| ------------------------------------------------------------------------------ | 
 | --                                                                          -- | 
 | --                         GNAT RUN-TIME COMPONENTS                         -- | 
 | --                                                                          -- | 
 | --   A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S    -- | 
 | --                                                                          -- | 
 | --                                 B o d y                                  -- | 
 | --                                                                          -- | 
 | --          Copyright (C) 1992-2006, Free Software Foundation, Inc.         -- | 
 | --                                                                          -- | 
 | -- GNAT is free software;  you can  redistribute it  and/or modify it under -- | 
 | -- terms of the  GNU General Public License as published  by the Free Soft- -- | 
 | -- ware  Foundation;  either version 2,  or (at your option) any later ver- -- | 
 | -- sion.  GNAT is distributed in the hope that it will be useful, but WITH- -- | 
 | -- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY -- | 
 | -- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License -- | 
 | -- for  more details.  You should have  received  a copy of the GNU General -- | 
 | -- Public License  distributed with GNAT;  see file COPYING.  If not, write -- | 
 | -- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, -- | 
 | -- Boston, MA 02110-1301, USA.                                              -- | 
 | --                                                                          -- | 
 | -- As a special exception,  if other files  instantiate  generics from this -- | 
 | -- unit, or you link  this unit with other files  to produce an executable, -- | 
 | -- this  unit  does not  by itself cause  the resulting  executable  to  be -- | 
 | -- covered  by the  GNU  General  Public  License.  This exception does not -- | 
 | -- however invalidate  any other reasons why  the executable file  might be -- | 
 | -- covered by the  GNU Public License.                                      -- | 
 | --                                                                          -- | 
 | -- GNAT was originally developed  by the GNAT team at  New York University. -- | 
 | -- Extensive contributions were provided by Ada Core Technologies Inc.      -- | 
 | --                                                                          -- | 
 | ------------------------------------------------------------------------------ | 
 |  | 
 | with Ada.Numerics.Aux; use Ada.Numerics.Aux; | 
 |  | 
 | package body Ada.Numerics.Generic_Complex_Types is | 
 |  | 
 |    subtype R is Real'Base; | 
 |  | 
 |    Two_Pi  : constant R := R (2.0) * Pi; | 
 |    Half_Pi : constant R := Pi / R (2.0); | 
 |  | 
 |    --------- | 
 |    -- "*" -- | 
 |    --------- | 
 |  | 
 |    function "*" (Left, Right : Complex) return Complex is | 
 |       X : R; | 
 |       Y : R; | 
 |  | 
 |    begin | 
 |       X := Left.Re * Right.Re - Left.Im * Right.Im; | 
 |       Y := Left.Re * Right.Im + Left.Im * Right.Re; | 
 |  | 
 |       --  If either component overflows, try to scale | 
 |  | 
 |       if abs (X) > R'Last then | 
 |          X := R'(4.0) * (R'(Left.Re / 2.0)  * R'(Right.Re / 2.0) | 
 |                 - R'(Left.Im / 2.0) * R'(Right.Im / 2.0)); | 
 |       end if; | 
 |  | 
 |       if abs (Y) > R'Last then | 
 |          Y := R'(4.0) * (R'(Left.Re / 2.0)  * R'(Right.Im / 2.0) | 
 |                 - R'(Left.Im / 2.0) * R'(Right.Re / 2.0)); | 
 |       end if; | 
 |  | 
 |       return (X, Y); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left, Right : Imaginary) return Real'Base is | 
 |    begin | 
 |       return -R (Left) * R (Right); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left : Complex; Right : Real'Base) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re * Right, Left.Im * Right); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left : Real'Base; Right : Complex) return Complex is | 
 |    begin | 
 |       return (Left * Right.Re, Left * Right.Im); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left : Complex; Right : Imaginary) return Complex is | 
 |    begin | 
 |       return Complex'(-(Left.Im * R (Right)), Left.Re * R (Right)); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left : Imaginary; Right : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(-(R (Left) * Right.Im), R (Left) * Right.Re); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left : Imaginary; Right : Real'Base) return Imaginary is | 
 |    begin | 
 |       return Left * Imaginary (Right); | 
 |    end "*"; | 
 |  | 
 |    function "*" (Left : Real'Base; Right : Imaginary) return Imaginary is | 
 |    begin | 
 |       return Imaginary (Left * R (Right)); | 
 |    end "*"; | 
 |  | 
 |    ---------- | 
 |    -- "**" -- | 
 |    ---------- | 
 |  | 
 |    function "**" (Left : Complex; Right : Integer) return Complex is | 
 |       Result : Complex := (1.0, 0.0); | 
 |       Factor : Complex := Left; | 
 |       Exp    : Integer := Right; | 
 |  | 
 |    begin | 
 |       --  We use the standard logarithmic approach, Exp gets shifted right | 
 |       --  testing successive low order bits and Factor is the value of the | 
 |       --  base raised to the next power of 2. For positive exponents we | 
 |       --  multiply the result by this factor, for negative exponents, we | 
 |       --  divide by this factor. | 
 |  | 
 |       if Exp >= 0 then | 
 |  | 
 |          --  For a positive exponent, if we get a constraint error during | 
 |          --  this loop, it is an overflow, and the constraint error will | 
 |          --  simply be passed on to the caller. | 
 |  | 
 |          while Exp /= 0 loop | 
 |             if Exp rem 2 /= 0 then | 
 |                Result := Result * Factor; | 
 |             end if; | 
 |  | 
 |             Factor := Factor * Factor; | 
 |             Exp := Exp / 2; | 
 |          end loop; | 
 |  | 
 |          return Result; | 
 |  | 
 |       else -- Exp < 0 then | 
 |  | 
 |          --  For the negative exponent case, a constraint error during this | 
 |          --  calculation happens if Factor gets too large, and the proper | 
 |          --  response is to return 0.0, since what we essentially have is | 
 |          --  1.0 / infinity, and the closest model number will be zero. | 
 |  | 
 |          begin | 
 |  | 
 |             while Exp /= 0 loop | 
 |                if Exp rem 2 /= 0 then | 
 |                   Result := Result * Factor; | 
 |                end if; | 
 |  | 
 |                Factor := Factor * Factor; | 
 |                Exp := Exp / 2; | 
 |             end loop; | 
 |  | 
 |             return R'(1.0) / Result; | 
 |  | 
 |          exception | 
 |  | 
 |             when Constraint_Error => | 
 |                return (0.0, 0.0); | 
 |          end; | 
 |       end if; | 
 |    end "**"; | 
 |  | 
 |    function "**" (Left : Imaginary; Right : Integer) return Complex is | 
 |       M : constant R := R (Left) ** Right; | 
 |    begin | 
 |       case Right mod 4 is | 
 |          when 0 => return (M,   0.0); | 
 |          when 1 => return (0.0, M); | 
 |          when 2 => return (-M,  0.0); | 
 |          when 3 => return (0.0, -M); | 
 |          when others => raise Program_Error; | 
 |       end case; | 
 |    end "**"; | 
 |  | 
 |    --------- | 
 |    -- "+" -- | 
 |    --------- | 
 |  | 
 |    function "+" (Right : Complex) return Complex is | 
 |    begin | 
 |       return Right; | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left, Right : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re + Right.Re, Left.Im + Right.Im); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Right : Imaginary) return Imaginary is | 
 |    begin | 
 |       return Right; | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left, Right : Imaginary) return Imaginary is | 
 |    begin | 
 |       return Imaginary (R (Left) + R (Right)); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left : Complex; Right : Real'Base) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re + Right, Left.Im); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left : Real'Base; Right : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(Left + Right.Re, Right.Im); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left : Complex; Right : Imaginary) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re, Left.Im + R (Right)); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left : Imaginary; Right : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(Right.Re, R (Left) + Right.Im); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left : Imaginary; Right : Real'Base) return Complex is | 
 |    begin | 
 |       return Complex'(Right, R (Left)); | 
 |    end "+"; | 
 |  | 
 |    function "+" (Left : Real'Base; Right : Imaginary) return Complex is | 
 |    begin | 
 |       return Complex'(Left, R (Right)); | 
 |    end "+"; | 
 |  | 
 |    --------- | 
 |    -- "-" -- | 
 |    --------- | 
 |  | 
 |    function "-" (Right : Complex) return Complex is | 
 |    begin | 
 |       return (-Right.Re, -Right.Im); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left, Right : Complex) return Complex is | 
 |    begin | 
 |       return (Left.Re - Right.Re, Left.Im - Right.Im); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Right : Imaginary) return Imaginary is | 
 |    begin | 
 |       return Imaginary (-R (Right)); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left, Right : Imaginary) return Imaginary is | 
 |    begin | 
 |       return Imaginary (R (Left) - R (Right)); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left : Complex; Right : Real'Base) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re - Right, Left.Im); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left : Real'Base; Right : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(Left - Right.Re, -Right.Im); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left : Complex; Right : Imaginary) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re, Left.Im - R (Right)); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left : Imaginary; Right : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(-Right.Re, R (Left) - Right.Im); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left : Imaginary; Right : Real'Base) return Complex is | 
 |    begin | 
 |       return Complex'(-Right, R (Left)); | 
 |    end "-"; | 
 |  | 
 |    function "-" (Left : Real'Base; Right : Imaginary) return Complex is | 
 |    begin | 
 |       return Complex'(Left, -R (Right)); | 
 |    end "-"; | 
 |  | 
 |    --------- | 
 |    -- "/" -- | 
 |    --------- | 
 |  | 
 |    function "/" (Left, Right : Complex) return Complex is | 
 |       a : constant R := Left.Re; | 
 |       b : constant R := Left.Im; | 
 |       c : constant R := Right.Re; | 
 |       d : constant R := Right.Im; | 
 |  | 
 |    begin | 
 |       if c = 0.0 and then d = 0.0 then | 
 |          raise Constraint_Error; | 
 |       else | 
 |          return Complex'(Re => ((a * c) + (b * d)) / (c ** 2 + d ** 2), | 
 |                          Im => ((b * c) - (a * d)) / (c ** 2 + d ** 2)); | 
 |       end if; | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left, Right : Imaginary) return Real'Base is | 
 |    begin | 
 |       return R (Left) / R (Right); | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left : Complex; Right : Real'Base) return Complex is | 
 |    begin | 
 |       return Complex'(Left.Re / Right, Left.Im / Right); | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left : Real'Base; Right : Complex) return Complex is | 
 |       a : constant R := Left; | 
 |       c : constant R := Right.Re; | 
 |       d : constant R := Right.Im; | 
 |    begin | 
 |       return Complex'(Re =>  (a * c) / (c ** 2 + d ** 2), | 
 |                       Im => -(a * d) / (c ** 2 + d ** 2)); | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left : Complex; Right : Imaginary) return Complex is | 
 |       a : constant R := Left.Re; | 
 |       b : constant R := Left.Im; | 
 |       d : constant R := R (Right); | 
 |  | 
 |    begin | 
 |       return (b / d,  -a / d); | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left : Imaginary; Right : Complex) return Complex is | 
 |       b : constant R := R (Left); | 
 |       c : constant R := Right.Re; | 
 |       d : constant R := Right.Im; | 
 |  | 
 |    begin | 
 |       return (Re => b * d / (c ** 2 + d ** 2), | 
 |               Im => b * c / (c ** 2 + d ** 2)); | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left : Imaginary; Right : Real'Base) return Imaginary is | 
 |    begin | 
 |       return Imaginary (R (Left) / Right); | 
 |    end "/"; | 
 |  | 
 |    function "/" (Left : Real'Base; Right : Imaginary) return Imaginary is | 
 |    begin | 
 |       return Imaginary (-Left / R (Right)); | 
 |    end "/"; | 
 |  | 
 |    --------- | 
 |    -- "<" -- | 
 |    --------- | 
 |  | 
 |    function "<" (Left, Right : Imaginary) return Boolean is | 
 |    begin | 
 |       return R (Left) < R (Right); | 
 |    end "<"; | 
 |  | 
 |    ---------- | 
 |    -- "<=" -- | 
 |    ---------- | 
 |  | 
 |    function "<=" (Left, Right : Imaginary) return Boolean is | 
 |    begin | 
 |       return R (Left) <= R (Right); | 
 |    end "<="; | 
 |  | 
 |    --------- | 
 |    -- ">" -- | 
 |    --------- | 
 |  | 
 |    function ">" (Left, Right : Imaginary) return Boolean is | 
 |    begin | 
 |       return R (Left) > R (Right); | 
 |    end ">"; | 
 |  | 
 |    ---------- | 
 |    -- ">=" -- | 
 |    ---------- | 
 |  | 
 |    function ">=" (Left, Right : Imaginary) return Boolean is | 
 |    begin | 
 |       return R (Left) >= R (Right); | 
 |    end ">="; | 
 |  | 
 |    ----------- | 
 |    -- "abs" -- | 
 |    ----------- | 
 |  | 
 |    function "abs" (Right : Imaginary) return Real'Base is | 
 |    begin | 
 |       return abs R (Right); | 
 |    end "abs"; | 
 |  | 
 |    -------------- | 
 |    -- Argument -- | 
 |    -------------- | 
 |  | 
 |    function Argument (X : Complex) return Real'Base is | 
 |       a   : constant R := X.Re; | 
 |       b   : constant R := X.Im; | 
 |       arg : R; | 
 |  | 
 |    begin | 
 |       if b = 0.0 then | 
 |  | 
 |          if a >= 0.0 then | 
 |             return 0.0; | 
 |          else | 
 |             return R'Copy_Sign (Pi, b); | 
 |          end if; | 
 |  | 
 |       elsif a = 0.0 then | 
 |  | 
 |          if b >= 0.0 then | 
 |             return Half_Pi; | 
 |          else | 
 |             return -Half_Pi; | 
 |          end if; | 
 |  | 
 |       else | 
 |          arg := R (Atan (Double (abs (b / a)))); | 
 |  | 
 |          if a > 0.0 then | 
 |             if b > 0.0 then | 
 |                return arg; | 
 |             else                  --  b < 0.0 | 
 |                return -arg; | 
 |             end if; | 
 |  | 
 |          else                     --  a < 0.0 | 
 |             if b >= 0.0 then | 
 |                return Pi - arg; | 
 |             else                  --  b < 0.0 | 
 |                return -(Pi - arg); | 
 |             end if; | 
 |          end if; | 
 |       end if; | 
 |  | 
 |    exception | 
 |       when Constraint_Error => | 
 |          if b > 0.0 then | 
 |             return Half_Pi; | 
 |          else | 
 |             return -Half_Pi; | 
 |          end if; | 
 |    end Argument; | 
 |  | 
 |    function Argument (X : Complex; Cycle : Real'Base) return Real'Base is | 
 |    begin | 
 |       if Cycle > 0.0 then | 
 |          return Argument (X) * Cycle / Two_Pi; | 
 |       else | 
 |          raise Argument_Error; | 
 |       end if; | 
 |    end Argument; | 
 |  | 
 |    ---------------------------- | 
 |    -- Compose_From_Cartesian -- | 
 |    ---------------------------- | 
 |  | 
 |    function Compose_From_Cartesian (Re, Im : Real'Base) return Complex is | 
 |    begin | 
 |       return (Re, Im); | 
 |    end Compose_From_Cartesian; | 
 |  | 
 |    function Compose_From_Cartesian (Re : Real'Base) return Complex is | 
 |    begin | 
 |       return (Re, 0.0); | 
 |    end Compose_From_Cartesian; | 
 |  | 
 |    function Compose_From_Cartesian (Im : Imaginary) return Complex is | 
 |    begin | 
 |       return (0.0, R (Im)); | 
 |    end Compose_From_Cartesian; | 
 |  | 
 |    ------------------------ | 
 |    -- Compose_From_Polar -- | 
 |    ------------------------ | 
 |  | 
 |    function Compose_From_Polar ( | 
 |      Modulus, Argument : Real'Base) | 
 |      return Complex | 
 |    is | 
 |    begin | 
 |       if Modulus = 0.0 then | 
 |          return (0.0, 0.0); | 
 |       else | 
 |          return (Modulus * R (Cos (Double (Argument))), | 
 |                  Modulus * R (Sin (Double (Argument)))); | 
 |       end if; | 
 |    end Compose_From_Polar; | 
 |  | 
 |    function Compose_From_Polar ( | 
 |      Modulus, Argument, Cycle : Real'Base) | 
 |      return Complex | 
 |    is | 
 |       Arg : Real'Base; | 
 |  | 
 |    begin | 
 |       if Modulus = 0.0 then | 
 |          return (0.0, 0.0); | 
 |  | 
 |       elsif Cycle > 0.0 then | 
 |          if Argument = 0.0 then | 
 |             return (Modulus, 0.0); | 
 |  | 
 |          elsif Argument = Cycle / 4.0 then | 
 |             return (0.0, Modulus); | 
 |  | 
 |          elsif Argument = Cycle / 2.0 then | 
 |             return (-Modulus, 0.0); | 
 |  | 
 |          elsif Argument = 3.0 * Cycle / R (4.0) then | 
 |             return (0.0, -Modulus); | 
 |          else | 
 |             Arg := Two_Pi * Argument / Cycle; | 
 |             return (Modulus * R (Cos (Double (Arg))), | 
 |                     Modulus * R (Sin (Double (Arg)))); | 
 |          end if; | 
 |       else | 
 |          raise Argument_Error; | 
 |       end if; | 
 |    end Compose_From_Polar; | 
 |  | 
 |    --------------- | 
 |    -- Conjugate -- | 
 |    --------------- | 
 |  | 
 |    function Conjugate (X : Complex) return Complex is | 
 |    begin | 
 |       return Complex'(X.Re, -X.Im); | 
 |    end Conjugate; | 
 |  | 
 |    -------- | 
 |    -- Im -- | 
 |    -------- | 
 |  | 
 |    function Im (X : Complex) return Real'Base is | 
 |    begin | 
 |       return X.Im; | 
 |    end Im; | 
 |  | 
 |    function Im (X : Imaginary) return Real'Base is | 
 |    begin | 
 |       return R (X); | 
 |    end Im; | 
 |  | 
 |    ------------- | 
 |    -- Modulus -- | 
 |    ------------- | 
 |  | 
 |    function Modulus (X : Complex) return Real'Base is | 
 |       Re2, Im2 : R; | 
 |  | 
 |    begin | 
 |  | 
 |       begin | 
 |          Re2 := X.Re ** 2; | 
 |  | 
 |          --  To compute (a**2 + b**2) ** (0.5) when a**2 may be out of bounds, | 
 |          --  compute a * (1 + (b/a) **2) ** (0.5). On a machine where the | 
 |          --  squaring does not raise constraint_error but generates infinity, | 
 |          --  we can use an explicit comparison to determine whether to use | 
 |          --  the scaling expression. | 
 |  | 
 |          --  The scaling expression is computed in double format throughout | 
 |          --  in order to prevent inaccuracies on machines where not all | 
 |          --  immediate expressions are rounded, such as PowerPC. | 
 |  | 
 |          if Re2 > R'Last then | 
 |             raise Constraint_Error; | 
 |          end if; | 
 |  | 
 |       exception | 
 |          when Constraint_Error => | 
 |             return R (Double (abs (X.Re)) | 
 |               * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2)); | 
 |       end; | 
 |  | 
 |       begin | 
 |          Im2 := X.Im ** 2; | 
 |  | 
 |          if Im2 > R'Last then | 
 |             raise Constraint_Error; | 
 |          end if; | 
 |  | 
 |       exception | 
 |          when Constraint_Error => | 
 |             return R (Double (abs (X.Im)) | 
 |               * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2)); | 
 |       end; | 
 |  | 
 |       --  Now deal with cases of underflow. If only one of the squares | 
 |       --  underflows, return the modulus of the other component. If both | 
 |       --  squares underflow, use scaling as above. | 
 |  | 
 |       if Re2 = 0.0 then | 
 |  | 
 |          if X.Re = 0.0 then | 
 |             return abs (X.Im); | 
 |  | 
 |          elsif Im2 = 0.0 then | 
 |  | 
 |             if X.Im = 0.0 then | 
 |                return abs (X.Re); | 
 |  | 
 |             else | 
 |                if abs (X.Re) > abs (X.Im) then | 
 |                   return | 
 |                     R (Double (abs (X.Re)) | 
 |                       * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2)); | 
 |                else | 
 |                   return | 
 |                     R (Double (abs (X.Im)) | 
 |                       * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2)); | 
 |                end if; | 
 |             end if; | 
 |  | 
 |          else | 
 |             return abs (X.Im); | 
 |          end if; | 
 |  | 
 |       elsif Im2 = 0.0 then | 
 |          return abs (X.Re); | 
 |  | 
 |       --  In all other cases, the naive computation will do | 
 |  | 
 |       else | 
 |          return R (Sqrt (Double (Re2 + Im2))); | 
 |       end if; | 
 |    end Modulus; | 
 |  | 
 |    -------- | 
 |    -- Re -- | 
 |    -------- | 
 |  | 
 |    function Re (X : Complex) return Real'Base is | 
 |    begin | 
 |       return X.Re; | 
 |    end Re; | 
 |  | 
 |    ------------ | 
 |    -- Set_Im -- | 
 |    ------------ | 
 |  | 
 |    procedure Set_Im (X : in out Complex; Im : Real'Base) is | 
 |    begin | 
 |       X.Im := Im; | 
 |    end Set_Im; | 
 |  | 
 |    procedure Set_Im (X : out Imaginary; Im : Real'Base) is | 
 |    begin | 
 |       X := Imaginary (Im); | 
 |    end Set_Im; | 
 |  | 
 |    ------------ | 
 |    -- Set_Re -- | 
 |    ------------ | 
 |  | 
 |    procedure Set_Re (X : in out Complex; Re : Real'Base) is | 
 |    begin | 
 |       X.Re := Re; | 
 |    end Set_Re; | 
 |  | 
 | end Ada.Numerics.Generic_Complex_Types; |