|  | //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file This file implements the LegalizerHelper class to legalize | 
|  | /// individual instructions and the LegalizeMachineIR wrapper pass for the | 
|  | /// primary legalization. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" | 
|  | #include "llvm/CodeGen/GlobalISel/CallLowering.h" | 
|  | #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" | 
|  | #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" | 
|  | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" | 
|  | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" | 
|  | #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" | 
|  | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" | 
|  | #include "llvm/CodeGen/GlobalISel/Utils.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/TargetFrameLowering.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <numeric> | 
|  | #include <optional> | 
|  |  | 
|  | #define DEBUG_TYPE "legalizer" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace LegalizeActions; | 
|  | using namespace MIPatternMatch; | 
|  |  | 
|  | /// Try to break down \p OrigTy into \p NarrowTy sized pieces. | 
|  | /// | 
|  | /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, | 
|  | /// with any leftover piece as type \p LeftoverTy | 
|  | /// | 
|  | /// Returns -1 in the first element of the pair if the breakdown is not | 
|  | /// satisfiable. | 
|  | static std::pair<int, int> | 
|  | getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { | 
|  | assert(!LeftoverTy.isValid() && "this is an out argument"); | 
|  |  | 
|  | unsigned Size = OrigTy.getSizeInBits(); | 
|  | unsigned NarrowSize = NarrowTy.getSizeInBits(); | 
|  | unsigned NumParts = Size / NarrowSize; | 
|  | unsigned LeftoverSize = Size - NumParts * NarrowSize; | 
|  | assert(Size > NarrowSize); | 
|  |  | 
|  | if (LeftoverSize == 0) | 
|  | return {NumParts, 0}; | 
|  |  | 
|  | if (NarrowTy.isVector()) { | 
|  | unsigned EltSize = OrigTy.getScalarSizeInBits(); | 
|  | if (LeftoverSize % EltSize != 0) | 
|  | return {-1, -1}; | 
|  | LeftoverTy = LLT::scalarOrVector( | 
|  | ElementCount::getFixed(LeftoverSize / EltSize), EltSize); | 
|  | } else { | 
|  | LeftoverTy = LLT::scalar(LeftoverSize); | 
|  | } | 
|  |  | 
|  | int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); | 
|  | return std::make_pair(NumParts, NumLeftover); | 
|  | } | 
|  |  | 
|  | static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { | 
|  |  | 
|  | if (!Ty.isScalar()) | 
|  | return nullptr; | 
|  |  | 
|  | switch (Ty.getSizeInBits()) { | 
|  | case 16: | 
|  | return Type::getHalfTy(Ctx); | 
|  | case 32: | 
|  | return Type::getFloatTy(Ctx); | 
|  | case 64: | 
|  | return Type::getDoubleTy(Ctx); | 
|  | case 80: | 
|  | return Type::getX86_FP80Ty(Ctx); | 
|  | case 128: | 
|  | return Type::getFP128Ty(Ctx); | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizerHelper(MachineFunction &MF, | 
|  | GISelChangeObserver &Observer, | 
|  | MachineIRBuilder &Builder) | 
|  | : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), | 
|  | LI(*MF.getSubtarget().getLegalizerInfo()), | 
|  | TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {} | 
|  |  | 
|  | LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, | 
|  | GISelChangeObserver &Observer, | 
|  | MachineIRBuilder &B, GISelKnownBits *KB) | 
|  | : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), | 
|  | TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {} | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::legalizeInstrStep(MachineInstr &MI, | 
|  | LostDebugLocObserver &LocObserver) { | 
|  | LLVM_DEBUG(dbgs() << "Legalizing: " << MI); | 
|  |  | 
|  | MIRBuilder.setInstrAndDebugLoc(MI); | 
|  |  | 
|  | if (isa<GIntrinsic>(MI)) | 
|  | return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; | 
|  | auto Step = LI.getAction(MI, MRI); | 
|  | switch (Step.Action) { | 
|  | case Legal: | 
|  | LLVM_DEBUG(dbgs() << ".. Already legal\n"); | 
|  | return AlreadyLegal; | 
|  | case Libcall: | 
|  | LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); | 
|  | return libcall(MI, LocObserver); | 
|  | case NarrowScalar: | 
|  | LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); | 
|  | return narrowScalar(MI, Step.TypeIdx, Step.NewType); | 
|  | case WidenScalar: | 
|  | LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); | 
|  | return widenScalar(MI, Step.TypeIdx, Step.NewType); | 
|  | case Bitcast: | 
|  | LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); | 
|  | return bitcast(MI, Step.TypeIdx, Step.NewType); | 
|  | case Lower: | 
|  | LLVM_DEBUG(dbgs() << ".. Lower\n"); | 
|  | return lower(MI, Step.TypeIdx, Step.NewType); | 
|  | case FewerElements: | 
|  | LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); | 
|  | return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); | 
|  | case MoreElements: | 
|  | LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); | 
|  | return moreElementsVector(MI, Step.TypeIdx, Step.NewType); | 
|  | case Custom: | 
|  | LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); | 
|  | return LI.legalizeCustom(*this, MI, LocObserver) ? Legalized | 
|  | : UnableToLegalize; | 
|  | default: | 
|  | LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::insertParts(Register DstReg, | 
|  | LLT ResultTy, LLT PartTy, | 
|  | ArrayRef<Register> PartRegs, | 
|  | LLT LeftoverTy, | 
|  | ArrayRef<Register> LeftoverRegs) { | 
|  | if (!LeftoverTy.isValid()) { | 
|  | assert(LeftoverRegs.empty()); | 
|  |  | 
|  | if (!ResultTy.isVector()) { | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PartTy.isVector()) | 
|  | MIRBuilder.buildConcatVectors(DstReg, PartRegs); | 
|  | else | 
|  | MIRBuilder.buildBuildVector(DstReg, PartRegs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Merge sub-vectors with different number of elements and insert into DstReg. | 
|  | if (ResultTy.isVector()) { | 
|  | assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); | 
|  | SmallVector<Register, 8> AllRegs; | 
|  | for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) | 
|  | AllRegs.push_back(Reg); | 
|  | return mergeMixedSubvectors(DstReg, AllRegs); | 
|  | } | 
|  |  | 
|  | SmallVector<Register> GCDRegs; | 
|  | LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); | 
|  | for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) | 
|  | extractGCDType(GCDRegs, GCDTy, PartReg); | 
|  | LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); | 
|  | buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, | 
|  | Register Reg) { | 
|  | LLT Ty = MRI.getType(Reg); | 
|  | SmallVector<Register, 8> RegElts; | 
|  | extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts, | 
|  | MIRBuilder, MRI); | 
|  | Elts.append(RegElts); | 
|  | } | 
|  |  | 
|  | /// Merge \p PartRegs with different types into \p DstReg. | 
|  | void LegalizerHelper::mergeMixedSubvectors(Register DstReg, | 
|  | ArrayRef<Register> PartRegs) { | 
|  | SmallVector<Register, 8> AllElts; | 
|  | for (unsigned i = 0; i < PartRegs.size() - 1; ++i) | 
|  | appendVectorElts(AllElts, PartRegs[i]); | 
|  |  | 
|  | Register Leftover = PartRegs[PartRegs.size() - 1]; | 
|  | if (MRI.getType(Leftover).isScalar()) | 
|  | AllElts.push_back(Leftover); | 
|  | else | 
|  | appendVectorElts(AllElts, Leftover); | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, AllElts); | 
|  | } | 
|  |  | 
|  | /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. | 
|  | static void getUnmergeResults(SmallVectorImpl<Register> &Regs, | 
|  | const MachineInstr &MI) { | 
|  | assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); | 
|  |  | 
|  | const int StartIdx = Regs.size(); | 
|  | const int NumResults = MI.getNumOperands() - 1; | 
|  | Regs.resize(Regs.size() + NumResults); | 
|  | for (int I = 0; I != NumResults; ++I) | 
|  | Regs[StartIdx + I] = MI.getOperand(I).getReg(); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, | 
|  | LLT GCDTy, Register SrcReg) { | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  | if (SrcTy == GCDTy) { | 
|  | // If the source already evenly divides the result type, we don't need to do | 
|  | // anything. | 
|  | Parts.push_back(SrcReg); | 
|  | } else { | 
|  | // Need to split into common type sized pieces. | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); | 
|  | getUnmergeResults(Parts, *Unmerge); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, | 
|  | LLT NarrowTy, Register SrcReg) { | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  | LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); | 
|  | extractGCDType(Parts, GCDTy, SrcReg); | 
|  | return GCDTy; | 
|  | } | 
|  |  | 
|  | LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, | 
|  | SmallVectorImpl<Register> &VRegs, | 
|  | unsigned PadStrategy) { | 
|  | LLT LCMTy = getLCMType(DstTy, NarrowTy); | 
|  |  | 
|  | int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); | 
|  | int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); | 
|  | int NumOrigSrc = VRegs.size(); | 
|  |  | 
|  | Register PadReg; | 
|  |  | 
|  | // Get a value we can use to pad the source value if the sources won't evenly | 
|  | // cover the result type. | 
|  | if (NumOrigSrc < NumParts * NumSubParts) { | 
|  | if (PadStrategy == TargetOpcode::G_ZEXT) | 
|  | PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); | 
|  | else if (PadStrategy == TargetOpcode::G_ANYEXT) | 
|  | PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); | 
|  | else { | 
|  | assert(PadStrategy == TargetOpcode::G_SEXT); | 
|  |  | 
|  | // Shift the sign bit of the low register through the high register. | 
|  | auto ShiftAmt = | 
|  | MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); | 
|  | PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Registers for the final merge to be produced. | 
|  | SmallVector<Register, 4> Remerge(NumParts); | 
|  |  | 
|  | // Registers needed for intermediate merges, which will be merged into a | 
|  | // source for Remerge. | 
|  | SmallVector<Register, 4> SubMerge(NumSubParts); | 
|  |  | 
|  | // Once we've fully read off the end of the original source bits, we can reuse | 
|  | // the same high bits for remaining padding elements. | 
|  | Register AllPadReg; | 
|  |  | 
|  | // Build merges to the LCM type to cover the original result type. | 
|  | for (int I = 0; I != NumParts; ++I) { | 
|  | bool AllMergePartsArePadding = true; | 
|  |  | 
|  | // Build the requested merges to the requested type. | 
|  | for (int J = 0; J != NumSubParts; ++J) { | 
|  | int Idx = I * NumSubParts + J; | 
|  | if (Idx >= NumOrigSrc) { | 
|  | SubMerge[J] = PadReg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SubMerge[J] = VRegs[Idx]; | 
|  |  | 
|  | // There are meaningful bits here we can't reuse later. | 
|  | AllMergePartsArePadding = false; | 
|  | } | 
|  |  | 
|  | // If we've filled up a complete piece with padding bits, we can directly | 
|  | // emit the natural sized constant if applicable, rather than a merge of | 
|  | // smaller constants. | 
|  | if (AllMergePartsArePadding && !AllPadReg) { | 
|  | if (PadStrategy == TargetOpcode::G_ANYEXT) | 
|  | AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); | 
|  | else if (PadStrategy == TargetOpcode::G_ZEXT) | 
|  | AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); | 
|  |  | 
|  | // If this is a sign extension, we can't materialize a trivial constant | 
|  | // with the right type and have to produce a merge. | 
|  | } | 
|  |  | 
|  | if (AllPadReg) { | 
|  | // Avoid creating additional instructions if we're just adding additional | 
|  | // copies of padding bits. | 
|  | Remerge[I] = AllPadReg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (NumSubParts == 1) | 
|  | Remerge[I] = SubMerge[0]; | 
|  | else | 
|  | Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0); | 
|  |  | 
|  | // In the sign extend padding case, re-use the first all-signbit merge. | 
|  | if (AllMergePartsArePadding && !AllPadReg) | 
|  | AllPadReg = Remerge[I]; | 
|  | } | 
|  |  | 
|  | VRegs = std::move(Remerge); | 
|  | return LCMTy; | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, | 
|  | ArrayRef<Register> RemergeRegs) { | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  |  | 
|  | // Create the merge to the widened source, and extract the relevant bits into | 
|  | // the result. | 
|  |  | 
|  | if (DstTy == LCMTy) { | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs); | 
|  | if (DstTy.isScalar() && LCMTy.isScalar()) { | 
|  | MIRBuilder.buildTrunc(DstReg, Remerge); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LCMTy.isVector()) { | 
|  | unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); | 
|  | SmallVector<Register, 8> UnmergeDefs(NumDefs); | 
|  | UnmergeDefs[0] = DstReg; | 
|  | for (unsigned I = 1; I != NumDefs; ++I) | 
|  | UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); | 
|  |  | 
|  | MIRBuilder.buildUnmerge(UnmergeDefs, | 
|  | MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled case"); | 
|  | } | 
|  |  | 
|  | static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { | 
|  | #define RTLIBCASE_INT(LibcallPrefix)                                           \ | 
|  | do {                                                                         \ | 
|  | switch (Size) {                                                            \ | 
|  | case 32:                                                                   \ | 
|  | return RTLIB::LibcallPrefix##32;                                         \ | 
|  | case 64:                                                                   \ | 
|  | return RTLIB::LibcallPrefix##64;                                         \ | 
|  | case 128:                                                                  \ | 
|  | return RTLIB::LibcallPrefix##128;                                        \ | 
|  | default:                                                                   \ | 
|  | llvm_unreachable("unexpected size");                                     \ | 
|  | }                                                                          \ | 
|  | } while (0) | 
|  |  | 
|  | #define RTLIBCASE(LibcallPrefix)                                               \ | 
|  | do {                                                                         \ | 
|  | switch (Size) {                                                            \ | 
|  | case 32:                                                                   \ | 
|  | return RTLIB::LibcallPrefix##32;                                         \ | 
|  | case 64:                                                                   \ | 
|  | return RTLIB::LibcallPrefix##64;                                         \ | 
|  | case 80:                                                                   \ | 
|  | return RTLIB::LibcallPrefix##80;                                         \ | 
|  | case 128:                                                                  \ | 
|  | return RTLIB::LibcallPrefix##128;                                        \ | 
|  | default:                                                                   \ | 
|  | llvm_unreachable("unexpected size");                                     \ | 
|  | }                                                                          \ | 
|  | } while (0) | 
|  |  | 
|  | switch (Opcode) { | 
|  | case TargetOpcode::G_MUL: | 
|  | RTLIBCASE_INT(MUL_I); | 
|  | case TargetOpcode::G_SDIV: | 
|  | RTLIBCASE_INT(SDIV_I); | 
|  | case TargetOpcode::G_UDIV: | 
|  | RTLIBCASE_INT(UDIV_I); | 
|  | case TargetOpcode::G_SREM: | 
|  | RTLIBCASE_INT(SREM_I); | 
|  | case TargetOpcode::G_UREM: | 
|  | RTLIBCASE_INT(UREM_I); | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: | 
|  | RTLIBCASE_INT(CTLZ_I); | 
|  | case TargetOpcode::G_FADD: | 
|  | RTLIBCASE(ADD_F); | 
|  | case TargetOpcode::G_FSUB: | 
|  | RTLIBCASE(SUB_F); | 
|  | case TargetOpcode::G_FMUL: | 
|  | RTLIBCASE(MUL_F); | 
|  | case TargetOpcode::G_FDIV: | 
|  | RTLIBCASE(DIV_F); | 
|  | case TargetOpcode::G_FEXP: | 
|  | RTLIBCASE(EXP_F); | 
|  | case TargetOpcode::G_FEXP2: | 
|  | RTLIBCASE(EXP2_F); | 
|  | case TargetOpcode::G_FEXP10: | 
|  | RTLIBCASE(EXP10_F); | 
|  | case TargetOpcode::G_FREM: | 
|  | RTLIBCASE(REM_F); | 
|  | case TargetOpcode::G_FPOW: | 
|  | RTLIBCASE(POW_F); | 
|  | case TargetOpcode::G_FPOWI: | 
|  | RTLIBCASE(POWI_F); | 
|  | case TargetOpcode::G_FMA: | 
|  | RTLIBCASE(FMA_F); | 
|  | case TargetOpcode::G_FSIN: | 
|  | RTLIBCASE(SIN_F); | 
|  | case TargetOpcode::G_FCOS: | 
|  | RTLIBCASE(COS_F); | 
|  | case TargetOpcode::G_FLOG10: | 
|  | RTLIBCASE(LOG10_F); | 
|  | case TargetOpcode::G_FLOG: | 
|  | RTLIBCASE(LOG_F); | 
|  | case TargetOpcode::G_FLOG2: | 
|  | RTLIBCASE(LOG2_F); | 
|  | case TargetOpcode::G_FLDEXP: | 
|  | RTLIBCASE(LDEXP_F); | 
|  | case TargetOpcode::G_FCEIL: | 
|  | RTLIBCASE(CEIL_F); | 
|  | case TargetOpcode::G_FFLOOR: | 
|  | RTLIBCASE(FLOOR_F); | 
|  | case TargetOpcode::G_FMINNUM: | 
|  | RTLIBCASE(FMIN_F); | 
|  | case TargetOpcode::G_FMAXNUM: | 
|  | RTLIBCASE(FMAX_F); | 
|  | case TargetOpcode::G_FSQRT: | 
|  | RTLIBCASE(SQRT_F); | 
|  | case TargetOpcode::G_FRINT: | 
|  | RTLIBCASE(RINT_F); | 
|  | case TargetOpcode::G_FNEARBYINT: | 
|  | RTLIBCASE(NEARBYINT_F); | 
|  | case TargetOpcode::G_INTRINSIC_ROUNDEVEN: | 
|  | RTLIBCASE(ROUNDEVEN_F); | 
|  | } | 
|  | llvm_unreachable("Unknown libcall function"); | 
|  | } | 
|  |  | 
|  | /// True if an instruction is in tail position in its caller. Intended for | 
|  | /// legalizing libcalls as tail calls when possible. | 
|  | static bool isLibCallInTailPosition(const CallLowering::ArgInfo &Result, | 
|  | MachineInstr &MI, | 
|  | const TargetInstrInfo &TII, | 
|  | MachineRegisterInfo &MRI) { | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | const Function &F = MBB.getParent()->getFunction(); | 
|  |  | 
|  | // Conservatively require the attributes of the call to match those of | 
|  | // the return. Ignore NoAlias and NonNull because they don't affect the | 
|  | // call sequence. | 
|  | AttributeList CallerAttrs = F.getAttributes(); | 
|  | if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) | 
|  | .removeAttribute(Attribute::NoAlias) | 
|  | .removeAttribute(Attribute::NonNull) | 
|  | .hasAttributes()) | 
|  | return false; | 
|  |  | 
|  | // It's not safe to eliminate the sign / zero extension of the return value. | 
|  | if (CallerAttrs.hasRetAttr(Attribute::ZExt) || | 
|  | CallerAttrs.hasRetAttr(Attribute::SExt)) | 
|  | return false; | 
|  |  | 
|  | // Only tail call if the following instruction is a standard return or if we | 
|  | // have a `thisreturn` callee, and a sequence like: | 
|  | // | 
|  | //   G_MEMCPY %0, %1, %2 | 
|  | //   $x0 = COPY %0 | 
|  | //   RET_ReallyLR implicit $x0 | 
|  | auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); | 
|  | if (Next != MBB.instr_end() && Next->isCopy()) { | 
|  | if (MI.getOpcode() == TargetOpcode::G_BZERO) | 
|  | return false; | 
|  |  | 
|  | // For MEMCPY/MOMMOVE/MEMSET these will be the first use (the dst), as the | 
|  | // mempy/etc routines return the same parameter. For other it will be the | 
|  | // returned value. | 
|  | Register VReg = MI.getOperand(0).getReg(); | 
|  | if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) | 
|  | return false; | 
|  |  | 
|  | Register PReg = Next->getOperand(0).getReg(); | 
|  | if (!PReg.isPhysical()) | 
|  | return false; | 
|  |  | 
|  | auto Ret = next_nodbg(Next, MBB.instr_end()); | 
|  | if (Ret == MBB.instr_end() || !Ret->isReturn()) | 
|  | return false; | 
|  |  | 
|  | if (Ret->getNumImplicitOperands() != 1) | 
|  | return false; | 
|  |  | 
|  | if (!Ret->getOperand(0).isReg() || PReg != Ret->getOperand(0).getReg()) | 
|  | return false; | 
|  |  | 
|  | // Skip over the COPY that we just validated. | 
|  | Next = Ret; | 
|  | } | 
|  |  | 
|  | if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, | 
|  | const CallLowering::ArgInfo &Result, | 
|  | ArrayRef<CallLowering::ArgInfo> Args, | 
|  | const CallingConv::ID CC, LostDebugLocObserver &LocObserver, | 
|  | MachineInstr *MI) { | 
|  | auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); | 
|  |  | 
|  | CallLowering::CallLoweringInfo Info; | 
|  | Info.CallConv = CC; | 
|  | Info.Callee = MachineOperand::CreateES(Name); | 
|  | Info.OrigRet = Result; | 
|  | if (MI) | 
|  | Info.IsTailCall = | 
|  | (Result.Ty->isVoidTy() || | 
|  | Result.Ty == MIRBuilder.getMF().getFunction().getReturnType()) && | 
|  | isLibCallInTailPosition(Result, *MI, MIRBuilder.getTII(), | 
|  | *MIRBuilder.getMRI()); | 
|  |  | 
|  | std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); | 
|  | if (!CLI.lowerCall(MIRBuilder, Info)) | 
|  | return LegalizerHelper::UnableToLegalize; | 
|  |  | 
|  | if (MI && Info.LoweredTailCall) { | 
|  | assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); | 
|  |  | 
|  | // Check debug locations before removing the return. | 
|  | LocObserver.checkpoint(true); | 
|  |  | 
|  | // We must have a return following the call (or debug insts) to get past | 
|  | // isLibCallInTailPosition. | 
|  | do { | 
|  | MachineInstr *Next = MI->getNextNode(); | 
|  | assert(Next && | 
|  | (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && | 
|  | "Expected instr following MI to be return or debug inst?"); | 
|  | // We lowered a tail call, so the call is now the return from the block. | 
|  | // Delete the old return. | 
|  | Next->eraseFromParent(); | 
|  | } while (MI->getNextNode()); | 
|  |  | 
|  | // We expect to lose the debug location from the return. | 
|  | LocObserver.checkpoint(false); | 
|  | } | 
|  | return LegalizerHelper::Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, | 
|  | const CallLowering::ArgInfo &Result, | 
|  | ArrayRef<CallLowering::ArgInfo> Args, | 
|  | LostDebugLocObserver &LocObserver, MachineInstr *MI) { | 
|  | auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); | 
|  | const char *Name = TLI.getLibcallName(Libcall); | 
|  | if (!Name) | 
|  | return LegalizerHelper::UnableToLegalize; | 
|  | const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); | 
|  | return createLibcall(MIRBuilder, Name, Result, Args, CC, LocObserver, MI); | 
|  | } | 
|  |  | 
|  | // Useful for libcalls where all operands have the same type. | 
|  | static LegalizerHelper::LegalizeResult | 
|  | simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, | 
|  | Type *OpType, LostDebugLocObserver &LocObserver) { | 
|  | auto Libcall = getRTLibDesc(MI.getOpcode(), Size); | 
|  |  | 
|  | // FIXME: What does the original arg index mean here? | 
|  | SmallVector<CallLowering::ArgInfo, 3> Args; | 
|  | for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) | 
|  | Args.push_back({MO.getReg(), OpType, 0}); | 
|  | return createLibcall(MIRBuilder, Libcall, | 
|  | {MI.getOperand(0).getReg(), OpType, 0}, Args, | 
|  | LocObserver, &MI); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, | 
|  | MachineInstr &MI, LostDebugLocObserver &LocObserver) { | 
|  | auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); | 
|  |  | 
|  | SmallVector<CallLowering::ArgInfo, 3> Args; | 
|  | // Add all the args, except for the last which is an imm denoting 'tail'. | 
|  | for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { | 
|  | Register Reg = MI.getOperand(i).getReg(); | 
|  |  | 
|  | // Need derive an IR type for call lowering. | 
|  | LLT OpLLT = MRI.getType(Reg); | 
|  | Type *OpTy = nullptr; | 
|  | if (OpLLT.isPointer()) | 
|  | OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace()); | 
|  | else | 
|  | OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); | 
|  | Args.push_back({Reg, OpTy, 0}); | 
|  | } | 
|  |  | 
|  | auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); | 
|  | auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); | 
|  | RTLIB::Libcall RTLibcall; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | case TargetOpcode::G_BZERO: | 
|  | RTLibcall = RTLIB::BZERO; | 
|  | break; | 
|  | case TargetOpcode::G_MEMCPY: | 
|  | RTLibcall = RTLIB::MEMCPY; | 
|  | Args[0].Flags[0].setReturned(); | 
|  | break; | 
|  | case TargetOpcode::G_MEMMOVE: | 
|  | RTLibcall = RTLIB::MEMMOVE; | 
|  | Args[0].Flags[0].setReturned(); | 
|  | break; | 
|  | case TargetOpcode::G_MEMSET: | 
|  | RTLibcall = RTLIB::MEMSET; | 
|  | Args[0].Flags[0].setReturned(); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unsupported opcode"); | 
|  | } | 
|  | const char *Name = TLI.getLibcallName(RTLibcall); | 
|  |  | 
|  | // Unsupported libcall on the target. | 
|  | if (!Name) { | 
|  | LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " | 
|  | << MIRBuilder.getTII().getName(Opc) << "\n"); | 
|  | return LegalizerHelper::UnableToLegalize; | 
|  | } | 
|  |  | 
|  | CallLowering::CallLoweringInfo Info; | 
|  | Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); | 
|  | Info.Callee = MachineOperand::CreateES(Name); | 
|  | Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); | 
|  | Info.IsTailCall = | 
|  | MI.getOperand(MI.getNumOperands() - 1).getImm() && | 
|  | isLibCallInTailPosition(Info.OrigRet, MI, MIRBuilder.getTII(), MRI); | 
|  |  | 
|  | std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); | 
|  | if (!CLI.lowerCall(MIRBuilder, Info)) | 
|  | return LegalizerHelper::UnableToLegalize; | 
|  |  | 
|  | if (Info.LoweredTailCall) { | 
|  | assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); | 
|  |  | 
|  | // Check debug locations before removing the return. | 
|  | LocObserver.checkpoint(true); | 
|  |  | 
|  | // We must have a return following the call (or debug insts) to get past | 
|  | // isLibCallInTailPosition. | 
|  | do { | 
|  | MachineInstr *Next = MI.getNextNode(); | 
|  | assert(Next && | 
|  | (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && | 
|  | "Expected instr following MI to be return or debug inst?"); | 
|  | // We lowered a tail call, so the call is now the return from the block. | 
|  | // Delete the old return. | 
|  | Next->eraseFromParent(); | 
|  | } while (MI.getNextNode()); | 
|  |  | 
|  | // We expect to lose the debug location from the return. | 
|  | LocObserver.checkpoint(false); | 
|  | } | 
|  |  | 
|  | return LegalizerHelper::Legalized; | 
|  | } | 
|  |  | 
|  | static RTLIB::Libcall getOutlineAtomicLibcall(MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | auto &AtomicMI = cast<GMemOperation>(MI); | 
|  | auto &MMO = AtomicMI.getMMO(); | 
|  | auto Ordering = MMO.getMergedOrdering(); | 
|  | LLT MemType = MMO.getMemoryType(); | 
|  | uint64_t MemSize = MemType.getSizeInBytes(); | 
|  | if (MemType.isVector()) | 
|  | return RTLIB::UNKNOWN_LIBCALL; | 
|  |  | 
|  | #define LCALLS(A, B)                                                           \ | 
|  | { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } | 
|  | #define LCALL5(A)                                                              \ | 
|  | LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) | 
|  | switch (Opc) { | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG: | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { | 
|  | const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_CAS)}; | 
|  | return getOutlineAtomicHelper(LC, Ordering, MemSize); | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_XCHG: { | 
|  | const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_SWP)}; | 
|  | return getOutlineAtomicHelper(LC, Ordering, MemSize); | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_ADD: | 
|  | case TargetOpcode::G_ATOMICRMW_SUB: { | 
|  | const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDADD)}; | 
|  | return getOutlineAtomicHelper(LC, Ordering, MemSize); | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_AND: { | 
|  | const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDCLR)}; | 
|  | return getOutlineAtomicHelper(LC, Ordering, MemSize); | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_OR: { | 
|  | const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDSET)}; | 
|  | return getOutlineAtomicHelper(LC, Ordering, MemSize); | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_XOR: { | 
|  | const RTLIB::Libcall LC[5][4] = {LCALL5(RTLIB::OUTLINE_ATOMIC_LDEOR)}; | 
|  | return getOutlineAtomicHelper(LC, Ordering, MemSize); | 
|  | } | 
|  | default: | 
|  | return RTLIB::UNKNOWN_LIBCALL; | 
|  | } | 
|  | #undef LCALLS | 
|  | #undef LCALL5 | 
|  | } | 
|  |  | 
|  | static LegalizerHelper::LegalizeResult | 
|  | createAtomicLibcall(MachineIRBuilder &MIRBuilder, MachineInstr &MI) { | 
|  | auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); | 
|  |  | 
|  | Type *RetTy; | 
|  | SmallVector<Register> RetRegs; | 
|  | SmallVector<CallLowering::ArgInfo, 3> Args; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG: | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { | 
|  | Register Success; | 
|  | LLT SuccessLLT; | 
|  | auto [Ret, RetLLT, Mem, MemLLT, Cmp, CmpLLT, New, NewLLT] = | 
|  | MI.getFirst4RegLLTs(); | 
|  | RetRegs.push_back(Ret); | 
|  | RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); | 
|  | if (Opc == TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) { | 
|  | std::tie(Ret, RetLLT, Success, SuccessLLT, Mem, MemLLT, Cmp, CmpLLT, New, | 
|  | NewLLT) = MI.getFirst5RegLLTs(); | 
|  | RetRegs.push_back(Success); | 
|  | RetTy = StructType::get( | 
|  | Ctx, {RetTy, IntegerType::get(Ctx, SuccessLLT.getSizeInBits())}); | 
|  | } | 
|  | Args.push_back({Cmp, IntegerType::get(Ctx, CmpLLT.getSizeInBits()), 0}); | 
|  | Args.push_back({New, IntegerType::get(Ctx, NewLLT.getSizeInBits()), 0}); | 
|  | Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_XCHG: | 
|  | case TargetOpcode::G_ATOMICRMW_ADD: | 
|  | case TargetOpcode::G_ATOMICRMW_SUB: | 
|  | case TargetOpcode::G_ATOMICRMW_AND: | 
|  | case TargetOpcode::G_ATOMICRMW_OR: | 
|  | case TargetOpcode::G_ATOMICRMW_XOR: { | 
|  | auto [Ret, RetLLT, Mem, MemLLT, Val, ValLLT] = MI.getFirst3RegLLTs(); | 
|  | RetRegs.push_back(Ret); | 
|  | RetTy = IntegerType::get(Ctx, RetLLT.getSizeInBits()); | 
|  | if (Opc == TargetOpcode::G_ATOMICRMW_AND) | 
|  | Val = | 
|  | MIRBuilder.buildXor(ValLLT, MIRBuilder.buildConstant(ValLLT, -1), Val) | 
|  | .getReg(0); | 
|  | else if (Opc == TargetOpcode::G_ATOMICRMW_SUB) | 
|  | Val = | 
|  | MIRBuilder.buildSub(ValLLT, MIRBuilder.buildConstant(ValLLT, 0), Val) | 
|  | .getReg(0); | 
|  | Args.push_back({Val, IntegerType::get(Ctx, ValLLT.getSizeInBits()), 0}); | 
|  | Args.push_back({Mem, PointerType::get(Ctx, MemLLT.getAddressSpace()), 0}); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("unsupported opcode"); | 
|  | } | 
|  |  | 
|  | auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); | 
|  | auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); | 
|  | RTLIB::Libcall RTLibcall = getOutlineAtomicLibcall(MI); | 
|  | const char *Name = TLI.getLibcallName(RTLibcall); | 
|  |  | 
|  | // Unsupported libcall on the target. | 
|  | if (!Name) { | 
|  | LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " | 
|  | << MIRBuilder.getTII().getName(Opc) << "\n"); | 
|  | return LegalizerHelper::UnableToLegalize; | 
|  | } | 
|  |  | 
|  | CallLowering::CallLoweringInfo Info; | 
|  | Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); | 
|  | Info.Callee = MachineOperand::CreateES(Name); | 
|  | Info.OrigRet = CallLowering::ArgInfo(RetRegs, RetTy, 0); | 
|  |  | 
|  | std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); | 
|  | if (!CLI.lowerCall(MIRBuilder, Info)) | 
|  | return LegalizerHelper::UnableToLegalize; | 
|  |  | 
|  | return LegalizerHelper::Legalized; | 
|  | } | 
|  |  | 
|  | static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, | 
|  | Type *FromType) { | 
|  | auto ToMVT = MVT::getVT(ToType); | 
|  | auto FromMVT = MVT::getVT(FromType); | 
|  |  | 
|  | switch (Opcode) { | 
|  | case TargetOpcode::G_FPEXT: | 
|  | return RTLIB::getFPEXT(FromMVT, ToMVT); | 
|  | case TargetOpcode::G_FPTRUNC: | 
|  | return RTLIB::getFPROUND(FromMVT, ToMVT); | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | return RTLIB::getFPTOSINT(FromMVT, ToMVT); | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | return RTLIB::getFPTOUINT(FromMVT, ToMVT); | 
|  | case TargetOpcode::G_SITOFP: | 
|  | return RTLIB::getSINTTOFP(FromMVT, ToMVT); | 
|  | case TargetOpcode::G_UITOFP: | 
|  | return RTLIB::getUINTTOFP(FromMVT, ToMVT); | 
|  | } | 
|  | llvm_unreachable("Unsupported libcall function"); | 
|  | } | 
|  |  | 
|  | static LegalizerHelper::LegalizeResult | 
|  | conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, | 
|  | Type *FromType, LostDebugLocObserver &LocObserver) { | 
|  | RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); | 
|  | return createLibcall( | 
|  | MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType, 0}, | 
|  | {{MI.getOperand(1).getReg(), FromType, 0}}, LocObserver, &MI); | 
|  | } | 
|  |  | 
|  | static RTLIB::Libcall | 
|  | getStateLibraryFunctionFor(MachineInstr &MI, const TargetLowering &TLI) { | 
|  | RTLIB::Libcall RTLibcall; | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::G_GET_FPENV: | 
|  | RTLibcall = RTLIB::FEGETENV; | 
|  | break; | 
|  | case TargetOpcode::G_SET_FPENV: | 
|  | case TargetOpcode::G_RESET_FPENV: | 
|  | RTLibcall = RTLIB::FESETENV; | 
|  | break; | 
|  | case TargetOpcode::G_GET_FPMODE: | 
|  | RTLibcall = RTLIB::FEGETMODE; | 
|  | break; | 
|  | case TargetOpcode::G_SET_FPMODE: | 
|  | case TargetOpcode::G_RESET_FPMODE: | 
|  | RTLibcall = RTLIB::FESETMODE; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | return RTLibcall; | 
|  | } | 
|  |  | 
|  | // Some library functions that read FP state (fegetmode, fegetenv) write the | 
|  | // state into a region in memory. IR intrinsics that do the same operations | 
|  | // (get_fpmode, get_fpenv) return the state as integer value. To implement these | 
|  | // intrinsics via the library functions, we need to use temporary variable, | 
|  | // for example: | 
|  | // | 
|  | //     %0:_(s32) = G_GET_FPMODE | 
|  | // | 
|  | // is transformed to: | 
|  | // | 
|  | //     %1:_(p0) = G_FRAME_INDEX %stack.0 | 
|  | //     BL &fegetmode | 
|  | //     %0:_(s32) = G_LOAD % 1 | 
|  | // | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::createGetStateLibcall(MachineIRBuilder &MIRBuilder, | 
|  | MachineInstr &MI, | 
|  | LostDebugLocObserver &LocObserver) { | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | auto &MF = MIRBuilder.getMF(); | 
|  | auto &MRI = *MIRBuilder.getMRI(); | 
|  | auto &Ctx = MF.getFunction().getContext(); | 
|  |  | 
|  | // Create temporary, where library function will put the read state. | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | LLT StateTy = MRI.getType(Dst); | 
|  | TypeSize StateSize = StateTy.getSizeInBytes(); | 
|  | Align TempAlign = getStackTemporaryAlignment(StateTy); | 
|  | MachinePointerInfo TempPtrInfo; | 
|  | auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); | 
|  |  | 
|  | // Create a call to library function, with the temporary as an argument. | 
|  | unsigned TempAddrSpace = DL.getAllocaAddrSpace(); | 
|  | Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); | 
|  | RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); | 
|  | auto Res = | 
|  | createLibcall(MIRBuilder, RTLibcall, | 
|  | CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), | 
|  | CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), | 
|  | LocObserver, nullptr); | 
|  | if (Res != LegalizerHelper::Legalized) | 
|  | return Res; | 
|  |  | 
|  | // Create a load from the temporary. | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | TempPtrInfo, MachineMemOperand::MOLoad, StateTy, TempAlign); | 
|  | MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Temp, *MMO); | 
|  |  | 
|  | return LegalizerHelper::Legalized; | 
|  | } | 
|  |  | 
|  | // Similar to `createGetStateLibcall` the function calls a library function | 
|  | // using transient space in stack. In this case the library function reads | 
|  | // content of memory region. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::createSetStateLibcall(MachineIRBuilder &MIRBuilder, | 
|  | MachineInstr &MI, | 
|  | LostDebugLocObserver &LocObserver) { | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | auto &MF = MIRBuilder.getMF(); | 
|  | auto &MRI = *MIRBuilder.getMRI(); | 
|  | auto &Ctx = MF.getFunction().getContext(); | 
|  |  | 
|  | // Create temporary, where library function will get the new state. | 
|  | Register Src = MI.getOperand(0).getReg(); | 
|  | LLT StateTy = MRI.getType(Src); | 
|  | TypeSize StateSize = StateTy.getSizeInBytes(); | 
|  | Align TempAlign = getStackTemporaryAlignment(StateTy); | 
|  | MachinePointerInfo TempPtrInfo; | 
|  | auto Temp = createStackTemporary(StateSize, TempAlign, TempPtrInfo); | 
|  |  | 
|  | // Put the new state into the temporary. | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | TempPtrInfo, MachineMemOperand::MOStore, StateTy, TempAlign); | 
|  | MIRBuilder.buildStore(Src, Temp, *MMO); | 
|  |  | 
|  | // Create a call to library function, with the temporary as an argument. | 
|  | unsigned TempAddrSpace = DL.getAllocaAddrSpace(); | 
|  | Type *StatePtrTy = PointerType::get(Ctx, TempAddrSpace); | 
|  | RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); | 
|  | return createLibcall(MIRBuilder, RTLibcall, | 
|  | CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), | 
|  | CallLowering::ArgInfo({Temp.getReg(0), StatePtrTy, 0}), | 
|  | LocObserver, nullptr); | 
|  | } | 
|  |  | 
|  | // The function is used to legalize operations that set default environment | 
|  | // state. In C library a call like `fesetmode(FE_DFL_MODE)` is used for that. | 
|  | // On most targets supported in glibc FE_DFL_MODE is defined as | 
|  | // `((const femode_t *) -1)`. Such assumption is used here. If for some target | 
|  | // it is not true, the target must provide custom lowering. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::createResetStateLibcall(MachineIRBuilder &MIRBuilder, | 
|  | MachineInstr &MI, | 
|  | LostDebugLocObserver &LocObserver) { | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | auto &MF = MIRBuilder.getMF(); | 
|  | auto &Ctx = MF.getFunction().getContext(); | 
|  |  | 
|  | // Create an argument for the library function. | 
|  | unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); | 
|  | Type *StatePtrTy = PointerType::get(Ctx, AddrSpace); | 
|  | unsigned PtrSize = DL.getPointerSizeInBits(AddrSpace); | 
|  | LLT MemTy = LLT::pointer(AddrSpace, PtrSize); | 
|  | auto DefValue = MIRBuilder.buildConstant(LLT::scalar(PtrSize), -1LL); | 
|  | DstOp Dest(MRI.createGenericVirtualRegister(MemTy)); | 
|  | MIRBuilder.buildIntToPtr(Dest, DefValue); | 
|  |  | 
|  | RTLIB::Libcall RTLibcall = getStateLibraryFunctionFor(MI, TLI); | 
|  | return createLibcall(MIRBuilder, RTLibcall, | 
|  | CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0), | 
|  | CallLowering::ArgInfo({Dest.getReg(), StatePtrTy, 0}), | 
|  | LocObserver, &MI); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { | 
|  | auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | case TargetOpcode::G_MUL: | 
|  | case TargetOpcode::G_SDIV: | 
|  | case TargetOpcode::G_UDIV: | 
|  | case TargetOpcode::G_SREM: | 
|  | case TargetOpcode::G_UREM: | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: { | 
|  | LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | unsigned Size = LLTy.getSizeInBits(); | 
|  | Type *HLTy = IntegerType::get(Ctx, Size); | 
|  | auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_FADD: | 
|  | case TargetOpcode::G_FSUB: | 
|  | case TargetOpcode::G_FMUL: | 
|  | case TargetOpcode::G_FDIV: | 
|  | case TargetOpcode::G_FMA: | 
|  | case TargetOpcode::G_FPOW: | 
|  | case TargetOpcode::G_FREM: | 
|  | case TargetOpcode::G_FCOS: | 
|  | case TargetOpcode::G_FSIN: | 
|  | case TargetOpcode::G_FLOG10: | 
|  | case TargetOpcode::G_FLOG: | 
|  | case TargetOpcode::G_FLOG2: | 
|  | case TargetOpcode::G_FLDEXP: | 
|  | case TargetOpcode::G_FEXP: | 
|  | case TargetOpcode::G_FEXP2: | 
|  | case TargetOpcode::G_FEXP10: | 
|  | case TargetOpcode::G_FCEIL: | 
|  | case TargetOpcode::G_FFLOOR: | 
|  | case TargetOpcode::G_FMINNUM: | 
|  | case TargetOpcode::G_FMAXNUM: | 
|  | case TargetOpcode::G_FSQRT: | 
|  | case TargetOpcode::G_FRINT: | 
|  | case TargetOpcode::G_FNEARBYINT: | 
|  | case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { | 
|  | LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | unsigned Size = LLTy.getSizeInBits(); | 
|  | Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); | 
|  | if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { | 
|  | LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  | auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy, LocObserver); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_FPOWI: { | 
|  | LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | unsigned Size = LLTy.getSizeInBits(); | 
|  | Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); | 
|  | Type *ITy = IntegerType::get( | 
|  | Ctx, MRI.getType(MI.getOperand(2).getReg()).getSizeInBits()); | 
|  | if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { | 
|  | LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  | auto Libcall = getRTLibDesc(MI.getOpcode(), Size); | 
|  | std::initializer_list<CallLowering::ArgInfo> Args = { | 
|  | {MI.getOperand(1).getReg(), HLTy, 0}, | 
|  | {MI.getOperand(2).getReg(), ITy, 1}}; | 
|  | LegalizeResult Status = | 
|  | createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), HLTy, 0}, | 
|  | Args, LocObserver, &MI); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_FPEXT: | 
|  | case TargetOpcode::G_FPTRUNC: { | 
|  | Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg())); | 
|  | Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); | 
|  | if (!FromTy || !ToTy) | 
|  | return UnableToLegalize; | 
|  | LegalizeResult Status = | 
|  | conversionLibcall(MI, MIRBuilder, ToTy, FromTy, LocObserver); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | case TargetOpcode::G_FPTOUI: { | 
|  | // FIXME: Support other types | 
|  | unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); | 
|  | unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); | 
|  | if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) | 
|  | return UnableToLegalize; | 
|  | LegalizeResult Status = conversionLibcall( | 
|  | MI, MIRBuilder, | 
|  | ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), | 
|  | FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), | 
|  | LocObserver); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_SITOFP: | 
|  | case TargetOpcode::G_UITOFP: { | 
|  | // FIXME: Support other types | 
|  | unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); | 
|  | unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); | 
|  | if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) | 
|  | return UnableToLegalize; | 
|  | LegalizeResult Status = conversionLibcall( | 
|  | MI, MIRBuilder, | 
|  | ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), | 
|  | FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), | 
|  | LocObserver); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_ATOMICRMW_XCHG: | 
|  | case TargetOpcode::G_ATOMICRMW_ADD: | 
|  | case TargetOpcode::G_ATOMICRMW_SUB: | 
|  | case TargetOpcode::G_ATOMICRMW_AND: | 
|  | case TargetOpcode::G_ATOMICRMW_OR: | 
|  | case TargetOpcode::G_ATOMICRMW_XOR: | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG: | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { | 
|  | auto Status = createAtomicLibcall(MIRBuilder, MI); | 
|  | if (Status != Legalized) | 
|  | return Status; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_BZERO: | 
|  | case TargetOpcode::G_MEMCPY: | 
|  | case TargetOpcode::G_MEMMOVE: | 
|  | case TargetOpcode::G_MEMSET: { | 
|  | LegalizeResult Result = | 
|  | createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); | 
|  | if (Result != Legalized) | 
|  | return Result; | 
|  | MI.eraseFromParent(); | 
|  | return Result; | 
|  | } | 
|  | case TargetOpcode::G_GET_FPENV: | 
|  | case TargetOpcode::G_GET_FPMODE: { | 
|  | LegalizeResult Result = createGetStateLibcall(MIRBuilder, MI, LocObserver); | 
|  | if (Result != Legalized) | 
|  | return Result; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_SET_FPENV: | 
|  | case TargetOpcode::G_SET_FPMODE: { | 
|  | LegalizeResult Result = createSetStateLibcall(MIRBuilder, MI, LocObserver); | 
|  | if (Result != Legalized) | 
|  | return Result; | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_RESET_FPENV: | 
|  | case TargetOpcode::G_RESET_FPMODE: { | 
|  | LegalizeResult Result = | 
|  | createResetStateLibcall(MIRBuilder, MI, LocObserver); | 
|  | if (Result != Legalized) | 
|  | return Result; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, | 
|  | unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); | 
|  | uint64_t NarrowSize = NarrowTy.getSizeInBits(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | case TargetOpcode::G_IMPLICIT_DEF: { | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  |  | 
|  | // If SizeOp0 is not an exact multiple of NarrowSize, emit | 
|  | // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. | 
|  | // FIXME: Although this would also be legal for the general case, it causes | 
|  | //  a lot of regressions in the emitted code (superfluous COPYs, artifact | 
|  | //  combines not being hit). This seems to be a problem related to the | 
|  | //  artifact combiner. | 
|  | if (SizeOp0 % NarrowSize != 0) { | 
|  | LLT ImplicitTy = NarrowTy; | 
|  | if (DstTy.isVector()) | 
|  | ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); | 
|  |  | 
|  | Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); | 
|  | MIRBuilder.buildAnyExt(DstReg, ImplicitReg); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | int NumParts = SizeOp0 / NarrowSize; | 
|  |  | 
|  | SmallVector<Register, 2> DstRegs; | 
|  | for (int i = 0; i < NumParts; ++i) | 
|  | DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); | 
|  |  | 
|  | if (DstTy.isVector()) | 
|  | MIRBuilder.buildBuildVector(DstReg, DstRegs); | 
|  | else | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_CONSTANT: { | 
|  | LLT Ty = MRI.getType(MI.getOperand(0).getReg()); | 
|  | const APInt &Val = MI.getOperand(1).getCImm()->getValue(); | 
|  | unsigned TotalSize = Ty.getSizeInBits(); | 
|  | unsigned NarrowSize = NarrowTy.getSizeInBits(); | 
|  | int NumParts = TotalSize / NarrowSize; | 
|  |  | 
|  | SmallVector<Register, 4> PartRegs; | 
|  | for (int I = 0; I != NumParts; ++I) { | 
|  | unsigned Offset = I * NarrowSize; | 
|  | auto K = MIRBuilder.buildConstant(NarrowTy, | 
|  | Val.lshr(Offset).trunc(NarrowSize)); | 
|  | PartRegs.push_back(K.getReg(0)); | 
|  | } | 
|  |  | 
|  | LLT LeftoverTy; | 
|  | unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; | 
|  | SmallVector<Register, 1> LeftoverRegs; | 
|  | if (LeftoverBits != 0) { | 
|  | LeftoverTy = LLT::scalar(LeftoverBits); | 
|  | auto K = MIRBuilder.buildConstant( | 
|  | LeftoverTy, | 
|  | Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); | 
|  | LeftoverRegs.push_back(K.getReg(0)); | 
|  | } | 
|  |  | 
|  | insertParts(MI.getOperand(0).getReg(), | 
|  | Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_SEXT: | 
|  | case TargetOpcode::G_ZEXT: | 
|  | case TargetOpcode::G_ANYEXT: | 
|  | return narrowScalarExt(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_TRUNC: { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); | 
|  | if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { | 
|  | LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); | 
|  | MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | case TargetOpcode::G_FREEZE: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT Ty = MRI.getType(MI.getOperand(0).getReg()); | 
|  | // Should widen scalar first | 
|  | if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); | 
|  | SmallVector<Register, 8> Parts; | 
|  | for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { | 
|  | Parts.push_back( | 
|  | MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_ADD: | 
|  | case TargetOpcode::G_SUB: | 
|  | case TargetOpcode::G_SADDO: | 
|  | case TargetOpcode::G_SSUBO: | 
|  | case TargetOpcode::G_SADDE: | 
|  | case TargetOpcode::G_SSUBE: | 
|  | case TargetOpcode::G_UADDO: | 
|  | case TargetOpcode::G_USUBO: | 
|  | case TargetOpcode::G_UADDE: | 
|  | case TargetOpcode::G_USUBE: | 
|  | return narrowScalarAddSub(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_MUL: | 
|  | case TargetOpcode::G_UMULH: | 
|  | return narrowScalarMul(MI, NarrowTy); | 
|  | case TargetOpcode::G_EXTRACT: | 
|  | return narrowScalarExtract(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_INSERT: | 
|  | return narrowScalarInsert(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_LOAD: { | 
|  | auto &LoadMI = cast<GLoad>(MI); | 
|  | Register DstReg = LoadMI.getDstReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | if (DstTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (8 * LoadMI.getMemSize().getValue() != DstTy.getSizeInBits()) { | 
|  | Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); | 
|  | MIRBuilder.buildAnyExt(DstReg, TmpReg); | 
|  | LoadMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); | 
|  | } | 
|  | case TargetOpcode::G_ZEXTLOAD: | 
|  | case TargetOpcode::G_SEXTLOAD: { | 
|  | auto &LoadMI = cast<GExtLoad>(MI); | 
|  | Register DstReg = LoadMI.getDstReg(); | 
|  | Register PtrReg = LoadMI.getPointerReg(); | 
|  |  | 
|  | Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | auto &MMO = LoadMI.getMMO(); | 
|  | unsigned MemSize = MMO.getSizeInBits().getValue(); | 
|  |  | 
|  | if (MemSize == NarrowSize) { | 
|  | MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); | 
|  | } else if (MemSize < NarrowSize) { | 
|  | MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); | 
|  | } else if (MemSize > NarrowSize) { | 
|  | // FIXME: Need to split the load. | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | if (isa<GZExtLoad>(LoadMI)) | 
|  | MIRBuilder.buildZExt(DstReg, TmpReg); | 
|  | else | 
|  | MIRBuilder.buildSExt(DstReg, TmpReg); | 
|  |  | 
|  | LoadMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_STORE: { | 
|  | auto &StoreMI = cast<GStore>(MI); | 
|  |  | 
|  | Register SrcReg = StoreMI.getValueReg(); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  | if (SrcTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | int NumParts = SizeOp0 / NarrowSize; | 
|  | unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); | 
|  | unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; | 
|  | if (SrcTy.isVector() && LeftoverBits != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (8 * StoreMI.getMemSize().getValue() != SrcTy.getSizeInBits()) { | 
|  | Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MIRBuilder.buildTrunc(TmpReg, SrcReg); | 
|  | MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); | 
|  | StoreMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); | 
|  | } | 
|  | case TargetOpcode::G_SELECT: | 
|  | return narrowScalarSelect(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_AND: | 
|  | case TargetOpcode::G_OR: | 
|  | case TargetOpcode::G_XOR: { | 
|  | // Legalize bitwise operation: | 
|  | // A = BinOp<Ty> B, C | 
|  | // into: | 
|  | // B1, ..., BN = G_UNMERGE_VALUES B | 
|  | // C1, ..., CN = G_UNMERGE_VALUES C | 
|  | // A1 = BinOp<Ty/N> B1, C2 | 
|  | // ... | 
|  | // AN = BinOp<Ty/N> BN, CN | 
|  | // A = G_MERGE_VALUES A1, ..., AN | 
|  | return narrowScalarBasic(MI, TypeIdx, NarrowTy); | 
|  | } | 
|  | case TargetOpcode::G_SHL: | 
|  | case TargetOpcode::G_LSHR: | 
|  | case TargetOpcode::G_ASHR: | 
|  | return narrowScalarShift(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_CTLZ: | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: | 
|  | case TargetOpcode::G_CTTZ: | 
|  | case TargetOpcode::G_CTTZ_ZERO_UNDEF: | 
|  | case TargetOpcode::G_CTPOP: | 
|  | if (TypeIdx == 1) | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::G_CTLZ: | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: | 
|  | return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_CTTZ: | 
|  | case TargetOpcode::G_CTTZ_ZERO_UNDEF: | 
|  | return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_CTPOP: | 
|  | return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_INTTOPTR: | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarSrc(MI, NarrowTy, 1); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_PTRTOINT: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_PHI: { | 
|  | // FIXME: add support for when SizeOp0 isn't an exact multiple of | 
|  | // NarrowSize. | 
|  | if (SizeOp0 % NarrowSize != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | unsigned NumParts = SizeOp0 / NarrowSize; | 
|  | SmallVector<Register, 2> DstRegs(NumParts); | 
|  | SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); | 
|  | Observer.changingInstr(MI); | 
|  | for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { | 
|  | MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); | 
|  | MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); | 
|  | extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, | 
|  | SrcRegs[i / 2], MIRBuilder, MRI); | 
|  | } | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MIRBuilder.setInsertPt(MBB, MI); | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MachineInstrBuilder MIB = | 
|  | MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); | 
|  | for (unsigned j = 1; j < MI.getNumOperands(); j += 2) | 
|  | MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); | 
|  | } | 
|  | MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); | 
|  | Observer.changedInstr(MI); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_EXTRACT_VECTOR_ELT: | 
|  | case TargetOpcode::G_INSERT_VECTOR_ELT: { | 
|  | if (TypeIdx != 2) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarSrc(MI, NarrowTy, OpIdx); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_ICMP: { | 
|  | Register LHS = MI.getOperand(2).getReg(); | 
|  | LLT SrcTy = MRI.getType(LHS); | 
|  | uint64_t SrcSize = SrcTy.getSizeInBits(); | 
|  | CmpInst::Predicate Pred = | 
|  | static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); | 
|  |  | 
|  | // TODO: Handle the non-equality case for weird sizes. | 
|  | if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) | 
|  | SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; | 
|  | if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, | 
|  | LHSLeftoverRegs, MIRBuilder, MRI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. | 
|  | SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; | 
|  | if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, | 
|  | RHSPartRegs, RHSLeftoverRegs, MIRBuilder, MRI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // We now have the LHS and RHS of the compare split into narrow-type | 
|  | // registers, plus potentially some leftover type. | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | LLT ResTy = MRI.getType(Dst); | 
|  | if (ICmpInst::isEquality(Pred)) { | 
|  | // For each part on the LHS and RHS, keep track of the result of XOR-ing | 
|  | // them together. For each equal part, the result should be all 0s. For | 
|  | // each non-equal part, we'll get at least one 1. | 
|  | auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); | 
|  | SmallVector<Register, 4> Xors; | 
|  | for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { | 
|  | auto LHS = std::get<0>(LHSAndRHS); | 
|  | auto RHS = std::get<1>(LHSAndRHS); | 
|  | auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); | 
|  | Xors.push_back(Xor); | 
|  | } | 
|  |  | 
|  | // Build a G_XOR for each leftover register. Each G_XOR must be widened | 
|  | // to the desired narrow type so that we can OR them together later. | 
|  | SmallVector<Register, 4> WidenedXors; | 
|  | for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { | 
|  | auto LHS = std::get<0>(LHSAndRHS); | 
|  | auto RHS = std::get<1>(LHSAndRHS); | 
|  | auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); | 
|  | LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); | 
|  | buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, | 
|  | /* PadStrategy = */ TargetOpcode::G_ZEXT); | 
|  | Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); | 
|  | } | 
|  |  | 
|  | // Now, for each part we broke up, we know if they are equal/not equal | 
|  | // based off the G_XOR. We can OR these all together and compare against | 
|  | // 0 to get the result. | 
|  | assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); | 
|  | auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); | 
|  | for (unsigned I = 2, E = Xors.size(); I < E; ++I) | 
|  | Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); | 
|  | MIRBuilder.buildICmp(Pred, Dst, Or, Zero); | 
|  | } else { | 
|  | // TODO: Handle non-power-of-two types. | 
|  | assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); | 
|  | assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); | 
|  | Register LHSL = LHSPartRegs[0]; | 
|  | Register LHSH = LHSPartRegs[1]; | 
|  | Register RHSL = RHSPartRegs[0]; | 
|  | Register RHSH = RHSPartRegs[1]; | 
|  | MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); | 
|  | MachineInstrBuilder CmpHEQ = | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); | 
|  | MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( | 
|  | ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); | 
|  | MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); | 
|  | } | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FCMP: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_SEXT_INREG: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | int64_t SizeInBits = MI.getOperand(2).getImm(); | 
|  |  | 
|  | // So long as the new type has more bits than the bits we're extending we | 
|  | // don't need to break it apart. | 
|  | if (NarrowTy.getScalarSizeInBits() > SizeInBits) { | 
|  | Observer.changingInstr(MI); | 
|  | // We don't lose any non-extension bits by truncating the src and | 
|  | // sign-extending the dst. | 
|  | MachineOperand &MO1 = MI.getOperand(1); | 
|  | auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); | 
|  | MO1.setReg(TruncMIB.getReg(0)); | 
|  |  | 
|  | MachineOperand &MO2 = MI.getOperand(0); | 
|  | Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  | MIRBuilder.buildSExt(MO2, DstExt); | 
|  | MO2.setReg(DstExt); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // Break it apart. Components below the extension point are unmodified. The | 
|  | // component containing the extension point becomes a narrower SEXT_INREG. | 
|  | // Components above it are ashr'd from the component containing the | 
|  | // extension point. | 
|  | if (SizeOp0 % NarrowSize != 0) | 
|  | return UnableToLegalize; | 
|  | int NumParts = SizeOp0 / NarrowSize; | 
|  |  | 
|  | // List the registers where the destination will be scattered. | 
|  | SmallVector<Register, 2> DstRegs; | 
|  | // List the registers where the source will be split. | 
|  | SmallVector<Register, 2> SrcRegs; | 
|  |  | 
|  | // Create all the temporary registers. | 
|  | for (int i = 0; i < NumParts; ++i) { | 
|  | Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); | 
|  |  | 
|  | SrcRegs.push_back(SrcReg); | 
|  | } | 
|  |  | 
|  | // Explode the big arguments into smaller chunks. | 
|  | MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); | 
|  |  | 
|  | Register AshrCstReg = | 
|  | MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) | 
|  | .getReg(0); | 
|  | Register FullExtensionReg; | 
|  | Register PartialExtensionReg; | 
|  |  | 
|  | // Do the operation on each small part. | 
|  | for (int i = 0; i < NumParts; ++i) { | 
|  | if ((i + 1) * NarrowTy.getScalarSizeInBits() <= SizeInBits) { | 
|  | DstRegs.push_back(SrcRegs[i]); | 
|  | PartialExtensionReg = DstRegs.back(); | 
|  | } else if (i * NarrowTy.getScalarSizeInBits() >= SizeInBits) { | 
|  | assert(PartialExtensionReg && | 
|  | "Expected to visit partial extension before full"); | 
|  | if (FullExtensionReg) { | 
|  | DstRegs.push_back(FullExtensionReg); | 
|  | continue; | 
|  | } | 
|  | DstRegs.push_back( | 
|  | MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) | 
|  | .getReg(0)); | 
|  | FullExtensionReg = DstRegs.back(); | 
|  | } else { | 
|  | DstRegs.push_back( | 
|  | MIRBuilder | 
|  | .buildInstr( | 
|  | TargetOpcode::G_SEXT_INREG, {NarrowTy}, | 
|  | {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) | 
|  | .getReg(0)); | 
|  | PartialExtensionReg = DstRegs.back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Gather the destination registers into the final destination. | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_BSWAP: | 
|  | case TargetOpcode::G_BITREVERSE: { | 
|  | if (SizeOp0 % NarrowSize != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | SmallVector<Register, 2> SrcRegs, DstRegs; | 
|  | unsigned NumParts = SizeOp0 / NarrowSize; | 
|  | extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs, | 
|  | MIRBuilder, MRI); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, | 
|  | {SrcRegs[NumParts - 1 - i]}); | 
|  | DstRegs.push_back(DstPart.getReg(0)); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_PTR_ADD: | 
|  | case TargetOpcode::G_PTRMASK: { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarSrc(MI, NarrowTy, 2); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_FPEXT: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_FLDEXP: | 
|  | case TargetOpcode::G_STRICT_FLDEXP: | 
|  | return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_VSCALE: { | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | LLT Ty = MRI.getType(Dst); | 
|  |  | 
|  | // Assume VSCALE(1) fits into a legal integer | 
|  | const APInt One(NarrowTy.getSizeInBits(), 1); | 
|  | auto VScaleBase = MIRBuilder.buildVScale(NarrowTy, One); | 
|  | auto ZExt = MIRBuilder.buildZExt(Ty, VScaleBase); | 
|  | auto C = MIRBuilder.buildConstant(Ty, *MI.getOperand(1).getCImm()); | 
|  | MIRBuilder.buildMul(Dst, ZExt, C); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Register LegalizerHelper::coerceToScalar(Register Val) { | 
|  | LLT Ty = MRI.getType(Val); | 
|  | if (Ty.isScalar()) | 
|  | return Val; | 
|  |  | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | LLT NewTy = LLT::scalar(Ty.getSizeInBits()); | 
|  | if (Ty.isPointer()) { | 
|  | if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) | 
|  | return Register(); | 
|  | return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); | 
|  | } | 
|  |  | 
|  | Register NewVal = Val; | 
|  |  | 
|  | assert(Ty.isVector()); | 
|  | if (Ty.isPointerVector()) | 
|  | NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); | 
|  | return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, | 
|  | unsigned OpIdx, unsigned ExtOpcode) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); | 
|  | MO.setReg(ExtB.getReg(0)); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, | 
|  | unsigned OpIdx) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); | 
|  | MO.setReg(ExtB.getReg(0)); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, | 
|  | unsigned OpIdx, unsigned TruncOpcode) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | Register DstExt = MRI.createGenericVirtualRegister(WideTy); | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  | MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); | 
|  | MO.setReg(DstExt); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, | 
|  | unsigned OpIdx, unsigned ExtOpcode) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  | MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); | 
|  | MO.setReg(DstTrunc); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, | 
|  | unsigned OpIdx) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  | Register Dst = MO.getReg(); | 
|  | Register DstExt = MRI.createGenericVirtualRegister(WideTy); | 
|  | MO.setReg(DstExt); | 
|  | MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, | 
|  | unsigned OpIdx) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | SmallVector<Register, 8> Regs; | 
|  | MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { | 
|  | MachineOperand &Op = MI.getOperand(OpIdx); | 
|  | Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { | 
|  | MachineOperand &MO = MI.getOperand(OpIdx); | 
|  | Register CastDst = MRI.createGenericVirtualRegister(CastTy); | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  | MIRBuilder.buildBitcast(MO, CastDst); | 
|  | MO.setReg(CastDst); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs(); | 
|  | if (DstTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT SrcTy = MRI.getType(Src1Reg); | 
|  | const int DstSize = DstTy.getSizeInBits(); | 
|  | const int SrcSize = SrcTy.getSizeInBits(); | 
|  | const int WideSize = WideTy.getSizeInBits(); | 
|  | const int NumMerge = (DstSize + WideSize - 1) / WideSize; | 
|  |  | 
|  | unsigned NumOps = MI.getNumOperands(); | 
|  | unsigned NumSrc = MI.getNumOperands() - 1; | 
|  | unsigned PartSize = DstTy.getSizeInBits() / NumSrc; | 
|  |  | 
|  | if (WideSize >= DstSize) { | 
|  | // Directly pack the bits in the target type. | 
|  | Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0); | 
|  |  | 
|  | for (unsigned I = 2; I != NumOps; ++I) { | 
|  | const unsigned Offset = (I - 1) * PartSize; | 
|  |  | 
|  | Register SrcReg = MI.getOperand(I).getReg(); | 
|  | assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); | 
|  |  | 
|  | auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); | 
|  |  | 
|  | Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : | 
|  | MRI.createGenericVirtualRegister(WideTy); | 
|  |  | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); | 
|  | auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); | 
|  | MIRBuilder.buildOr(NextResult, ResultReg, Shl); | 
|  | ResultReg = NextResult; | 
|  | } | 
|  |  | 
|  | if (WideSize > DstSize) | 
|  | MIRBuilder.buildTrunc(DstReg, ResultReg); | 
|  | else if (DstTy.isPointer()) | 
|  | MIRBuilder.buildIntToPtr(DstReg, ResultReg); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // Unmerge the original values to the GCD type, and recombine to the next | 
|  | // multiple greater than the original type. | 
|  | // | 
|  | // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 | 
|  | // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 | 
|  | // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 | 
|  | // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 | 
|  | // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 | 
|  | // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 | 
|  | // %12:_(s12) = G_MERGE_VALUES %10, %11 | 
|  | // | 
|  | // Padding with undef if necessary: | 
|  | // | 
|  | // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 | 
|  | // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 | 
|  | // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 | 
|  | // %7:_(s2) = G_IMPLICIT_DEF | 
|  | // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 | 
|  | // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 | 
|  | // %10:_(s12) = G_MERGE_VALUES %8, %9 | 
|  |  | 
|  | const int GCD = std::gcd(SrcSize, WideSize); | 
|  | LLT GCDTy = LLT::scalar(GCD); | 
|  |  | 
|  | SmallVector<Register, 8> Parts; | 
|  | SmallVector<Register, 8> NewMergeRegs; | 
|  | SmallVector<Register, 8> Unmerges; | 
|  | LLT WideDstTy = LLT::scalar(NumMerge * WideSize); | 
|  |  | 
|  | // Decompose the original operands if they don't evenly divide. | 
|  | for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { | 
|  | Register SrcReg = MO.getReg(); | 
|  | if (GCD == SrcSize) { | 
|  | Unmerges.push_back(SrcReg); | 
|  | } else { | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); | 
|  | for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) | 
|  | Unmerges.push_back(Unmerge.getReg(J)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pad with undef to the next size that is a multiple of the requested size. | 
|  | if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { | 
|  | Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); | 
|  | for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) | 
|  | Unmerges.push_back(UndefReg); | 
|  | } | 
|  |  | 
|  | const int PartsPerGCD = WideSize / GCD; | 
|  |  | 
|  | // Build merges of each piece. | 
|  | ArrayRef<Register> Slicer(Unmerges); | 
|  | for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { | 
|  | auto Merge = | 
|  | MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD)); | 
|  | NewMergeRegs.push_back(Merge.getReg(0)); | 
|  | } | 
|  |  | 
|  | // A truncate may be necessary if the requested type doesn't evenly divide the | 
|  | // original result type. | 
|  | if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs); | 
|  | } else { | 
|  | auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs); | 
|  | MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | int NumDst = MI.getNumOperands() - 1; | 
|  | Register SrcReg = MI.getOperand(NumDst).getReg(); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  | if (SrcTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Register Dst0Reg = MI.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(Dst0Reg); | 
|  | if (!DstTy.isScalar()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { | 
|  | if (SrcTy.isPointer()) { | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Not casting non-integral address space integer\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | SrcTy = LLT::scalar(SrcTy.getSizeInBits()); | 
|  | SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); | 
|  | } | 
|  |  | 
|  | // Widen SrcTy to WideTy. This does not affect the result, but since the | 
|  | // user requested this size, it is probably better handled than SrcTy and | 
|  | // should reduce the total number of legalization artifacts. | 
|  | if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { | 
|  | SrcTy = WideTy; | 
|  | SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); | 
|  | } | 
|  |  | 
|  | // Theres no unmerge type to target. Directly extract the bits from the | 
|  | // source type | 
|  | unsigned DstSize = DstTy.getSizeInBits(); | 
|  |  | 
|  | MIRBuilder.buildTrunc(Dst0Reg, SrcReg); | 
|  | for (int I = 1; I != NumDst; ++I) { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); | 
|  | auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); | 
|  | MIRBuilder.buildTrunc(MI.getOperand(I), Shr); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // Extend the source to a wider type. | 
|  | LLT LCMTy = getLCMType(SrcTy, WideTy); | 
|  |  | 
|  | Register WideSrc = SrcReg; | 
|  | if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { | 
|  | // TODO: If this is an integral address space, cast to integer and anyext. | 
|  | if (SrcTy.isPointer()) { | 
|  | LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); | 
|  | } | 
|  |  | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); | 
|  |  | 
|  | // Create a sequence of unmerges and merges to the original results. Since we | 
|  | // may have widened the source, we will need to pad the results with dead defs | 
|  | // to cover the source register. | 
|  | // e.g. widen s48 to s64: | 
|  | // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) | 
|  | // | 
|  | // => | 
|  | //  %4:_(s192) = G_ANYEXT %0:_(s96) | 
|  | //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge | 
|  | //  ; unpack to GCD type, with extra dead defs | 
|  | //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) | 
|  | //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) | 
|  | //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) | 
|  | //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination | 
|  | //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination | 
|  | const LLT GCDTy = getGCDType(WideTy, DstTy); | 
|  | const int NumUnmerge = Unmerge->getNumOperands() - 1; | 
|  | const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); | 
|  |  | 
|  | // Directly unmerge to the destination without going through a GCD type | 
|  | // if possible | 
|  | if (PartsPerRemerge == 1) { | 
|  | const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); | 
|  |  | 
|  | for (int I = 0; I != NumUnmerge; ++I) { | 
|  | auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); | 
|  |  | 
|  | for (int J = 0; J != PartsPerUnmerge; ++J) { | 
|  | int Idx = I * PartsPerUnmerge + J; | 
|  | if (Idx < NumDst) | 
|  | MIB.addDef(MI.getOperand(Idx).getReg()); | 
|  | else { | 
|  | // Create dead def for excess components. | 
|  | MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MIB.addUse(Unmerge.getReg(I)); | 
|  | } | 
|  | } else { | 
|  | SmallVector<Register, 16> Parts; | 
|  | for (int J = 0; J != NumUnmerge; ++J) | 
|  | extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); | 
|  |  | 
|  | SmallVector<Register, 8> RemergeParts; | 
|  | for (int I = 0; I != NumDst; ++I) { | 
|  | for (int J = 0; J < PartsPerRemerge; ++J) { | 
|  | const int Idx = I * PartsPerRemerge + J; | 
|  | RemergeParts.emplace_back(Parts[Idx]); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts); | 
|  | RemergeParts.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | unsigned Offset = MI.getOperand(2).getImm(); | 
|  |  | 
|  | if (TypeIdx == 0) { | 
|  | if (SrcTy.isVector() || DstTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | SrcOp Src(SrcReg); | 
|  | if (SrcTy.isPointer()) { | 
|  | // Extracts from pointers can be handled only if they are really just | 
|  | // simple integers. | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); | 
|  | Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); | 
|  | SrcTy = SrcAsIntTy; | 
|  | } | 
|  |  | 
|  | if (DstTy.isPointer()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (Offset == 0) { | 
|  | // Avoid a shift in the degenerate case. | 
|  | MIRBuilder.buildTrunc(DstReg, | 
|  | MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // Do a shift in the source type. | 
|  | LLT ShiftTy = SrcTy; | 
|  | if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { | 
|  | Src = MIRBuilder.buildAnyExt(WideTy, Src); | 
|  | ShiftTy = WideTy; | 
|  | } | 
|  |  | 
|  | auto LShr = MIRBuilder.buildLShr( | 
|  | ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); | 
|  | MIRBuilder.buildTrunc(DstReg, LShr); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (SrcTy.isScalar()) { | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (!SrcTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (DstTy != SrcTy.getElementType()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (Offset % SrcTy.getScalarSizeInBits() != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  |  | 
|  | MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * | 
|  | Offset); | 
|  | widenScalarDst(MI, WideTy.getScalarType(), 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | if (TypeIdx != 0 || WideTy.isVector()) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | unsigned Opcode; | 
|  | unsigned ExtOpcode; | 
|  | std::optional<Register> CarryIn; | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode!"); | 
|  | case TargetOpcode::G_SADDO: | 
|  | Opcode = TargetOpcode::G_ADD; | 
|  | ExtOpcode = TargetOpcode::G_SEXT; | 
|  | break; | 
|  | case TargetOpcode::G_SSUBO: | 
|  | Opcode = TargetOpcode::G_SUB; | 
|  | ExtOpcode = TargetOpcode::G_SEXT; | 
|  | break; | 
|  | case TargetOpcode::G_UADDO: | 
|  | Opcode = TargetOpcode::G_ADD; | 
|  | ExtOpcode = TargetOpcode::G_ZEXT; | 
|  | break; | 
|  | case TargetOpcode::G_USUBO: | 
|  | Opcode = TargetOpcode::G_SUB; | 
|  | ExtOpcode = TargetOpcode::G_ZEXT; | 
|  | break; | 
|  | case TargetOpcode::G_SADDE: | 
|  | Opcode = TargetOpcode::G_UADDE; | 
|  | ExtOpcode = TargetOpcode::G_SEXT; | 
|  | CarryIn = MI.getOperand(4).getReg(); | 
|  | break; | 
|  | case TargetOpcode::G_SSUBE: | 
|  | Opcode = TargetOpcode::G_USUBE; | 
|  | ExtOpcode = TargetOpcode::G_SEXT; | 
|  | CarryIn = MI.getOperand(4).getReg(); | 
|  | break; | 
|  | case TargetOpcode::G_UADDE: | 
|  | Opcode = TargetOpcode::G_UADDE; | 
|  | ExtOpcode = TargetOpcode::G_ZEXT; | 
|  | CarryIn = MI.getOperand(4).getReg(); | 
|  | break; | 
|  | case TargetOpcode::G_USUBE: | 
|  | Opcode = TargetOpcode::G_USUBE; | 
|  | ExtOpcode = TargetOpcode::G_ZEXT; | 
|  | CarryIn = MI.getOperand(4).getReg(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (TypeIdx == 1) { | 
|  | unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | if (CarryIn) | 
|  | widenScalarSrc(MI, WideTy, 4, BoolExtOp); | 
|  | widenScalarDst(MI, WideTy, 1); | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); | 
|  | auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); | 
|  | // Do the arithmetic in the larger type. | 
|  | Register NewOp; | 
|  | if (CarryIn) { | 
|  | LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); | 
|  | NewOp = MIRBuilder | 
|  | .buildInstr(Opcode, {WideTy, CarryOutTy}, | 
|  | {LHSExt, RHSExt, *CarryIn}) | 
|  | .getReg(0); | 
|  | } else { | 
|  | NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); | 
|  | } | 
|  | LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); | 
|  | auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); | 
|  | // There is no overflow if the ExtOp is the same as NewOp. | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); | 
|  | // Now trunc the NewOp to the original result. | 
|  | MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || | 
|  | MI.getOpcode() == TargetOpcode::G_SSUBSAT || | 
|  | MI.getOpcode() == TargetOpcode::G_SSHLSAT; | 
|  | bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || | 
|  | MI.getOpcode() == TargetOpcode::G_USHLSAT; | 
|  | // We can convert this to: | 
|  | //   1. Any extend iN to iM | 
|  | //   2. SHL by M-N | 
|  | //   3. [US][ADD|SUB|SHL]SAT | 
|  | //   4. L/ASHR by M-N | 
|  | // | 
|  | // It may be more efficient to lower this to a min and a max operation in | 
|  | // the higher precision arithmetic if the promoted operation isn't legal, | 
|  | // but this decision is up to the target's lowering request. | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | unsigned NewBits = WideTy.getScalarSizeInBits(); | 
|  | unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); | 
|  |  | 
|  | // Shifts must zero-extend the RHS to preserve the unsigned quantity, and | 
|  | // must not left shift the RHS to preserve the shift amount. | 
|  | auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); | 
|  | auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) | 
|  | : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); | 
|  | auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); | 
|  | auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); | 
|  | auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); | 
|  |  | 
|  | auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, | 
|  | {ShiftL, ShiftR}, MI.getFlags()); | 
|  |  | 
|  | // Use a shift that will preserve the number of sign bits when the trunc is | 
|  | // folded away. | 
|  | auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) | 
|  | : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); | 
|  |  | 
|  | MIRBuilder.buildTrunc(DstReg, Result); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT WideTy) { | 
|  | if (TypeIdx == 1) { | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarDst(MI, WideTy, 1); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; | 
|  | auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs(); | 
|  | LLT SrcTy = MRI.getType(LHS); | 
|  | LLT OverflowTy = MRI.getType(OriginalOverflow); | 
|  | unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); | 
|  |  | 
|  | // To determine if the result overflowed in the larger type, we extend the | 
|  | // input to the larger type, do the multiply (checking if it overflows), | 
|  | // then also check the high bits of the result to see if overflow happened | 
|  | // there. | 
|  | unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; | 
|  | auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); | 
|  | auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); | 
|  |  | 
|  | // Multiplication cannot overflow if the WideTy is >= 2 * original width, | 
|  | // so we don't need to check the overflow result of larger type Mulo. | 
|  | bool WideMulCanOverflow = WideTy.getScalarSizeInBits() < 2 * SrcBitWidth; | 
|  |  | 
|  | unsigned MulOpc = | 
|  | WideMulCanOverflow ? MI.getOpcode() : (unsigned)TargetOpcode::G_MUL; | 
|  |  | 
|  | MachineInstrBuilder Mulo; | 
|  | if (WideMulCanOverflow) | 
|  | Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy, OverflowTy}, | 
|  | {LeftOperand, RightOperand}); | 
|  | else | 
|  | Mulo = MIRBuilder.buildInstr(MulOpc, {WideTy}, {LeftOperand, RightOperand}); | 
|  |  | 
|  | auto Mul = Mulo->getOperand(0); | 
|  | MIRBuilder.buildTrunc(Result, Mul); | 
|  |  | 
|  | MachineInstrBuilder ExtResult; | 
|  | // Overflow occurred if it occurred in the larger type, or if the high part | 
|  | // of the result does not zero/sign-extend the low part.  Check this second | 
|  | // possibility first. | 
|  | if (IsSigned) { | 
|  | // For signed, overflow occurred when the high part does not sign-extend | 
|  | // the low part. | 
|  | ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); | 
|  | } else { | 
|  | // Unsigned overflow occurred when the high part does not zero-extend the | 
|  | // low part. | 
|  | ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); | 
|  | } | 
|  |  | 
|  | if (WideMulCanOverflow) { | 
|  | auto Overflow = | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); | 
|  | // Finally check if the multiplication in the larger type itself overflowed. | 
|  | MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); | 
|  | } else { | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); | 
|  | } | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | case TargetOpcode::G_ATOMICRMW_XCHG: | 
|  | case TargetOpcode::G_ATOMICRMW_ADD: | 
|  | case TargetOpcode::G_ATOMICRMW_SUB: | 
|  | case TargetOpcode::G_ATOMICRMW_AND: | 
|  | case TargetOpcode::G_ATOMICRMW_OR: | 
|  | case TargetOpcode::G_ATOMICRMW_XOR: | 
|  | case TargetOpcode::G_ATOMICRMW_MIN: | 
|  | case TargetOpcode::G_ATOMICRMW_MAX: | 
|  | case TargetOpcode::G_ATOMICRMW_UMIN: | 
|  | case TargetOpcode::G_ATOMICRMW_UMAX: | 
|  | assert(TypeIdx == 0 && "atomicrmw with second scalar type"); | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG: | 
|  | assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: | 
|  | if (TypeIdx == 0) { | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); | 
|  | widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | assert(TypeIdx == 1 && | 
|  | "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarDst(MI, WideTy, 1); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_EXTRACT: | 
|  | return widenScalarExtract(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_INSERT: | 
|  | return widenScalarInsert(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_MERGE_VALUES: | 
|  | return widenScalarMergeValues(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_UNMERGE_VALUES: | 
|  | return widenScalarUnmergeValues(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_SADDO: | 
|  | case TargetOpcode::G_SSUBO: | 
|  | case TargetOpcode::G_UADDO: | 
|  | case TargetOpcode::G_USUBO: | 
|  | case TargetOpcode::G_SADDE: | 
|  | case TargetOpcode::G_SSUBE: | 
|  | case TargetOpcode::G_UADDE: | 
|  | case TargetOpcode::G_USUBE: | 
|  | return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_UMULO: | 
|  | case TargetOpcode::G_SMULO: | 
|  | return widenScalarMulo(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_SADDSAT: | 
|  | case TargetOpcode::G_SSUBSAT: | 
|  | case TargetOpcode::G_SSHLSAT: | 
|  | case TargetOpcode::G_UADDSAT: | 
|  | case TargetOpcode::G_USUBSAT: | 
|  | case TargetOpcode::G_USHLSAT: | 
|  | return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); | 
|  | case TargetOpcode::G_CTTZ: | 
|  | case TargetOpcode::G_CTTZ_ZERO_UNDEF: | 
|  | case TargetOpcode::G_CTLZ: | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: | 
|  | case TargetOpcode::G_CTPOP: { | 
|  | if (TypeIdx == 0) { | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | // First extend the input. | 
|  | unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || | 
|  | MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF | 
|  | ? TargetOpcode::G_ANYEXT | 
|  | : TargetOpcode::G_ZEXT; | 
|  | auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); | 
|  | LLT CurTy = MRI.getType(SrcReg); | 
|  | unsigned NewOpc = MI.getOpcode(); | 
|  | if (NewOpc == TargetOpcode::G_CTTZ) { | 
|  | // The count is the same in the larger type except if the original | 
|  | // value was zero.  This can be handled by setting the bit just off | 
|  | // the top of the original type. | 
|  | auto TopBit = | 
|  | APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); | 
|  | MIBSrc = MIRBuilder.buildOr( | 
|  | WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); | 
|  | // Now we know the operand is non-zero, use the more relaxed opcode. | 
|  | NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; | 
|  | } | 
|  |  | 
|  | // Perform the operation at the larger size. | 
|  | auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); | 
|  | // This is already the correct result for CTPOP and CTTZs | 
|  | if (MI.getOpcode() == TargetOpcode::G_CTLZ || | 
|  | MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { | 
|  | // The correct result is NewOp - (Difference in widety and current ty). | 
|  | unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); | 
|  | MIBNewOp = MIRBuilder.buildSub( | 
|  | WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_BSWAP: { | 
|  | Observer.changingInstr(MI); | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | Register ShrReg = MRI.createGenericVirtualRegister(WideTy); | 
|  | Register DstExt = MRI.createGenericVirtualRegister(WideTy); | 
|  | Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  |  | 
|  | MI.getOperand(0).setReg(DstExt); | 
|  |  | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  |  | 
|  | LLT Ty = MRI.getType(DstReg); | 
|  | unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); | 
|  | MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); | 
|  | MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); | 
|  |  | 
|  | MIRBuilder.buildTrunc(DstReg, ShrReg); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_BITREVERSE: { | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT Ty = MRI.getType(DstReg); | 
|  | unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); | 
|  |  | 
|  | Register DstExt = MRI.createGenericVirtualRegister(WideTy); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | MI.getOperand(0).setReg(DstExt); | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  |  | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); | 
|  | auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); | 
|  | MIRBuilder.buildTrunc(DstReg, Shift); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FREEZE: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_ABS: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_ADD: | 
|  | case TargetOpcode::G_AND: | 
|  | case TargetOpcode::G_MUL: | 
|  | case TargetOpcode::G_OR: | 
|  | case TargetOpcode::G_XOR: | 
|  | case TargetOpcode::G_SUB: | 
|  | case TargetOpcode::G_SHUFFLE_VECTOR: | 
|  | // Perform operation at larger width (any extension is fines here, high bits | 
|  | // don't affect the result) and then truncate the result back to the | 
|  | // original type. | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_SBFX: | 
|  | case TargetOpcode::G_UBFX: | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) { | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | } else { | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); | 
|  | } | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_SHL: | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) { | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | } else { | 
|  | assert(TypeIdx == 1); | 
|  | // The "number of bits to shift" operand must preserve its value as an | 
|  | // unsigned integer: | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | } | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_ROTR: | 
|  | case TargetOpcode::G_ROTL: | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_SDIV: | 
|  | case TargetOpcode::G_SREM: | 
|  | case TargetOpcode::G_SMIN: | 
|  | case TargetOpcode::G_SMAX: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_SDIVREM: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | widenScalarDst(MI, WideTy, 1); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_ASHR: | 
|  | case TargetOpcode::G_LSHR: | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) { | 
|  | unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? | 
|  | TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; | 
|  |  | 
|  | widenScalarSrc(MI, WideTy, 1, CvtOp); | 
|  | widenScalarDst(MI, WideTy); | 
|  | } else { | 
|  | assert(TypeIdx == 1); | 
|  | // The "number of bits to shift" operand must preserve its value as an | 
|  | // unsigned integer: | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | } | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_UDIV: | 
|  | case TargetOpcode::G_UREM: | 
|  | case TargetOpcode::G_UMIN: | 
|  | case TargetOpcode::G_UMAX: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_UDIVREM: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | widenScalarDst(MI, WideTy, 1); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_SELECT: | 
|  | Observer.changingInstr(MI); | 
|  | if (TypeIdx == 0) { | 
|  | // Perform operation at larger width (any extension is fine here, high | 
|  | // bits don't affect the result) and then truncate the result back to the | 
|  | // original type. | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy); | 
|  | } else { | 
|  | bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); | 
|  | // Explicit extension is required here since high bits affect the result. | 
|  | widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); | 
|  | } | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | case TargetOpcode::G_IS_FPCLASS: | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) | 
|  | widenScalarDst(MI, WideTy); | 
|  | else | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_SITOFP: | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); | 
|  | else | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_UITOFP: | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); | 
|  | else | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_LOAD: | 
|  | case TargetOpcode::G_SEXTLOAD: | 
|  | case TargetOpcode::G_ZEXTLOAD: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_STORE: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT Ty = MRI.getType(MI.getOperand(0).getReg()); | 
|  | if (!Ty.isScalar()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? | 
|  | TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; | 
|  | widenScalarSrc(MI, WideTy, 0, ExtType); | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_CONSTANT: { | 
|  | MachineOperand &SrcMO = MI.getOperand(1); | 
|  | LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); | 
|  | unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( | 
|  | MRI.getType(MI.getOperand(0).getReg())); | 
|  | assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || | 
|  | ExtOpc == TargetOpcode::G_ANYEXT) && | 
|  | "Illegal Extend"); | 
|  | const APInt &SrcVal = SrcMO.getCImm()->getValue(); | 
|  | const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) | 
|  | ? SrcVal.sext(WideTy.getSizeInBits()) | 
|  | : SrcVal.zext(WideTy.getSizeInBits()); | 
|  | Observer.changingInstr(MI); | 
|  | SrcMO.setCImm(ConstantInt::get(Ctx, Val)); | 
|  |  | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FCONSTANT: { | 
|  | // To avoid changing the bits of the constant due to extension to a larger | 
|  | // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT. | 
|  | MachineOperand &SrcMO = MI.getOperand(1); | 
|  | APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt(); | 
|  | MIRBuilder.setInstrAndDebugLoc(MI); | 
|  | auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val); | 
|  | widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_IMPLICIT_DEF: { | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_BRCOND: | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_FCMP: | 
|  | Observer.changingInstr(MI); | 
|  | if (TypeIdx == 0) | 
|  | widenScalarDst(MI, WideTy); | 
|  | else { | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); | 
|  | } | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_ICMP: | 
|  | Observer.changingInstr(MI); | 
|  | if (TypeIdx == 0) | 
|  | widenScalarDst(MI, WideTy); | 
|  | else { | 
|  | unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( | 
|  | MI.getOperand(1).getPredicate())) | 
|  | ? TargetOpcode::G_SEXT | 
|  | : TargetOpcode::G_ZEXT; | 
|  | widenScalarSrc(MI, WideTy, 2, ExtOpcode); | 
|  | widenScalarSrc(MI, WideTy, 3, ExtOpcode); | 
|  | } | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_PTR_ADD: | 
|  | assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  |  | 
|  | case TargetOpcode::G_PHI: { | 
|  | assert(TypeIdx == 0 && "Expecting only Idx 0"); | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { | 
|  | MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); | 
|  | MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); | 
|  | widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_EXTRACT_VECTOR_ELT: { | 
|  | if (TypeIdx == 0) { | 
|  | Register VecReg = MI.getOperand(1).getReg(); | 
|  | LLT VecTy = MRI.getType(VecReg); | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | widenScalarSrc( | 
|  | MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, | 
|  | TargetOpcode::G_ANYEXT); | 
|  |  | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (TypeIdx != 2) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | // TODO: Probably should be zext | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_INSERT_VECTOR_ELT: { | 
|  | if (TypeIdx == 0) { | 
|  | Observer.changingInstr(MI); | 
|  | const LLT WideEltTy = WideTy.getElementType(); | 
|  |  | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (TypeIdx == 1) { | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | Register VecReg = MI.getOperand(1).getReg(); | 
|  | LLT VecTy = MRI.getType(VecReg); | 
|  | LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); | 
|  |  | 
|  | widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideVecTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (TypeIdx == 2) { | 
|  | Observer.changingInstr(MI); | 
|  | // TODO: Probably should be zext | 
|  | widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  | case TargetOpcode::G_FADD: | 
|  | case TargetOpcode::G_FMUL: | 
|  | case TargetOpcode::G_FSUB: | 
|  | case TargetOpcode::G_FMA: | 
|  | case TargetOpcode::G_FMAD: | 
|  | case TargetOpcode::G_FNEG: | 
|  | case TargetOpcode::G_FABS: | 
|  | case TargetOpcode::G_FCANONICALIZE: | 
|  | case TargetOpcode::G_FMINNUM: | 
|  | case TargetOpcode::G_FMAXNUM: | 
|  | case TargetOpcode::G_FMINNUM_IEEE: | 
|  | case TargetOpcode::G_FMAXNUM_IEEE: | 
|  | case TargetOpcode::G_FMINIMUM: | 
|  | case TargetOpcode::G_FMAXIMUM: | 
|  | case TargetOpcode::G_FDIV: | 
|  | case TargetOpcode::G_FREM: | 
|  | case TargetOpcode::G_FCEIL: | 
|  | case TargetOpcode::G_FFLOOR: | 
|  | case TargetOpcode::G_FCOS: | 
|  | case TargetOpcode::G_FSIN: | 
|  | case TargetOpcode::G_FLOG10: | 
|  | case TargetOpcode::G_FLOG: | 
|  | case TargetOpcode::G_FLOG2: | 
|  | case TargetOpcode::G_FRINT: | 
|  | case TargetOpcode::G_FNEARBYINT: | 
|  | case TargetOpcode::G_FSQRT: | 
|  | case TargetOpcode::G_FEXP: | 
|  | case TargetOpcode::G_FEXP2: | 
|  | case TargetOpcode::G_FEXP10: | 
|  | case TargetOpcode::G_FPOW: | 
|  | case TargetOpcode::G_INTRINSIC_TRUNC: | 
|  | case TargetOpcode::G_INTRINSIC_ROUND: | 
|  | case TargetOpcode::G_INTRINSIC_ROUNDEVEN: | 
|  | assert(TypeIdx == 0); | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) | 
|  | widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); | 
|  |  | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_FPOWI: | 
|  | case TargetOpcode::G_FLDEXP: | 
|  | case TargetOpcode::G_STRICT_FLDEXP: { | 
|  | if (TypeIdx == 0) { | 
|  | if (MI.getOpcode() == TargetOpcode::G_STRICT_FLDEXP) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (TypeIdx == 1) { | 
|  | // For some reason SelectionDAG tries to promote to a libcall without | 
|  | // actually changing the integer type for promotion. | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  | case TargetOpcode::G_FFREXP: { | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | if (TypeIdx == 0) { | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); | 
|  | } else { | 
|  | widenScalarDst(MI, WideTy, 1); | 
|  | } | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_INTTOPTR: | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_PTRTOINT: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_BUILD_VECTOR: { | 
|  | Observer.changingInstr(MI); | 
|  |  | 
|  | const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); | 
|  | for (int I = 1, E = MI.getNumOperands(); I != E; ++I) | 
|  | widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); | 
|  |  | 
|  | // Avoid changing the result vector type if the source element type was | 
|  | // requested. | 
|  | if (TypeIdx == 1) { | 
|  | MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); | 
|  | } else { | 
|  | widenScalarDst(MI, WideTy, 0); | 
|  | } | 
|  |  | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_SEXT_INREG: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_PTRMASK: { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_VECREDUCE_FADD: | 
|  | case TargetOpcode::G_VECREDUCE_FMUL: | 
|  | case TargetOpcode::G_VECREDUCE_FMIN: | 
|  | case TargetOpcode::G_VECREDUCE_FMAX: | 
|  | case TargetOpcode::G_VECREDUCE_FMINIMUM: | 
|  | case TargetOpcode::G_VECREDUCE_FMAXIMUM: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | Register VecReg = MI.getOperand(1).getReg(); | 
|  | LLT VecTy = MRI.getType(VecReg); | 
|  | LLT WideVecTy = VecTy.isVector() | 
|  | ? LLT::vector(VecTy.getElementCount(), WideTy) | 
|  | : WideTy; | 
|  | widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT); | 
|  | widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_VSCALE: { | 
|  | MachineOperand &SrcMO = MI.getOperand(1); | 
|  | LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); | 
|  | const APInt &SrcVal = SrcMO.getCImm()->getValue(); | 
|  | // The CImm is always a signed value | 
|  | const APInt Val = SrcVal.sext(WideTy.getSizeInBits()); | 
|  | Observer.changingInstr(MI); | 
|  | SrcMO.setCImm(ConstantInt::get(Ctx, Val)); | 
|  | widenScalarDst(MI, WideTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_SPLAT_VECTOR: { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, | 
|  | MachineIRBuilder &B, Register Src, LLT Ty) { | 
|  | auto Unmerge = B.buildUnmerge(Ty, Src); | 
|  | for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) | 
|  | Pieces.push_back(Unmerge.getReg(I)); | 
|  | } | 
|  |  | 
|  | static void emitLoadFromConstantPool(Register DstReg, const Constant *ConstVal, | 
|  | MachineIRBuilder &MIRBuilder) { | 
|  | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); | 
|  | LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); | 
|  | LLT DstLLT = MRI.getType(DstReg); | 
|  |  | 
|  | Align Alignment(DL.getABITypeAlign(ConstVal->getType())); | 
|  |  | 
|  | auto Addr = MIRBuilder.buildConstantPool( | 
|  | AddrPtrTy, | 
|  | MF.getConstantPool()->getConstantPoolIndex(ConstVal, Alignment)); | 
|  |  | 
|  | MachineMemOperand *MMO = | 
|  | MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF), | 
|  | MachineMemOperand::MOLoad, DstLLT, Alignment); | 
|  |  | 
|  | MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, DstReg, Addr, *MMO); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerConstant(MachineInstr &MI) { | 
|  | const MachineOperand &ConstOperand = MI.getOperand(1); | 
|  | const Constant *ConstantVal = ConstOperand.getCImm(); | 
|  |  | 
|  | emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFConstant(MachineInstr &MI) { | 
|  | const MachineOperand &ConstOperand = MI.getOperand(1); | 
|  | const Constant *ConstantVal = ConstOperand.getFPImm(); | 
|  |  | 
|  | emitLoadFromConstantPool(MI.getOperand(0).getReg(), ConstantVal, MIRBuilder); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerBitcast(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | if (SrcTy.isVector()) { | 
|  | LLT SrcEltTy = SrcTy.getElementType(); | 
|  | SmallVector<Register, 8> SrcRegs; | 
|  |  | 
|  | if (DstTy.isVector()) { | 
|  | int NumDstElt = DstTy.getNumElements(); | 
|  | int NumSrcElt = SrcTy.getNumElements(); | 
|  |  | 
|  | LLT DstEltTy = DstTy.getElementType(); | 
|  | LLT DstCastTy = DstEltTy; // Intermediate bitcast result type | 
|  | LLT SrcPartTy = SrcEltTy; // Original unmerge result type. | 
|  |  | 
|  | // If there's an element size mismatch, insert intermediate casts to match | 
|  | // the result element type. | 
|  | if (NumSrcElt < NumDstElt) { // Source element type is larger. | 
|  | // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) | 
|  | // | 
|  | // => | 
|  | // | 
|  | // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 | 
|  | // %3:_(<2 x s8>) = G_BITCAST %2 | 
|  | // %4:_(<2 x s8>) = G_BITCAST %3 | 
|  | // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 | 
|  | DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); | 
|  | SrcPartTy = SrcEltTy; | 
|  | } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. | 
|  | // | 
|  | // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) | 
|  | // | 
|  | // => | 
|  | // | 
|  | // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 | 
|  | // %3:_(s16) = G_BITCAST %2 | 
|  | // %4:_(s16) = G_BITCAST %3 | 
|  | // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 | 
|  | SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); | 
|  | DstCastTy = DstEltTy; | 
|  | } | 
|  |  | 
|  | getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); | 
|  | for (Register &SrcReg : SrcRegs) | 
|  | SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); | 
|  | } else | 
|  | getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (DstTy.isVector()) { | 
|  | SmallVector<Register, 8> SrcRegs; | 
|  | getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); | 
|  | MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | /// Figure out the bit offset into a register when coercing a vector index for | 
|  | /// the wide element type. This is only for the case when promoting vector to | 
|  | /// one with larger elements. | 
|  | // | 
|  | /// | 
|  | /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) | 
|  | /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) | 
|  | static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, | 
|  | Register Idx, | 
|  | unsigned NewEltSize, | 
|  | unsigned OldEltSize) { | 
|  | const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); | 
|  | LLT IdxTy = B.getMRI()->getType(Idx); | 
|  |  | 
|  | // Now figure out the amount we need to shift to get the target bits. | 
|  | auto OffsetMask = B.buildConstant( | 
|  | IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); | 
|  | auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); | 
|  | return B.buildShl(IdxTy, OffsetIdx, | 
|  | B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); | 
|  | } | 
|  |  | 
|  | /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this | 
|  | /// is casting to a vector with a smaller element size, perform multiple element | 
|  | /// extracts and merge the results. If this is coercing to a vector with larger | 
|  | /// elements, index the bitcasted vector and extract the target element with bit | 
|  | /// operations. This is intended to force the indexing in the native register | 
|  | /// size for architectures that can dynamically index the register file. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT CastTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs(); | 
|  |  | 
|  | LLT SrcEltTy = SrcVecTy.getElementType(); | 
|  | unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; | 
|  | unsigned OldNumElts = SrcVecTy.getNumElements(); | 
|  |  | 
|  | LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; | 
|  | Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); | 
|  |  | 
|  | const unsigned NewEltSize = NewEltTy.getSizeInBits(); | 
|  | const unsigned OldEltSize = SrcEltTy.getSizeInBits(); | 
|  | if (NewNumElts > OldNumElts) { | 
|  | // Decreasing the vector element size | 
|  | // | 
|  | // e.g. i64 = extract_vector_elt x:v2i64, y:i32 | 
|  | //  => | 
|  | //  v4i32:castx = bitcast x:v2i64 | 
|  | // | 
|  | // i64 = bitcast | 
|  | //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), | 
|  | //                       (i32 (extract_vector_elt castx, (2 * y + 1))) | 
|  | // | 
|  | if (NewNumElts % OldNumElts != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Type of the intermediate result vector. | 
|  | const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; | 
|  | LLT MidTy = | 
|  | LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); | 
|  |  | 
|  | auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); | 
|  |  | 
|  | SmallVector<Register, 8> NewOps(NewEltsPerOldElt); | 
|  | auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); | 
|  |  | 
|  | for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { | 
|  | auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); | 
|  | auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); | 
|  | auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); | 
|  | NewOps[I] = Elt.getReg(0); | 
|  | } | 
|  |  | 
|  | auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); | 
|  | MIRBuilder.buildBitcast(Dst, NewVec); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (NewNumElts < OldNumElts) { | 
|  | if (NewEltSize % OldEltSize != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This only depends on powers of 2 because we use bit tricks to figure out | 
|  | // the bit offset we need to shift to get the target element. A general | 
|  | // expansion could emit division/multiply. | 
|  | if (!isPowerOf2_32(NewEltSize / OldEltSize)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Increasing the vector element size. | 
|  | // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx | 
|  | // | 
|  | //   => | 
|  | // | 
|  | // %cast = G_BITCAST %vec | 
|  | // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) | 
|  | // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx | 
|  | // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) | 
|  | // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) | 
|  | // %elt_bits = G_LSHR %wide_elt, %offset_bits | 
|  | // %elt = G_TRUNC %elt_bits | 
|  |  | 
|  | const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); | 
|  | auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); | 
|  |  | 
|  | // Divide to get the index in the wider element type. | 
|  | auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); | 
|  |  | 
|  | Register WideElt = CastVec; | 
|  | if (CastTy.isVector()) { | 
|  | WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, | 
|  | ScaledIdx).getReg(0); | 
|  | } | 
|  |  | 
|  | // Compute the bit offset into the register of the target element. | 
|  | Register OffsetBits = getBitcastWiderVectorElementOffset( | 
|  | MIRBuilder, Idx, NewEltSize, OldEltSize); | 
|  |  | 
|  | // Shift the wide element to get the target element. | 
|  | auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); | 
|  | MIRBuilder.buildTrunc(Dst, ExtractedBits); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p | 
|  | /// TargetReg, while preserving other bits in \p TargetReg. | 
|  | /// | 
|  | /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) | 
|  | static Register buildBitFieldInsert(MachineIRBuilder &B, | 
|  | Register TargetReg, Register InsertReg, | 
|  | Register OffsetBits) { | 
|  | LLT TargetTy = B.getMRI()->getType(TargetReg); | 
|  | LLT InsertTy = B.getMRI()->getType(InsertReg); | 
|  | auto ZextVal = B.buildZExt(TargetTy, InsertReg); | 
|  | auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); | 
|  |  | 
|  | // Produce a bitmask of the value to insert | 
|  | auto EltMask = B.buildConstant( | 
|  | TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), | 
|  | InsertTy.getSizeInBits())); | 
|  | // Shift it into position | 
|  | auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); | 
|  | auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); | 
|  |  | 
|  | // Clear out the bits in the wide element | 
|  | auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); | 
|  |  | 
|  | // The value to insert has all zeros already, so stick it into the masked | 
|  | // wide element. | 
|  | return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); | 
|  | } | 
|  |  | 
|  | /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this | 
|  | /// is increasing the element size, perform the indexing in the target element | 
|  | /// type, and use bit operations to insert at the element position. This is | 
|  | /// intended for architectures that can dynamically index the register file and | 
|  | /// want to force indexing in the native register size. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT CastTy) { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] = | 
|  | MI.getFirst4RegLLTs(); | 
|  | LLT VecTy = DstTy; | 
|  |  | 
|  | LLT VecEltTy = VecTy.getElementType(); | 
|  | LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; | 
|  | const unsigned NewEltSize = NewEltTy.getSizeInBits(); | 
|  | const unsigned OldEltSize = VecEltTy.getSizeInBits(); | 
|  |  | 
|  | unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; | 
|  | unsigned OldNumElts = VecTy.getNumElements(); | 
|  |  | 
|  | Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); | 
|  | if (NewNumElts < OldNumElts) { | 
|  | if (NewEltSize % OldEltSize != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This only depends on powers of 2 because we use bit tricks to figure out | 
|  | // the bit offset we need to shift to get the target element. A general | 
|  | // expansion could emit division/multiply. | 
|  | if (!isPowerOf2_32(NewEltSize / OldEltSize)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); | 
|  | auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); | 
|  |  | 
|  | // Divide to get the index in the wider element type. | 
|  | auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); | 
|  |  | 
|  | Register ExtractedElt = CastVec; | 
|  | if (CastTy.isVector()) { | 
|  | ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, | 
|  | ScaledIdx).getReg(0); | 
|  | } | 
|  |  | 
|  | // Compute the bit offset into the register of the target element. | 
|  | Register OffsetBits = getBitcastWiderVectorElementOffset( | 
|  | MIRBuilder, Idx, NewEltSize, OldEltSize); | 
|  |  | 
|  | Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, | 
|  | Val, OffsetBits); | 
|  | if (CastTy.isVector()) { | 
|  | InsertedElt = MIRBuilder.buildInsertVectorElement( | 
|  | CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildBitcast(Dst, InsertedElt); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { | 
|  | // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT | 
|  | Register DstReg = LoadMI.getDstReg(); | 
|  | Register PtrReg = LoadMI.getPointerReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | MachineMemOperand &MMO = LoadMI.getMMO(); | 
|  | LLT MemTy = MMO.getMemoryType(); | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  |  | 
|  | unsigned MemSizeInBits = MemTy.getSizeInBits(); | 
|  | unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); | 
|  |  | 
|  | if (MemSizeInBits != MemStoreSizeInBits) { | 
|  | if (MemTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Promote to a byte-sized load if not loading an integral number of | 
|  | // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24. | 
|  | LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); | 
|  | MachineMemOperand *NewMMO = | 
|  | MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); | 
|  |  | 
|  | Register LoadReg = DstReg; | 
|  | LLT LoadTy = DstTy; | 
|  |  | 
|  | // If this wasn't already an extending load, we need to widen the result | 
|  | // register to avoid creating a load with a narrower result than the source. | 
|  | if (MemStoreSizeInBits > DstTy.getSizeInBits()) { | 
|  | LoadTy = WideMemTy; | 
|  | LoadReg = MRI.createGenericVirtualRegister(WideMemTy); | 
|  | } | 
|  |  | 
|  | if (isa<GSExtLoad>(LoadMI)) { | 
|  | auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); | 
|  | MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); | 
|  | } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { | 
|  | auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); | 
|  | // The extra bits are guaranteed to be zero, since we stored them that | 
|  | // way.  A zext load from Wide thus automatically gives zext from MemVT. | 
|  | MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); | 
|  | } else { | 
|  | MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); | 
|  | } | 
|  |  | 
|  | if (DstTy != LoadTy) | 
|  | MIRBuilder.buildTrunc(DstReg, LoadReg); | 
|  |  | 
|  | LoadMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // Big endian lowering not implemented. | 
|  | if (MIRBuilder.getDataLayout().isBigEndian()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This load needs splitting into power of 2 sized loads. | 
|  | // | 
|  | // Our strategy here is to generate anyextending loads for the smaller | 
|  | // types up to next power-2 result type, and then combine the two larger | 
|  | // result values together, before truncating back down to the non-pow-2 | 
|  | // type. | 
|  | // E.g. v1 = i24 load => | 
|  | // v2 = i32 zextload (2 byte) | 
|  | // v3 = i32 load (1 byte) | 
|  | // v4 = i32 shl v3, 16 | 
|  | // v5 = i32 or v4, v2 | 
|  | // v1 = i24 trunc v5 | 
|  | // By doing this we generate the correct truncate which should get | 
|  | // combined away as an artifact with a matching extend. | 
|  |  | 
|  | uint64_t LargeSplitSize, SmallSplitSize; | 
|  |  | 
|  | if (!isPowerOf2_32(MemSizeInBits)) { | 
|  | // This load needs splitting into power of 2 sized loads. | 
|  | LargeSplitSize = llvm::bit_floor(MemSizeInBits); | 
|  | SmallSplitSize = MemSizeInBits - LargeSplitSize; | 
|  | } else { | 
|  | // This is already a power of 2, but we still need to split this in half. | 
|  | // | 
|  | // Assume we're being asked to decompose an unaligned load. | 
|  | // TODO: If this requires multiple splits, handle them all at once. | 
|  | auto &Ctx = MF.getFunction().getContext(); | 
|  | if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; | 
|  | } | 
|  |  | 
|  | if (MemTy.isVector()) { | 
|  | // TODO: Handle vector extloads | 
|  | if (MemTy != DstTy) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // TODO: We can do better than scalarizing the vector and at least split it | 
|  | // in half. | 
|  | return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *LargeMMO = | 
|  | MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); | 
|  | MachineMemOperand *SmallMMO = | 
|  | MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); | 
|  |  | 
|  | LLT PtrTy = MRI.getType(PtrReg); | 
|  | unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); | 
|  | LLT AnyExtTy = LLT::scalar(AnyExtSize); | 
|  | auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, | 
|  | PtrReg, *LargeMMO); | 
|  |  | 
|  | auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), | 
|  | LargeSplitSize / 8); | 
|  | Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); | 
|  | auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); | 
|  | auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, | 
|  | SmallPtr, *SmallMMO); | 
|  |  | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); | 
|  | auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); | 
|  |  | 
|  | if (AnyExtTy == DstTy) | 
|  | MIRBuilder.buildOr(DstReg, Shift, LargeLoad); | 
|  | else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { | 
|  | auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); | 
|  | MIRBuilder.buildTrunc(DstReg, {Or}); | 
|  | } else { | 
|  | assert(DstTy.isPointer() && "expected pointer"); | 
|  | auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); | 
|  |  | 
|  | // FIXME: We currently consider this to be illegal for non-integral address | 
|  | // spaces, but we need still need a way to reinterpret the bits. | 
|  | MIRBuilder.buildIntToPtr(DstReg, Or); | 
|  | } | 
|  |  | 
|  | LoadMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { | 
|  | // Lower a non-power of 2 store into multiple pow-2 stores. | 
|  | // E.g. split an i24 store into an i16 store + i8 store. | 
|  | // We do this by first extending the stored value to the next largest power | 
|  | // of 2 type, and then using truncating stores to store the components. | 
|  | // By doing this, likewise with G_LOAD, generate an extend that can be | 
|  | // artifact-combined away instead of leaving behind extracts. | 
|  | Register SrcReg = StoreMI.getValueReg(); | 
|  | Register PtrReg = StoreMI.getPointerReg(); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | MachineMemOperand &MMO = **StoreMI.memoperands_begin(); | 
|  | LLT MemTy = MMO.getMemoryType(); | 
|  |  | 
|  | unsigned StoreWidth = MemTy.getSizeInBits(); | 
|  | unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); | 
|  |  | 
|  | if (StoreWidth != StoreSizeInBits) { | 
|  | if (SrcTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Promote to a byte-sized store with upper bits zero if not | 
|  | // storing an integral number of bytes.  For example, promote | 
|  | // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) | 
|  | LLT WideTy = LLT::scalar(StoreSizeInBits); | 
|  |  | 
|  | if (StoreSizeInBits > SrcTy.getSizeInBits()) { | 
|  | // Avoid creating a store with a narrower source than result. | 
|  | SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); | 
|  | SrcTy = WideTy; | 
|  | } | 
|  |  | 
|  | auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); | 
|  |  | 
|  | MachineMemOperand *NewMMO = | 
|  | MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); | 
|  | MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); | 
|  | StoreMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (MemTy.isVector()) { | 
|  | // TODO: Handle vector trunc stores | 
|  | if (MemTy != SrcTy) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // TODO: We can do better than scalarizing the vector and at least split it | 
|  | // in half. | 
|  | return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); | 
|  | } | 
|  |  | 
|  | unsigned MemSizeInBits = MemTy.getSizeInBits(); | 
|  | uint64_t LargeSplitSize, SmallSplitSize; | 
|  |  | 
|  | if (!isPowerOf2_32(MemSizeInBits)) { | 
|  | LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits()); | 
|  | SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; | 
|  | } else { | 
|  | auto &Ctx = MF.getFunction().getContext(); | 
|  | if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) | 
|  | return UnableToLegalize; // Don't know what we're being asked to do. | 
|  |  | 
|  | SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; | 
|  | } | 
|  |  | 
|  | // Extend to the next pow-2. If this store was itself the result of lowering, | 
|  | // e.g. an s56 store being broken into s32 + s24, we might have a stored type | 
|  | // that's wider than the stored size. | 
|  | unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); | 
|  | const LLT NewSrcTy = LLT::scalar(AnyExtSize); | 
|  |  | 
|  | if (SrcTy.isPointer()) { | 
|  | const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); | 
|  | SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); | 
|  | } | 
|  |  | 
|  | auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); | 
|  |  | 
|  | // Obtain the smaller value by shifting away the larger value. | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); | 
|  | auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); | 
|  |  | 
|  | // Generate the PtrAdd and truncating stores. | 
|  | LLT PtrTy = MRI.getType(PtrReg); | 
|  | auto OffsetCst = MIRBuilder.buildConstant( | 
|  | LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); | 
|  | auto SmallPtr = | 
|  | MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); | 
|  |  | 
|  | MachineMemOperand *LargeMMO = | 
|  | MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); | 
|  | MachineMemOperand *SmallMMO = | 
|  | MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); | 
|  | MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); | 
|  | MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); | 
|  | StoreMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::G_LOAD: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  | MachineMemOperand &MMO = **MI.memoperands_begin(); | 
|  |  | 
|  | // Not sure how to interpret a bitcast of an extending load. | 
|  | if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | bitcastDst(MI, CastTy, 0); | 
|  | MMO.setType(CastTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_STORE: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | MachineMemOperand &MMO = **MI.memoperands_begin(); | 
|  |  | 
|  | // Not sure how to interpret a bitcast of a truncating store. | 
|  | if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | bitcastSrc(MI, CastTy, 0); | 
|  | MMO.setType(CastTy); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_SELECT: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "bitcast action not implemented for vector select\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | bitcastSrc(MI, CastTy, 2); | 
|  | bitcastSrc(MI, CastTy, 3); | 
|  | bitcastDst(MI, CastTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_AND: | 
|  | case TargetOpcode::G_OR: | 
|  | case TargetOpcode::G_XOR: { | 
|  | Observer.changingInstr(MI); | 
|  | bitcastSrc(MI, CastTy, 1); | 
|  | bitcastSrc(MI, CastTy, 2); | 
|  | bitcastDst(MI, CastTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_EXTRACT_VECTOR_ELT: | 
|  | return bitcastExtractVectorElt(MI, TypeIdx, CastTy); | 
|  | case TargetOpcode::G_INSERT_VECTOR_ELT: | 
|  | return bitcastInsertVectorElt(MI, TypeIdx, CastTy); | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Legalize an instruction by changing the opcode in place. | 
|  | void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { | 
|  | Observer.changingInstr(MI); | 
|  | MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); | 
|  | Observer.changedInstr(MI); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { | 
|  | using namespace TargetOpcode; | 
|  |  | 
|  | switch(MI.getOpcode()) { | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | case TargetOpcode::G_FCONSTANT: | 
|  | return lowerFConstant(MI); | 
|  | case TargetOpcode::G_BITCAST: | 
|  | return lowerBitcast(MI); | 
|  | case TargetOpcode::G_SREM: | 
|  | case TargetOpcode::G_UREM: { | 
|  | LLT Ty = MRI.getType(MI.getOperand(0).getReg()); | 
|  | auto Quot = | 
|  | MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, | 
|  | {MI.getOperand(1), MI.getOperand(2)}); | 
|  |  | 
|  | auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); | 
|  | MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_SADDO: | 
|  | case TargetOpcode::G_SSUBO: | 
|  | return lowerSADDO_SSUBO(MI); | 
|  | case TargetOpcode::G_UMULH: | 
|  | case TargetOpcode::G_SMULH: | 
|  | return lowerSMULH_UMULH(MI); | 
|  | case TargetOpcode::G_SMULO: | 
|  | case TargetOpcode::G_UMULO: { | 
|  | // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the | 
|  | // result. | 
|  | auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs(); | 
|  | LLT Ty = MRI.getType(Res); | 
|  |  | 
|  | unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO | 
|  | ? TargetOpcode::G_SMULH | 
|  | : TargetOpcode::G_UMULH; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | const auto &TII = MIRBuilder.getTII(); | 
|  | MI.setDesc(TII.get(TargetOpcode::G_MUL)); | 
|  | MI.removeOperand(1); | 
|  | Observer.changedInstr(MI); | 
|  |  | 
|  | auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0); | 
|  |  | 
|  | // Move insert point forward so we can use the Res register if needed. | 
|  | MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); | 
|  |  | 
|  | // For *signed* multiply, overflow is detected by checking: | 
|  | // (hi != (lo >> bitwidth-1)) | 
|  | if (Opcode == TargetOpcode::G_SMULH) { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); | 
|  | auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); | 
|  | } else { | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); | 
|  | } | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FNEG: { | 
|  | auto [Res, SubByReg] = MI.getFirst2Regs(); | 
|  | LLT Ty = MRI.getType(Res); | 
|  |  | 
|  | // TODO: Handle vector types once we are able to | 
|  | // represent them. | 
|  | if (Ty.isVector()) | 
|  | return UnableToLegalize; | 
|  | auto SignMask = | 
|  | MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); | 
|  | MIRBuilder.buildXor(Res, SubByReg, SignMask); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FSUB: | 
|  | case TargetOpcode::G_STRICT_FSUB: { | 
|  | auto [Res, LHS, RHS] = MI.getFirst3Regs(); | 
|  | LLT Ty = MRI.getType(Res); | 
|  |  | 
|  | // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). | 
|  | auto Neg = MIRBuilder.buildFNeg(Ty, RHS); | 
|  |  | 
|  | if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB) | 
|  | MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags()); | 
|  | else | 
|  | MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FMAD: | 
|  | return lowerFMad(MI); | 
|  | case TargetOpcode::G_FFLOOR: | 
|  | return lowerFFloor(MI); | 
|  | case TargetOpcode::G_INTRINSIC_ROUND: | 
|  | return lowerIntrinsicRound(MI); | 
|  | case TargetOpcode::G_FRINT: { | 
|  | // Since round even is the assumed rounding mode for unconstrained FP | 
|  | // operations, rint and roundeven are the same operation. | 
|  | changeOpcode(MI, TargetOpcode::G_INTRINSIC_ROUNDEVEN); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { | 
|  | auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs(); | 
|  | Register NewOldValRes = MRI.cloneVirtualRegister(OldValRes); | 
|  | MIRBuilder.buildAtomicCmpXchg(NewOldValRes, Addr, CmpVal, NewVal, | 
|  | **MI.memoperands_begin()); | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, NewOldValRes, CmpVal); | 
|  | MIRBuilder.buildCopy(OldValRes, NewOldValRes); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_LOAD: | 
|  | case TargetOpcode::G_SEXTLOAD: | 
|  | case TargetOpcode::G_ZEXTLOAD: | 
|  | return lowerLoad(cast<GAnyLoad>(MI)); | 
|  | case TargetOpcode::G_STORE: | 
|  | return lowerStore(cast<GStore>(MI)); | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: | 
|  | case TargetOpcode::G_CTTZ_ZERO_UNDEF: | 
|  | case TargetOpcode::G_CTLZ: | 
|  | case TargetOpcode::G_CTTZ: | 
|  | case TargetOpcode::G_CTPOP: | 
|  | return lowerBitCount(MI); | 
|  | case G_UADDO: { | 
|  | auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs(); | 
|  |  | 
|  | Register NewRes = MRI.cloneVirtualRegister(Res); | 
|  |  | 
|  | MIRBuilder.buildAdd(NewRes, LHS, RHS); | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, NewRes, RHS); | 
|  |  | 
|  | MIRBuilder.buildCopy(Res, NewRes); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case G_UADDE: { | 
|  | auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs(); | 
|  | const LLT CondTy = MRI.getType(CarryOut); | 
|  | const LLT Ty = MRI.getType(Res); | 
|  |  | 
|  | Register NewRes = MRI.cloneVirtualRegister(Res); | 
|  |  | 
|  | // Initial add of the two operands. | 
|  | auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); | 
|  |  | 
|  | // Initial check for carry. | 
|  | auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS); | 
|  |  | 
|  | // Add the sum and the carry. | 
|  | auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); | 
|  | MIRBuilder.buildAdd(NewRes, TmpRes, ZExtCarryIn); | 
|  |  | 
|  | // Second check for carry. We can only carry if the initial sum is all 1s | 
|  | // and the carry is set, resulting in a new sum of 0. | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0); | 
|  | auto ResEqZero = | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, NewRes, Zero); | 
|  | auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn); | 
|  | MIRBuilder.buildOr(CarryOut, Carry, Carry2); | 
|  |  | 
|  | MIRBuilder.buildCopy(Res, NewRes); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case G_USUBO: { | 
|  | auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs(); | 
|  |  | 
|  | MIRBuilder.buildSub(Res, LHS, RHS); | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case G_USUBE: { | 
|  | auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs(); | 
|  | const LLT CondTy = MRI.getType(BorrowOut); | 
|  | const LLT Ty = MRI.getType(Res); | 
|  |  | 
|  | // Initial subtract of the two operands. | 
|  | auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); | 
|  |  | 
|  | // Initial check for borrow. | 
|  | auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS); | 
|  |  | 
|  | // Subtract the borrow from the first subtract. | 
|  | auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); | 
|  | MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); | 
|  |  | 
|  | // Second check for borrow. We can only borrow if the initial difference is | 
|  | // 0 and the borrow is set, resulting in a new difference of all 1s. | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0); | 
|  | auto TmpResEqZero = | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero); | 
|  | auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn); | 
|  | MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case G_UITOFP: | 
|  | return lowerUITOFP(MI); | 
|  | case G_SITOFP: | 
|  | return lowerSITOFP(MI); | 
|  | case G_FPTOUI: | 
|  | return lowerFPTOUI(MI); | 
|  | case G_FPTOSI: | 
|  | return lowerFPTOSI(MI); | 
|  | case G_FPTRUNC: | 
|  | return lowerFPTRUNC(MI); | 
|  | case G_FPOWI: | 
|  | return lowerFPOWI(MI); | 
|  | case G_SMIN: | 
|  | case G_SMAX: | 
|  | case G_UMIN: | 
|  | case G_UMAX: | 
|  | return lowerMinMax(MI); | 
|  | case G_FCOPYSIGN: | 
|  | return lowerFCopySign(MI); | 
|  | case G_FMINNUM: | 
|  | case G_FMAXNUM: | 
|  | return lowerFMinNumMaxNum(MI); | 
|  | case G_MERGE_VALUES: | 
|  | return lowerMergeValues(MI); | 
|  | case G_UNMERGE_VALUES: | 
|  | return lowerUnmergeValues(MI); | 
|  | case TargetOpcode::G_SEXT_INREG: { | 
|  | assert(MI.getOperand(2).isImm() && "Expected immediate"); | 
|  | int64_t SizeInBits = MI.getOperand(2).getImm(); | 
|  |  | 
|  | auto [DstReg, SrcReg] = MI.getFirst2Regs(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | Register TmpRes = MRI.createGenericVirtualRegister(DstTy); | 
|  |  | 
|  | auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); | 
|  | MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); | 
|  | MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case G_EXTRACT_VECTOR_ELT: | 
|  | case G_INSERT_VECTOR_ELT: | 
|  | return lowerExtractInsertVectorElt(MI); | 
|  | case G_SHUFFLE_VECTOR: | 
|  | return lowerShuffleVector(MI); | 
|  | case G_DYN_STACKALLOC: | 
|  | return lowerDynStackAlloc(MI); | 
|  | case G_STACKSAVE: | 
|  | return lowerStackSave(MI); | 
|  | case G_STACKRESTORE: | 
|  | return lowerStackRestore(MI); | 
|  | case G_EXTRACT: | 
|  | return lowerExtract(MI); | 
|  | case G_INSERT: | 
|  | return lowerInsert(MI); | 
|  | case G_BSWAP: | 
|  | return lowerBswap(MI); | 
|  | case G_BITREVERSE: | 
|  | return lowerBitreverse(MI); | 
|  | case G_READ_REGISTER: | 
|  | case G_WRITE_REGISTER: | 
|  | return lowerReadWriteRegister(MI); | 
|  | case G_UADDSAT: | 
|  | case G_USUBSAT: { | 
|  | // Try to make a reasonable guess about which lowering strategy to use. The | 
|  | // target can override this with custom lowering and calling the | 
|  | // implementation functions. | 
|  | LLT Ty = MRI.getType(MI.getOperand(0).getReg()); | 
|  | if (LI.isLegalOrCustom({G_UMIN, Ty})) | 
|  | return lowerAddSubSatToMinMax(MI); | 
|  | return lowerAddSubSatToAddoSubo(MI); | 
|  | } | 
|  | case G_SADDSAT: | 
|  | case G_SSUBSAT: { | 
|  | LLT Ty = MRI.getType(MI.getOperand(0).getReg()); | 
|  |  | 
|  | // FIXME: It would probably make more sense to see if G_SADDO is preferred, | 
|  | // since it's a shorter expansion. However, we would need to figure out the | 
|  | // preferred boolean type for the carry out for the query. | 
|  | if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) | 
|  | return lowerAddSubSatToMinMax(MI); | 
|  | return lowerAddSubSatToAddoSubo(MI); | 
|  | } | 
|  | case G_SSHLSAT: | 
|  | case G_USHLSAT: | 
|  | return lowerShlSat(MI); | 
|  | case G_ABS: | 
|  | return lowerAbsToAddXor(MI); | 
|  | case G_SELECT: | 
|  | return lowerSelect(MI); | 
|  | case G_IS_FPCLASS: | 
|  | return lowerISFPCLASS(MI); | 
|  | case G_SDIVREM: | 
|  | case G_UDIVREM: | 
|  | return lowerDIVREM(MI); | 
|  | case G_FSHL: | 
|  | case G_FSHR: | 
|  | return lowerFunnelShift(MI); | 
|  | case G_ROTL: | 
|  | case G_ROTR: | 
|  | return lowerRotate(MI); | 
|  | case G_MEMSET: | 
|  | case G_MEMCPY: | 
|  | case G_MEMMOVE: | 
|  | return lowerMemCpyFamily(MI); | 
|  | case G_MEMCPY_INLINE: | 
|  | return lowerMemcpyInline(MI); | 
|  | case G_ZEXT: | 
|  | case G_SEXT: | 
|  | case G_ANYEXT: | 
|  | return lowerEXT(MI); | 
|  | case G_TRUNC: | 
|  | return lowerTRUNC(MI); | 
|  | GISEL_VECREDUCE_CASES_NONSEQ | 
|  | return lowerVectorReduction(MI); | 
|  | case G_VAARG: | 
|  | return lowerVAArg(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, | 
|  | Align MinAlign) const { | 
|  | // FIXME: We're missing a way to go back from LLT to llvm::Type to query the | 
|  | // datalayout for the preferred alignment. Also there should be a target hook | 
|  | // for this to allow targets to reduce the alignment and ignore the | 
|  | // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of | 
|  | // the type. | 
|  | return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder | 
|  | LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, | 
|  | MachinePointerInfo &PtrInfo) { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); | 
|  |  | 
|  | unsigned AddrSpace = DL.getAllocaAddrSpace(); | 
|  | LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); | 
|  |  | 
|  | PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); | 
|  | return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); | 
|  | } | 
|  |  | 
|  | static Register clampVectorIndex(MachineIRBuilder &B, Register IdxReg, | 
|  | LLT VecTy) { | 
|  | LLT IdxTy = B.getMRI()->getType(IdxReg); | 
|  | unsigned NElts = VecTy.getNumElements(); | 
|  |  | 
|  | int64_t IdxVal; | 
|  | if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) { | 
|  | if (IdxVal < VecTy.getNumElements()) | 
|  | return IdxReg; | 
|  | // If a constant index would be out of bounds, clamp it as well. | 
|  | } | 
|  |  | 
|  | if (isPowerOf2_32(NElts)) { | 
|  | APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); | 
|  | return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); | 
|  | } | 
|  |  | 
|  | return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) | 
|  | .getReg(0); | 
|  | } | 
|  |  | 
|  | Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, | 
|  | Register Index) { | 
|  | LLT EltTy = VecTy.getElementType(); | 
|  |  | 
|  | // Calculate the element offset and add it to the pointer. | 
|  | unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. | 
|  | assert(EltSize * 8 == EltTy.getSizeInBits() && | 
|  | "Converting bits to bytes lost precision"); | 
|  |  | 
|  | Index = clampVectorIndex(MIRBuilder, Index, VecTy); | 
|  |  | 
|  | // Convert index to the correct size for the address space. | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | unsigned AS = MRI.getType(VecPtr).getAddressSpace(); | 
|  | unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; | 
|  | LLT IdxTy = MRI.getType(Index).changeElementSize(IndexSizeInBits); | 
|  | if (IdxTy != MRI.getType(Index)) | 
|  | Index = MIRBuilder.buildSExtOrTrunc(IdxTy, Index).getReg(0); | 
|  |  | 
|  | auto Mul = MIRBuilder.buildMul(IdxTy, Index, | 
|  | MIRBuilder.buildConstant(IdxTy, EltSize)); | 
|  |  | 
|  | LLT PtrTy = MRI.getType(VecPtr); | 
|  | return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// Check that all vector operands have same number of elements. Other operands | 
|  | /// should be listed in NonVecOp. | 
|  | static bool hasSameNumEltsOnAllVectorOperands( | 
|  | GenericMachineInstr &MI, MachineRegisterInfo &MRI, | 
|  | std::initializer_list<unsigned> NonVecOpIndices) { | 
|  | if (MI.getNumMemOperands() != 0) | 
|  | return false; | 
|  |  | 
|  | LLT VecTy = MRI.getType(MI.getReg(0)); | 
|  | if (!VecTy.isVector()) | 
|  | return false; | 
|  | unsigned NumElts = VecTy.getNumElements(); | 
|  |  | 
|  | for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { | 
|  | MachineOperand &Op = MI.getOperand(OpIdx); | 
|  | if (!Op.isReg()) { | 
|  | if (!is_contained(NonVecOpIndices, OpIdx)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLT Ty = MRI.getType(Op.getReg()); | 
|  | if (!Ty.isVector()) { | 
|  | if (!is_contained(NonVecOpIndices, OpIdx)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Ty.getNumElements() != NumElts) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Fill \p DstOps with DstOps that have same number of elements combined as | 
|  | /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are | 
|  | /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple | 
|  | /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. | 
|  | static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, | 
|  | unsigned NumElts) { | 
|  | LLT LeftoverTy; | 
|  | assert(Ty.isVector() && "Expected vector type"); | 
|  | LLT EltTy = Ty.getElementType(); | 
|  | LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); | 
|  | int NumParts, NumLeftover; | 
|  | std::tie(NumParts, NumLeftover) = | 
|  | getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); | 
|  |  | 
|  | assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); | 
|  | for (int i = 0; i < NumParts; ++i) { | 
|  | DstOps.push_back(NarrowTy); | 
|  | } | 
|  |  | 
|  | if (LeftoverTy.isValid()) { | 
|  | assert(NumLeftover == 1 && "expected exactly one leftover"); | 
|  | DstOps.push_back(LeftoverTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps | 
|  | /// made from \p Op depending on operand type. | 
|  | static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, | 
|  | MachineOperand &Op) { | 
|  | for (unsigned i = 0; i < N; ++i) { | 
|  | if (Op.isReg()) | 
|  | Ops.push_back(Op.getReg()); | 
|  | else if (Op.isImm()) | 
|  | Ops.push_back(Op.getImm()); | 
|  | else if (Op.isPredicate()) | 
|  | Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); | 
|  | else | 
|  | llvm_unreachable("Unsupported type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle splitting vector operations which need to have the same number of | 
|  | // elements in each type index, but each type index may have a different element | 
|  | // type. | 
|  | // | 
|  | // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> | 
|  | //       <2 x s64> = G_SHL <2 x s64>, <2 x s32> | 
|  | //       <2 x s64> = G_SHL <2 x s64>, <2 x s32> | 
|  | // | 
|  | // Also handles some irregular breakdown cases, e.g. | 
|  | // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> | 
|  | //       <2 x s64> = G_SHL <2 x s64>, <2 x s32> | 
|  | //             s64 = G_SHL s64, s32 | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVectorMultiEltType( | 
|  | GenericMachineInstr &MI, unsigned NumElts, | 
|  | std::initializer_list<unsigned> NonVecOpIndices) { | 
|  | assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && | 
|  | "Non-compatible opcode or not specified non-vector operands"); | 
|  | unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); | 
|  |  | 
|  | unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); | 
|  | unsigned NumDefs = MI.getNumDefs(); | 
|  |  | 
|  | // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. | 
|  | // Build instructions with DstOps to use instruction found by CSE directly. | 
|  | // CSE copies found instruction into given vreg when building with vreg dest. | 
|  | SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); | 
|  | // Output registers will be taken from created instructions. | 
|  | SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); | 
|  | for (unsigned i = 0; i < NumDefs; ++i) { | 
|  | makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); | 
|  | } | 
|  |  | 
|  | // Split vector input operands into sub-vectors with NumElts elts + Leftover. | 
|  | // Operands listed in NonVecOpIndices will be used as is without splitting; | 
|  | // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 | 
|  | // scalar condition (op 1), immediate in sext_inreg (op 2). | 
|  | SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); | 
|  | for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); | 
|  | ++UseIdx, ++UseNo) { | 
|  | if (is_contained(NonVecOpIndices, UseIdx)) { | 
|  | broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), | 
|  | MI.getOperand(UseIdx)); | 
|  | } else { | 
|  | SmallVector<Register, 8> SplitPieces; | 
|  | extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces, MIRBuilder, | 
|  | MRI); | 
|  | for (auto Reg : SplitPieces) | 
|  | InputOpsPieces[UseNo].push_back(Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; | 
|  |  | 
|  | // Take i-th piece of each input operand split and build sub-vector/scalar | 
|  | // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). | 
|  | for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { | 
|  | SmallVector<DstOp, 2> Defs; | 
|  | for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) | 
|  | Defs.push_back(OutputOpsPieces[DstNo][i]); | 
|  |  | 
|  | SmallVector<SrcOp, 3> Uses; | 
|  | for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) | 
|  | Uses.push_back(InputOpsPieces[InputNo][i]); | 
|  |  | 
|  | auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); | 
|  | for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) | 
|  | OutputRegs[DstNo].push_back(I.getReg(DstNo)); | 
|  | } | 
|  |  | 
|  | // Merge small outputs into MI's output for each def operand. | 
|  | if (NumLeftovers) { | 
|  | for (unsigned i = 0; i < NumDefs; ++i) | 
|  | mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); | 
|  | } else { | 
|  | for (unsigned i = 0; i < NumDefs; ++i) | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, | 
|  | unsigned NumElts) { | 
|  | unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); | 
|  |  | 
|  | unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); | 
|  | unsigned NumDefs = MI.getNumDefs(); | 
|  |  | 
|  | SmallVector<DstOp, 8> OutputOpsPieces; | 
|  | SmallVector<Register, 8> OutputRegs; | 
|  | makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); | 
|  |  | 
|  | // Instructions that perform register split will be inserted in basic block | 
|  | // where register is defined (basic block is in the next operand). | 
|  | SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); | 
|  | for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); | 
|  | UseIdx += 2, ++UseNo) { | 
|  | MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); | 
|  | MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); | 
|  | extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo], | 
|  | MIRBuilder, MRI); | 
|  | } | 
|  |  | 
|  | // Build PHIs with fewer elements. | 
|  | unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; | 
|  | MIRBuilder.setInsertPt(*MI.getParent(), MI); | 
|  | for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { | 
|  | auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); | 
|  | Phi.addDef( | 
|  | MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); | 
|  | OutputRegs.push_back(Phi.getReg(0)); | 
|  |  | 
|  | for (unsigned j = 0; j < NumInputs / 2; ++j) { | 
|  | Phi.addUse(InputOpsPieces[j][i]); | 
|  | Phi.add(MI.getOperand(1 + j * 2 + 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge small outputs into MI's def. | 
|  | if (NumLeftovers) { | 
|  | mergeMixedSubvectors(MI.getReg(0), OutputRegs); | 
|  | } else { | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, | 
|  | unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | const int NumDst = MI.getNumOperands() - 1; | 
|  | const Register SrcReg = MI.getOperand(NumDst).getReg(); | 
|  | LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  |  | 
|  | if (TypeIdx != 1 || NarrowTy == DstTy) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Requires compatible types. Otherwise SrcReg should have been defined by | 
|  | // merge-like instruction that would get artifact combined. Most likely | 
|  | // instruction that defines SrcReg has to perform more/fewer elements | 
|  | // legalization compatible with NarrowTy. | 
|  | assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); | 
|  | assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); | 
|  |  | 
|  | if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || | 
|  | (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This is most likely DstTy (smaller then register size) packed in SrcTy | 
|  | // (larger then register size) and since unmerge was not combined it will be | 
|  | // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy | 
|  | // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. | 
|  |  | 
|  | // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) | 
|  | // | 
|  | // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence | 
|  | // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg | 
|  | // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); | 
|  | const int NumUnmerge = Unmerge->getNumOperands() - 1; | 
|  | const int PartsPerUnmerge = NumDst / NumUnmerge; | 
|  |  | 
|  | for (int I = 0; I != NumUnmerge; ++I) { | 
|  | auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); | 
|  |  | 
|  | for (int J = 0; J != PartsPerUnmerge; ++J) | 
|  | MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); | 
|  | MIB.addUse(Unmerge.getReg(I)); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | // Requires compatible types. Otherwise user of DstReg did not perform unmerge | 
|  | // that should have been artifact combined. Most likely instruction that uses | 
|  | // DstReg has to do more/fewer elements legalization compatible with NarrowTy. | 
|  | assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); | 
|  | assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); | 
|  | if (NarrowTy == SrcTy) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use | 
|  | // is for old mir tests. Since the changes to more/fewer elements it should no | 
|  | // longer be possible to generate MIR like this when starting from llvm-ir | 
|  | // because LCMTy approach was replaced with merge/unmerge to vector elements. | 
|  | if (TypeIdx == 1) { | 
|  | assert(SrcTy.isVector() && "Expected vector types"); | 
|  | assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); | 
|  | if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || | 
|  | (NarrowTy.getNumElements() >= SrcTy.getNumElements())) | 
|  | return UnableToLegalize; | 
|  | // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) | 
|  | // | 
|  | // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) | 
|  | // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) | 
|  | // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 | 
|  | // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 | 
|  | // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 | 
|  | // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 | 
|  |  | 
|  | SmallVector<Register, 8> Elts; | 
|  | LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); | 
|  | for (unsigned i = 1; i < MI.getNumOperands(); ++i) { | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); | 
|  | for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) | 
|  | Elts.push_back(Unmerge.getReg(j)); | 
|  | } | 
|  |  | 
|  | SmallVector<Register, 8> NarrowTyElts; | 
|  | unsigned NumNarrowTyElts = NarrowTy.getNumElements(); | 
|  | unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; | 
|  | for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; | 
|  | ++i, Offset += NumNarrowTyElts) { | 
|  | ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); | 
|  | NarrowTyElts.push_back( | 
|  | MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | assert(TypeIdx == 0 && "Bad type index"); | 
|  | if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || | 
|  | (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This is most likely SrcTy (smaller then register size) packed in DstTy | 
|  | // (larger then register size) and since merge was not combined it will be | 
|  | // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy | 
|  | // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. | 
|  |  | 
|  | // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 | 
|  | // | 
|  | // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg | 
|  | // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 | 
|  | // %0:_(DstTy)  = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence | 
|  | SmallVector<Register, 8> NarrowTyElts; | 
|  | unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); | 
|  | unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; | 
|  | unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; | 
|  | for (unsigned i = 0; i < NumParts; ++i) { | 
|  | SmallVector<Register, 8> Sources; | 
|  | for (unsigned j = 0; j < NumElts; ++j) | 
|  | Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); | 
|  | NarrowTyElts.push_back( | 
|  | MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0)); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, | 
|  | unsigned TypeIdx, | 
|  | LLT NarrowVecTy) { | 
|  | auto [DstReg, SrcVec] = MI.getFirst2Regs(); | 
|  | Register InsertVal; | 
|  | bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; | 
|  |  | 
|  | assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); | 
|  | if (IsInsert) | 
|  | InsertVal = MI.getOperand(2).getReg(); | 
|  |  | 
|  | Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); | 
|  |  | 
|  | // TODO: Handle total scalarization case. | 
|  | if (!NarrowVecTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT VecTy = MRI.getType(SrcVec); | 
|  |  | 
|  | // If the index is a constant, we can really break this down as you would | 
|  | // expect, and index into the target size pieces. | 
|  | int64_t IdxVal; | 
|  | auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); | 
|  | if (MaybeCst) { | 
|  | IdxVal = MaybeCst->Value.getSExtValue(); | 
|  | // Avoid out of bounds indexing the pieces. | 
|  | if (IdxVal >= VecTy.getNumElements()) { | 
|  | MIRBuilder.buildUndef(DstReg); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | SmallVector<Register, 8> VecParts; | 
|  | LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); | 
|  |  | 
|  | // Build a sequence of NarrowTy pieces in VecParts for this operand. | 
|  | LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, | 
|  | TargetOpcode::G_ANYEXT); | 
|  |  | 
|  | unsigned NewNumElts = NarrowVecTy.getNumElements(); | 
|  |  | 
|  | LLT IdxTy = MRI.getType(Idx); | 
|  | int64_t PartIdx = IdxVal / NewNumElts; | 
|  | auto NewIdx = | 
|  | MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); | 
|  |  | 
|  | if (IsInsert) { | 
|  | LLT PartTy = MRI.getType(VecParts[PartIdx]); | 
|  |  | 
|  | // Use the adjusted index to insert into one of the subvectors. | 
|  | auto InsertPart = MIRBuilder.buildInsertVectorElement( | 
|  | PartTy, VecParts[PartIdx], InsertVal, NewIdx); | 
|  | VecParts[PartIdx] = InsertPart.getReg(0); | 
|  |  | 
|  | // Recombine the inserted subvector with the others to reform the result | 
|  | // vector. | 
|  | buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); | 
|  | } else { | 
|  | MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // With a variable index, we can't perform the operation in a smaller type, so | 
|  | // we're forced to expand this. | 
|  | // | 
|  | // TODO: We could emit a chain of compare/select to figure out which piece to | 
|  | // index. | 
|  | return lowerExtractInsertVectorElt(MI); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | // FIXME: Don't know how to handle secondary types yet. | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This implementation doesn't work for atomics. Give up instead of doing | 
|  | // something invalid. | 
|  | if (LdStMI.isAtomic()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | bool IsLoad = isa<GLoad>(LdStMI); | 
|  | Register ValReg = LdStMI.getReg(0); | 
|  | Register AddrReg = LdStMI.getPointerReg(); | 
|  | LLT ValTy = MRI.getType(ValReg); | 
|  |  | 
|  | // FIXME: Do we need a distinct NarrowMemory legalize action? | 
|  | if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize().getValue()) { | 
|  | LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | int NumParts = -1; | 
|  | int NumLeftover = -1; | 
|  | LLT LeftoverTy; | 
|  | SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; | 
|  | if (IsLoad) { | 
|  | std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); | 
|  | } else { | 
|  | if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, | 
|  | NarrowLeftoverRegs, MIRBuilder, MRI)) { | 
|  | NumParts = NarrowRegs.size(); | 
|  | NumLeftover = NarrowLeftoverRegs.size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumParts == -1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT PtrTy = MRI.getType(AddrReg); | 
|  | const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); | 
|  |  | 
|  | unsigned TotalSize = ValTy.getSizeInBits(); | 
|  |  | 
|  | // Split the load/store into PartTy sized pieces starting at Offset. If this | 
|  | // is a load, return the new registers in ValRegs. For a store, each elements | 
|  | // of ValRegs should be PartTy. Returns the next offset that needs to be | 
|  | // handled. | 
|  | bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); | 
|  | auto MMO = LdStMI.getMMO(); | 
|  | auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, | 
|  | unsigned NumParts, unsigned Offset) -> unsigned { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  | unsigned PartSize = PartTy.getSizeInBits(); | 
|  | for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; | 
|  | ++Idx) { | 
|  | unsigned ByteOffset = Offset / 8; | 
|  | Register NewAddrReg; | 
|  |  | 
|  | MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); | 
|  |  | 
|  | MachineMemOperand *NewMMO = | 
|  | MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); | 
|  |  | 
|  | if (IsLoad) { | 
|  | Register Dst = MRI.createGenericVirtualRegister(PartTy); | 
|  | ValRegs.push_back(Dst); | 
|  | MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); | 
|  | } else { | 
|  | MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); | 
|  | } | 
|  | Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; | 
|  | } | 
|  |  | 
|  | return Offset; | 
|  | }; | 
|  |  | 
|  | unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; | 
|  | unsigned HandledOffset = | 
|  | splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); | 
|  |  | 
|  | // Handle the rest of the register if this isn't an even type breakdown. | 
|  | if (LeftoverTy.isValid()) | 
|  | splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); | 
|  |  | 
|  | if (IsLoad) { | 
|  | insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, | 
|  | LeftoverTy, NarrowLeftoverRegs); | 
|  | } | 
|  |  | 
|  | LdStMI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | using namespace TargetOpcode; | 
|  | GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); | 
|  | unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case G_IMPLICIT_DEF: | 
|  | case G_TRUNC: | 
|  | case G_AND: | 
|  | case G_OR: | 
|  | case G_XOR: | 
|  | case G_ADD: | 
|  | case G_SUB: | 
|  | case G_MUL: | 
|  | case G_PTR_ADD: | 
|  | case G_SMULH: | 
|  | case G_UMULH: | 
|  | case G_FADD: | 
|  | case G_FMUL: | 
|  | case G_FSUB: | 
|  | case G_FNEG: | 
|  | case G_FABS: | 
|  | case G_FCANONICALIZE: | 
|  | case G_FDIV: | 
|  | case G_FREM: | 
|  | case G_FMA: | 
|  | case G_FMAD: | 
|  | case G_FPOW: | 
|  | case G_FEXP: | 
|  | case G_FEXP2: | 
|  | case G_FEXP10: | 
|  | case G_FLOG: | 
|  | case G_FLOG2: | 
|  | case G_FLOG10: | 
|  | case G_FLDEXP: | 
|  | case G_FNEARBYINT: | 
|  | case G_FCEIL: | 
|  | case G_FFLOOR: | 
|  | case G_FRINT: | 
|  | case G_INTRINSIC_ROUND: | 
|  | case G_INTRINSIC_ROUNDEVEN: | 
|  | case G_INTRINSIC_TRUNC: | 
|  | case G_FCOS: | 
|  | case G_FSIN: | 
|  | case G_FSQRT: | 
|  | case G_BSWAP: | 
|  | case G_BITREVERSE: | 
|  | case G_SDIV: | 
|  | case G_UDIV: | 
|  | case G_SREM: | 
|  | case G_UREM: | 
|  | case G_SDIVREM: | 
|  | case G_UDIVREM: | 
|  | case G_SMIN: | 
|  | case G_SMAX: | 
|  | case G_UMIN: | 
|  | case G_UMAX: | 
|  | case G_ABS: | 
|  | case G_FMINNUM: | 
|  | case G_FMAXNUM: | 
|  | case G_FMINNUM_IEEE: | 
|  | case G_FMAXNUM_IEEE: | 
|  | case G_FMINIMUM: | 
|  | case G_FMAXIMUM: | 
|  | case G_FSHL: | 
|  | case G_FSHR: | 
|  | case G_ROTL: | 
|  | case G_ROTR: | 
|  | case G_FREEZE: | 
|  | case G_SADDSAT: | 
|  | case G_SSUBSAT: | 
|  | case G_UADDSAT: | 
|  | case G_USUBSAT: | 
|  | case G_UMULO: | 
|  | case G_SMULO: | 
|  | case G_SHL: | 
|  | case G_LSHR: | 
|  | case G_ASHR: | 
|  | case G_SSHLSAT: | 
|  | case G_USHLSAT: | 
|  | case G_CTLZ: | 
|  | case G_CTLZ_ZERO_UNDEF: | 
|  | case G_CTTZ: | 
|  | case G_CTTZ_ZERO_UNDEF: | 
|  | case G_CTPOP: | 
|  | case G_FCOPYSIGN: | 
|  | case G_ZEXT: | 
|  | case G_SEXT: | 
|  | case G_ANYEXT: | 
|  | case G_FPEXT: | 
|  | case G_FPTRUNC: | 
|  | case G_SITOFP: | 
|  | case G_UITOFP: | 
|  | case G_FPTOSI: | 
|  | case G_FPTOUI: | 
|  | case G_INTTOPTR: | 
|  | case G_PTRTOINT: | 
|  | case G_ADDRSPACE_CAST: | 
|  | case G_UADDO: | 
|  | case G_USUBO: | 
|  | case G_UADDE: | 
|  | case G_USUBE: | 
|  | case G_SADDO: | 
|  | case G_SSUBO: | 
|  | case G_SADDE: | 
|  | case G_SSUBE: | 
|  | case G_STRICT_FADD: | 
|  | case G_STRICT_FSUB: | 
|  | case G_STRICT_FMUL: | 
|  | case G_STRICT_FMA: | 
|  | case G_STRICT_FLDEXP: | 
|  | case G_FFREXP: | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts); | 
|  | case G_ICMP: | 
|  | case G_FCMP: | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); | 
|  | case G_IS_FPCLASS: | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/}); | 
|  | case G_SELECT: | 
|  | if (MRI.getType(MI.getOperand(1).getReg()).isVector()) | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts); | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); | 
|  | case G_PHI: | 
|  | return fewerElementsVectorPhi(GMI, NumElts); | 
|  | case G_UNMERGE_VALUES: | 
|  | return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); | 
|  | case G_BUILD_VECTOR: | 
|  | assert(TypeIdx == 0 && "not a vector type index"); | 
|  | return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); | 
|  | case G_CONCAT_VECTORS: | 
|  | if (TypeIdx != 1) // TODO: This probably does work as expected already. | 
|  | return UnableToLegalize; | 
|  | return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); | 
|  | case G_EXTRACT_VECTOR_ELT: | 
|  | case G_INSERT_VECTOR_ELT: | 
|  | return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); | 
|  | case G_LOAD: | 
|  | case G_STORE: | 
|  | return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); | 
|  | case G_SEXT_INREG: | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); | 
|  | GISEL_VECREDUCE_CASES_NONSEQ | 
|  | return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); | 
|  | case TargetOpcode::G_VECREDUCE_SEQ_FADD: | 
|  | case TargetOpcode::G_VECREDUCE_SEQ_FMUL: | 
|  | return fewerElementsVectorSeqReductions(MI, TypeIdx, NarrowTy); | 
|  | case G_SHUFFLE_VECTOR: | 
|  | return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); | 
|  | case G_FPOWI: | 
|  | return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*pow*/}); | 
|  | case G_BITCAST: | 
|  | return fewerElementsBitcast(MI, TypeIdx, NarrowTy); | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | } | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsBitcast(MachineInstr &MI, unsigned int TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | assert(MI.getOpcode() == TargetOpcode::G_BITCAST && | 
|  | "Not a bitcast operation"); | 
|  |  | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  |  | 
|  | unsigned SrcScalSize = SrcTy.getScalarSizeInBits(); | 
|  | LLT SrcNarrowTy = | 
|  | LLT::fixed_vector(NarrowTy.getSizeInBits() / SrcScalSize, SrcScalSize); | 
|  |  | 
|  | // Split the Src and Dst Reg into smaller registers | 
|  | SmallVector<Register> SrcVRegs, BitcastVRegs; | 
|  | if (extractGCDType(SrcVRegs, DstTy, SrcNarrowTy, SrcReg) != SrcNarrowTy) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Build new smaller bitcast instructions | 
|  | // Not supporting Leftover types for now but will have to | 
|  | for (unsigned i = 0; i < SrcVRegs.size(); i++) | 
|  | BitcastVRegs.push_back( | 
|  | MIRBuilder.buildBitcast(NarrowTy, SrcVRegs[i]).getReg(0)); | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, BitcastVRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( | 
|  | MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { | 
|  | assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] = | 
|  | MI.getFirst3RegLLTs(); | 
|  | ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); | 
|  | // The shuffle should be canonicalized by now. | 
|  | if (DstTy != Src1Ty) | 
|  | return UnableToLegalize; | 
|  | if (DstTy != Src2Ty) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (!isPowerOf2_32(DstTy.getNumElements())) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. | 
|  | // Further legalization attempts will be needed to do split further. | 
|  | NarrowTy = | 
|  | DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); | 
|  | unsigned NewElts = NarrowTy.getNumElements(); | 
|  |  | 
|  | SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; | 
|  | extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs, MIRBuilder, MRI); | 
|  | extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs, MIRBuilder, MRI); | 
|  | Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], | 
|  | SplitSrc2Regs[1]}; | 
|  |  | 
|  | Register Hi, Lo; | 
|  |  | 
|  | // If Lo or Hi uses elements from at most two of the four input vectors, then | 
|  | // express it as a vector shuffle of those two inputs.  Otherwise extract the | 
|  | // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. | 
|  | SmallVector<int, 16> Ops; | 
|  | for (unsigned High = 0; High < 2; ++High) { | 
|  | Register &Output = High ? Hi : Lo; | 
|  |  | 
|  | // Build a shuffle mask for the output, discovering on the fly which | 
|  | // input vectors to use as shuffle operands (recorded in InputUsed). | 
|  | // If building a suitable shuffle vector proves too hard, then bail | 
|  | // out with useBuildVector set. | 
|  | unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. | 
|  | unsigned FirstMaskIdx = High * NewElts; | 
|  | bool UseBuildVector = false; | 
|  | for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { | 
|  | // The mask element.  This indexes into the input. | 
|  | int Idx = Mask[FirstMaskIdx + MaskOffset]; | 
|  |  | 
|  | // The input vector this mask element indexes into. | 
|  | unsigned Input = (unsigned)Idx / NewElts; | 
|  |  | 
|  | if (Input >= std::size(Inputs)) { | 
|  | // The mask element does not index into any input vector. | 
|  | Ops.push_back(-1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Turn the index into an offset from the start of the input vector. | 
|  | Idx -= Input * NewElts; | 
|  |  | 
|  | // Find or create a shuffle vector operand to hold this input. | 
|  | unsigned OpNo; | 
|  | for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) { | 
|  | if (InputUsed[OpNo] == Input) { | 
|  | // This input vector is already an operand. | 
|  | break; | 
|  | } else if (InputUsed[OpNo] == -1U) { | 
|  | // Create a new operand for this input vector. | 
|  | InputUsed[OpNo] = Input; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OpNo >= std::size(InputUsed)) { | 
|  | // More than two input vectors used!  Give up on trying to create a | 
|  | // shuffle vector.  Insert all elements into a BUILD_VECTOR instead. | 
|  | UseBuildVector = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Add the mask index for the new shuffle vector. | 
|  | Ops.push_back(Idx + OpNo * NewElts); | 
|  | } | 
|  |  | 
|  | if (UseBuildVector) { | 
|  | LLT EltTy = NarrowTy.getElementType(); | 
|  | SmallVector<Register, 16> SVOps; | 
|  |  | 
|  | // Extract the input elements by hand. | 
|  | for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { | 
|  | // The mask element.  This indexes into the input. | 
|  | int Idx = Mask[FirstMaskIdx + MaskOffset]; | 
|  |  | 
|  | // The input vector this mask element indexes into. | 
|  | unsigned Input = (unsigned)Idx / NewElts; | 
|  |  | 
|  | if (Input >= std::size(Inputs)) { | 
|  | // The mask element is "undef" or indexes off the end of the input. | 
|  | SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Turn the index into an offset from the start of the input vector. | 
|  | Idx -= Input * NewElts; | 
|  |  | 
|  | // Extract the vector element by hand. | 
|  | SVOps.push_back(MIRBuilder | 
|  | .buildExtractVectorElement( | 
|  | EltTy, Inputs[Input], | 
|  | MIRBuilder.buildConstant(LLT::scalar(32), Idx)) | 
|  | .getReg(0)); | 
|  | } | 
|  |  | 
|  | // Construct the Lo/Hi output using a G_BUILD_VECTOR. | 
|  | Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); | 
|  | } else if (InputUsed[0] == -1U) { | 
|  | // No input vectors were used! The result is undefined. | 
|  | Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); | 
|  | } else { | 
|  | Register Op0 = Inputs[InputUsed[0]]; | 
|  | // If only one input was used, use an undefined vector for the other. | 
|  | Register Op1 = InputUsed[1] == -1U | 
|  | ? MIRBuilder.buildUndef(NarrowTy).getReg(0) | 
|  | : Inputs[InputUsed[1]]; | 
|  | // At least one input vector was used. Create a new shuffle vector. | 
|  | Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); | 
|  | } | 
|  |  | 
|  | Ops.clear(); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( | 
|  | MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { | 
|  | auto &RdxMI = cast<GVecReduce>(MI); | 
|  |  | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // The semantics of the normal non-sequential reductions allow us to freely | 
|  | // re-associate the operation. | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs(); | 
|  |  | 
|  | if (NarrowTy.isVector() && | 
|  | (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | unsigned ScalarOpc = RdxMI.getScalarOpcForReduction(); | 
|  | SmallVector<Register> SplitSrcs; | 
|  | // If NarrowTy is a scalar then we're being asked to scalarize. | 
|  | const unsigned NumParts = | 
|  | NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() | 
|  | : SrcTy.getNumElements(); | 
|  |  | 
|  | extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI); | 
|  | if (NarrowTy.isScalar()) { | 
|  | if (DstTy != NarrowTy) | 
|  | return UnableToLegalize; // FIXME: handle implicit extensions. | 
|  |  | 
|  | if (isPowerOf2_32(NumParts)) { | 
|  | // Generate a tree of scalar operations to reduce the critical path. | 
|  | SmallVector<Register> PartialResults; | 
|  | unsigned NumPartsLeft = NumParts; | 
|  | while (NumPartsLeft > 1) { | 
|  | for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { | 
|  | PartialResults.emplace_back( | 
|  | MIRBuilder | 
|  | .buildInstr(ScalarOpc, {NarrowTy}, | 
|  | {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) | 
|  | .getReg(0)); | 
|  | } | 
|  | SplitSrcs = PartialResults; | 
|  | PartialResults.clear(); | 
|  | NumPartsLeft = SplitSrcs.size(); | 
|  | } | 
|  | assert(SplitSrcs.size() == 1); | 
|  | MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | // If we can't generate a tree, then just do sequential operations. | 
|  | Register Acc = SplitSrcs[0]; | 
|  | for (unsigned Idx = 1; Idx < NumParts; ++Idx) | 
|  | Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) | 
|  | .getReg(0); | 
|  | MIRBuilder.buildCopy(DstReg, Acc); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | SmallVector<Register> PartialReductions; | 
|  | for (unsigned Part = 0; Part < NumParts; ++Part) { | 
|  | PartialReductions.push_back( | 
|  | MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]}) | 
|  | .getReg(0)); | 
|  | } | 
|  |  | 
|  | // If the types involved are powers of 2, we can generate intermediate vector | 
|  | // ops, before generating a final reduction operation. | 
|  | if (isPowerOf2_32(SrcTy.getNumElements()) && | 
|  | isPowerOf2_32(NarrowTy.getNumElements())) { | 
|  | return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); | 
|  | } | 
|  |  | 
|  | Register Acc = PartialReductions[0]; | 
|  | for (unsigned Part = 1; Part < NumParts; ++Part) { | 
|  | if (Part == NumParts - 1) { | 
|  | MIRBuilder.buildInstr(ScalarOpc, {DstReg}, | 
|  | {Acc, PartialReductions[Part]}); | 
|  | } else { | 
|  | Acc = MIRBuilder | 
|  | .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) | 
|  | .getReg(0); | 
|  | } | 
|  | } | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::fewerElementsVectorSeqReductions(MachineInstr &MI, | 
|  | unsigned int TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | auto [DstReg, DstTy, ScalarReg, ScalarTy, SrcReg, SrcTy] = | 
|  | MI.getFirst3RegLLTs(); | 
|  | if (!NarrowTy.isScalar() || TypeIdx != 2 || DstTy != ScalarTy || | 
|  | DstTy != NarrowTy) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | assert((MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD || | 
|  | MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FMUL) && | 
|  | "Unexpected vecreduce opcode"); | 
|  | unsigned ScalarOpc = MI.getOpcode() == TargetOpcode::G_VECREDUCE_SEQ_FADD | 
|  | ? TargetOpcode::G_FADD | 
|  | : TargetOpcode::G_FMUL; | 
|  |  | 
|  | SmallVector<Register> SplitSrcs; | 
|  | unsigned NumParts = SrcTy.getNumElements(); | 
|  | extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs, MIRBuilder, MRI); | 
|  | Register Acc = ScalarReg; | 
|  | for (unsigned i = 0; i < NumParts; i++) | 
|  | Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[i]}) | 
|  | .getReg(0); | 
|  |  | 
|  | MIRBuilder.buildCopy(DstReg, Acc); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, | 
|  | LLT SrcTy, LLT NarrowTy, | 
|  | unsigned ScalarOpc) { | 
|  | SmallVector<Register> SplitSrcs; | 
|  | // Split the sources into NarrowTy size pieces. | 
|  | extractParts(SrcReg, NarrowTy, | 
|  | SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs, | 
|  | MIRBuilder, MRI); | 
|  | // We're going to do a tree reduction using vector operations until we have | 
|  | // one NarrowTy size value left. | 
|  | while (SplitSrcs.size() > 1) { | 
|  | SmallVector<Register> PartialRdxs; | 
|  | for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { | 
|  | Register LHS = SplitSrcs[Idx]; | 
|  | Register RHS = SplitSrcs[Idx + 1]; | 
|  | // Create the intermediate vector op. | 
|  | Register Res = | 
|  | MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); | 
|  | PartialRdxs.push_back(Res); | 
|  | } | 
|  | SplitSrcs = std::move(PartialRdxs); | 
|  | } | 
|  | // Finally generate the requested NarrowTy based reduction. | 
|  | Observer.changingInstr(MI); | 
|  | MI.getOperand(1).setReg(SplitSrcs[0]); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, | 
|  | const LLT HalfTy, const LLT AmtTy) { | 
|  |  | 
|  | Register InL = MRI.createGenericVirtualRegister(HalfTy); | 
|  | Register InH = MRI.createGenericVirtualRegister(HalfTy); | 
|  | MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); | 
|  |  | 
|  | if (Amt.isZero()) { | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH}); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LLT NVT = HalfTy; | 
|  | unsigned NVTBits = HalfTy.getSizeInBits(); | 
|  | unsigned VTBits = 2 * NVTBits; | 
|  |  | 
|  | SrcOp Lo(Register(0)), Hi(Register(0)); | 
|  | if (MI.getOpcode() == TargetOpcode::G_SHL) { | 
|  | if (Amt.ugt(VTBits)) { | 
|  | Lo = Hi = MIRBuilder.buildConstant(NVT, 0); | 
|  | } else if (Amt.ugt(NVTBits)) { | 
|  | Lo = MIRBuilder.buildConstant(NVT, 0); | 
|  | Hi = MIRBuilder.buildShl(NVT, InL, | 
|  | MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); | 
|  | } else if (Amt == NVTBits) { | 
|  | Lo = MIRBuilder.buildConstant(NVT, 0); | 
|  | Hi = InL; | 
|  | } else { | 
|  | Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); | 
|  | auto OrLHS = | 
|  | MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); | 
|  | auto OrRHS = MIRBuilder.buildLShr( | 
|  | NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); | 
|  | Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); | 
|  | } | 
|  | } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { | 
|  | if (Amt.ugt(VTBits)) { | 
|  | Lo = Hi = MIRBuilder.buildConstant(NVT, 0); | 
|  | } else if (Amt.ugt(NVTBits)) { | 
|  | Lo = MIRBuilder.buildLShr(NVT, InH, | 
|  | MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); | 
|  | Hi = MIRBuilder.buildConstant(NVT, 0); | 
|  | } else if (Amt == NVTBits) { | 
|  | Lo = InH; | 
|  | Hi = MIRBuilder.buildConstant(NVT, 0); | 
|  | } else { | 
|  | auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); | 
|  |  | 
|  | auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); | 
|  | auto OrRHS = MIRBuilder.buildShl( | 
|  | NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); | 
|  |  | 
|  | Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); | 
|  | Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); | 
|  | } | 
|  | } else { | 
|  | if (Amt.ugt(VTBits)) { | 
|  | Hi = Lo = MIRBuilder.buildAShr( | 
|  | NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); | 
|  | } else if (Amt.ugt(NVTBits)) { | 
|  | Lo = MIRBuilder.buildAShr(NVT, InH, | 
|  | MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); | 
|  | Hi = MIRBuilder.buildAShr(NVT, InH, | 
|  | MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); | 
|  | } else if (Amt == NVTBits) { | 
|  | Lo = InH; | 
|  | Hi = MIRBuilder.buildAShr(NVT, InH, | 
|  | MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); | 
|  | } else { | 
|  | auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); | 
|  |  | 
|  | auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); | 
|  | auto OrRHS = MIRBuilder.buildShl( | 
|  | NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); | 
|  |  | 
|  | Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); | 
|  | Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); | 
|  | } | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi}); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // TODO: Optimize if constant shift amount. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT RequestedTy) { | 
|  | if (TypeIdx == 1) { | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarSrc(MI, RequestedTy, 2); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | if (DstTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Register Amt = MI.getOperand(2).getReg(); | 
|  | LLT ShiftAmtTy = MRI.getType(Amt); | 
|  | const unsigned DstEltSize = DstTy.getScalarSizeInBits(); | 
|  | if (DstEltSize % 2 != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Ignore the input type. We can only go to exactly half the size of the | 
|  | // input. If that isn't small enough, the resulting pieces will be further | 
|  | // legalized. | 
|  | const unsigned NewBitSize = DstEltSize / 2; | 
|  | const LLT HalfTy = LLT::scalar(NewBitSize); | 
|  | const LLT CondTy = LLT::scalar(1); | 
|  |  | 
|  | if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { | 
|  | return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, | 
|  | ShiftAmtTy); | 
|  | } | 
|  |  | 
|  | // TODO: Expand with known bits. | 
|  |  | 
|  | // Handle the fully general expansion by an unknown amount. | 
|  | auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); | 
|  |  | 
|  | Register InL = MRI.createGenericVirtualRegister(HalfTy); | 
|  | Register InH = MRI.createGenericVirtualRegister(HalfTy); | 
|  | MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); | 
|  |  | 
|  | auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); | 
|  | auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); | 
|  |  | 
|  | auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); | 
|  | auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); | 
|  | auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); | 
|  |  | 
|  | Register ResultRegs[2]; | 
|  | switch (MI.getOpcode()) { | 
|  | case TargetOpcode::G_SHL: { | 
|  | // Short: ShAmt < NewBitSize | 
|  | auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); | 
|  |  | 
|  | auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); | 
|  | auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); | 
|  | auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); | 
|  |  | 
|  | // Long: ShAmt >= NewBitSize | 
|  | auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero. | 
|  | auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. | 
|  |  | 
|  | auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); | 
|  | auto Hi = MIRBuilder.buildSelect( | 
|  | HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); | 
|  |  | 
|  | ResultRegs[0] = Lo.getReg(0); | 
|  | ResultRegs[1] = Hi.getReg(0); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::G_LSHR: | 
|  | case TargetOpcode::G_ASHR: { | 
|  | // Short: ShAmt < NewBitSize | 
|  | auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); | 
|  |  | 
|  | auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); | 
|  | auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); | 
|  | auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); | 
|  |  | 
|  | // Long: ShAmt >= NewBitSize | 
|  | MachineInstrBuilder HiL; | 
|  | if (MI.getOpcode() == TargetOpcode::G_LSHR) { | 
|  | HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero. | 
|  | } else { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); | 
|  | HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part. | 
|  | } | 
|  | auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, | 
|  | {InH, AmtExcess});     // Lo from Hi part. | 
|  |  | 
|  | auto Lo = MIRBuilder.buildSelect( | 
|  | HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); | 
|  |  | 
|  | auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); | 
|  |  | 
|  | ResultRegs[0] = Lo.getReg(0); | 
|  | ResultRegs[1] = Hi.getReg(0); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("not a shift"); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT MoreTy) { | 
|  | assert(TypeIdx == 0 && "Expecting only Idx 0"); | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { | 
|  | MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); | 
|  | MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); | 
|  | moreElementsVectorSrc(MI, MoreTy, I); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder LegalizerHelper::getNeutralElementForVecReduce( | 
|  | unsigned Opcode, MachineIRBuilder &MIRBuilder, LLT Ty) { | 
|  | assert(Ty.isScalar() && "Expected scalar type to make neutral element for"); | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: | 
|  | llvm_unreachable( | 
|  | "getNeutralElementForVecReduce called with invalid opcode!"); | 
|  | case TargetOpcode::G_VECREDUCE_ADD: | 
|  | case TargetOpcode::G_VECREDUCE_OR: | 
|  | case TargetOpcode::G_VECREDUCE_XOR: | 
|  | case TargetOpcode::G_VECREDUCE_UMAX: | 
|  | return MIRBuilder.buildConstant(Ty, 0); | 
|  | case TargetOpcode::G_VECREDUCE_MUL: | 
|  | return MIRBuilder.buildConstant(Ty, 1); | 
|  | case TargetOpcode::G_VECREDUCE_AND: | 
|  | case TargetOpcode::G_VECREDUCE_UMIN: | 
|  | return MIRBuilder.buildConstant( | 
|  | Ty, APInt::getAllOnes(Ty.getScalarSizeInBits())); | 
|  | case TargetOpcode::G_VECREDUCE_SMAX: | 
|  | return MIRBuilder.buildConstant( | 
|  | Ty, APInt::getSignedMinValue(Ty.getSizeInBits())); | 
|  | case TargetOpcode::G_VECREDUCE_SMIN: | 
|  | return MIRBuilder.buildConstant( | 
|  | Ty, APInt::getSignedMaxValue(Ty.getSizeInBits())); | 
|  | case TargetOpcode::G_VECREDUCE_FADD: | 
|  | return MIRBuilder.buildFConstant(Ty, -0.0); | 
|  | case TargetOpcode::G_VECREDUCE_FMUL: | 
|  | return MIRBuilder.buildFConstant(Ty, 1.0); | 
|  | case TargetOpcode::G_VECREDUCE_FMINIMUM: | 
|  | case TargetOpcode::G_VECREDUCE_FMAXIMUM: | 
|  | assert(false && "getNeutralElementForVecReduce unimplemented for " | 
|  | "G_VECREDUCE_FMINIMUM and G_VECREDUCE_FMAXIMUM!"); | 
|  | } | 
|  | llvm_unreachable("switch expected to return!"); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT MoreTy) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | case TargetOpcode::G_IMPLICIT_DEF: | 
|  | case TargetOpcode::G_LOAD: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_STORE: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_AND: | 
|  | case TargetOpcode::G_OR: | 
|  | case TargetOpcode::G_XOR: | 
|  | case TargetOpcode::G_ADD: | 
|  | case TargetOpcode::G_SUB: | 
|  | case TargetOpcode::G_MUL: | 
|  | case TargetOpcode::G_FADD: | 
|  | case TargetOpcode::G_FSUB: | 
|  | case TargetOpcode::G_FMUL: | 
|  | case TargetOpcode::G_FDIV: | 
|  | case TargetOpcode::G_FCOPYSIGN: | 
|  | case TargetOpcode::G_UADDSAT: | 
|  | case TargetOpcode::G_USUBSAT: | 
|  | case TargetOpcode::G_SADDSAT: | 
|  | case TargetOpcode::G_SSUBSAT: | 
|  | case TargetOpcode::G_SMIN: | 
|  | case TargetOpcode::G_SMAX: | 
|  | case TargetOpcode::G_UMIN: | 
|  | case TargetOpcode::G_UMAX: | 
|  | case TargetOpcode::G_FMINNUM: | 
|  | case TargetOpcode::G_FMAXNUM: | 
|  | case TargetOpcode::G_FMINNUM_IEEE: | 
|  | case TargetOpcode::G_FMAXNUM_IEEE: | 
|  | case TargetOpcode::G_FMINIMUM: | 
|  | case TargetOpcode::G_FMAXIMUM: | 
|  | case TargetOpcode::G_STRICT_FADD: | 
|  | case TargetOpcode::G_STRICT_FSUB: | 
|  | case TargetOpcode::G_STRICT_FMUL: | 
|  | case TargetOpcode::G_SHL: | 
|  | case TargetOpcode::G_ASHR: | 
|  | case TargetOpcode::G_LSHR: { | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 1); | 
|  | moreElementsVectorSrc(MI, MoreTy, 2); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_FMA: | 
|  | case TargetOpcode::G_STRICT_FMA: | 
|  | case TargetOpcode::G_FSHR: | 
|  | case TargetOpcode::G_FSHL: { | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 1); | 
|  | moreElementsVectorSrc(MI, MoreTy, 2); | 
|  | moreElementsVectorSrc(MI, MoreTy, 3); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_EXTRACT_VECTOR_ELT: | 
|  | case TargetOpcode::G_EXTRACT: | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 1); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_INSERT: | 
|  | case TargetOpcode::G_INSERT_VECTOR_ELT: | 
|  | case TargetOpcode::G_FREEZE: | 
|  | case TargetOpcode::G_FNEG: | 
|  | case TargetOpcode::G_FABS: | 
|  | case TargetOpcode::G_FSQRT: | 
|  | case TargetOpcode::G_FCEIL: | 
|  | case TargetOpcode::G_FFLOOR: | 
|  | case TargetOpcode::G_FNEARBYINT: | 
|  | case TargetOpcode::G_FRINT: | 
|  | case TargetOpcode::G_INTRINSIC_ROUND: | 
|  | case TargetOpcode::G_INTRINSIC_ROUNDEVEN: | 
|  | case TargetOpcode::G_INTRINSIC_TRUNC: | 
|  | case TargetOpcode::G_BSWAP: | 
|  | case TargetOpcode::G_FCANONICALIZE: | 
|  | case TargetOpcode::G_SEXT_INREG: | 
|  | case TargetOpcode::G_ABS: | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 1); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | case TargetOpcode::G_SELECT: { | 
|  | auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs(); | 
|  | if (TypeIdx == 1) { | 
|  | if (!CondTy.isScalar() || | 
|  | DstTy.getElementCount() != MoreTy.getElementCount()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // This is turning a scalar select of vectors into a vector | 
|  | // select. Broadcast the select condition. | 
|  | auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); | 
|  | Observer.changingInstr(MI); | 
|  | MI.getOperand(1).setReg(ShufSplat.getReg(0)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (CondTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 2); | 
|  | moreElementsVectorSrc(MI, MoreTy, 3); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_UNMERGE_VALUES: | 
|  | return UnableToLegalize; | 
|  | case TargetOpcode::G_PHI: | 
|  | return moreElementsVectorPhi(MI, TypeIdx, MoreTy); | 
|  | case TargetOpcode::G_SHUFFLE_VECTOR: | 
|  | return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); | 
|  | case TargetOpcode::G_BUILD_VECTOR: { | 
|  | SmallVector<SrcOp, 8> Elts; | 
|  | for (auto Op : MI.uses()) { | 
|  | Elts.push_back(Op.getReg()); | 
|  | } | 
|  |  | 
|  | for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { | 
|  | Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildDeleteTrailingVectorElements( | 
|  | MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_SEXT: | 
|  | case TargetOpcode::G_ZEXT: | 
|  | case TargetOpcode::G_ANYEXT: | 
|  | case TargetOpcode::G_TRUNC: | 
|  | case TargetOpcode::G_FPTRUNC: | 
|  | case TargetOpcode::G_FPEXT: | 
|  | case TargetOpcode::G_FPTOSI: | 
|  | case TargetOpcode::G_FPTOUI: | 
|  | case TargetOpcode::G_SITOFP: | 
|  | case TargetOpcode::G_UITOFP: { | 
|  | Observer.changingInstr(MI); | 
|  | LLT SrcExtTy; | 
|  | LLT DstExtTy; | 
|  | if (TypeIdx == 0) { | 
|  | DstExtTy = MoreTy; | 
|  | SrcExtTy = LLT::fixed_vector( | 
|  | MoreTy.getNumElements(), | 
|  | MRI.getType(MI.getOperand(1).getReg()).getElementType()); | 
|  | } else { | 
|  | DstExtTy = LLT::fixed_vector( | 
|  | MoreTy.getNumElements(), | 
|  | MRI.getType(MI.getOperand(0).getReg()).getElementType()); | 
|  | SrcExtTy = MoreTy; | 
|  | } | 
|  | moreElementsVectorSrc(MI, SrcExtTy, 1); | 
|  | moreElementsVectorDst(MI, DstExtTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_ICMP: | 
|  | case TargetOpcode::G_FCMP: { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, MoreTy, 2); | 
|  | moreElementsVectorSrc(MI, MoreTy, 3); | 
|  | LLT CondTy = LLT::fixed_vector( | 
|  | MoreTy.getNumElements(), | 
|  | MRI.getType(MI.getOperand(0).getReg()).getElementType()); | 
|  | moreElementsVectorDst(MI, CondTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_BITCAST: { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); | 
|  | LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  |  | 
|  | unsigned coefficient = SrcTy.getNumElements() * MoreTy.getNumElements(); | 
|  | if (coefficient % DstTy.getNumElements() != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | coefficient = coefficient / DstTy.getNumElements(); | 
|  |  | 
|  | LLT NewTy = SrcTy.changeElementCount( | 
|  | ElementCount::get(coefficient, MoreTy.isScalable())); | 
|  | Observer.changingInstr(MI); | 
|  | moreElementsVectorSrc(MI, NewTy, 1); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_VECREDUCE_FADD: | 
|  | case TargetOpcode::G_VECREDUCE_FMUL: | 
|  | case TargetOpcode::G_VECREDUCE_ADD: | 
|  | case TargetOpcode::G_VECREDUCE_MUL: | 
|  | case TargetOpcode::G_VECREDUCE_AND: | 
|  | case TargetOpcode::G_VECREDUCE_OR: | 
|  | case TargetOpcode::G_VECREDUCE_XOR: | 
|  | case TargetOpcode::G_VECREDUCE_SMAX: | 
|  | case TargetOpcode::G_VECREDUCE_SMIN: | 
|  | case TargetOpcode::G_VECREDUCE_UMAX: | 
|  | case TargetOpcode::G_VECREDUCE_UMIN: { | 
|  | LLT OrigTy = MRI.getType(MI.getOperand(1).getReg()); | 
|  | MachineOperand &MO = MI.getOperand(1); | 
|  | auto NewVec = MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO); | 
|  | auto NeutralElement = getNeutralElementForVecReduce( | 
|  | MI.getOpcode(), MIRBuilder, MoreTy.getElementType()); | 
|  |  | 
|  | LLT IdxTy(TLI.getVectorIdxTy(MIRBuilder.getDataLayout())); | 
|  | for (size_t i = OrigTy.getNumElements(), e = MoreTy.getNumElements(); | 
|  | i != e; i++) { | 
|  | auto Idx = MIRBuilder.buildConstant(IdxTy, i); | 
|  | NewVec = MIRBuilder.buildInsertVectorElement(MoreTy, NewVec, | 
|  | NeutralElement, Idx); | 
|  | } | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | MO.setReg(NewVec.getReg(0)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | } | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); | 
|  | unsigned MaskNumElts = Mask.size(); | 
|  | unsigned SrcNumElts = SrcTy.getNumElements(); | 
|  | LLT DestEltTy = DstTy.getElementType(); | 
|  |  | 
|  | if (MaskNumElts == SrcNumElts) | 
|  | return Legalized; | 
|  |  | 
|  | if (MaskNumElts < SrcNumElts) { | 
|  | // Extend mask to match new destination vector size with | 
|  | // undef values. | 
|  | SmallVector<int, 16> NewMask(Mask); | 
|  | for (unsigned I = MaskNumElts; I < SrcNumElts; ++I) | 
|  | NewMask.push_back(-1); | 
|  |  | 
|  | moreElementsVectorDst(MI, SrcTy, 0); | 
|  | MIRBuilder.setInstrAndDebugLoc(MI); | 
|  | MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), | 
|  | MI.getOperand(1).getReg(), | 
|  | MI.getOperand(2).getReg(), NewMask); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); | 
|  | unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; | 
|  | LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy); | 
|  |  | 
|  | // Create new source vectors by concatenating the initial | 
|  | // source vectors with undefined vectors of the same size. | 
|  | auto Undef = MIRBuilder.buildUndef(SrcTy); | 
|  | SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0)); | 
|  | SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0)); | 
|  | MOps1[0] = MI.getOperand(1).getReg(); | 
|  | MOps2[0] = MI.getOperand(2).getReg(); | 
|  |  | 
|  | auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1); | 
|  | auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2); | 
|  |  | 
|  | // Readjust mask for new input vector length. | 
|  | SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); | 
|  | for (unsigned I = 0; I != MaskNumElts; ++I) { | 
|  | int Idx = Mask[I]; | 
|  | if (Idx >= static_cast<int>(SrcNumElts)) | 
|  | Idx += PaddedMaskNumElts - SrcNumElts; | 
|  | MappedOps[I] = Idx; | 
|  | } | 
|  |  | 
|  | // If we got more elements than required, extract subvector. | 
|  | if (MaskNumElts != PaddedMaskNumElts) { | 
|  | auto Shuffle = | 
|  | MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps); | 
|  |  | 
|  | SmallVector<Register, 16> Elts(MaskNumElts); | 
|  | for (unsigned I = 0; I < MaskNumElts; ++I) { | 
|  | Elts[I] = | 
|  | MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I) | 
|  | .getReg(0); | 
|  | } | 
|  | MIRBuilder.buildBuildVector(DstReg, Elts); | 
|  | } else { | 
|  | MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return LegalizerHelper::LegalizeResult::Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, | 
|  | unsigned int TypeIdx, LLT MoreTy) { | 
|  | auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs(); | 
|  | ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); | 
|  | unsigned NumElts = DstTy.getNumElements(); | 
|  | unsigned WidenNumElts = MoreTy.getNumElements(); | 
|  |  | 
|  | if (DstTy.isVector() && Src1Ty.isVector() && | 
|  | DstTy.getNumElements() != Src1Ty.getNumElements()) { | 
|  | return equalizeVectorShuffleLengths(MI); | 
|  | } | 
|  |  | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Expect a canonicalized shuffle. | 
|  | if (DstTy != Src1Ty || DstTy != Src2Ty) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | moreElementsVectorSrc(MI, MoreTy, 1); | 
|  | moreElementsVectorSrc(MI, MoreTy, 2); | 
|  |  | 
|  | // Adjust mask based on new input vector length. | 
|  | SmallVector<int, 16> NewMask; | 
|  | for (unsigned I = 0; I != NumElts; ++I) { | 
|  | int Idx = Mask[I]; | 
|  | if (Idx < static_cast<int>(NumElts)) | 
|  | NewMask.push_back(Idx); | 
|  | else | 
|  | NewMask.push_back(Idx - NumElts + WidenNumElts); | 
|  | } | 
|  | for (unsigned I = NumElts; I != WidenNumElts; ++I) | 
|  | NewMask.push_back(-1); | 
|  | moreElementsVectorDst(MI, MoreTy, 0); | 
|  | MIRBuilder.setInstrAndDebugLoc(MI); | 
|  | MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), | 
|  | MI.getOperand(1).getReg(), | 
|  | MI.getOperand(2).getReg(), NewMask); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, | 
|  | ArrayRef<Register> Src1Regs, | 
|  | ArrayRef<Register> Src2Regs, | 
|  | LLT NarrowTy) { | 
|  | MachineIRBuilder &B = MIRBuilder; | 
|  | unsigned SrcParts = Src1Regs.size(); | 
|  | unsigned DstParts = DstRegs.size(); | 
|  |  | 
|  | unsigned DstIdx = 0; // Low bits of the result. | 
|  | Register FactorSum = | 
|  | B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); | 
|  | DstRegs[DstIdx] = FactorSum; | 
|  |  | 
|  | unsigned CarrySumPrevDstIdx; | 
|  | SmallVector<Register, 4> Factors; | 
|  |  | 
|  | for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { | 
|  | // Collect low parts of muls for DstIdx. | 
|  | for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; | 
|  | i <= std::min(DstIdx, SrcParts - 1); ++i) { | 
|  | MachineInstrBuilder Mul = | 
|  | B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); | 
|  | Factors.push_back(Mul.getReg(0)); | 
|  | } | 
|  | // Collect high parts of muls from previous DstIdx. | 
|  | for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; | 
|  | i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { | 
|  | MachineInstrBuilder Umulh = | 
|  | B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); | 
|  | Factors.push_back(Umulh.getReg(0)); | 
|  | } | 
|  | // Add CarrySum from additions calculated for previous DstIdx. | 
|  | if (DstIdx != 1) { | 
|  | Factors.push_back(CarrySumPrevDstIdx); | 
|  | } | 
|  |  | 
|  | Register CarrySum; | 
|  | // Add all factors and accumulate all carries into CarrySum. | 
|  | if (DstIdx != DstParts - 1) { | 
|  | MachineInstrBuilder Uaddo = | 
|  | B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); | 
|  | FactorSum = Uaddo.getReg(0); | 
|  | CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); | 
|  | for (unsigned i = 2; i < Factors.size(); ++i) { | 
|  | MachineInstrBuilder Uaddo = | 
|  | B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); | 
|  | FactorSum = Uaddo.getReg(0); | 
|  | MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); | 
|  | CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); | 
|  | } | 
|  | } else { | 
|  | // Since value for the next index is not calculated, neither is CarrySum. | 
|  | FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); | 
|  | for (unsigned i = 2; i < Factors.size(); ++i) | 
|  | FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); | 
|  | } | 
|  |  | 
|  | CarrySumPrevDstIdx = CarrySum; | 
|  | DstRegs[DstIdx] = FactorSum; | 
|  | Factors.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT DstType = MRI.getType(DstReg); | 
|  | // FIXME: add support for vector types | 
|  | if (DstType.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | unsigned OpO, OpE, OpF; | 
|  | switch (Opcode) { | 
|  | case TargetOpcode::G_SADDO: | 
|  | case TargetOpcode::G_SADDE: | 
|  | case TargetOpcode::G_UADDO: | 
|  | case TargetOpcode::G_UADDE: | 
|  | case TargetOpcode::G_ADD: | 
|  | OpO = TargetOpcode::G_UADDO; | 
|  | OpE = TargetOpcode::G_UADDE; | 
|  | OpF = TargetOpcode::G_UADDE; | 
|  | if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) | 
|  | OpF = TargetOpcode::G_SADDE; | 
|  | break; | 
|  | case TargetOpcode::G_SSUBO: | 
|  | case TargetOpcode::G_SSUBE: | 
|  | case TargetOpcode::G_USUBO: | 
|  | case TargetOpcode::G_USUBE: | 
|  | case TargetOpcode::G_SUB: | 
|  | OpO = TargetOpcode::G_USUBO; | 
|  | OpE = TargetOpcode::G_USUBE; | 
|  | OpF = TargetOpcode::G_USUBE; | 
|  | if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) | 
|  | OpF = TargetOpcode::G_SSUBE; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected add/sub opcode!"); | 
|  | } | 
|  |  | 
|  | // 1 for a plain add/sub, 2 if this is an operation with a carry-out. | 
|  | unsigned NumDefs = MI.getNumExplicitDefs(); | 
|  | Register Src1 = MI.getOperand(NumDefs).getReg(); | 
|  | Register Src2 = MI.getOperand(NumDefs + 1).getReg(); | 
|  | Register CarryDst, CarryIn; | 
|  | if (NumDefs == 2) | 
|  | CarryDst = MI.getOperand(1).getReg(); | 
|  | if (MI.getNumOperands() == NumDefs + 3) | 
|  | CarryIn = MI.getOperand(NumDefs + 2).getReg(); | 
|  |  | 
|  | LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | LLT LeftoverTy, DummyTy; | 
|  | SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; | 
|  | extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left, | 
|  | MIRBuilder, MRI); | 
|  | extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left, MIRBuilder, | 
|  | MRI); | 
|  |  | 
|  | int NarrowParts = Src1Regs.size(); | 
|  | for (int I = 0, E = Src1Left.size(); I != E; ++I) { | 
|  | Src1Regs.push_back(Src1Left[I]); | 
|  | Src2Regs.push_back(Src2Left[I]); | 
|  | } | 
|  | DstRegs.reserve(Src1Regs.size()); | 
|  |  | 
|  | for (int i = 0, e = Src1Regs.size(); i != e; ++i) { | 
|  | Register DstReg = | 
|  | MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); | 
|  | Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); | 
|  | // Forward the final carry-out to the destination register | 
|  | if (i == e - 1 && CarryDst) | 
|  | CarryOut = CarryDst; | 
|  |  | 
|  | if (!CarryIn) { | 
|  | MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, | 
|  | {Src1Regs[i], Src2Regs[i]}); | 
|  | } else if (i == e - 1) { | 
|  | MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, | 
|  | {Src1Regs[i], Src2Regs[i], CarryIn}); | 
|  | } else { | 
|  | MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, | 
|  | {Src1Regs[i], Src2Regs[i], CarryIn}); | 
|  | } | 
|  |  | 
|  | DstRegs.push_back(DstReg); | 
|  | CarryIn = CarryOut; | 
|  | } | 
|  | insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, | 
|  | ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, | 
|  | ArrayRef(DstRegs).drop_front(NarrowParts)); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { | 
|  | auto [DstReg, Src1, Src2] = MI.getFirst3Regs(); | 
|  |  | 
|  | LLT Ty = MRI.getType(DstReg); | 
|  | if (Ty.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | unsigned Size = Ty.getSizeInBits(); | 
|  | unsigned NarrowSize = NarrowTy.getSizeInBits(); | 
|  | if (Size % NarrowSize != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | unsigned NumParts = Size / NarrowSize; | 
|  | bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; | 
|  | unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); | 
|  |  | 
|  | SmallVector<Register, 2> Src1Parts, Src2Parts; | 
|  | SmallVector<Register, 2> DstTmpRegs(DstTmpParts); | 
|  | extractParts(Src1, NarrowTy, NumParts, Src1Parts, MIRBuilder, MRI); | 
|  | extractParts(Src2, NarrowTy, NumParts, Src2Parts, MIRBuilder, MRI); | 
|  | multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); | 
|  |  | 
|  | // Take only high half of registers if this is high mul. | 
|  | ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; | 
|  |  | 
|  | Register Src = MI.getOperand(1).getReg(); | 
|  | LLT SrcTy = MRI.getType(Src); | 
|  |  | 
|  | // If all finite floats fit into the narrowed integer type, we can just swap | 
|  | // out the result type. This is practically only useful for conversions from | 
|  | // half to at least 16-bits, so just handle the one case. | 
|  | if (SrcTy.getScalarType() != LLT::scalar(16) || | 
|  | NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Observer.changingInstr(MI); | 
|  | narrowScalarDst(MI, NarrowTy, 0, | 
|  | IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | uint64_t NarrowSize = NarrowTy.getSizeInBits(); | 
|  |  | 
|  | int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); | 
|  | // FIXME: add support for when SizeOp1 isn't an exact multiple of | 
|  | // NarrowSize. | 
|  | if (SizeOp1 % NarrowSize != 0) | 
|  | return UnableToLegalize; | 
|  | int NumParts = SizeOp1 / NarrowSize; | 
|  |  | 
|  | SmallVector<Register, 2> SrcRegs, DstRegs; | 
|  | SmallVector<uint64_t, 2> Indexes; | 
|  | extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs, | 
|  | MIRBuilder, MRI); | 
|  |  | 
|  | Register OpReg = MI.getOperand(0).getReg(); | 
|  | uint64_t OpStart = MI.getOperand(2).getImm(); | 
|  | uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); | 
|  | for (int i = 0; i < NumParts; ++i) { | 
|  | unsigned SrcStart = i * NarrowSize; | 
|  |  | 
|  | if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { | 
|  | // No part of the extract uses this subregister, ignore it. | 
|  | continue; | 
|  | } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { | 
|  | // The entire subregister is extracted, forward the value. | 
|  | DstRegs.push_back(SrcRegs[i]); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // OpSegStart is where this destination segment would start in OpReg if it | 
|  | // extended infinitely in both directions. | 
|  | int64_t ExtractOffset; | 
|  | uint64_t SegSize; | 
|  | if (OpStart < SrcStart) { | 
|  | ExtractOffset = 0; | 
|  | SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); | 
|  | } else { | 
|  | ExtractOffset = OpStart - SrcStart; | 
|  | SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); | 
|  | } | 
|  |  | 
|  | Register SegReg = SrcRegs[i]; | 
|  | if (ExtractOffset != 0 || SegSize != NarrowSize) { | 
|  | // A genuine extract is needed. | 
|  | SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); | 
|  | MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); | 
|  | } | 
|  |  | 
|  | DstRegs.push_back(SegReg); | 
|  | } | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | if (MRI.getType(DstReg).isVector()) | 
|  | MIRBuilder.buildBuildVector(DstReg, DstRegs); | 
|  | else if (DstRegs.size() > 1) | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); | 
|  | else | 
|  | MIRBuilder.buildCopy(DstReg, DstRegs[0]); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | // FIXME: Don't know how to handle secondary types yet. | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; | 
|  | SmallVector<uint64_t, 2> Indexes; | 
|  | LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | LLT LeftoverTy; | 
|  | extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, | 
|  | LeftoverRegs, MIRBuilder, MRI); | 
|  |  | 
|  | for (Register Reg : LeftoverRegs) | 
|  | SrcRegs.push_back(Reg); | 
|  |  | 
|  | uint64_t NarrowSize = NarrowTy.getSizeInBits(); | 
|  | Register OpReg = MI.getOperand(2).getReg(); | 
|  | uint64_t OpStart = MI.getOperand(3).getImm(); | 
|  | uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); | 
|  | for (int I = 0, E = SrcRegs.size(); I != E; ++I) { | 
|  | unsigned DstStart = I * NarrowSize; | 
|  |  | 
|  | if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { | 
|  | // The entire subregister is defined by this insert, forward the new | 
|  | // value. | 
|  | DstRegs.push_back(OpReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Register SrcReg = SrcRegs[I]; | 
|  | if (MRI.getType(SrcRegs[I]) == LeftoverTy) { | 
|  | // The leftover reg is smaller than NarrowTy, so we need to extend it. | 
|  | SrcReg = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); | 
|  | } | 
|  |  | 
|  | if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { | 
|  | // No part of the insert affects this subregister, forward the original. | 
|  | DstRegs.push_back(SrcReg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // OpSegStart is where this destination segment would start in OpReg if it | 
|  | // extended infinitely in both directions. | 
|  | int64_t ExtractOffset, InsertOffset; | 
|  | uint64_t SegSize; | 
|  | if (OpStart < DstStart) { | 
|  | InsertOffset = 0; | 
|  | ExtractOffset = DstStart - OpStart; | 
|  | SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); | 
|  | } else { | 
|  | InsertOffset = OpStart - DstStart; | 
|  | ExtractOffset = 0; | 
|  | SegSize = | 
|  | std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); | 
|  | } | 
|  |  | 
|  | Register SegReg = OpReg; | 
|  | if (ExtractOffset != 0 || SegSize != OpSize) { | 
|  | // A genuine extract is needed. | 
|  | SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); | 
|  | MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); | 
|  | } | 
|  |  | 
|  | Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); | 
|  | MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); | 
|  | DstRegs.push_back(DstReg); | 
|  | } | 
|  |  | 
|  | uint64_t WideSize = DstRegs.size() * NarrowSize; | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | if (WideSize > RegTy.getSizeInBits()) { | 
|  | Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); | 
|  | MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs); | 
|  | MIRBuilder.buildTrunc(DstReg, MergeReg); | 
|  | } else | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  |  | 
|  | assert(MI.getNumOperands() == 3 && TypeIdx == 0); | 
|  |  | 
|  | SmallVector<Register, 4> DstRegs, DstLeftoverRegs; | 
|  | SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; | 
|  | SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; | 
|  | LLT LeftoverTy; | 
|  | if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, | 
|  | Src0Regs, Src0LeftoverRegs, MIRBuilder, MRI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT Unused; | 
|  | if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, | 
|  | Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI)) | 
|  | llvm_unreachable("inconsistent extractParts result"); | 
|  |  | 
|  | for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { | 
|  | auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, | 
|  | {Src0Regs[I], Src1Regs[I]}); | 
|  | DstRegs.push_back(Inst.getReg(0)); | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { | 
|  | auto Inst = MIRBuilder.buildInstr( | 
|  | MI.getOpcode(), | 
|  | {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); | 
|  | DstLeftoverRegs.push_back(Inst.getReg(0)); | 
|  | } | 
|  |  | 
|  | insertParts(DstReg, DstTy, NarrowTy, DstRegs, | 
|  | LeftoverTy, DstLeftoverRegs); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, SrcReg] = MI.getFirst2Regs(); | 
|  |  | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | if (DstTy.isVector()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | SmallVector<Register, 8> Parts; | 
|  | LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); | 
|  | LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); | 
|  | buildWidenedRemergeToDst(DstReg, LCMTy, Parts); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 0) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Register CondReg = MI.getOperand(1).getReg(); | 
|  | LLT CondTy = MRI.getType(CondReg); | 
|  | if (CondTy.isVector()) // TODO: Handle vselect | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  |  | 
|  | SmallVector<Register, 4> DstRegs, DstLeftoverRegs; | 
|  | SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; | 
|  | SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; | 
|  | LLT LeftoverTy; | 
|  | if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, | 
|  | Src1Regs, Src1LeftoverRegs, MIRBuilder, MRI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | LLT Unused; | 
|  | if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, | 
|  | Src2Regs, Src2LeftoverRegs, MIRBuilder, MRI)) | 
|  | llvm_unreachable("inconsistent extractParts result"); | 
|  |  | 
|  | for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { | 
|  | auto Select = MIRBuilder.buildSelect(NarrowTy, | 
|  | CondReg, Src1Regs[I], Src2Regs[I]); | 
|  | DstRegs.push_back(Select.getReg(0)); | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { | 
|  | auto Select = MIRBuilder.buildSelect( | 
|  | LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); | 
|  | DstLeftoverRegs.push_back(Select.getReg(0)); | 
|  | } | 
|  |  | 
|  | insertParts(DstReg, DstTy, NarrowTy, DstRegs, | 
|  | LeftoverTy, DstLeftoverRegs); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | unsigned NarrowSize = NarrowTy.getSizeInBits(); | 
|  |  | 
|  | if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { | 
|  | const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; | 
|  |  | 
|  | MachineIRBuilder &B = MIRBuilder; | 
|  | auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); | 
|  | // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) | 
|  | auto C_0 = B.buildConstant(NarrowTy, 0); | 
|  | auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), | 
|  | UnmergeSrc.getReg(1), C_0); | 
|  | auto LoCTLZ = IsUndef ? | 
|  | B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : | 
|  | B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); | 
|  | auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); | 
|  | auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); | 
|  | auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); | 
|  | B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | unsigned NarrowSize = NarrowTy.getSizeInBits(); | 
|  |  | 
|  | if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { | 
|  | const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; | 
|  |  | 
|  | MachineIRBuilder &B = MIRBuilder; | 
|  | auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); | 
|  | // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) | 
|  | auto C_0 = B.buildConstant(NarrowTy, 0); | 
|  | auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), | 
|  | UnmergeSrc.getReg(0), C_0); | 
|  | auto HiCTTZ = IsUndef ? | 
|  | B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : | 
|  | B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); | 
|  | auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); | 
|  | auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); | 
|  | auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); | 
|  | B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | unsigned NarrowSize = NarrowTy.getSizeInBits(); | 
|  |  | 
|  | if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { | 
|  | auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); | 
|  |  | 
|  | auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); | 
|  | auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); | 
|  | MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx, | 
|  | LLT NarrowTy) { | 
|  | if (TypeIdx != 1) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | MachineIRBuilder &B = MIRBuilder; | 
|  | Register ExpReg = MI.getOperand(2).getReg(); | 
|  | LLT ExpTy = MRI.getType(ExpReg); | 
|  |  | 
|  | unsigned ClampSize = NarrowTy.getScalarSizeInBits(); | 
|  |  | 
|  | // Clamp the exponent to the range of the target type. | 
|  | auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize)); | 
|  | auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp); | 
|  | auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize)); | 
|  | auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp); | 
|  |  | 
|  | auto Trunc = B.buildTrunc(NarrowTy, Clamp); | 
|  | Observer.changingInstr(MI); | 
|  | MI.getOperand(2).setReg(Trunc.getReg(0)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerBitCount(MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | const auto &TII = MIRBuilder.getTII(); | 
|  | auto isSupported = [this](const LegalityQuery &Q) { | 
|  | auto QAction = LI.getAction(Q).Action; | 
|  | return QAction == Legal || QAction == Libcall || QAction == Custom; | 
|  | }; | 
|  | switch (Opc) { | 
|  | default: | 
|  | return UnableToLegalize; | 
|  | case TargetOpcode::G_CTLZ_ZERO_UNDEF: { | 
|  | // This trivially expands to CTLZ. | 
|  | Observer.changingInstr(MI); | 
|  | MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_CTLZ: { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | unsigned Len = SrcTy.getSizeInBits(); | 
|  |  | 
|  | if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { | 
|  | // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. | 
|  | auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); | 
|  | auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); | 
|  | auto ICmp = MIRBuilder.buildICmp( | 
|  | CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); | 
|  | auto LenConst = MIRBuilder.buildConstant(DstTy, Len); | 
|  | MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | // for now, we do this: | 
|  | // NewLen = NextPowerOf2(Len); | 
|  | // x = x | (x >> 1); | 
|  | // x = x | (x >> 2); | 
|  | // ... | 
|  | // x = x | (x >>16); | 
|  | // x = x | (x >>32); // for 64-bit input | 
|  | // Upto NewLen/2 | 
|  | // return Len - popcount(x); | 
|  | // | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | Register Op = SrcReg; | 
|  | unsigned NewLen = PowerOf2Ceil(Len); | 
|  | for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { | 
|  | auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); | 
|  | auto MIBOp = MIRBuilder.buildOr( | 
|  | SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); | 
|  | Op = MIBOp.getReg(0); | 
|  | } | 
|  | auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); | 
|  | MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), | 
|  | MIBPop); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_CTTZ_ZERO_UNDEF: { | 
|  | // This trivially expands to CTTZ. | 
|  | Observer.changingInstr(MI); | 
|  | MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_CTTZ: { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  |  | 
|  | unsigned Len = SrcTy.getSizeInBits(); | 
|  | if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { | 
|  | // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with | 
|  | // zero. | 
|  | auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); | 
|  | auto Zero = MIRBuilder.buildConstant(SrcTy, 0); | 
|  | auto ICmp = MIRBuilder.buildICmp( | 
|  | CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); | 
|  | auto LenConst = MIRBuilder.buildConstant(DstTy, Len); | 
|  | MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | // for now, we use: { return popcount(~x & (x - 1)); } | 
|  | // unless the target has ctlz but not ctpop, in which case we use: | 
|  | // { return 32 - nlz(~x & (x-1)); } | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); | 
|  | auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); | 
|  | auto MIBTmp = MIRBuilder.buildAnd( | 
|  | SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); | 
|  | if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && | 
|  | isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { | 
|  | auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); | 
|  | MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, | 
|  | MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | Observer.changingInstr(MI); | 
|  | MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); | 
|  | MI.getOperand(1).setReg(MIBTmp.getReg(0)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | case TargetOpcode::G_CTPOP: { | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | LLT Ty = MRI.getType(SrcReg); | 
|  | unsigned Size = Ty.getSizeInBits(); | 
|  | MachineIRBuilder &B = MIRBuilder; | 
|  |  | 
|  | // Count set bits in blocks of 2 bits. Default approach would be | 
|  | // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } | 
|  | // We use following formula instead: | 
|  | // B2Count = val - { (val >> 1) & 0x55555555 } | 
|  | // since it gives same result in blocks of 2 with one instruction less. | 
|  | auto C_1 = B.buildConstant(Ty, 1); | 
|  | auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); | 
|  | APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); | 
|  | auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); | 
|  | auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); | 
|  | auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); | 
|  |  | 
|  | // In order to get count in blocks of 4 add values from adjacent block of 2. | 
|  | // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } | 
|  | auto C_2 = B.buildConstant(Ty, 2); | 
|  | auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); | 
|  | APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); | 
|  | auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); | 
|  | auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); | 
|  | auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); | 
|  | auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); | 
|  |  | 
|  | // For count in blocks of 8 bits we don't have to mask high 4 bits before | 
|  | // addition since count value sits in range {0,...,8} and 4 bits are enough | 
|  | // to hold such binary values. After addition high 4 bits still hold count | 
|  | // of set bits in high 4 bit block, set them to zero and get 8 bit result. | 
|  | // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F | 
|  | auto C_4 = B.buildConstant(Ty, 4); | 
|  | auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); | 
|  | auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); | 
|  | APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); | 
|  | auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); | 
|  | auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); | 
|  |  | 
|  | assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); | 
|  | // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this | 
|  | // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. | 
|  | auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); | 
|  |  | 
|  | // Shift count result from 8 high bits to low bits. | 
|  | auto C_SizeM8 = B.buildConstant(Ty, Size - 8); | 
|  |  | 
|  | auto IsMulSupported = [this](const LLT Ty) { | 
|  | auto Action = LI.getAction({TargetOpcode::G_MUL, {Ty}}).Action; | 
|  | return Action == Legal || Action == WidenScalar || Action == Custom; | 
|  | }; | 
|  | if (IsMulSupported(Ty)) { | 
|  | auto ResTmp = B.buildMul(Ty, B8Count, MulMask); | 
|  | B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); | 
|  | } else { | 
|  | auto ResTmp = B8Count; | 
|  | for (unsigned Shift = 8; Shift < Size; Shift *= 2) { | 
|  | auto ShiftC = B.buildConstant(Ty, Shift); | 
|  | auto Shl = B.buildShl(Ty, ResTmp, ShiftC); | 
|  | ResTmp = B.buildAdd(Ty, ResTmp, Shl); | 
|  | } | 
|  | B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); | 
|  | } | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that (every element of) Reg is undef or not an exact multiple of BW. | 
|  | static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, | 
|  | Register Reg, unsigned BW) { | 
|  | return matchUnaryPredicate( | 
|  | MRI, Reg, | 
|  | [=](const Constant *C) { | 
|  | // Null constant here means an undef. | 
|  | const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); | 
|  | return !CI || CI->getValue().urem(BW) != 0; | 
|  | }, | 
|  | /*AllowUndefs*/ true); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { | 
|  | auto [Dst, X, Y, Z] = MI.getFirst4Regs(); | 
|  | LLT Ty = MRI.getType(Dst); | 
|  | LLT ShTy = MRI.getType(Z); | 
|  |  | 
|  | unsigned BW = Ty.getScalarSizeInBits(); | 
|  |  | 
|  | if (!isPowerOf2_32(BW)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; | 
|  | unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; | 
|  |  | 
|  | if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { | 
|  | // fshl X, Y, Z -> fshr X, Y, -Z | 
|  | // fshr X, Y, Z -> fshl X, Y, -Z | 
|  | auto Zero = MIRBuilder.buildConstant(ShTy, 0); | 
|  | Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); | 
|  | } else { | 
|  | // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z | 
|  | // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z | 
|  | auto One = MIRBuilder.buildConstant(ShTy, 1); | 
|  | if (IsFSHL) { | 
|  | Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); | 
|  | X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); | 
|  | } else { | 
|  | X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); | 
|  | Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); | 
|  | } | 
|  |  | 
|  | Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { | 
|  | auto [Dst, X, Y, Z] = MI.getFirst4Regs(); | 
|  | LLT Ty = MRI.getType(Dst); | 
|  | LLT ShTy = MRI.getType(Z); | 
|  |  | 
|  | const unsigned BW = Ty.getScalarSizeInBits(); | 
|  | const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; | 
|  |  | 
|  | Register ShX, ShY; | 
|  | Register ShAmt, InvShAmt; | 
|  |  | 
|  | // FIXME: Emit optimized urem by constant instead of letting it expand later. | 
|  | if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { | 
|  | // fshl: X << C | Y >> (BW - C) | 
|  | // fshr: X << (BW - C) | Y >> C | 
|  | // where C = Z % BW is not zero | 
|  | auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); | 
|  | ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); | 
|  | InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); | 
|  | ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); | 
|  | ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); | 
|  | } else { | 
|  | // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) | 
|  | // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) | 
|  | auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); | 
|  | if (isPowerOf2_32(BW)) { | 
|  | // Z % BW -> Z & (BW - 1) | 
|  | ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); | 
|  | // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) | 
|  | auto NotZ = MIRBuilder.buildNot(ShTy, Z); | 
|  | InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); | 
|  | } else { | 
|  | auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); | 
|  | ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); | 
|  | InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); | 
|  | } | 
|  |  | 
|  | auto One = MIRBuilder.buildConstant(ShTy, 1); | 
|  | if (IsFSHL) { | 
|  | ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); | 
|  | auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); | 
|  | ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); | 
|  | } else { | 
|  | auto ShX1 = MIRBuilder.buildShl(Ty, X, One); | 
|  | ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); | 
|  | ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildOr(Dst, ShX, ShY); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { | 
|  | // These operations approximately do the following (while avoiding undefined | 
|  | // shifts by BW): | 
|  | // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) | 
|  | // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | LLT Ty = MRI.getType(Dst); | 
|  | LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); | 
|  |  | 
|  | bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; | 
|  | unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; | 
|  |  | 
|  | // TODO: Use smarter heuristic that accounts for vector legalization. | 
|  | if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) | 
|  | return lowerFunnelShiftAsShifts(MI); | 
|  |  | 
|  | // This only works for powers of 2, fallback to shifts if it fails. | 
|  | LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); | 
|  | if (Result == UnableToLegalize) | 
|  | return lowerFunnelShiftAsShifts(MI); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) { | 
|  | auto [Dst, Src] = MI.getFirst2Regs(); | 
|  | LLT DstTy = MRI.getType(Dst); | 
|  | LLT SrcTy = MRI.getType(Src); | 
|  |  | 
|  | uint32_t DstTySize = DstTy.getSizeInBits(); | 
|  | uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits(); | 
|  | uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits(); | 
|  |  | 
|  | if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) || | 
|  | !isPowerOf2_32(SrcTyScalarSize)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // The step between extend is too large, split it by creating an intermediate | 
|  | // extend instruction | 
|  | if (SrcTyScalarSize * 2 < DstTyScalarSize) { | 
|  | LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2); | 
|  | // If the destination type is illegal, split it into multiple statements | 
|  | // zext x -> zext(merge(zext(unmerge), zext(unmerge))) | 
|  | auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src}); | 
|  | // Unmerge the vector | 
|  | LLT EltTy = MidTy.changeElementCount( | 
|  | MidTy.getElementCount().divideCoefficientBy(2)); | 
|  | auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt); | 
|  |  | 
|  | // ZExt the vectors | 
|  | LLT ZExtResTy = DstTy.changeElementCount( | 
|  | DstTy.getElementCount().divideCoefficientBy(2)); | 
|  | auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, | 
|  | {UnmergeSrc.getReg(0)}); | 
|  | auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, | 
|  | {UnmergeSrc.getReg(1)}); | 
|  |  | 
|  | // Merge the ending vectors | 
|  | MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2}); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerTRUNC(MachineInstr &MI) { | 
|  | // MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; | 
|  | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); | 
|  | // Similar to how operand splitting is done in SelectiondDAG, we can handle | 
|  | // %res(v8s8) = G_TRUNC %in(v8s32) by generating: | 
|  | //   %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>) | 
|  | //   %lo16(<4 x s16>) = G_TRUNC %inlo | 
|  | //   %hi16(<4 x s16>) = G_TRUNC %inhi | 
|  | //   %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16 | 
|  | //   %res(<8 x s8>) = G_TRUNC %in16 | 
|  |  | 
|  | assert(MI.getOpcode() == TargetOpcode::G_TRUNC); | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | LLT DstTy = MRI.getType(DstReg); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  |  | 
|  | if (DstTy.isVector() && isPowerOf2_32(DstTy.getNumElements()) && | 
|  | isPowerOf2_32(DstTy.getScalarSizeInBits()) && | 
|  | isPowerOf2_32(SrcTy.getNumElements()) && | 
|  | isPowerOf2_32(SrcTy.getScalarSizeInBits())) { | 
|  | // Split input type. | 
|  | LLT SplitSrcTy = SrcTy.changeElementCount( | 
|  | SrcTy.getElementCount().divideCoefficientBy(2)); | 
|  |  | 
|  | // First, split the source into two smaller vectors. | 
|  | SmallVector<Register, 2> SplitSrcs; | 
|  | extractParts(SrcReg, SplitSrcTy, 2, SplitSrcs, MIRBuilder, MRI); | 
|  |  | 
|  | // Truncate the splits into intermediate narrower elements. | 
|  | LLT InterTy; | 
|  | if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) | 
|  | InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2); | 
|  | else | 
|  | InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits()); | 
|  | for (unsigned I = 0; I < SplitSrcs.size(); ++I) { | 
|  | SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0); | 
|  | } | 
|  |  | 
|  | // Combine the new truncates into one vector | 
|  | auto Merge = MIRBuilder.buildMergeLikeInstr( | 
|  | DstTy.changeElementSize(InterTy.getScalarSizeInBits()), SplitSrcs); | 
|  |  | 
|  | // Truncate the new vector to the final result type | 
|  | if (DstTy.getScalarSizeInBits() * 2 < SrcTy.getScalarSizeInBits()) | 
|  | MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), Merge.getReg(0)); | 
|  | else | 
|  | MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Merge.getReg(0)); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return Legalized; | 
|  | } | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); | 
|  | auto Zero = MIRBuilder.buildConstant(AmtTy, 0); | 
|  | bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; | 
|  | unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; | 
|  | auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); | 
|  | MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); | 
|  |  | 
|  | unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); | 
|  | bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; | 
|  |  | 
|  | MIRBuilder.setInstrAndDebugLoc(MI); | 
|  |  | 
|  | // If a rotate in the other direction is supported, use it. | 
|  | unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; | 
|  | if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && | 
|  | isPowerOf2_32(EltSizeInBits)) | 
|  | return lowerRotateWithReverseRotate(MI); | 
|  |  | 
|  | // If a funnel shift is supported, use it. | 
|  | unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; | 
|  | unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; | 
|  | bool IsFShLegal = false; | 
|  | if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || | 
|  | LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { | 
|  | auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, | 
|  | Register R3) { | 
|  | MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | }; | 
|  | // If a funnel shift in the other direction is supported, use it. | 
|  | if (IsFShLegal) { | 
|  | return buildFunnelShift(FShOpc, Dst, Src, Amt); | 
|  | } else if (isPowerOf2_32(EltSizeInBits)) { | 
|  | Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); | 
|  | return buildFunnelShift(RevFsh, Dst, Src, Amt); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto Zero = MIRBuilder.buildConstant(AmtTy, 0); | 
|  | unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; | 
|  | unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; | 
|  | auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); | 
|  | Register ShVal; | 
|  | Register RevShiftVal; | 
|  | if (isPowerOf2_32(EltSizeInBits)) { | 
|  | // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) | 
|  | // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) | 
|  | auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); | 
|  | auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); | 
|  | ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); | 
|  | auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); | 
|  | RevShiftVal = | 
|  | MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); | 
|  | } else { | 
|  | // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) | 
|  | // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) | 
|  | auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); | 
|  | auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); | 
|  | ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); | 
|  | auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); | 
|  | auto One = MIRBuilder.buildConstant(AmtTy, 1); | 
|  | auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); | 
|  | RevShiftVal = | 
|  | MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); | 
|  | } | 
|  | MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float | 
|  | // representation. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { | 
|  | auto [Dst, Src] = MI.getFirst2Regs(); | 
|  | const LLT S64 = LLT::scalar(64); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  | const LLT S1 = LLT::scalar(1); | 
|  |  | 
|  | assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); | 
|  |  | 
|  | // unsigned cul2f(ulong u) { | 
|  | //   uint lz = clz(u); | 
|  | //   uint e = (u != 0) ? 127U + 63U - lz : 0; | 
|  | //   u = (u << lz) & 0x7fffffffffffffffUL; | 
|  | //   ulong t = u & 0xffffffffffUL; | 
|  | //   uint v = (e << 23) | (uint)(u >> 40); | 
|  | //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); | 
|  | //   return as_float(v + r); | 
|  | // } | 
|  |  | 
|  | auto Zero32 = MIRBuilder.buildConstant(S32, 0); | 
|  | auto Zero64 = MIRBuilder.buildConstant(S64, 0); | 
|  |  | 
|  | auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); | 
|  |  | 
|  | auto K = MIRBuilder.buildConstant(S32, 127U + 63U); | 
|  | auto Sub = MIRBuilder.buildSub(S32, K, LZ); | 
|  |  | 
|  | auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); | 
|  | auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); | 
|  |  | 
|  | auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); | 
|  | auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); | 
|  |  | 
|  | auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); | 
|  |  | 
|  | auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); | 
|  | auto T = MIRBuilder.buildAnd(S64, U, Mask1); | 
|  |  | 
|  | auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); | 
|  | auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); | 
|  | auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); | 
|  |  | 
|  | auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); | 
|  | auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); | 
|  | auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); | 
|  | auto One = MIRBuilder.buildConstant(S32, 1); | 
|  |  | 
|  | auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); | 
|  | auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); | 
|  | auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); | 
|  | MIRBuilder.buildAdd(Dst, V, R); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); | 
|  |  | 
|  | if (SrcTy == LLT::scalar(1)) { | 
|  | auto True = MIRBuilder.buildFConstant(DstTy, 1.0); | 
|  | auto False = MIRBuilder.buildFConstant(DstTy, 0.0); | 
|  | MIRBuilder.buildSelect(Dst, Src, True, False); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (SrcTy != LLT::scalar(64)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (DstTy == LLT::scalar(32)) { | 
|  | // TODO: SelectionDAG has several alternative expansions to port which may | 
|  | // be more reasonble depending on the available instructions. If a target | 
|  | // has sitofp, does not have CTLZ, or can efficiently use f64 as an | 
|  | // intermediate type, this is probably worse. | 
|  | return lowerU64ToF32BitOps(MI); | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); | 
|  |  | 
|  | const LLT S64 = LLT::scalar(64); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  | const LLT S1 = LLT::scalar(1); | 
|  |  | 
|  | if (SrcTy == S1) { | 
|  | auto True = MIRBuilder.buildFConstant(DstTy, -1.0); | 
|  | auto False = MIRBuilder.buildFConstant(DstTy, 0.0); | 
|  | MIRBuilder.buildSelect(Dst, Src, True, False); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (SrcTy != S64) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (DstTy == S32) { | 
|  | // signed cl2f(long l) { | 
|  | //   long s = l >> 63; | 
|  | //   float r = cul2f((l + s) ^ s); | 
|  | //   return s ? -r : r; | 
|  | // } | 
|  | Register L = Src; | 
|  | auto SignBit = MIRBuilder.buildConstant(S64, 63); | 
|  | auto S = MIRBuilder.buildAShr(S64, L, SignBit); | 
|  |  | 
|  | auto LPlusS = MIRBuilder.buildAdd(S64, L, S); | 
|  | auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); | 
|  | auto R = MIRBuilder.buildUITOFP(S32, Xor); | 
|  |  | 
|  | auto RNeg = MIRBuilder.buildFNeg(S32, R); | 
|  | auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, | 
|  | MIRBuilder.buildConstant(S64, 0)); | 
|  | MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | const LLT S64 = LLT::scalar(64); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  |  | 
|  | if (SrcTy != S64 && SrcTy != S32) | 
|  | return UnableToLegalize; | 
|  | if (DstTy != S32 && DstTy != S64) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // FPTOSI gives same result as FPTOUI for positive signed integers. | 
|  | // FPTOUI needs to deal with fp values that convert to unsigned integers | 
|  | // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. | 
|  |  | 
|  | APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); | 
|  | APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() | 
|  | : APFloat::IEEEdouble(), | 
|  | APInt::getZero(SrcTy.getSizeInBits())); | 
|  | TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); | 
|  |  | 
|  | MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); | 
|  |  | 
|  | MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); | 
|  | // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on | 
|  | // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. | 
|  | MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); | 
|  | MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); | 
|  | MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); | 
|  | MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); | 
|  |  | 
|  | const LLT S1 = LLT::scalar(1); | 
|  |  | 
|  | MachineInstrBuilder FCMP = | 
|  | MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); | 
|  | MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | const LLT S64 = LLT::scalar(64); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  |  | 
|  | // FIXME: Only f32 to i64 conversions are supported. | 
|  | if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Expand f32 -> i64 conversion | 
|  | // This algorithm comes from compiler-rt's implementation of fixsfdi: | 
|  | // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c | 
|  |  | 
|  | unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); | 
|  |  | 
|  | auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); | 
|  | auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); | 
|  |  | 
|  | auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); | 
|  | auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); | 
|  |  | 
|  | auto SignMask = MIRBuilder.buildConstant(SrcTy, | 
|  | APInt::getSignMask(SrcEltBits)); | 
|  | auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); | 
|  | auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); | 
|  | auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); | 
|  | Sign = MIRBuilder.buildSExt(DstTy, Sign); | 
|  |  | 
|  | auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); | 
|  | auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); | 
|  | auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); | 
|  |  | 
|  | auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); | 
|  | R = MIRBuilder.buildZExt(DstTy, R); | 
|  |  | 
|  | auto Bias = MIRBuilder.buildConstant(SrcTy, 127); | 
|  | auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); | 
|  | auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); | 
|  | auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); | 
|  |  | 
|  | auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); | 
|  | auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); | 
|  |  | 
|  | const LLT S1 = LLT::scalar(1); | 
|  | auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, | 
|  | S1, Exponent, ExponentLoBit); | 
|  |  | 
|  | R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); | 
|  |  | 
|  | auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); | 
|  | auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); | 
|  |  | 
|  | auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); | 
|  |  | 
|  | auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, | 
|  | S1, Exponent, ZeroSrcTy); | 
|  |  | 
|  | auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); | 
|  | MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // f64 -> f16 conversion using round-to-nearest-even rounding mode. | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { | 
|  | const LLT S1 = LLT::scalar(1); | 
|  | const LLT S32 = LLT::scalar(32); | 
|  |  | 
|  | auto [Dst, Src] = MI.getFirst2Regs(); | 
|  | assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) && | 
|  | MRI.getType(Src).getScalarType() == LLT::scalar(64)); | 
|  |  | 
|  | if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) { | 
|  | unsigned Flags = MI.getFlags(); | 
|  | auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags); | 
|  | MIRBuilder.buildFPTrunc(Dst, Src32, Flags); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | const unsigned ExpMask = 0x7ff; | 
|  | const unsigned ExpBiasf64 = 1023; | 
|  | const unsigned ExpBiasf16 = 15; | 
|  |  | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); | 
|  | Register U = Unmerge.getReg(0); | 
|  | Register UH = Unmerge.getReg(1); | 
|  |  | 
|  | auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); | 
|  | E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); | 
|  |  | 
|  | // Subtract the fp64 exponent bias (1023) to get the real exponent and | 
|  | // add the f16 bias (15) to get the biased exponent for the f16 format. | 
|  | E = MIRBuilder.buildAdd( | 
|  | S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); | 
|  |  | 
|  | auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); | 
|  | M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); | 
|  |  | 
|  | auto MaskedSig = MIRBuilder.buildAnd(S32, UH, | 
|  | MIRBuilder.buildConstant(S32, 0x1ff)); | 
|  | MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); | 
|  |  | 
|  | auto Zero = MIRBuilder.buildConstant(S32, 0); | 
|  | auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); | 
|  | auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); | 
|  | M = MIRBuilder.buildOr(S32, M, Lo40Set); | 
|  |  | 
|  | // (M != 0 ? 0x0200 : 0) | 0x7c00; | 
|  | auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); | 
|  | auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); | 
|  | auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); | 
|  |  | 
|  | auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); | 
|  | auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); | 
|  |  | 
|  | // N = M | (E << 12); | 
|  | auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); | 
|  | auto N = MIRBuilder.buildOr(S32, M, EShl12); | 
|  |  | 
|  | // B = clamp(1-E, 0, 13); | 
|  | auto One = MIRBuilder.buildConstant(S32, 1); | 
|  | auto OneSubExp = MIRBuilder.buildSub(S32, One, E); | 
|  | auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); | 
|  | B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); | 
|  |  | 
|  | auto SigSetHigh = MIRBuilder.buildOr(S32, M, | 
|  | MIRBuilder.buildConstant(S32, 0x1000)); | 
|  |  | 
|  | auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); | 
|  | auto D0 = MIRBuilder.buildShl(S32, D, B); | 
|  |  | 
|  | auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, | 
|  | D0, SigSetHigh); | 
|  | auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); | 
|  | D = MIRBuilder.buildOr(S32, D, D1); | 
|  |  | 
|  | auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); | 
|  | auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); | 
|  |  | 
|  | auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); | 
|  | V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); | 
|  |  | 
|  | auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, | 
|  | MIRBuilder.buildConstant(S32, 3)); | 
|  | auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); | 
|  |  | 
|  | auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, | 
|  | MIRBuilder.buildConstant(S32, 5)); | 
|  | auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); | 
|  |  | 
|  | V1 = MIRBuilder.buildOr(S32, V0, V1); | 
|  | V = MIRBuilder.buildAdd(S32, V, V1); | 
|  |  | 
|  | auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1, | 
|  | E, MIRBuilder.buildConstant(S32, 30)); | 
|  | V = MIRBuilder.buildSelect(S32, CmpEGt30, | 
|  | MIRBuilder.buildConstant(S32, 0x7c00), V); | 
|  |  | 
|  | auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, | 
|  | E, MIRBuilder.buildConstant(S32, 1039)); | 
|  | V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); | 
|  |  | 
|  | // Extract the sign bit. | 
|  | auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); | 
|  | Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); | 
|  |  | 
|  | // Insert the sign bit | 
|  | V = MIRBuilder.buildOr(S32, Sign, V); | 
|  |  | 
|  | MIRBuilder.buildTrunc(Dst, V); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { | 
|  | auto [DstTy, SrcTy] = MI.getFirst2LLTs(); | 
|  | const LLT S64 = LLT::scalar(64); | 
|  | const LLT S16 = LLT::scalar(16); | 
|  |  | 
|  | if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) | 
|  | return lowerFPTRUNC_F64_TO_F16(MI); | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | // TODO: If RHS is a constant SelectionDAGBuilder expands this into a | 
|  | // multiplication tree. | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { | 
|  | auto [Dst, Src0, Src1] = MI.getFirst3Regs(); | 
|  | LLT Ty = MRI.getType(Dst); | 
|  |  | 
|  | auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); | 
|  | MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | static CmpInst::Predicate minMaxToCompare(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case TargetOpcode::G_SMIN: | 
|  | return CmpInst::ICMP_SLT; | 
|  | case TargetOpcode::G_SMAX: | 
|  | return CmpInst::ICMP_SGT; | 
|  | case TargetOpcode::G_UMIN: | 
|  | return CmpInst::ICMP_ULT; | 
|  | case TargetOpcode::G_UMAX: | 
|  | return CmpInst::ICMP_UGT; | 
|  | default: | 
|  | llvm_unreachable("not in integer min/max"); | 
|  | } | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { | 
|  | auto [Dst, Src0, Src1] = MI.getFirst3Regs(); | 
|  |  | 
|  | const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); | 
|  | LLT CmpType = MRI.getType(Dst).changeElementSize(1); | 
|  |  | 
|  | auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); | 
|  | MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFCopySign(MachineInstr &MI) { | 
|  | auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs(); | 
|  | const int Src0Size = Src0Ty.getScalarSizeInBits(); | 
|  | const int Src1Size = Src1Ty.getScalarSizeInBits(); | 
|  |  | 
|  | auto SignBitMask = MIRBuilder.buildConstant( | 
|  | Src0Ty, APInt::getSignMask(Src0Size)); | 
|  |  | 
|  | auto NotSignBitMask = MIRBuilder.buildConstant( | 
|  | Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); | 
|  |  | 
|  | Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); | 
|  | Register And1; | 
|  | if (Src0Ty == Src1Ty) { | 
|  | And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); | 
|  | } else if (Src0Size > Src1Size) { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); | 
|  | auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); | 
|  | auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); | 
|  | And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); | 
|  | } else { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); | 
|  | auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); | 
|  | auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); | 
|  | And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); | 
|  | } | 
|  |  | 
|  | // Be careful about setting nsz/nnan/ninf on every instruction, since the | 
|  | // constants are a nan and -0.0, but the final result should preserve | 
|  | // everything. | 
|  | unsigned Flags = MI.getFlags(); | 
|  | MIRBuilder.buildOr(Dst, And0, And1, Flags); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { | 
|  | unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? | 
|  | TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; | 
|  |  | 
|  | auto [Dst, Src0, Src1] = MI.getFirst3Regs(); | 
|  | LLT Ty = MRI.getType(Dst); | 
|  |  | 
|  | if (!MI.getFlag(MachineInstr::FmNoNans)) { | 
|  | // Insert canonicalizes if it's possible we need to quiet to get correct | 
|  | // sNaN behavior. | 
|  |  | 
|  | // Note this must be done here, and not as an optimization combine in the | 
|  | // absence of a dedicate quiet-snan instruction as we're using an | 
|  | // omni-purpose G_FCANONICALIZE. | 
|  | if (!isKnownNeverSNaN(Src0, MRI)) | 
|  | Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); | 
|  |  | 
|  | if (!isKnownNeverSNaN(Src1, MRI)) | 
|  | Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); | 
|  | } | 
|  |  | 
|  | // If there are no nans, it's safe to simply replace this with the non-IEEE | 
|  | // version. | 
|  | MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { | 
|  | // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | LLT Ty = MRI.getType(DstReg); | 
|  | unsigned Flags = MI.getFlags(); | 
|  |  | 
|  | auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), | 
|  | Flags); | 
|  | MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { | 
|  | auto [DstReg, X] = MI.getFirst2Regs(); | 
|  | const unsigned Flags = MI.getFlags(); | 
|  | const LLT Ty = MRI.getType(DstReg); | 
|  | const LLT CondTy = Ty.changeElementSize(1); | 
|  |  | 
|  | // round(x) => | 
|  | //  t = trunc(x); | 
|  | //  d = fabs(x - t); | 
|  | //  o = copysign(d >= 0.5 ? 1.0 : 0.0, x); | 
|  | //  return t + o; | 
|  |  | 
|  | auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); | 
|  |  | 
|  | auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); | 
|  | auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); | 
|  |  | 
|  | auto Half = MIRBuilder.buildFConstant(Ty, 0.5); | 
|  | auto Cmp = | 
|  | MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags); | 
|  |  | 
|  | // Could emit G_UITOFP instead | 
|  | auto One = MIRBuilder.buildFConstant(Ty, 1.0); | 
|  | auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); | 
|  | auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero); | 
|  | auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X); | 
|  |  | 
|  | MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) { | 
|  | auto [DstReg, SrcReg] = MI.getFirst2Regs(); | 
|  | unsigned Flags = MI.getFlags(); | 
|  | LLT Ty = MRI.getType(DstReg); | 
|  | const LLT CondTy = Ty.changeElementSize(1); | 
|  |  | 
|  | // result = trunc(src); | 
|  | // if (src < 0.0 && src != result) | 
|  | //   result += -1.0. | 
|  |  | 
|  | auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); | 
|  | auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); | 
|  |  | 
|  | auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, | 
|  | SrcReg, Zero, Flags); | 
|  | auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, | 
|  | SrcReg, Trunc, Flags); | 
|  | auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); | 
|  | auto AddVal = MIRBuilder.buildSITOFP(Ty, And); | 
|  |  | 
|  | MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMergeValues(MachineInstr &MI) { | 
|  | const unsigned NumOps = MI.getNumOperands(); | 
|  | auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs(); | 
|  | unsigned PartSize = Src0Ty.getSizeInBits(); | 
|  |  | 
|  | LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); | 
|  | Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); | 
|  |  | 
|  | for (unsigned I = 2; I != NumOps; ++I) { | 
|  | const unsigned Offset = (I - 1) * PartSize; | 
|  |  | 
|  | Register SrcReg = MI.getOperand(I).getReg(); | 
|  | auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); | 
|  |  | 
|  | Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : | 
|  | MRI.createGenericVirtualRegister(WideTy); | 
|  |  | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); | 
|  | auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); | 
|  | MIRBuilder.buildOr(NextResult, ResultReg, Shl); | 
|  | ResultReg = NextResult; | 
|  | } | 
|  |  | 
|  | if (DstTy.isPointer()) { | 
|  | if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( | 
|  | DstTy.getAddressSpace())) { | 
|  | LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildIntToPtr(DstReg, ResultReg); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { | 
|  | const unsigned NumDst = MI.getNumOperands() - 1; | 
|  | Register SrcReg = MI.getOperand(NumDst).getReg(); | 
|  | Register Dst0Reg = MI.getOperand(0).getReg(); | 
|  | LLT DstTy = MRI.getType(Dst0Reg); | 
|  | if (DstTy.isPointer()) | 
|  | return UnableToLegalize; // TODO | 
|  |  | 
|  | SrcReg = coerceToScalar(SrcReg); | 
|  | if (!SrcReg) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Expand scalarizing unmerge as bitcast to integer and shift. | 
|  | LLT IntTy = MRI.getType(SrcReg); | 
|  |  | 
|  | MIRBuilder.buildTrunc(Dst0Reg, SrcReg); | 
|  |  | 
|  | const unsigned DstSize = DstTy.getSizeInBits(); | 
|  | unsigned Offset = DstSize; | 
|  | for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); | 
|  | auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); | 
|  | MIRBuilder.buildTrunc(MI.getOperand(I), Shift); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | /// Lower a vector extract or insert by writing the vector to a stack temporary | 
|  | /// and reloading the element or vector. | 
|  | /// | 
|  | /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx | 
|  | ///  => | 
|  | ///  %stack_temp = G_FRAME_INDEX | 
|  | ///  G_STORE %vec, %stack_temp | 
|  | ///  %idx = clamp(%idx, %vec.getNumElements()) | 
|  | ///  %element_ptr = G_PTR_ADD %stack_temp, %idx | 
|  | ///  %dst = G_LOAD %element_ptr | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  | Register SrcVec = MI.getOperand(1).getReg(); | 
|  | Register InsertVal; | 
|  | if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) | 
|  | InsertVal = MI.getOperand(2).getReg(); | 
|  |  | 
|  | Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); | 
|  |  | 
|  | LLT VecTy = MRI.getType(SrcVec); | 
|  | LLT EltTy = VecTy.getElementType(); | 
|  | unsigned NumElts = VecTy.getNumElements(); | 
|  |  | 
|  | int64_t IdxVal; | 
|  | if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { | 
|  | SmallVector<Register, 8> SrcRegs; | 
|  | extractParts(SrcVec, EltTy, NumElts, SrcRegs, MIRBuilder, MRI); | 
|  |  | 
|  | if (InsertVal) { | 
|  | SrcRegs[IdxVal] = MI.getOperand(2).getReg(); | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs); | 
|  | } else { | 
|  | MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | if (!EltTy.isByteSized()) { // Not implemented. | 
|  | LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | unsigned EltBytes = EltTy.getSizeInBytes(); | 
|  | Align VecAlign = getStackTemporaryAlignment(VecTy); | 
|  | Align EltAlign; | 
|  |  | 
|  | MachinePointerInfo PtrInfo; | 
|  | auto StackTemp = createStackTemporary( | 
|  | TypeSize::getFixed(VecTy.getSizeInBytes()), VecAlign, PtrInfo); | 
|  | MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); | 
|  |  | 
|  | // Get the pointer to the element, and be sure not to hit undefined behavior | 
|  | // if the index is out of bounds. | 
|  | Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); | 
|  |  | 
|  | if (mi_match(Idx, MRI, m_ICst(IdxVal))) { | 
|  | int64_t Offset = IdxVal * EltBytes; | 
|  | PtrInfo = PtrInfo.getWithOffset(Offset); | 
|  | EltAlign = commonAlignment(VecAlign, Offset); | 
|  | } else { | 
|  | // We lose information with a variable offset. | 
|  | EltAlign = getStackTemporaryAlignment(EltTy); | 
|  | PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); | 
|  | } | 
|  |  | 
|  | if (InsertVal) { | 
|  | // Write the inserted element | 
|  | MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); | 
|  |  | 
|  | // Reload the whole vector. | 
|  | MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); | 
|  | } else { | 
|  | MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { | 
|  | auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] = | 
|  | MI.getFirst3RegLLTs(); | 
|  | LLT IdxTy = LLT::scalar(32); | 
|  |  | 
|  | ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); | 
|  | Register Undef; | 
|  | SmallVector<Register, 32> BuildVec; | 
|  | LLT EltTy = DstTy.getScalarType(); | 
|  |  | 
|  | for (int Idx : Mask) { | 
|  | if (Idx < 0) { | 
|  | if (!Undef.isValid()) | 
|  | Undef = MIRBuilder.buildUndef(EltTy).getReg(0); | 
|  | BuildVec.push_back(Undef); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Src0Ty.isScalar()) { | 
|  | BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); | 
|  | } else { | 
|  | int NumElts = Src0Ty.getNumElements(); | 
|  | Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; | 
|  | int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; | 
|  | auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); | 
|  | auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); | 
|  | BuildVec.push_back(Extract.getReg(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DstTy.isScalar()) | 
|  | MIRBuilder.buildCopy(DstReg, BuildVec[0]); | 
|  | else | 
|  | MIRBuilder.buildBuildVector(DstReg, BuildVec); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | Register LegalizerHelper::getDynStackAllocTargetPtr(Register SPReg, | 
|  | Register AllocSize, | 
|  | Align Alignment, | 
|  | LLT PtrTy) { | 
|  | LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); | 
|  |  | 
|  | auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); | 
|  | SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); | 
|  |  | 
|  | // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't | 
|  | // have to generate an extra instruction to negate the alloc and then use | 
|  | // G_PTR_ADD to add the negative offset. | 
|  | auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); | 
|  | if (Alignment > Align(1)) { | 
|  | APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); | 
|  | AlignMask.negate(); | 
|  | auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); | 
|  | Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); | 
|  | } | 
|  |  | 
|  | return MIRBuilder.buildCast(PtrTy, Alloc).getReg(0); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { | 
|  | const auto &MF = *MI.getMF(); | 
|  | const auto &TFI = *MF.getSubtarget().getFrameLowering(); | 
|  | if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | Register AllocSize = MI.getOperand(1).getReg(); | 
|  | Align Alignment = assumeAligned(MI.getOperand(2).getImm()); | 
|  |  | 
|  | LLT PtrTy = MRI.getType(Dst); | 
|  | Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | Register SPTmp = | 
|  | getDynStackAllocTargetPtr(SPReg, AllocSize, Alignment, PtrTy); | 
|  |  | 
|  | MIRBuilder.buildCopy(SPReg, SPTmp); | 
|  | MIRBuilder.buildCopy(Dst, SPTmp); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerStackSave(MachineInstr &MI) { | 
|  | Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | if (!StackPtr) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | MIRBuilder.buildCopy(MI.getOperand(0), StackPtr); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerStackRestore(MachineInstr &MI) { | 
|  | Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); | 
|  | if (!StackPtr) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | MIRBuilder.buildCopy(StackPtr, MI.getOperand(0)); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerExtract(MachineInstr &MI) { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | unsigned Offset = MI.getOperand(2).getImm(); | 
|  |  | 
|  | // Extract sub-vector or one element | 
|  | if (SrcTy.isVector()) { | 
|  | unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); | 
|  | unsigned DstSize = DstTy.getSizeInBits(); | 
|  |  | 
|  | if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && | 
|  | (Offset + DstSize <= SrcTy.getSizeInBits())) { | 
|  | // Unmerge and allow access to each Src element for the artifact combiner. | 
|  | auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg); | 
|  |  | 
|  | // Take element(s) we need to extract and copy it (merge them). | 
|  | SmallVector<Register, 8> SubVectorElts; | 
|  | for (unsigned Idx = Offset / SrcEltSize; | 
|  | Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { | 
|  | SubVectorElts.push_back(Unmerge.getReg(Idx)); | 
|  | } | 
|  | if (SubVectorElts.size() == 1) | 
|  | MIRBuilder.buildCopy(DstReg, SubVectorElts[0]); | 
|  | else | 
|  | MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DstTy.isScalar() && | 
|  | (SrcTy.isScalar() || | 
|  | (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { | 
|  | LLT SrcIntTy = SrcTy; | 
|  | if (!SrcTy.isScalar()) { | 
|  | SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); | 
|  | SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0); | 
|  | } | 
|  |  | 
|  | if (Offset == 0) | 
|  | MIRBuilder.buildTrunc(DstReg, SrcReg); | 
|  | else { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); | 
|  | auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt); | 
|  | MIRBuilder.buildTrunc(DstReg, Shr); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { | 
|  | auto [Dst, Src, InsertSrc] = MI.getFirst3Regs(); | 
|  | uint64_t Offset = MI.getOperand(3).getImm(); | 
|  |  | 
|  | LLT DstTy = MRI.getType(Src); | 
|  | LLT InsertTy = MRI.getType(InsertSrc); | 
|  |  | 
|  | // Insert sub-vector or one element | 
|  | if (DstTy.isVector() && !InsertTy.isPointer()) { | 
|  | LLT EltTy = DstTy.getElementType(); | 
|  | unsigned EltSize = EltTy.getSizeInBits(); | 
|  | unsigned InsertSize = InsertTy.getSizeInBits(); | 
|  |  | 
|  | if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && | 
|  | (Offset + InsertSize <= DstTy.getSizeInBits())) { | 
|  | auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); | 
|  | SmallVector<Register, 8> DstElts; | 
|  | unsigned Idx = 0; | 
|  | // Elements from Src before insert start Offset | 
|  | for (; Idx < Offset / EltSize; ++Idx) { | 
|  | DstElts.push_back(UnmergeSrc.getReg(Idx)); | 
|  | } | 
|  |  | 
|  | // Replace elements in Src with elements from InsertSrc | 
|  | if (InsertTy.getSizeInBits() > EltSize) { | 
|  | auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); | 
|  | for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; | 
|  | ++Idx, ++i) { | 
|  | DstElts.push_back(UnmergeInsertSrc.getReg(i)); | 
|  | } | 
|  | } else { | 
|  | DstElts.push_back(InsertSrc); | 
|  | ++Idx; | 
|  | } | 
|  |  | 
|  | // Remaining elements from Src after insert | 
|  | for (; Idx < DstTy.getNumElements(); ++Idx) { | 
|  | DstElts.push_back(UnmergeSrc.getReg(Idx)); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildMergeLikeInstr(Dst, DstElts); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (InsertTy.isVector() || | 
|  | (DstTy.isVector() && DstTy.getElementType() != InsertTy)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | if ((DstTy.isPointer() && | 
|  | DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || | 
|  | (InsertTy.isPointer() && | 
|  | DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { | 
|  | LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | LLT IntDstTy = DstTy; | 
|  |  | 
|  | if (!DstTy.isScalar()) { | 
|  | IntDstTy = LLT::scalar(DstTy.getSizeInBits()); | 
|  | Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); | 
|  | } | 
|  |  | 
|  | if (!InsertTy.isScalar()) { | 
|  | const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); | 
|  | InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); | 
|  | } | 
|  |  | 
|  | Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); | 
|  | if (Offset != 0) { | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); | 
|  | ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); | 
|  | } | 
|  |  | 
|  | APInt MaskVal = APInt::getBitsSetWithWrap( | 
|  | DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); | 
|  |  | 
|  | auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); | 
|  | auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); | 
|  | auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); | 
|  |  | 
|  | MIRBuilder.buildCast(Dst, Or); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { | 
|  | auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] = | 
|  | MI.getFirst4RegLLTs(); | 
|  | const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; | 
|  |  | 
|  | LLT Ty = Dst0Ty; | 
|  | LLT BoolTy = Dst1Ty; | 
|  |  | 
|  | Register NewDst0 = MRI.cloneVirtualRegister(Dst0); | 
|  |  | 
|  | if (IsAdd) | 
|  | MIRBuilder.buildAdd(NewDst0, LHS, RHS); | 
|  | else | 
|  | MIRBuilder.buildSub(NewDst0, LHS, RHS); | 
|  |  | 
|  | // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. | 
|  |  | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0); | 
|  |  | 
|  | // For an addition, the result should be less than one of the operands (LHS) | 
|  | // if and only if the other operand (RHS) is negative, otherwise there will | 
|  | // be overflow. | 
|  | // For a subtraction, the result should be less than one of the operands | 
|  | // (LHS) if and only if the other operand (RHS) is (non-zero) positive, | 
|  | // otherwise there will be overflow. | 
|  | auto ResultLowerThanLHS = | 
|  | MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, NewDst0, LHS); | 
|  | auto ConditionRHS = MIRBuilder.buildICmp( | 
|  | IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); | 
|  |  | 
|  | MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); | 
|  |  | 
|  | MIRBuilder.buildCopy(Dst0, NewDst0); | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { | 
|  | auto [Res, LHS, RHS] = MI.getFirst3Regs(); | 
|  | LLT Ty = MRI.getType(Res); | 
|  | bool IsSigned; | 
|  | bool IsAdd; | 
|  | unsigned BaseOp; | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("unexpected addsat/subsat opcode"); | 
|  | case TargetOpcode::G_UADDSAT: | 
|  | IsSigned = false; | 
|  | IsAdd = true; | 
|  | BaseOp = TargetOpcode::G_ADD; | 
|  | break; | 
|  | case TargetOpcode::G_SADDSAT: | 
|  | IsSigned = true; | 
|  | IsAdd = true; | 
|  | BaseOp = TargetOpcode::G_ADD; | 
|  | break; | 
|  | case TargetOpcode::G_USUBSAT: | 
|  | IsSigned = false; | 
|  | IsAdd = false; | 
|  | BaseOp = TargetOpcode::G_SUB; | 
|  | break; | 
|  | case TargetOpcode::G_SSUBSAT: | 
|  | IsSigned = true; | 
|  | IsAdd = false; | 
|  | BaseOp = TargetOpcode::G_SUB; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (IsSigned) { | 
|  | // sadd.sat(a, b) -> | 
|  | //   hi = 0x7fffffff - smax(a, 0) | 
|  | //   lo = 0x80000000 - smin(a, 0) | 
|  | //   a + smin(smax(lo, b), hi) | 
|  | // ssub.sat(a, b) -> | 
|  | //   lo = smax(a, -1) - 0x7fffffff | 
|  | //   hi = smin(a, -1) - 0x80000000 | 
|  | //   a - smin(smax(lo, b), hi) | 
|  | // TODO: AMDGPU can use a "median of 3" instruction here: | 
|  | //   a +/- med3(lo, b, hi) | 
|  | uint64_t NumBits = Ty.getScalarSizeInBits(); | 
|  | auto MaxVal = | 
|  | MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); | 
|  | auto MinVal = | 
|  | MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); | 
|  | MachineInstrBuilder Hi, Lo; | 
|  | if (IsAdd) { | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0); | 
|  | Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); | 
|  | Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); | 
|  | } else { | 
|  | auto NegOne = MIRBuilder.buildConstant(Ty, -1); | 
|  | Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), | 
|  | MaxVal); | 
|  | Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), | 
|  | MinVal); | 
|  | } | 
|  | auto RHSClamped = | 
|  | MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); | 
|  | MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); | 
|  | } else { | 
|  | // uadd.sat(a, b) -> a + umin(~a, b) | 
|  | // usub.sat(a, b) -> a - umin(a, b) | 
|  | Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; | 
|  | auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); | 
|  | MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { | 
|  | auto [Res, LHS, RHS] = MI.getFirst3Regs(); | 
|  | LLT Ty = MRI.getType(Res); | 
|  | LLT BoolTy = Ty.changeElementSize(1); | 
|  | bool IsSigned; | 
|  | bool IsAdd; | 
|  | unsigned OverflowOp; | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("unexpected addsat/subsat opcode"); | 
|  | case TargetOpcode::G_UADDSAT: | 
|  | IsSigned = false; | 
|  | IsAdd = true; | 
|  | OverflowOp = TargetOpcode::G_UADDO; | 
|  | break; | 
|  | case TargetOpcode::G_SADDSAT: | 
|  | IsSigned = true; | 
|  | IsAdd = true; | 
|  | OverflowOp = TargetOpcode::G_SADDO; | 
|  | break; | 
|  | case TargetOpcode::G_USUBSAT: | 
|  | IsSigned = false; | 
|  | IsAdd = false; | 
|  | OverflowOp = TargetOpcode::G_USUBO; | 
|  | break; | 
|  | case TargetOpcode::G_SSUBSAT: | 
|  | IsSigned = true; | 
|  | IsAdd = false; | 
|  | OverflowOp = TargetOpcode::G_SSUBO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto OverflowRes = | 
|  | MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); | 
|  | Register Tmp = OverflowRes.getReg(0); | 
|  | Register Ov = OverflowRes.getReg(1); | 
|  | MachineInstrBuilder Clamp; | 
|  | if (IsSigned) { | 
|  | // sadd.sat(a, b) -> | 
|  | //   {tmp, ov} = saddo(a, b) | 
|  | //   ov ? (tmp >>s 31) + 0x80000000 : r | 
|  | // ssub.sat(a, b) -> | 
|  | //   {tmp, ov} = ssubo(a, b) | 
|  | //   ov ? (tmp >>s 31) + 0x80000000 : r | 
|  | uint64_t NumBits = Ty.getScalarSizeInBits(); | 
|  | auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); | 
|  | auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); | 
|  | auto MinVal = | 
|  | MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); | 
|  | Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); | 
|  | } else { | 
|  | // uadd.sat(a, b) -> | 
|  | //   {tmp, ov} = uaddo(a, b) | 
|  | //   ov ? 0xffffffff : tmp | 
|  | // usub.sat(a, b) -> | 
|  | //   {tmp, ov} = usubo(a, b) | 
|  | //   ov ? 0 : tmp | 
|  | Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); | 
|  | } | 
|  | MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerShlSat(MachineInstr &MI) { | 
|  | assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || | 
|  | MI.getOpcode() == TargetOpcode::G_USHLSAT) && | 
|  | "Expected shlsat opcode!"); | 
|  | bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; | 
|  | auto [Res, LHS, RHS] = MI.getFirst3Regs(); | 
|  | LLT Ty = MRI.getType(Res); | 
|  | LLT BoolTy = Ty.changeElementSize(1); | 
|  |  | 
|  | unsigned BW = Ty.getScalarSizeInBits(); | 
|  | auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); | 
|  | auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) | 
|  | : MIRBuilder.buildLShr(Ty, Result, RHS); | 
|  |  | 
|  | MachineInstrBuilder SatVal; | 
|  | if (IsSigned) { | 
|  | auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); | 
|  | auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); | 
|  | auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, | 
|  | MIRBuilder.buildConstant(Ty, 0)); | 
|  | SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); | 
|  | } else { | 
|  | SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); | 
|  | } | 
|  | auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); | 
|  | MIRBuilder.buildSelect(Res, Ov, SatVal, Result); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) { | 
|  | auto [Dst, Src] = MI.getFirst2Regs(); | 
|  | const LLT Ty = MRI.getType(Src); | 
|  | unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; | 
|  | unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; | 
|  |  | 
|  | // Swap most and least significant byte, set remaining bytes in Res to zero. | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); | 
|  | auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); | 
|  | auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); | 
|  | auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); | 
|  |  | 
|  | // Set i-th high/low byte in Res to i-th low/high byte from Src. | 
|  | for (unsigned i = 1; i < SizeInBytes / 2; ++i) { | 
|  | // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. | 
|  | APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); | 
|  | auto Mask = MIRBuilder.buildConstant(Ty, APMask); | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); | 
|  | // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. | 
|  | auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); | 
|  | auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); | 
|  | Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); | 
|  | // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. | 
|  | auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); | 
|  | auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); | 
|  | Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); | 
|  | } | 
|  | Res.getInstr()->getOperand(0).setReg(Dst); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | //{ (Src & Mask) >> N } | { (Src << N) & Mask } | 
|  | static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, | 
|  | MachineInstrBuilder Src, const APInt &Mask) { | 
|  | const LLT Ty = Dst.getLLTTy(*B.getMRI()); | 
|  | MachineInstrBuilder C_N = B.buildConstant(Ty, N); | 
|  | MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); | 
|  | auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); | 
|  | auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); | 
|  | return B.buildOr(Dst, LHS, RHS); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerBitreverse(MachineInstr &MI) { | 
|  | auto [Dst, Src] = MI.getFirst2Regs(); | 
|  | const LLT Ty = MRI.getType(Src); | 
|  | unsigned Size = Ty.getSizeInBits(); | 
|  |  | 
|  | MachineInstrBuilder BSWAP = | 
|  | MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); | 
|  |  | 
|  | // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 | 
|  | //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] | 
|  | // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] | 
|  | MachineInstrBuilder Swap4 = | 
|  | SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); | 
|  |  | 
|  | // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 | 
|  | //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] | 
|  | // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] | 
|  | MachineInstrBuilder Swap2 = | 
|  | SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); | 
|  |  | 
|  | // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 | 
|  | //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] | 
|  | // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] | 
|  | SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { | 
|  | MachineFunction &MF = MIRBuilder.getMF(); | 
|  |  | 
|  | bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; | 
|  | int NameOpIdx = IsRead ? 1 : 0; | 
|  | int ValRegIndex = IsRead ? 0 : 1; | 
|  |  | 
|  | Register ValReg = MI.getOperand(ValRegIndex).getReg(); | 
|  | const LLT Ty = MRI.getType(ValReg); | 
|  | const MDString *RegStr = cast<MDString>( | 
|  | cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); | 
|  |  | 
|  | Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); | 
|  | if (!PhysReg.isValid()) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (IsRead) | 
|  | MIRBuilder.buildCopy(ValReg, PhysReg); | 
|  | else | 
|  | MIRBuilder.buildCopy(PhysReg, ValReg); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { | 
|  | bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; | 
|  | unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; | 
|  | Register Result = MI.getOperand(0).getReg(); | 
|  | LLT OrigTy = MRI.getType(Result); | 
|  | auto SizeInBits = OrigTy.getScalarSizeInBits(); | 
|  | LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); | 
|  |  | 
|  | auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); | 
|  | auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); | 
|  | auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); | 
|  | unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; | 
|  |  | 
|  | auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); | 
|  | auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); | 
|  | MIRBuilder.buildTrunc(Result, Shifted); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) { | 
|  | auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); | 
|  | FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm()); | 
|  |  | 
|  | if (Mask == fcNone) { | 
|  | MIRBuilder.buildConstant(DstReg, 0); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  | if (Mask == fcAllFlags) { | 
|  | MIRBuilder.buildConstant(DstReg, 1); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | // TODO: Try inverting the test with getInvertedFPClassTest like the DAG | 
|  | // version | 
|  |  | 
|  | unsigned BitSize = SrcTy.getScalarSizeInBits(); | 
|  | const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType()); | 
|  |  | 
|  | LLT IntTy = LLT::scalar(BitSize); | 
|  | if (SrcTy.isVector()) | 
|  | IntTy = LLT::vector(SrcTy.getElementCount(), IntTy); | 
|  | auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg); | 
|  |  | 
|  | // Various masks. | 
|  | APInt SignBit = APInt::getSignMask(BitSize); | 
|  | APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign. | 
|  | APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. | 
|  | APInt ExpMask = Inf; | 
|  | APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; | 
|  | APInt QNaNBitMask = | 
|  | APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); | 
|  | APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits()); | 
|  |  | 
|  | auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit); | 
|  | auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask); | 
|  | auto InfC = MIRBuilder.buildConstant(IntTy, Inf); | 
|  | auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask); | 
|  | auto ZeroC = MIRBuilder.buildConstant(IntTy, 0); | 
|  |  | 
|  | auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC); | 
|  | auto Sign = | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs); | 
|  |  | 
|  | auto Res = MIRBuilder.buildConstant(DstTy, 0); | 
|  | // Clang doesn't support capture of structured bindings: | 
|  | LLT DstTyCopy = DstTy; | 
|  | const auto appendToRes = [&](MachineInstrBuilder ToAppend) { | 
|  | Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend); | 
|  | }; | 
|  |  | 
|  | // Tests that involve more than one class should be processed first. | 
|  | if ((Mask & fcFinite) == fcFinite) { | 
|  | // finite(V) ==> abs(V) u< exp_mask | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, | 
|  | ExpMaskC)); | 
|  | Mask &= ~fcFinite; | 
|  | } else if ((Mask & fcFinite) == fcPosFinite) { | 
|  | // finite(V) && V > 0 ==> V u< exp_mask | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt, | 
|  | ExpMaskC)); | 
|  | Mask &= ~fcPosFinite; | 
|  | } else if ((Mask & fcFinite) == fcNegFinite) { | 
|  | // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1 | 
|  | auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, | 
|  | ExpMaskC); | 
|  | auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign); | 
|  | appendToRes(And); | 
|  | Mask &= ~fcNegFinite; | 
|  | } | 
|  |  | 
|  | if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) { | 
|  | // fcZero | fcSubnormal => test all exponent bits are 0 | 
|  | // TODO: Handle sign bit specific cases | 
|  | // TODO: Handle inverted case | 
|  | if (PartialCheck == (fcZero | fcSubnormal)) { | 
|  | auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC); | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, | 
|  | ExpBits, ZeroC)); | 
|  | Mask &= ~PartialCheck; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for individual classes. | 
|  | if (FPClassTest PartialCheck = Mask & fcZero) { | 
|  | if (PartialCheck == fcPosZero) | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, | 
|  | AsInt, ZeroC)); | 
|  | else if (PartialCheck == fcZero) | 
|  | appendToRes( | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC)); | 
|  | else // fcNegZero | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, | 
|  | AsInt, SignBitC)); | 
|  | } | 
|  |  | 
|  | if (FPClassTest PartialCheck = Mask & fcSubnormal) { | 
|  | // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set) | 
|  | // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set) | 
|  | auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs; | 
|  | auto OneC = MIRBuilder.buildConstant(IntTy, 1); | 
|  | auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC); | 
|  | auto SubnormalRes = | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne, | 
|  | MIRBuilder.buildConstant(IntTy, AllOneMantissa)); | 
|  | if (PartialCheck == fcNegSubnormal) | 
|  | SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign); | 
|  | appendToRes(SubnormalRes); | 
|  | } | 
|  |  | 
|  | if (FPClassTest PartialCheck = Mask & fcInf) { | 
|  | if (PartialCheck == fcPosInf) | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, | 
|  | AsInt, InfC)); | 
|  | else if (PartialCheck == fcInf) | 
|  | appendToRes( | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC)); | 
|  | else { // fcNegInf | 
|  | APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); | 
|  | auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf); | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, | 
|  | AsInt, NegInfC)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FPClassTest PartialCheck = Mask & fcNan) { | 
|  | auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask); | 
|  | if (PartialCheck == fcNan) { | 
|  | // isnan(V) ==> abs(V) u> int(inf) | 
|  | appendToRes( | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC)); | 
|  | } else if (PartialCheck == fcQNan) { | 
|  | // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit) | 
|  | appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs, | 
|  | InfWithQnanBitC)); | 
|  | } else { // fcSNan | 
|  | // issignaling(V) ==> abs(V) u> unsigned(Inf) && | 
|  | //                    abs(V) u< (unsigned(Inf) | quiet_bit) | 
|  | auto IsNan = | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC); | 
|  | auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, | 
|  | Abs, InfWithQnanBitC); | 
|  | appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FPClassTest PartialCheck = Mask & fcNormal) { | 
|  | // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u< | 
|  | // (max_exp-1)) | 
|  | APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); | 
|  | auto ExpMinusOne = MIRBuilder.buildSub( | 
|  | IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB)); | 
|  | APInt MaxExpMinusOne = ExpMask - ExpLSB; | 
|  | auto NormalRes = | 
|  | MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne, | 
|  | MIRBuilder.buildConstant(IntTy, MaxExpMinusOne)); | 
|  | if (PartialCheck == fcNegNormal) | 
|  | NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign); | 
|  | else if (PartialCheck == fcPosNormal) { | 
|  | auto PosSign = MIRBuilder.buildXor( | 
|  | DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask)); | 
|  | NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign); | 
|  | } | 
|  | appendToRes(NormalRes); | 
|  | } | 
|  |  | 
|  | MIRBuilder.buildCopy(DstReg, Res); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { | 
|  | // Implement G_SELECT in terms of XOR, AND, OR. | 
|  | auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] = | 
|  | MI.getFirst4RegLLTs(); | 
|  |  | 
|  | bool IsEltPtr = DstTy.isPointerOrPointerVector(); | 
|  | if (IsEltPtr) { | 
|  | LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits()); | 
|  | LLT NewTy = DstTy.changeElementType(ScalarPtrTy); | 
|  | Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0); | 
|  | Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0); | 
|  | DstTy = NewTy; | 
|  | } | 
|  |  | 
|  | if (MaskTy.isScalar()) { | 
|  | // Turn the scalar condition into a vector condition mask if needed. | 
|  |  | 
|  | Register MaskElt = MaskReg; | 
|  |  | 
|  | // The condition was potentially zero extended before, but we want a sign | 
|  | // extended boolean. | 
|  | if (MaskTy != LLT::scalar(1)) | 
|  | MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); | 
|  |  | 
|  | // Continue the sign extension (or truncate) to match the data type. | 
|  | MaskElt = | 
|  | MIRBuilder.buildSExtOrTrunc(DstTy.getScalarType(), MaskElt).getReg(0); | 
|  |  | 
|  | if (DstTy.isVector()) { | 
|  | // Generate a vector splat idiom. | 
|  | auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); | 
|  | MaskReg = ShufSplat.getReg(0); | 
|  | } else { | 
|  | MaskReg = MaskElt; | 
|  | } | 
|  | MaskTy = DstTy; | 
|  | } else if (!DstTy.isVector()) { | 
|  | // Cannot handle the case that mask is a vector and dst is a scalar. | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); | 
|  | auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); | 
|  | auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); | 
|  | if (IsEltPtr) { | 
|  | auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2); | 
|  | MIRBuilder.buildIntToPtr(DstReg, Or); | 
|  | } else { | 
|  | MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); | 
|  | } | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { | 
|  | // Split DIVREM into individual instructions. | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  |  | 
|  | MIRBuilder.buildInstr( | 
|  | Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV | 
|  | : TargetOpcode::G_UDIV, | 
|  | {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); | 
|  | MIRBuilder.buildInstr( | 
|  | Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM | 
|  | : TargetOpcode::G_UREM, | 
|  | {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { | 
|  | // Expand %res = G_ABS %a into: | 
|  | // %v1 = G_ASHR %a, scalar_size-1 | 
|  | // %v2 = G_ADD %a, %v1 | 
|  | // %res = G_XOR %v2, %v1 | 
|  | LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); | 
|  | Register OpReg = MI.getOperand(1).getReg(); | 
|  | auto ShiftAmt = | 
|  | MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); | 
|  | auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); | 
|  | auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); | 
|  | MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { | 
|  | // Expand %res = G_ABS %a into: | 
|  | // %v1 = G_CONSTANT 0 | 
|  | // %v2 = G_SUB %v1, %a | 
|  | // %res = G_SMAX %a, %v2 | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | LLT Ty = MRI.getType(SrcReg); | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0); | 
|  | auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg); | 
|  | MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerAbsToCNeg(MachineInstr &MI) { | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | Register DestReg = MI.getOperand(0).getReg(); | 
|  | LLT Ty = MRI.getType(SrcReg), IType = LLT::scalar(1); | 
|  | auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); | 
|  | auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); | 
|  | auto ICmp = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, IType, SrcReg, Zero); | 
|  | MIRBuilder.buildSelect(DestReg, ICmp, SrcReg, Sub); | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | LLT SrcTy = MRI.getType(SrcReg); | 
|  | LLT DstTy = MRI.getType(SrcReg); | 
|  |  | 
|  | // The source could be a scalar if the IR type was <1 x sN>. | 
|  | if (SrcTy.isScalar()) { | 
|  | if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) | 
|  | return UnableToLegalize; // FIXME: handle extension. | 
|  | // This can be just a plain copy. | 
|  | Observer.changingInstr(MI); | 
|  | MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); | 
|  | Observer.changedInstr(MI); | 
|  | return Legalized; | 
|  | } | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | static Type *getTypeForLLT(LLT Ty, LLVMContext &C); | 
|  |  | 
|  | LegalizerHelper::LegalizeResult LegalizerHelper::lowerVAArg(MachineInstr &MI) { | 
|  | MachineFunction &MF = *MI.getMF(); | 
|  | const DataLayout &DL = MIRBuilder.getDataLayout(); | 
|  | LLVMContext &Ctx = MF.getFunction().getContext(); | 
|  | Register ListPtr = MI.getOperand(1).getReg(); | 
|  | LLT PtrTy = MRI.getType(ListPtr); | 
|  |  | 
|  | // LstPtr is a pointer to the head of the list. Get the address | 
|  | // of the head of the list. | 
|  | Align PtrAlignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx)); | 
|  | MachineMemOperand *PtrLoadMMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, PtrAlignment); | 
|  | auto VAList = MIRBuilder.buildLoad(PtrTy, ListPtr, *PtrLoadMMO).getReg(0); | 
|  |  | 
|  | const Align A(MI.getOperand(2).getImm()); | 
|  | LLT PtrTyAsScalarTy = LLT::scalar(PtrTy.getSizeInBits()); | 
|  | if (A > TLI.getMinStackArgumentAlignment()) { | 
|  | Register AlignAmt = | 
|  | MIRBuilder.buildConstant(PtrTyAsScalarTy, A.value() - 1).getReg(0); | 
|  | auto AddDst = MIRBuilder.buildPtrAdd(PtrTy, VAList, AlignAmt); | 
|  | auto AndDst = MIRBuilder.buildMaskLowPtrBits(PtrTy, AddDst, Log2(A)); | 
|  | VAList = AndDst.getReg(0); | 
|  | } | 
|  |  | 
|  | // Increment the pointer, VAList, to the next vaarg | 
|  | // The list should be bumped by the size of element in the current head of | 
|  | // list. | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | LLT LLTTy = MRI.getType(Dst); | 
|  | Type *Ty = getTypeForLLT(LLTTy, Ctx); | 
|  | auto IncAmt = | 
|  | MIRBuilder.buildConstant(PtrTyAsScalarTy, DL.getTypeAllocSize(Ty)); | 
|  | auto Succ = MIRBuilder.buildPtrAdd(PtrTy, VAList, IncAmt); | 
|  |  | 
|  | // Store the increment VAList to the legalized pointer | 
|  | MachineMemOperand *StoreMMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, PtrAlignment); | 
|  | MIRBuilder.buildStore(Succ, ListPtr, *StoreMMO); | 
|  | // Load the actual argument out of the pointer VAList | 
|  | Align EltAlignment = DL.getABITypeAlign(Ty); | 
|  | MachineMemOperand *EltLoadMMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), MachineMemOperand::MOLoad, LLTTy, EltAlignment); | 
|  | MIRBuilder.buildLoad(Dst, VAList, *EltLoadMMO); | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { | 
|  | // On Darwin, -Os means optimize for size without hurting performance, so | 
|  | // only really optimize for size when -Oz (MinSize) is used. | 
|  | if (MF.getTarget().getTargetTriple().isOSDarwin()) | 
|  | return MF.getFunction().hasMinSize(); | 
|  | return MF.getFunction().hasOptSize(); | 
|  | } | 
|  |  | 
|  | // Returns a list of types to use for memory op lowering in MemOps. A partial | 
|  | // port of findOptimalMemOpLowering in TargetLowering. | 
|  | static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, | 
|  | unsigned Limit, const MemOp &Op, | 
|  | unsigned DstAS, unsigned SrcAS, | 
|  | const AttributeList &FuncAttributes, | 
|  | const TargetLowering &TLI) { | 
|  | if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) | 
|  | return false; | 
|  |  | 
|  | LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); | 
|  |  | 
|  | if (Ty == LLT()) { | 
|  | // Use the largest scalar type whose alignment constraints are satisfied. | 
|  | // We only need to check DstAlign here as SrcAlign is always greater or | 
|  | // equal to DstAlign (or zero). | 
|  | Ty = LLT::scalar(64); | 
|  | if (Op.isFixedDstAlign()) | 
|  | while (Op.getDstAlign() < Ty.getSizeInBytes() && | 
|  | !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) | 
|  | Ty = LLT::scalar(Ty.getSizeInBytes()); | 
|  | assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); | 
|  | // FIXME: check for the largest legal type we can load/store to. | 
|  | } | 
|  |  | 
|  | unsigned NumMemOps = 0; | 
|  | uint64_t Size = Op.size(); | 
|  | while (Size) { | 
|  | unsigned TySize = Ty.getSizeInBytes(); | 
|  | while (TySize > Size) { | 
|  | // For now, only use non-vector load / store's for the left-over pieces. | 
|  | LLT NewTy = Ty; | 
|  | // FIXME: check for mem op safety and legality of the types. Not all of | 
|  | // SDAGisms map cleanly to GISel concepts. | 
|  | if (NewTy.isVector()) | 
|  | NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); | 
|  | NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1)); | 
|  | unsigned NewTySize = NewTy.getSizeInBytes(); | 
|  | assert(NewTySize > 0 && "Could not find appropriate type"); | 
|  |  | 
|  | // If the new LLT cannot cover all of the remaining bits, then consider | 
|  | // issuing a (or a pair of) unaligned and overlapping load / store. | 
|  | unsigned Fast; | 
|  | // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). | 
|  | MVT VT = getMVTForLLT(Ty); | 
|  | if (NumMemOps && Op.allowOverlap() && NewTySize < Size && | 
|  | TLI.allowsMisalignedMemoryAccesses( | 
|  | VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), | 
|  | MachineMemOperand::MONone, &Fast) && | 
|  | Fast) | 
|  | TySize = Size; | 
|  | else { | 
|  | Ty = NewTy; | 
|  | TySize = NewTySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (++NumMemOps > Limit) | 
|  | return false; | 
|  |  | 
|  | MemOps.push_back(Ty); | 
|  | Size -= TySize; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { | 
|  | if (Ty.isVector()) | 
|  | return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), | 
|  | Ty.getNumElements()); | 
|  | return IntegerType::get(C, Ty.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | // Get a vectorized representation of the memset value operand, GISel edition. | 
|  | static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { | 
|  | MachineRegisterInfo &MRI = *MIB.getMRI(); | 
|  | unsigned NumBits = Ty.getScalarSizeInBits(); | 
|  | auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); | 
|  | if (!Ty.isVector() && ValVRegAndVal) { | 
|  | APInt Scalar = ValVRegAndVal->Value.trunc(8); | 
|  | APInt SplatVal = APInt::getSplat(NumBits, Scalar); | 
|  | return MIB.buildConstant(Ty, SplatVal).getReg(0); | 
|  | } | 
|  |  | 
|  | // Extend the byte value to the larger type, and then multiply by a magic | 
|  | // value 0x010101... in order to replicate it across every byte. | 
|  | // Unless it's zero, in which case just emit a larger G_CONSTANT 0. | 
|  | if (ValVRegAndVal && ValVRegAndVal->Value == 0) { | 
|  | return MIB.buildConstant(Ty, 0).getReg(0); | 
|  | } | 
|  |  | 
|  | LLT ExtType = Ty.getScalarType(); | 
|  | auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); | 
|  | if (NumBits > 8) { | 
|  | APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); | 
|  | auto MagicMI = MIB.buildConstant(ExtType, Magic); | 
|  | Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); | 
|  | } | 
|  |  | 
|  | // For vector types create a G_BUILD_VECTOR. | 
|  | if (Ty.isVector()) | 
|  | Val = MIB.buildSplatBuildVector(Ty, Val).getReg(0); | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, | 
|  | uint64_t KnownLen, Align Alignment, | 
|  | bool IsVolatile) { | 
|  | auto &MF = *MI.getParent()->getParent(); | 
|  | const auto &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | auto &DL = MF.getDataLayout(); | 
|  | LLVMContext &C = MF.getFunction().getContext(); | 
|  |  | 
|  | assert(KnownLen != 0 && "Have a zero length memset length!"); | 
|  |  | 
|  | bool DstAlignCanChange = false; | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | bool OptSize = shouldLowerMemFuncForSize(MF); | 
|  |  | 
|  | MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); | 
|  | if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) | 
|  | DstAlignCanChange = true; | 
|  |  | 
|  | unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); | 
|  | std::vector<LLT> MemOps; | 
|  |  | 
|  | const auto &DstMMO = **MI.memoperands_begin(); | 
|  | MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); | 
|  |  | 
|  | auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); | 
|  | bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; | 
|  |  | 
|  | if (!findGISelOptimalMemOpLowering(MemOps, Limit, | 
|  | MemOp::Set(KnownLen, DstAlignCanChange, | 
|  | Alignment, | 
|  | /*IsZeroMemset=*/IsZeroVal, | 
|  | /*IsVolatile=*/IsVolatile), | 
|  | DstPtrInfo.getAddrSpace(), ~0u, | 
|  | MF.getFunction().getAttributes(), TLI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (DstAlignCanChange) { | 
|  | // Get an estimate of the type from the LLT. | 
|  | Type *IRTy = getTypeForLLT(MemOps[0], C); | 
|  | Align NewAlign = DL.getABITypeAlign(IRTy); | 
|  | if (NewAlign > Alignment) { | 
|  | Alignment = NewAlign; | 
|  | unsigned FI = FIDef->getOperand(1).getIndex(); | 
|  | // Give the stack frame object a larger alignment if needed. | 
|  | if (MFI.getObjectAlign(FI) < Alignment) | 
|  | MFI.setObjectAlignment(FI, Alignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineIRBuilder MIB(MI); | 
|  | // Find the largest store and generate the bit pattern for it. | 
|  | LLT LargestTy = MemOps[0]; | 
|  | for (unsigned i = 1; i < MemOps.size(); i++) | 
|  | if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) | 
|  | LargestTy = MemOps[i]; | 
|  |  | 
|  | // The memset stored value is always defined as an s8, so in order to make it | 
|  | // work with larger store types we need to repeat the bit pattern across the | 
|  | // wider type. | 
|  | Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); | 
|  |  | 
|  | if (!MemSetValue) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | // Generate the stores. For each store type in the list, we generate the | 
|  | // matching store of that type to the destination address. | 
|  | LLT PtrTy = MRI.getType(Dst); | 
|  | unsigned DstOff = 0; | 
|  | unsigned Size = KnownLen; | 
|  | for (unsigned I = 0; I < MemOps.size(); I++) { | 
|  | LLT Ty = MemOps[I]; | 
|  | unsigned TySize = Ty.getSizeInBytes(); | 
|  | if (TySize > Size) { | 
|  | // Issuing an unaligned load / store pair that overlaps with the previous | 
|  | // pair. Adjust the offset accordingly. | 
|  | assert(I == MemOps.size() - 1 && I != 0); | 
|  | DstOff -= TySize - Size; | 
|  | } | 
|  |  | 
|  | // If this store is smaller than the largest store see whether we can get | 
|  | // the smaller value for free with a truncate. | 
|  | Register Value = MemSetValue; | 
|  | if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { | 
|  | MVT VT = getMVTForLLT(Ty); | 
|  | MVT LargestVT = getMVTForLLT(LargestTy); | 
|  | if (!LargestTy.isVector() && !Ty.isVector() && | 
|  | TLI.isTruncateFree(LargestVT, VT)) | 
|  | Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); | 
|  | else | 
|  | Value = getMemsetValue(Val, Ty, MIB); | 
|  | if (!Value) | 
|  | return UnableToLegalize; | 
|  | } | 
|  |  | 
|  | auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); | 
|  |  | 
|  | Register Ptr = Dst; | 
|  | if (DstOff != 0) { | 
|  | auto Offset = | 
|  | MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); | 
|  | Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); | 
|  | } | 
|  |  | 
|  | MIB.buildStore(Value, Ptr, *StoreMMO); | 
|  | DstOff += Ty.getSizeInBytes(); | 
|  | Size -= TySize; | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { | 
|  | assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); | 
|  |  | 
|  | auto [Dst, Src, Len] = MI.getFirst3Regs(); | 
|  |  | 
|  | const auto *MMOIt = MI.memoperands_begin(); | 
|  | const MachineMemOperand *MemOp = *MMOIt; | 
|  | bool IsVolatile = MemOp->isVolatile(); | 
|  |  | 
|  | // See if this is a constant length copy | 
|  | auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); | 
|  | // FIXME: support dynamically sized G_MEMCPY_INLINE | 
|  | assert(LenVRegAndVal && | 
|  | "inline memcpy with dynamic size is not yet supported"); | 
|  | uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); | 
|  | if (KnownLen == 0) { | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | const auto &DstMMO = **MI.memoperands_begin(); | 
|  | const auto &SrcMMO = **std::next(MI.memoperands_begin()); | 
|  | Align DstAlign = DstMMO.getBaseAlign(); | 
|  | Align SrcAlign = SrcMMO.getBaseAlign(); | 
|  |  | 
|  | return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, | 
|  | IsVolatile); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, | 
|  | uint64_t KnownLen, Align DstAlign, | 
|  | Align SrcAlign, bool IsVolatile) { | 
|  | assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); | 
|  | return lowerMemcpy(MI, Dst, Src, KnownLen, | 
|  | std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, | 
|  | IsVolatile); | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, | 
|  | uint64_t KnownLen, uint64_t Limit, Align DstAlign, | 
|  | Align SrcAlign, bool IsVolatile) { | 
|  | auto &MF = *MI.getParent()->getParent(); | 
|  | const auto &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | auto &DL = MF.getDataLayout(); | 
|  | LLVMContext &C = MF.getFunction().getContext(); | 
|  |  | 
|  | assert(KnownLen != 0 && "Have a zero length memcpy length!"); | 
|  |  | 
|  | bool DstAlignCanChange = false; | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | Align Alignment = std::min(DstAlign, SrcAlign); | 
|  |  | 
|  | MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); | 
|  | if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) | 
|  | DstAlignCanChange = true; | 
|  |  | 
|  | // FIXME: infer better src pointer alignment like SelectionDAG does here. | 
|  | // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining | 
|  | // if the memcpy is in a tail call position. | 
|  |  | 
|  | std::vector<LLT> MemOps; | 
|  |  | 
|  | const auto &DstMMO = **MI.memoperands_begin(); | 
|  | const auto &SrcMMO = **std::next(MI.memoperands_begin()); | 
|  | MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); | 
|  | MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); | 
|  |  | 
|  | if (!findGISelOptimalMemOpLowering( | 
|  | MemOps, Limit, | 
|  | MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, | 
|  | IsVolatile), | 
|  | DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), | 
|  | MF.getFunction().getAttributes(), TLI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (DstAlignCanChange) { | 
|  | // Get an estimate of the type from the LLT. | 
|  | Type *IRTy = getTypeForLLT(MemOps[0], C); | 
|  | Align NewAlign = DL.getABITypeAlign(IRTy); | 
|  |  | 
|  | // Don't promote to an alignment that would require dynamic stack | 
|  | // realignment. | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (!TRI->hasStackRealignment(MF)) | 
|  | while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) | 
|  | NewAlign = NewAlign.previous(); | 
|  |  | 
|  | if (NewAlign > Alignment) { | 
|  | Alignment = NewAlign; | 
|  | unsigned FI = FIDef->getOperand(1).getIndex(); | 
|  | // Give the stack frame object a larger alignment if needed. | 
|  | if (MFI.getObjectAlign(FI) < Alignment) | 
|  | MFI.setObjectAlignment(FI, Alignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); | 
|  |  | 
|  | MachineIRBuilder MIB(MI); | 
|  | // Now we need to emit a pair of load and stores for each of the types we've | 
|  | // collected. I.e. for each type, generate a load from the source pointer of | 
|  | // that type width, and then generate a corresponding store to the dest buffer | 
|  | // of that value loaded. This can result in a sequence of loads and stores | 
|  | // mixed types, depending on what the target specifies as good types to use. | 
|  | unsigned CurrOffset = 0; | 
|  | unsigned Size = KnownLen; | 
|  | for (auto CopyTy : MemOps) { | 
|  | // Issuing an unaligned load / store pair  that overlaps with the previous | 
|  | // pair. Adjust the offset accordingly. | 
|  | if (CopyTy.getSizeInBytes() > Size) | 
|  | CurrOffset -= CopyTy.getSizeInBytes() - Size; | 
|  |  | 
|  | // Construct MMOs for the accesses. | 
|  | auto *LoadMMO = | 
|  | MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); | 
|  | auto *StoreMMO = | 
|  | MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); | 
|  |  | 
|  | // Create the load. | 
|  | Register LoadPtr = Src; | 
|  | Register Offset; | 
|  | if (CurrOffset != 0) { | 
|  | LLT SrcTy = MRI.getType(Src); | 
|  | Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) | 
|  | .getReg(0); | 
|  | LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); | 
|  | } | 
|  | auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); | 
|  |  | 
|  | // Create the store. | 
|  | Register StorePtr = Dst; | 
|  | if (CurrOffset != 0) { | 
|  | LLT DstTy = MRI.getType(Dst); | 
|  | StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); | 
|  | } | 
|  | MIB.buildStore(LdVal, StorePtr, *StoreMMO); | 
|  | CurrOffset += CopyTy.getSizeInBytes(); | 
|  | Size -= CopyTy.getSizeInBytes(); | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, | 
|  | uint64_t KnownLen, Align DstAlign, Align SrcAlign, | 
|  | bool IsVolatile) { | 
|  | auto &MF = *MI.getParent()->getParent(); | 
|  | const auto &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | auto &DL = MF.getDataLayout(); | 
|  | LLVMContext &C = MF.getFunction().getContext(); | 
|  |  | 
|  | assert(KnownLen != 0 && "Have a zero length memmove length!"); | 
|  |  | 
|  | bool DstAlignCanChange = false; | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | bool OptSize = shouldLowerMemFuncForSize(MF); | 
|  | Align Alignment = std::min(DstAlign, SrcAlign); | 
|  |  | 
|  | MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); | 
|  | if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) | 
|  | DstAlignCanChange = true; | 
|  |  | 
|  | unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); | 
|  | std::vector<LLT> MemOps; | 
|  |  | 
|  | const auto &DstMMO = **MI.memoperands_begin(); | 
|  | const auto &SrcMMO = **std::next(MI.memoperands_begin()); | 
|  | MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); | 
|  | MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); | 
|  |  | 
|  | // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due | 
|  | // to a bug in it's findOptimalMemOpLowering implementation. For now do the | 
|  | // same thing here. | 
|  | if (!findGISelOptimalMemOpLowering( | 
|  | MemOps, Limit, | 
|  | MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, | 
|  | /*IsVolatile*/ true), | 
|  | DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), | 
|  | MF.getFunction().getAttributes(), TLI)) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (DstAlignCanChange) { | 
|  | // Get an estimate of the type from the LLT. | 
|  | Type *IRTy = getTypeForLLT(MemOps[0], C); | 
|  | Align NewAlign = DL.getABITypeAlign(IRTy); | 
|  |  | 
|  | // Don't promote to an alignment that would require dynamic stack | 
|  | // realignment. | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (!TRI->hasStackRealignment(MF)) | 
|  | while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) | 
|  | NewAlign = NewAlign.previous(); | 
|  |  | 
|  | if (NewAlign > Alignment) { | 
|  | Alignment = NewAlign; | 
|  | unsigned FI = FIDef->getOperand(1).getIndex(); | 
|  | // Give the stack frame object a larger alignment if needed. | 
|  | if (MFI.getObjectAlign(FI) < Alignment) | 
|  | MFI.setObjectAlignment(FI, Alignment); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); | 
|  |  | 
|  | MachineIRBuilder MIB(MI); | 
|  | // Memmove requires that we perform the loads first before issuing the stores. | 
|  | // Apart from that, this loop is pretty much doing the same thing as the | 
|  | // memcpy codegen function. | 
|  | unsigned CurrOffset = 0; | 
|  | SmallVector<Register, 16> LoadVals; | 
|  | for (auto CopyTy : MemOps) { | 
|  | // Construct MMO for the load. | 
|  | auto *LoadMMO = | 
|  | MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); | 
|  |  | 
|  | // Create the load. | 
|  | Register LoadPtr = Src; | 
|  | if (CurrOffset != 0) { | 
|  | LLT SrcTy = MRI.getType(Src); | 
|  | auto Offset = | 
|  | MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); | 
|  | LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); | 
|  | } | 
|  | LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); | 
|  | CurrOffset += CopyTy.getSizeInBytes(); | 
|  | } | 
|  |  | 
|  | CurrOffset = 0; | 
|  | for (unsigned I = 0; I < MemOps.size(); ++I) { | 
|  | LLT CopyTy = MemOps[I]; | 
|  | // Now store the values loaded. | 
|  | auto *StoreMMO = | 
|  | MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); | 
|  |  | 
|  | Register StorePtr = Dst; | 
|  | if (CurrOffset != 0) { | 
|  | LLT DstTy = MRI.getType(Dst); | 
|  | auto Offset = | 
|  | MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); | 
|  | StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); | 
|  | } | 
|  | MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); | 
|  | CurrOffset += CopyTy.getSizeInBytes(); | 
|  | } | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | LegalizerHelper::LegalizeResult | 
|  | LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { | 
|  | const unsigned Opc = MI.getOpcode(); | 
|  | // This combine is fairly complex so it's not written with a separate | 
|  | // matcher function. | 
|  | assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || | 
|  | Opc == TargetOpcode::G_MEMSET) && | 
|  | "Expected memcpy like instruction"); | 
|  |  | 
|  | auto MMOIt = MI.memoperands_begin(); | 
|  | const MachineMemOperand *MemOp = *MMOIt; | 
|  |  | 
|  | Align DstAlign = MemOp->getBaseAlign(); | 
|  | Align SrcAlign; | 
|  | auto [Dst, Src, Len] = MI.getFirst3Regs(); | 
|  |  | 
|  | if (Opc != TargetOpcode::G_MEMSET) { | 
|  | assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); | 
|  | MemOp = *(++MMOIt); | 
|  | SrcAlign = MemOp->getBaseAlign(); | 
|  | } | 
|  |  | 
|  | // See if this is a constant length copy | 
|  | auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); | 
|  | if (!LenVRegAndVal) | 
|  | return UnableToLegalize; | 
|  | uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); | 
|  |  | 
|  | if (KnownLen == 0) { | 
|  | MI.eraseFromParent(); | 
|  | return Legalized; | 
|  | } | 
|  |  | 
|  | bool IsVolatile = MemOp->isVolatile(); | 
|  | if (Opc == TargetOpcode::G_MEMCPY_INLINE) | 
|  | return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, | 
|  | IsVolatile); | 
|  |  | 
|  | // Don't try to optimize volatile. | 
|  | if (IsVolatile) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (MaxLen && KnownLen > MaxLen) | 
|  | return UnableToLegalize; | 
|  |  | 
|  | if (Opc == TargetOpcode::G_MEMCPY) { | 
|  | auto &MF = *MI.getParent()->getParent(); | 
|  | const auto &TLI = *MF.getSubtarget().getTargetLowering(); | 
|  | bool OptSize = shouldLowerMemFuncForSize(MF); | 
|  | uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); | 
|  | return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, | 
|  | IsVolatile); | 
|  | } | 
|  | if (Opc == TargetOpcode::G_MEMMOVE) | 
|  | return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); | 
|  | if (Opc == TargetOpcode::G_MEMSET) | 
|  | return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); | 
|  | return UnableToLegalize; | 
|  | } |