|  | /* Integer matrix math routines | 
|  | Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc. | 
|  | Contributed by Daniel Berlin <dberlin@dberlin.org>. | 
|  |  | 
|  | This file is part of GCC. | 
|  |  | 
|  | GCC is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 2, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with GCC; see the file COPYING.  If not, write to the Free | 
|  | Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | 02110-1301, USA.  */ | 
|  | #include "config.h" | 
|  | #include "system.h" | 
|  | #include "coretypes.h" | 
|  | #include "tm.h" | 
|  | #include "ggc.h" | 
|  | #include "tree.h" | 
|  | #include "lambda.h" | 
|  |  | 
|  | static void lambda_matrix_get_column (lambda_matrix, int, int, | 
|  | lambda_vector); | 
|  |  | 
|  | /* Allocate a matrix of M rows x  N cols.  */ | 
|  |  | 
|  | lambda_matrix | 
|  | lambda_matrix_new (int m, int n) | 
|  | { | 
|  | lambda_matrix mat; | 
|  | int i; | 
|  |  | 
|  | mat = ggc_alloc (m * sizeof (lambda_vector)); | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | mat[i] = lambda_vector_new (n); | 
|  |  | 
|  | return mat; | 
|  | } | 
|  |  | 
|  | /* Copy the elements of M x N matrix MAT1 to MAT2.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2, | 
|  | int m, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | lambda_vector_copy (mat1[i], mat2[i], n); | 
|  | } | 
|  |  | 
|  | /* Store the N x N identity matrix in MAT.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_id (lambda_matrix mat, int size) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < size; i++) | 
|  | for (j = 0; j < size; j++) | 
|  | mat[i][j] = (i == j) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* Return true if MAT is the identity matrix of SIZE */ | 
|  |  | 
|  | bool | 
|  | lambda_matrix_id_p (lambda_matrix mat, int size) | 
|  | { | 
|  | int i, j; | 
|  | for (i = 0; i < size; i++) | 
|  | for (j = 0; j < size; j++) | 
|  | { | 
|  | if (i == j) | 
|  | { | 
|  | if (mat[i][j] != 1) | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (mat[i][j] != 0) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Negate the elements of the M x N matrix MAT1 and store it in MAT2.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | lambda_vector_negate (mat1[i], mat2[i], n); | 
|  | } | 
|  |  | 
|  | /* Take the transpose of matrix MAT1 and store it in MAT2. | 
|  | MAT1 is an M x N matrix, so MAT2 must be N x M.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | for (j = 0; j < m; j++) | 
|  | mat2[i][j] = mat1[j][i]; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add two M x N matrices together: MAT3 = MAT1+MAT2.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2, | 
|  | lambda_matrix mat3, int m, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | lambda_vector_add (mat1[i], mat2[i], mat3[i], n); | 
|  | } | 
|  |  | 
|  | /* MAT3 = CONST1 * MAT1 + CONST2 * MAT2.  All matrices are M x N.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_add_mc (lambda_matrix mat1, int const1, | 
|  | lambda_matrix mat2, int const2, | 
|  | lambda_matrix mat3, int m, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n); | 
|  | } | 
|  |  | 
|  | /* Multiply two matrices: MAT3 = MAT1 * MAT2. | 
|  | MAT1 is an M x R matrix, and MAT2 is R x N.  The resulting MAT2 | 
|  | must therefore be M x N.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2, | 
|  | lambda_matrix mat3, int m, int r, int n) | 
|  | { | 
|  |  | 
|  | int i, j, k; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | { | 
|  | for (j = 0; j < n; j++) | 
|  | { | 
|  | mat3[i][j] = 0; | 
|  | for (k = 0; k < r; k++) | 
|  | mat3[i][j] += mat1[i][k] * mat2[k][j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get column COL from the matrix MAT and store it in VEC.  MAT has | 
|  | N rows, so the length of VEC must be N.  */ | 
|  |  | 
|  | static void | 
|  | lambda_matrix_get_column (lambda_matrix mat, int n, int col, | 
|  | lambda_vector vec) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | vec[i] = mat[i][col]; | 
|  | } | 
|  |  | 
|  | /* Delete rows r1 to r2 (not including r2).  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to) | 
|  | { | 
|  | int i; | 
|  | int dist; | 
|  | dist = to - from; | 
|  |  | 
|  | for (i = to; i < rows; i++) | 
|  | mat[i - dist] = mat[i]; | 
|  |  | 
|  | for (i = rows - dist; i < rows; i++) | 
|  | mat[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Swap rows R1 and R2 in matrix MAT.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2) | 
|  | { | 
|  | lambda_vector row; | 
|  |  | 
|  | row = mat[r1]; | 
|  | mat[r1] = mat[r2]; | 
|  | mat[r2] = row; | 
|  | } | 
|  |  | 
|  | /* Add a multiple of row R1 of matrix MAT with N columns to row R2: | 
|  | R2 = R2 + CONST1 * R1.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (const1 == 0) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | mat[r2][i] += const1 * mat[r1][i]; | 
|  | } | 
|  |  | 
|  | /* Negate row R1 of matrix MAT which has N columns.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_row_negate (lambda_matrix mat, int n, int r1) | 
|  | { | 
|  | lambda_vector_negate (mat[r1], mat[r1], n); | 
|  | } | 
|  |  | 
|  | /* Multiply row R1 of matrix MAT with N columns by CONST1.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | mat[r1][i] *= const1; | 
|  | } | 
|  |  | 
|  | /* Exchange COL1 and COL2 in matrix MAT. M is the number of rows.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2) | 
|  | { | 
|  | int i; | 
|  | int tmp; | 
|  | for (i = 0; i < m; i++) | 
|  | { | 
|  | tmp = mat[i][col1]; | 
|  | mat[i][col1] = mat[i][col2]; | 
|  | mat[i][col2] = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add a multiple of column C1 of matrix MAT with M rows to column C2: | 
|  | C2 = C2 + CONST1 * C1.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (const1 == 0) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | mat[i][c2] += const1 * mat[i][c1]; | 
|  | } | 
|  |  | 
|  | /* Negate column C1 of matrix MAT which has M rows.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_col_negate (lambda_matrix mat, int m, int c1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | mat[i][c1] *= -1; | 
|  | } | 
|  |  | 
|  | /* Multiply column C1 of matrix MAT with M rows by CONST1.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | mat[i][c1] *= const1; | 
|  | } | 
|  |  | 
|  | /* Compute the inverse of the N x N matrix MAT and store it in INV. | 
|  |  | 
|  | We don't _really_ compute the inverse of MAT.  Instead we compute | 
|  | det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function | 
|  | result.  This is necessary to preserve accuracy, because we are dealing | 
|  | with integer matrices here. | 
|  |  | 
|  | The algorithm used here is a column based Gauss-Jordan elimination on MAT | 
|  | and the identity matrix in parallel.  The inverse is the result of applying | 
|  | the same operations on the identity matrix that reduce MAT to the identity | 
|  | matrix. | 
|  |  | 
|  | When MAT is a 2 x 2 matrix, we don't go through the whole process, because | 
|  | it is easily inverted by inspection and it is a very common case.  */ | 
|  |  | 
|  | static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int); | 
|  |  | 
|  | int | 
|  | lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n) | 
|  | { | 
|  | if (n == 2) | 
|  | { | 
|  | int a, b, c, d, det; | 
|  | a = mat[0][0]; | 
|  | b = mat[1][0]; | 
|  | c = mat[0][1]; | 
|  | d = mat[1][1]; | 
|  | inv[0][0] =  d; | 
|  | inv[0][1] = -c; | 
|  | inv[1][0] = -b; | 
|  | inv[1][1] =  a; | 
|  | det = (a * d - b * c); | 
|  | if (det < 0) | 
|  | { | 
|  | det *= -1; | 
|  | inv[0][0] *= -1; | 
|  | inv[1][0] *= -1; | 
|  | inv[0][1] *= -1; | 
|  | inv[1][1] *= -1; | 
|  | } | 
|  | return det; | 
|  | } | 
|  | else | 
|  | return lambda_matrix_inverse_hard (mat, inv, n); | 
|  | } | 
|  |  | 
|  | /* If MAT is not a special case, invert it the hard way.  */ | 
|  |  | 
|  | static int | 
|  | lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n) | 
|  | { | 
|  | lambda_vector row; | 
|  | lambda_matrix temp; | 
|  | int i, j; | 
|  | int determinant; | 
|  |  | 
|  | temp = lambda_matrix_new (n, n); | 
|  | lambda_matrix_copy (mat, temp, n, n); | 
|  | lambda_matrix_id (inv, n); | 
|  |  | 
|  | /* Reduce TEMP to a lower triangular form, applying the same operations on | 
|  | INV which starts as the identity matrix.  N is the number of rows and | 
|  | columns.  */ | 
|  | for (j = 0; j < n; j++) | 
|  | { | 
|  | row = temp[j]; | 
|  |  | 
|  | /* Make every element in the current row positive.  */ | 
|  | for (i = j; i < n; i++) | 
|  | if (row[i] < 0) | 
|  | { | 
|  | lambda_matrix_col_negate (temp, n, i); | 
|  | lambda_matrix_col_negate (inv, n, i); | 
|  | } | 
|  |  | 
|  | /* Sweep the upper triangle.  Stop when only the diagonal element in the | 
|  | current row is nonzero.  */ | 
|  | while (lambda_vector_first_nz (row, n, j + 1) < n) | 
|  | { | 
|  | int min_col = lambda_vector_min_nz (row, n, j); | 
|  | lambda_matrix_col_exchange (temp, n, j, min_col); | 
|  | lambda_matrix_col_exchange (inv, n, j, min_col); | 
|  |  | 
|  | for (i = j + 1; i < n; i++) | 
|  | { | 
|  | int factor; | 
|  |  | 
|  | factor = -1 * row[i]; | 
|  | if (row[j] != 1) | 
|  | factor /= row[j]; | 
|  |  | 
|  | lambda_matrix_col_add (temp, n, j, i, factor); | 
|  | lambda_matrix_col_add (inv, n, j, i, factor); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reduce TEMP from a lower triangular to the identity matrix.  Also compute | 
|  | the determinant, which now is simply the product of the elements on the | 
|  | diagonal of TEMP.  If one of these elements is 0, the matrix has 0 as an | 
|  | eigenvalue so it is singular and hence not invertible.  */ | 
|  | determinant = 1; | 
|  | for (j = n - 1; j >= 0; j--) | 
|  | { | 
|  | int diagonal; | 
|  |  | 
|  | row = temp[j]; | 
|  | diagonal = row[j]; | 
|  |  | 
|  | /* The matrix must not be singular.  */ | 
|  | gcc_assert (diagonal); | 
|  |  | 
|  | determinant = determinant * diagonal; | 
|  |  | 
|  | /* If the diagonal is not 1, then multiply the each row by the | 
|  | diagonal so that the middle number is now 1, rather than a | 
|  | rational.  */ | 
|  | if (diagonal != 1) | 
|  | { | 
|  | for (i = 0; i < j; i++) | 
|  | lambda_matrix_col_mc (inv, n, i, diagonal); | 
|  | for (i = j + 1; i < n; i++) | 
|  | lambda_matrix_col_mc (inv, n, i, diagonal); | 
|  |  | 
|  | row[j] = diagonal = 1; | 
|  | } | 
|  |  | 
|  | /* Sweep the lower triangle column wise.  */ | 
|  | for (i = j - 1; i >= 0; i--) | 
|  | { | 
|  | if (row[i]) | 
|  | { | 
|  | int factor = -row[i]; | 
|  | lambda_matrix_col_add (temp, n, j, i, factor); | 
|  | lambda_matrix_col_add (inv, n, j, i, factor); | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | return determinant; | 
|  | } | 
|  |  | 
|  | /* Decompose a N x N matrix MAT to a product of a lower triangular H | 
|  | and a unimodular U matrix such that MAT = H.U.  N is the size of | 
|  | the rows of MAT.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_hermite (lambda_matrix mat, int n, | 
|  | lambda_matrix H, lambda_matrix U) | 
|  | { | 
|  | lambda_vector row; | 
|  | int i, j, factor, minimum_col; | 
|  |  | 
|  | lambda_matrix_copy (mat, H, n, n); | 
|  | lambda_matrix_id (U, n); | 
|  |  | 
|  | for (j = 0; j < n; j++) | 
|  | { | 
|  | row = H[j]; | 
|  |  | 
|  | /* Make every element of H[j][j..n] positive.  */ | 
|  | for (i = j; i < n; i++) | 
|  | { | 
|  | if (row[i] < 0) | 
|  | { | 
|  | lambda_matrix_col_negate (H, n, i); | 
|  | lambda_vector_negate (U[i], U[i], n); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Stop when only the diagonal element is nonzero.  */ | 
|  | while (lambda_vector_first_nz (row, n, j + 1) < n) | 
|  | { | 
|  | minimum_col = lambda_vector_min_nz (row, n, j); | 
|  | lambda_matrix_col_exchange (H, n, j, minimum_col); | 
|  | lambda_matrix_row_exchange (U, j, minimum_col); | 
|  |  | 
|  | for (i = j + 1; i < n; i++) | 
|  | { | 
|  | factor = row[i] / row[j]; | 
|  | lambda_matrix_col_add (H, n, j, i, -1 * factor); | 
|  | lambda_matrix_row_add (U, n, i, j, factor); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Given an M x N integer matrix A, this function determines an M x | 
|  | M unimodular matrix U, and an M x N echelon matrix S such that | 
|  | "U.A = S".  This decomposition is also known as "right Hermite". | 
|  |  | 
|  | Ref: Algorithm 2.1 page 33 in "Loop Transformations for | 
|  | Restructuring Compilers" Utpal Banerjee.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_right_hermite (lambda_matrix A, int m, int n, | 
|  | lambda_matrix S, lambda_matrix U) | 
|  | { | 
|  | int i, j, i0 = 0; | 
|  |  | 
|  | lambda_matrix_copy (A, S, m, n); | 
|  | lambda_matrix_id (U, m); | 
|  |  | 
|  | for (j = 0; j < n; j++) | 
|  | { | 
|  | if (lambda_vector_first_nz (S[j], m, i0) < m) | 
|  | { | 
|  | ++i0; | 
|  | for (i = m - 1; i >= i0; i--) | 
|  | { | 
|  | while (S[i][j] != 0) | 
|  | { | 
|  | int sigma, factor, a, b; | 
|  |  | 
|  | a = S[i-1][j]; | 
|  | b = S[i][j]; | 
|  | sigma = (a * b < 0) ? -1: 1; | 
|  | a = abs (a); | 
|  | b = abs (b); | 
|  | factor = sigma * (a / b); | 
|  |  | 
|  | lambda_matrix_row_add (S, n, i, i-1, -factor); | 
|  | lambda_matrix_row_exchange (S, i, i-1); | 
|  |  | 
|  | lambda_matrix_row_add (U, m, i, i-1, -factor); | 
|  | lambda_matrix_row_exchange (U, i, i-1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Given an M x N integer matrix A, this function determines an M x M | 
|  | unimodular matrix V, and an M x N echelon matrix S such that "A = | 
|  | V.S".  This decomposition is also known as "left Hermite". | 
|  |  | 
|  | Ref: Algorithm 2.2 page 36 in "Loop Transformations for | 
|  | Restructuring Compilers" Utpal Banerjee.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_left_hermite (lambda_matrix A, int m, int n, | 
|  | lambda_matrix S, lambda_matrix V) | 
|  | { | 
|  | int i, j, i0 = 0; | 
|  |  | 
|  | lambda_matrix_copy (A, S, m, n); | 
|  | lambda_matrix_id (V, m); | 
|  |  | 
|  | for (j = 0; j < n; j++) | 
|  | { | 
|  | if (lambda_vector_first_nz (S[j], m, i0) < m) | 
|  | { | 
|  | ++i0; | 
|  | for (i = m - 1; i >= i0; i--) | 
|  | { | 
|  | while (S[i][j] != 0) | 
|  | { | 
|  | int sigma, factor, a, b; | 
|  |  | 
|  | a = S[i-1][j]; | 
|  | b = S[i][j]; | 
|  | sigma = (a * b < 0) ? -1: 1; | 
|  | a = abs (a); | 
|  | b = abs (b); | 
|  | factor = sigma * (a / b); | 
|  |  | 
|  | lambda_matrix_row_add (S, n, i, i-1, -factor); | 
|  | lambda_matrix_row_exchange (S, i, i-1); | 
|  |  | 
|  | lambda_matrix_col_add (V, m, i-1, i, factor); | 
|  | lambda_matrix_col_exchange (V, m, i, i-1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* When it exists, return the first nonzero row in MAT after row | 
|  | STARTROW.  Otherwise return rowsize.  */ | 
|  |  | 
|  | int | 
|  | lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize, | 
|  | int startrow) | 
|  | { | 
|  | int j; | 
|  | bool found = false; | 
|  |  | 
|  | for (j = startrow; (j < rowsize) && !found; j++) | 
|  | { | 
|  | if ((mat[j] != NULL) | 
|  | && (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize)) | 
|  | found = true; | 
|  | } | 
|  |  | 
|  | if (found) | 
|  | return j - 1; | 
|  | return rowsize; | 
|  | } | 
|  |  | 
|  | /* Calculate the projection of E sub k to the null space of B.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_project_to_null (lambda_matrix B, int rowsize, | 
|  | int colsize, int k, lambda_vector x) | 
|  | { | 
|  | lambda_matrix M1, M2, M3, I; | 
|  | int determinant; | 
|  |  | 
|  | /* Compute c(I-B^T inv(B B^T) B) e sub k.  */ | 
|  |  | 
|  | /* M1 is the transpose of B.  */ | 
|  | M1 = lambda_matrix_new (colsize, colsize); | 
|  | lambda_matrix_transpose (B, M1, rowsize, colsize); | 
|  |  | 
|  | /* M2 = B * B^T */ | 
|  | M2 = lambda_matrix_new (colsize, colsize); | 
|  | lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize); | 
|  |  | 
|  | /* M3 = inv(M2) */ | 
|  | M3 = lambda_matrix_new (colsize, colsize); | 
|  | determinant = lambda_matrix_inverse (M2, M3, rowsize); | 
|  |  | 
|  | /* M2 = B^T (inv(B B^T)) */ | 
|  | lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize); | 
|  |  | 
|  | /* M1 = B^T (inv(B B^T)) B */ | 
|  | lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize); | 
|  | lambda_matrix_negate (M1, M1, colsize, colsize); | 
|  |  | 
|  | I = lambda_matrix_new (colsize, colsize); | 
|  | lambda_matrix_id (I, colsize); | 
|  |  | 
|  | lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize); | 
|  |  | 
|  | lambda_matrix_get_column (M2, colsize, k - 1, x); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Multiply a vector VEC by a matrix MAT. | 
|  | MAT is an M*N matrix, and VEC is a vector with length N.  The result | 
|  | is stored in DEST which must be a vector of length M.  */ | 
|  |  | 
|  | void | 
|  | lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n, | 
|  | lambda_vector vec, lambda_vector dest) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | lambda_vector_clear (dest, m); | 
|  | for (i = 0; i < m; i++) | 
|  | for (j = 0; j < n; j++) | 
|  | dest[i] += matrix[i][j] * vec[j]; | 
|  | } | 
|  |  | 
|  | /* Print out an M x N matrix MAT to OUTFILE.  */ | 
|  |  | 
|  | void | 
|  | print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < m; i++) | 
|  | print_lambda_vector (outfile, matrix[i], n); | 
|  | fprintf (outfile, "\n"); | 
|  | } | 
|  |  |