UsedRegUnits.available(SrcReg)) { | 
|  | MachineBasicBlock::iterator NI = std::next(MI->getIterator()); | 
|  | for (MachineInstr &UI : make_range(NI, CurBB.end())) { | 
|  | if (UI.killsRegister(SrcReg, TRI)) { | 
|  | UI.clearRegisterKills(SrcReg, TRI); | 
|  | MO.setIsKill(true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, | 
|  | SmallVectorImpl<unsigned> &UsedOpsInCopy, | 
|  | SmallVectorImpl<unsigned> &DefedRegsInCopy) { | 
|  | MachineFunction &MF = *SuccBB->getParent(); | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | for (unsigned DefReg : DefedRegsInCopy) | 
|  | for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) | 
|  | SuccBB->removeLiveIn(S); | 
|  | for (auto U : UsedOpsInCopy) | 
|  | SuccBB->addLiveIn(MI->getOperand(U).getReg()); | 
|  | SuccBB->sortUniqueLiveIns(); | 
|  | } | 
|  |  | 
|  | static bool hasRegisterDependency(MachineInstr *MI, | 
|  | SmallVectorImpl<unsigned> &UsedOpsInCopy, | 
|  | SmallVectorImpl<unsigned> &DefedRegsInCopy, | 
|  | LiveRegUnits &ModifiedRegUnits, | 
|  | LiveRegUnits &UsedRegUnits) { | 
|  | bool HasRegDependency = false; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg) | 
|  | continue; | 
|  | if (MO.isDef()) { | 
|  | if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { | 
|  | HasRegDependency = true; | 
|  | break; | 
|  | } | 
|  | DefedRegsInCopy.push_back(Reg); | 
|  |  | 
|  | // FIXME: instead of isUse(), readsReg() would be a better fix here, | 
|  | // For example, we can ignore modifications in reg with undef. However, | 
|  | // it's not perfectly clear if skipping the internal read is safe in all | 
|  | // other targets. | 
|  | } else if (MO.isUse()) { | 
|  | if (!ModifiedRegUnits.available(Reg)) { | 
|  | HasRegDependency = true; | 
|  | break; | 
|  | } | 
|  | UsedOpsInCopy.push_back(i); | 
|  | } | 
|  | } | 
|  | return HasRegDependency; | 
|  | } | 
|  |  | 
|  | bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, | 
|  | MachineFunction &MF, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const TargetInstrInfo *TII) { | 
|  | SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; | 
|  | // FIXME: For now, we sink only to a successor which has a single predecessor | 
|  | // so that we can directly sink COPY instructions to the successor without | 
|  | // adding any new block or branch instruction. | 
|  | for (MachineBasicBlock *SI : CurBB.successors()) | 
|  | if (!SI->livein_empty() && SI->pred_size() == 1) | 
|  | SinkableBBs.insert(SI); | 
|  |  | 
|  | if (SinkableBBs.empty()) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // Track which registers have been modified and used between the end of the | 
|  | // block and the current instruction. | 
|  | ModifiedRegUnits.clear(); | 
|  | UsedRegUnits.clear(); | 
|  | SeenDbgInstrs.clear(); | 
|  |  | 
|  | for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { | 
|  | // Track the operand index for use in Copy. | 
|  | SmallVector<unsigned, 2> UsedOpsInCopy; | 
|  | // Track the register number defed in Copy. | 
|  | SmallVector<unsigned, 2> DefedRegsInCopy; | 
|  |  | 
|  | // We must sink this DBG_VALUE if its operand is sunk. To avoid searching | 
|  | // for DBG_VALUEs later, record them when they're encountered. | 
|  | if (MI.isDebugValue() && !MI.isDebugRef()) { | 
|  | SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; | 
|  | bool IsValid = true; | 
|  | for (MachineOperand &MO : MI.debug_operands()) { | 
|  | if (MO.isReg() && MO.getReg().isPhysical()) { | 
|  | // Bail if we can already tell the sink would be rejected, rather | 
|  | // than needlessly accumulating lots of DBG_VALUEs. | 
|  | if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, | 
|  | ModifiedRegUnits, UsedRegUnits)) { | 
|  | IsValid = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Record debug use of each reg unit. | 
|  | for (MCRegUnit Unit : TRI->regunits(MO.getReg())) | 
|  | MIUnits[Unit].push_back(MO.getReg()); | 
|  | } | 
|  | } | 
|  | if (IsValid) { | 
|  | for (auto &RegOps : MIUnits) | 
|  | SeenDbgInstrs[RegOps.first].emplace_back(&MI, | 
|  | std::move(RegOps.second)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (MI.isDebugOrPseudoInstr()) | 
|  | continue; | 
|  |  | 
|  | // Do not move any instruction across function call. | 
|  | if (MI.isCall()) | 
|  | return false; | 
|  |  | 
|  | if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { | 
|  | LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, | 
|  | TRI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Don't sink the COPY if it would violate a register dependency. | 
|  | if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, | 
|  | ModifiedRegUnits, UsedRegUnits)) { | 
|  | LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, | 
|  | TRI); | 
|  | continue; | 
|  | } | 
|  | assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && | 
|  | "Unexpect SrcReg or DefReg"); | 
|  | MachineBasicBlock *SuccBB = | 
|  | getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); | 
|  | // Don't sink if we cannot find a single sinkable successor in which Reg | 
|  | // is live-in. | 
|  | if (!SuccBB) { | 
|  | LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, | 
|  | TRI); | 
|  | continue; | 
|  | } | 
|  | assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && | 
|  | "Unexpected predecessor"); | 
|  |  | 
|  | // Collect DBG_VALUEs that must sink with this copy. We've previously | 
|  | // recorded which reg units that DBG_VALUEs read, if this instruction | 
|  | // writes any of those units then the corresponding DBG_VALUEs must sink. | 
|  | MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; | 
|  | for (auto &MO : MI.all_defs()) { | 
|  | for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { | 
|  | for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { | 
|  | auto &Regs = DbgValsToSinkMap[MIRegs.first]; | 
|  | for (unsigned Reg : MIRegs.second) | 
|  | Regs.push_back(Reg); | 
|  | } | 
|  | } | 
|  | } | 
|  | auto DbgValsToSink = DbgValsToSinkMap.takeVector(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); | 
|  |  | 
|  | MachineBasicBlock::iterator InsertPos = | 
|  | SuccBB->SkipPHIsAndLabels(SuccBB->begin()); | 
|  | if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << " *** Not sinking: prologue interference\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Clear the kill flag if SrcReg is killed between MI and the end of the | 
|  | // block. | 
|  | clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); | 
|  | performSink(MI, *SuccBB, InsertPos, DbgValsToSink); | 
|  | updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); | 
|  |  | 
|  | Changed = true; | 
|  | ++NumPostRACopySink; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); | 
|  |  | 
|  | ModifiedRegUnits.init(*TRI); | 
|  | UsedRegUnits.init(*TRI); | 
|  | for (auto &BB : MF) | 
|  | Changed |= tryToSinkCopy(BB, MF, TRI, TII); | 
|  |  | 
|  | return Changed; | 
|  | } |