blob: 98a088a7172eb96ee599a9f4bb8ea5338aae0054 [file] [log] [blame] [edit]
# Check that analysis produces correct results
#
# RUN: python %s
import unittest
from lnt.server.reporting.analysis import ComparisonResult, REGRESSED, IMPROVED
from lnt.server.reporting.analysis import UNCHANGED_PASS, UNCHANGED_FAIL
from lnt.server.reporting.analysis import absmin_diff
from lnt.util.stats import median
FLAT_LINE = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
FLAT_NOISE = [1.0129, 1.0131, 1.039, 1.0399, 1.0071, 1.0003, 1.023, 1.0386,
1.0025, 1.0273, 1.0014, 1.0101, 1.0075, 1.007, 1.0207, 1.0274,
1.0252, 1.0394, 1.0225, 1.0154, 1.0066, 1.0007, 1.0311, 1.0077]
BIG_NUMBERS_FLAT = [10.2177, 10.4559, 10.463, 10.1278, 10.0132, 10.3997, 10.256,
10.1849, 10.4397, 10.453, 10.1414, 10.4185, 10.0477, 10.3637,
10.2025, 10.0212, 10.4823, 10.1047, 10.2676, 10.2971, 10.2329,
10.0271, 10.0571, 10.4414]
FLAT_NOISE2 = [10.2177, 10.4559, 10.463, 10.1278, 10.0132, 10.3997, 10.256,
10.1849, 10.4397, 10.453, 10.1414, 10.4185, 10.0477, 10.3637,
10.2025, 10.0212, 10.4823, 10.1047, 10.2676, 10.2971, 10.2329,
10.0271, 10.0571, 10.4414]
SIMPLE_REGRESSION = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
REGRESS_5 = [11.3978, 11.2272, 11.3756, 11.0, 11.1964, 11.0341, 11.1875,
11.2624, 11.3429, 11.0012, 12.2821, 12.2141, 12.3077, 12.4856,
12.3829, 12.4266, 12.3724, 12.3023, 12.0148, 12.1289, 12.2068,
12.2897, 12.0671, 12.2238]
MS_5_REG = [11.3978, 11.2272, 11.3756, 11.0, 11.1964, 11.0341, 11.1875,
11.2624, 11.3429, 11.0012, 12.2821, 12.2141, 12.3077, 12.4856,
12.3829, 12.4266, 12.3724, 12.3023, 12.0148, 12.1289, 12.2068,
12.2897, 12.0671, 12.2238]
IMP = [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 2.0, 2.0, 2.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
IMP_NOISE = [13.2326, 13.1521, 13.0828, 13.4, 13.3142, 13.0989, 13.2671,
13.1749, 13.3357, 13.0381, 12.3538, 12.1364, 12.0743, 12.4843,
12.225, 12.261, 12.2779, 12.4818, 12.3725, 12.026, 12.2646,
12.0656, 12.0327, 12.4735]
BIMODAL = [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0,
2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0]
BIMODAL_NOISE = [11.1597, 12.0476, 11.2654, 12.2211, 11.2945, 12.2029, 11.3946,
12.1823, 11.3261, 12.4447, 11.1011, 12.4827, 11.4645, 12.3512,
11.381, 12.1887, 11.0718, 12.4719, 11.0017, 12.4311, 11.3296,
12.0678, 11.0258, 12.3331]
BM_ALTERNATE = [1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0,
2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0]
BM_AL_NOISE = [11.3276, 12.0247, 12.2933, 11.337, 11.0047, 12.2884, 12.4807,
11.4142, 11.2305, 12.4549, 12.4898, 11.2168, 11.0961, 12.3487,
12.395, 11.0562, 11.2327, 12.3907, 12.3533, 11.2095, 11.3616,
12.2507, 12.295, 11.0373]
BM_AL_REG = [1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0,
2.0, 2.0, 3.0, 3.0, 2.0, 2.0, 3.0, 3.0, 2.0, 2.0]
BM_REGRESSION = [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 3.0,
2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0, 3.0, 2.0]
BM_REGS_NOISE = [11.1433, 12.0805, 12.3661, 11.0146, 11.1983, 12.2693, 12.3474,
11.4173, 11.3068, 12.2658, 12.1376, 13.3669, 13.1601, 12.0867,
12.23, 13.3021, 13.263, 12.3641, 12.3352, 13.0674, 13.1938,
12.2187, 12.1801]
BM_REG_OVERLAP = [1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.5,
1.5, 2.5, 1.5, 2.5, 1.5, 2.5, 1.5, 2.5, 1.5, 2.5, 1.5]
BM_REG_OVER_NOISE = [11.4327, 12.3285, 11.1276, 12.1334, 11.2259, 12.0603, 11.3169,
12.4749, 11.1805, 12.0481, 11.1331, 12.012, 12.8302, 11.5071,
12.6074, 11.6872, 12.9957, 11.5772, 12.8381, 11.8985, 12.7692,
11.6686, 12.6311, 11.8401]
SPIKE = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 15, 1.0,
1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
NOISE_SPIKE = [11.4116, 11.3406, 11.3591, 11.2415, 11.1551, 11.0909, 11.3657,
11.0299, 25.0867, 11.2155, 11.1742, 11.487, 11.2852, 11.3026,
11.1036, 12.2208, 11.0029, 11.4335, 11.4661, 11.0444, 11.0467,
11.4942, 11.1692, 11.1597]
SLOW_REG = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,
2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3]
SLOW_REG_NOISE = [11.094, 11.1011, 11.5267, 11.5397, 11.6993, 11.7814, 11.6809,
12.06, 12.281, 12.0899, 12.3967, 12.5441, 12.6527, 12.5586,
12.8025, 12.9391, 13.0077, 12.7716, 13.0799, 13.324, 13.3028,
13.4567, 13.2734, 13.6797]
SLOW_IMP = [2.4, 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2,
1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]
SLOW_IMP_NOISE = [12.4592, 12.7874, 12.4891, 12.3433, 12.1183, 12.3755, 12.0194,
11.7551, 11.9412, 11.9822, 11.55, 11.3235, 11.6681, 11.5486,
11.2267, 11.0775, 11.1642, 10.8639, 10.8378, 10.8704, 10.5302,
10.5058, 10.5191, 10.2733]
class ComparisonResultTest(unittest.TestCase):
"""Test the generation of differnt types of comparison results."""
def test_comp(self):
"""Test a real example."""
curr_samples = [0.0887, 0.0919, 0.0903]
prev = [0.0858]
uninteresting = ComparisonResult(
min, False, False, curr_samples, prev, None, None)
self.assertFalse(uninteresting.is_result_interesting())
self.assertEqual(uninteresting.get_test_status(), UNCHANGED_PASS)
self.assertEqual(uninteresting.get_value_status(), UNCHANGED_PASS)
def test_slower(self):
"""Test getting a simple regression."""
slower = ComparisonResult(min, False, False, [10.], [5.], None, None)
self.assertEqual(slower.get_value_status(), REGRESSED)
self.assertTrue(slower.is_result_interesting())
def test_faster(self):
"""Test getting a simple improvement."""
faster = ComparisonResult(min, False, False, [5.], [10.], None, None)
self.assertEqual(faster.get_value_status(), IMPROVED)
self.assertTrue(faster.is_result_interesting())
def test_really_faster(self):
"""Test getting a simple improvement."""
faster = ComparisonResult(
min, False, False, [5., 6.], [10., 10., 10.], None, None)
self.assertEqual(faster.get_value_status(), IMPROVED)
self.assertTrue(faster.is_result_interesting())
def test_improved_status(self):
"""Test getting a test status improvement."""
improved = ComparisonResult(min, False, True, [1.], None, None, None)
self.assertEqual(improved.get_test_status(), IMPROVED)
def test_regressed_status(self):
"""Test getting a test status improvement."""
improved = ComparisonResult(min, True, False, None, [10.], None, None)
self.assertEqual(improved.get_test_status(), REGRESSED)
def test_keep_on_failing_status(self):
"""Test getting a repeated fail."""
improved = ComparisonResult(min, True, True, None, None, None, None)
self.assertEqual(improved.get_test_status(), UNCHANGED_FAIL)
def test_noticeable_regression(self):
"""Test a big looking jump."""
regressed = ComparisonResult(
min, False, False, [10.0, 10.1], [5.0, 5.1, 4.9, 5.0], None, None)
self.assertEqual(regressed.get_value_status(), REGRESSED)
def test_no_regression_flat_line(self):
"""This is a flat line, it should have no changes."""
flat = ComparisonResult(
min, False, False, [1.0], FLAT_LINE[0:10], None, None)
self.assertEqual(flat.get_value_status(), UNCHANGED_PASS)
def test_no_regression_flat_line_noise(self):
"""Now 4% noise."""
flat = ComparisonResult(
min, False, False, [1.020], FLAT_NOISE[0:10], None, None)
ret = flat.get_value_status()
self.assertEqual(ret, UNCHANGED_PASS)
def test_big_no_regression_flat_line_noise(self):
"""Same data, but bigger 10 + 5% variation."""
flat = ComparisonResult(
min, False, False, [10.25], FLAT_NOISE2[0:10], None, None)
ret = flat.get_value_status()
self.assertEqual(ret, UNCHANGED_PASS)
def test_big_no_regression_flat_line_multi(self):
"""Same data, but bigger 10 + 5% variation, multisample current."""
flat = ComparisonResult(
min, False, False, [10.0606, 10.4169, 10.1859],
BIG_NUMBERS_FLAT[0:10], None, None)
ret = flat.get_value_status()
self.assertEqual(ret, UNCHANGED_PASS)
def test_simple_regression(self):
"""Flat line that jumps to another flat line."""
flat = ComparisonResult(
min, False, False, [SIMPLE_REGRESSION[10]], SIMPLE_REGRESSION[0:9],
None, None)
self.assertEqual(flat.get_value_status(), REGRESSED)
def test_noisy_regression_5(self):
"""A regression in 5% noise."""
flat = ComparisonResult(min, False, False, [12.2821], REGRESS_5[0:9],
None, None)
self.assertEqual(flat.get_value_status(), REGRESSED)
def test_noisy_regression_5_multi(self):
"""A regression in 5% noise, more current samples."""
flat = ComparisonResult(min, False, False, [12.2821, 12.2141, 12.3077],
MS_5_REG[0:9], None, None)
ret = flat.get_value_status()
self.assertEqual(ret, REGRESSED)
def test_simple_improvement(self):
"""An improvement without noise."""
flat = ComparisonResult(min, False, False, [IMP[10]], IMP[0:9], None,
None)
self.assertEqual(flat.get_value_status(), IMPROVED)
def test_noise_improvement(self):
"""An improvement with 5% noise."""
flat = ComparisonResult(min, False, False, [IMP_NOISE[10]],
IMP_NOISE[0:9], None, None)
self.assertEqual(flat.get_value_status(), IMPROVED)
def test_bimodal(self):
"""A bimodal line, with no regressions."""
bimodal = ComparisonResult(min, False, False, [BIMODAL[10]],
BIMODAL[0:9], None, None)
self.assertEqual(bimodal.get_value_status(), UNCHANGED_PASS)
def test_noise_bimodal(self):
"""Bimodal line with 5% noise."""
bimodal = ComparisonResult(min, False, False, [BIMODAL_NOISE[10]],
BIMODAL_NOISE[0:9], None, None)
self.assertEqual(bimodal.get_value_status(), UNCHANGED_PASS)
def test_bimodal_alternating(self):
"""Bimodal which sticks in a mode for a while."""
bimodal = ComparisonResult(min, False, False, [BM_ALTERNATE[10]],
BM_ALTERNATE[0:9], None, None)
self.assertEqual(bimodal.get_value_status(), UNCHANGED_PASS)
def test_noise_bimodal_alternating(self):
"""Bimodal alternating with 5% noise."""
bimodal = ComparisonResult(min, False, False, [BM_AL_NOISE[10]],
BM_AL_NOISE[0:9], None, None)
self.assertEqual(bimodal.get_value_status(), UNCHANGED_PASS)
def test_bimodal_alternating_regression(self):
"""Bimodal alternating regression."""
bimodal = ComparisonResult(min, False, False, [BM_AL_REG[11]],
BM_AL_REG[0:10], None, None)
self.assertEqual(bimodal.get_value_status(), REGRESSED)
def test_bimodal_regression(self):
"""A regression in a bimodal line."""
bimodal = ComparisonResult(min, False, False, [BM_REGRESSION[12]],
BM_REGRESSION[0:11], None, None)
self.assertEqual(bimodal.get_value_status(), REGRESSED)
def test_noise_bimodal_regression(self):
bimodal = ComparisonResult(
min, False, False, [BM_REGS_NOISE[12]], BM_REGS_NOISE[0:11], None,
None)
self.assertEqual(bimodal.get_value_status(), REGRESSED)
def test_bimodal_overlapping_regression(self):
bimodal = ComparisonResult(min, False, False, [BM_REG_OVERLAP[12]],
BM_REG_OVERLAP[0:11], None, None)
self.assertEqual(bimodal.get_value_status(), REGRESSED)
def test_noise_bimodal_overlapping_regression(self):
bimodal = ComparisonResult(
min, False, False, [BM_REG_OVER_NOISE[12]],
BM_REG_OVER_NOISE[0:11], None, None)
self.assertEqual(bimodal.get_value_status(), REGRESSED)
def test_single_spike(self):
spike = ComparisonResult( # noqa: F841 # relates to commented code
min, False, False, [SPIKE[11]], SPIKE[0:10], None, None)
# Fixme
# self.assertEqual(spike.get_value_status(), UNCHANGED_PASS)
def test_noise_single_spike(self):
spike = ComparisonResult( # noqa: F841 # relates to commented code
min, False, False, [NOISE_SPIKE[8]], NOISE_SPIKE[0:7], None, None)
# Fixme
# self.assertEqual(spike.get_value_status(), UNCHANGED_PASS)
def test_slow_regression(self):
slow = ComparisonResult(
min, False, False, [SLOW_REG[12]], SLOW_REG[0:11], None, None)
self.assertEqual(slow.get_value_status(), REGRESSED)
def test_noise_slow_regression(self):
slow = ComparisonResult(
min, False, False, [SLOW_REG_NOISE[12]], SLOW_REG_NOISE[0:11],
None, None)
self.assertEqual(slow.get_value_status(), REGRESSED)
def test_slow_improvement(self):
slow = ComparisonResult( # noqa: F841 # relates to commented code
min, False, False, [SLOW_IMP[12]], SLOW_IMP[0:11], None, None)
# Fixme
# self.assertEqual(slow.get_value_status(), IMPROVED)
def test_noise_slow_improvement(self):
slow = ComparisonResult( # noqa: F841 # relates to commented code
min, False, False, [SLOW_IMP_NOISE[12]], SLOW_IMP_NOISE[0:11],
None, None)
# Fixme
# self.assertEqual(slow.get_value_status(), IMPROVED)
def test_handle_zero_sample(self):
for agfn in (min, median):
zeroSample = ComparisonResult(
agfn, False, False, [0.005, 0.0047, 0.0048], [0.0, 0.01, 0.01],
None, None)
self.assertEqual(zeroSample.get_value_status(), UNCHANGED_PASS)
class AbsMinTester(unittest.TestCase):
def test_absmin(self):
"""Test finding smallest difference."""
self.assertEqual(absmin_diff(1, [2, 2, 3]), (-1, 2))
self.assertEqual(absmin_diff(1, [1, 2, 3]), (0, 1))
self.assertEqual(absmin_diff(1, [2]), (-1, 2))
self.assertEqual(absmin_diff(1.5, [1, 4, 4]), (0.5, 1))
self.assertEqual(absmin_diff(5, [1, 2, 1]), (3, 2))
self.assertEqual(absmin_diff(1, [2, 0, 3]), (1, 0))
if __name__ == '__main__':
unittest.main()