|  | /* Implementation of the MINLOC intrinsic | 
|  | Copyright 2002 Free Software Foundation, Inc. | 
|  | Contributed by Paul Brook <paul@nowt.org> | 
|  |  | 
|  | This file is part of the GNU Fortran 95 runtime library (libgfortran). | 
|  |  | 
|  | Libgfortran is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2 of the License, or (at your option) any later version. | 
|  |  | 
|  | In addition to the permissions in the GNU General Public License, the | 
|  | Free Software Foundation gives you unlimited permission to link the | 
|  | compiled version of this file into combinations with other programs, | 
|  | and to distribute those combinations without any restriction coming | 
|  | from the use of this file.  (The General Public License restrictions | 
|  | do apply in other respects; for example, they cover modification of | 
|  | the file, and distribution when not linked into a combine | 
|  | executable.) | 
|  |  | 
|  | Libgfortran is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public | 
|  | License along with libgfortran; see the file COPYING.  If not, | 
|  | write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, | 
|  | Boston, MA 02110-1301, USA.  */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include <stdlib.h> | 
|  | #include <assert.h> | 
|  | #include <float.h> | 
|  | #include <limits.h> | 
|  | #include "libgfortran.h" | 
|  |  | 
|  |  | 
|  | #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_8) | 
|  |  | 
|  |  | 
|  | extern void minloc1_8_i8 (gfc_array_i8 * const restrict, | 
|  | gfc_array_i8 * const restrict, const index_type * const restrict); | 
|  | export_proto(minloc1_8_i8); | 
|  |  | 
|  | void | 
|  | minloc1_8_i8 (gfc_array_i8 * const restrict retarray, | 
|  | gfc_array_i8 * const restrict array, | 
|  | const index_type * const restrict pdim) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | const GFC_INTEGER_8 * restrict base; | 
|  | GFC_INTEGER_8 * restrict dest; | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type len; | 
|  | index_type delta; | 
|  | index_type dim; | 
|  |  | 
|  | /* Make dim zero based to avoid confusion.  */ | 
|  | dim = (*pdim) - 1; | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  |  | 
|  | len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; | 
|  | delta = array->dim[dim].stride; | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | sstride[n] = array->dim[n].stride; | 
|  | extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | sstride[n] = array->dim[n + 1].stride; | 
|  | extent[n] = | 
|  | array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->data == NULL) | 
|  | { | 
|  | size_t alloc_size; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | retarray->dim[n].lbound = 0; | 
|  | retarray->dim[n].ubound = extent[n]-1; | 
|  | if (n == 0) | 
|  | retarray->dim[n].stride = 1; | 
|  | else | 
|  | retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; | 
|  | } | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; | 
|  |  | 
|  | alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride | 
|  | * extent[rank-1]; | 
|  |  | 
|  | if (alloc_size == 0) | 
|  | { | 
|  | /* Make sure we have a zero-sized array.  */ | 
|  | retarray->dim[0].lbound = 0; | 
|  | retarray->dim[0].ubound = -1; | 
|  | return; | 
|  | } | 
|  | else | 
|  | retarray->data = internal_malloc_size (alloc_size); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect"); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = retarray->dim[n].stride; | 
|  | if (extent[n] <= 0) | 
|  | len = 0; | 
|  | } | 
|  |  | 
|  | base = array->data; | 
|  | dest = retarray->data; | 
|  |  | 
|  | while (base) | 
|  | { | 
|  | const GFC_INTEGER_8 * restrict src; | 
|  | GFC_INTEGER_8 result; | 
|  | src = base; | 
|  | { | 
|  |  | 
|  | GFC_INTEGER_8 minval; | 
|  | minval = GFC_INTEGER_8_HUGE; | 
|  | result = 0; | 
|  | if (len <= 0) | 
|  | *dest = 0; | 
|  | else | 
|  | { | 
|  | for (n = 0; n < len; n++, src += delta) | 
|  | { | 
|  |  | 
|  | if (*src < minval || !result) | 
|  | { | 
|  | minval = *src; | 
|  | result = (GFC_INTEGER_8)n + 1; | 
|  | } | 
|  | } | 
|  | *dest = result; | 
|  | } | 
|  | } | 
|  | /* Advance to the next element.  */ | 
|  | count[0]++; | 
|  | base += sstride[0]; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n]; | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n == rank) | 
|  | { | 
|  | /* Break out of the look.  */ | 
|  | base = NULL; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | extern void mminloc1_8_i8 (gfc_array_i8 * const restrict, | 
|  | gfc_array_i8 * const restrict, const index_type * const restrict, | 
|  | gfc_array_l4 * const restrict); | 
|  | export_proto(mminloc1_8_i8); | 
|  |  | 
|  | void | 
|  | mminloc1_8_i8 (gfc_array_i8 * const restrict retarray, | 
|  | gfc_array_i8 * const restrict array, | 
|  | const index_type * const restrict pdim, | 
|  | gfc_array_l4 * const restrict mask) | 
|  | { | 
|  | index_type count[GFC_MAX_DIMENSIONS]; | 
|  | index_type extent[GFC_MAX_DIMENSIONS]; | 
|  | index_type sstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type dstride[GFC_MAX_DIMENSIONS]; | 
|  | index_type mstride[GFC_MAX_DIMENSIONS]; | 
|  | GFC_INTEGER_8 * restrict dest; | 
|  | const GFC_INTEGER_8 * restrict base; | 
|  | const GFC_LOGICAL_4 * restrict mbase; | 
|  | int rank; | 
|  | int dim; | 
|  | index_type n; | 
|  | index_type len; | 
|  | index_type delta; | 
|  | index_type mdelta; | 
|  |  | 
|  | dim = (*pdim) - 1; | 
|  | rank = GFC_DESCRIPTOR_RANK (array) - 1; | 
|  |  | 
|  | len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; | 
|  | if (len <= 0) | 
|  | return; | 
|  | delta = array->dim[dim].stride; | 
|  | mdelta = mask->dim[dim].stride; | 
|  |  | 
|  | for (n = 0; n < dim; n++) | 
|  | { | 
|  | sstride[n] = array->dim[n].stride; | 
|  | mstride[n] = mask->dim[n].stride; | 
|  | extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  |  | 
|  | } | 
|  | for (n = dim; n < rank; n++) | 
|  | { | 
|  | sstride[n] = array->dim[n + 1].stride; | 
|  | mstride[n] = mask->dim[n + 1].stride; | 
|  | extent[n] = | 
|  | array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; | 
|  |  | 
|  | if (extent[n] < 0) | 
|  | extent[n] = 0; | 
|  | } | 
|  |  | 
|  | if (retarray->data == NULL) | 
|  | { | 
|  | size_t alloc_size; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | retarray->dim[n].lbound = 0; | 
|  | retarray->dim[n].ubound = extent[n]-1; | 
|  | if (n == 0) | 
|  | retarray->dim[n].stride = 1; | 
|  | else | 
|  | retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; | 
|  | } | 
|  |  | 
|  | alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride | 
|  | * extent[rank-1]; | 
|  |  | 
|  | retarray->offset = 0; | 
|  | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; | 
|  |  | 
|  | if (alloc_size == 0) | 
|  | { | 
|  | /* Make sure we have a zero-sized array.  */ | 
|  | retarray->dim[0].lbound = 0; | 
|  | retarray->dim[0].ubound = -1; | 
|  | return; | 
|  | } | 
|  | else | 
|  | retarray->data = internal_malloc_size (alloc_size); | 
|  |  | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rank != GFC_DESCRIPTOR_RANK (retarray)) | 
|  | runtime_error ("rank of return array incorrect"); | 
|  | } | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | { | 
|  | count[n] = 0; | 
|  | dstride[n] = retarray->dim[n].stride; | 
|  | if (extent[n] <= 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | dest = retarray->data; | 
|  | base = array->data; | 
|  | mbase = mask->data; | 
|  |  | 
|  | if (GFC_DESCRIPTOR_SIZE (mask) != 4) | 
|  | { | 
|  | /* This allows the same loop to be used for all logical types.  */ | 
|  | assert (GFC_DESCRIPTOR_SIZE (mask) == 8); | 
|  | for (n = 0; n < rank; n++) | 
|  | mstride[n] <<= 1; | 
|  | mdelta <<= 1; | 
|  | mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); | 
|  | } | 
|  |  | 
|  | while (base) | 
|  | { | 
|  | const GFC_INTEGER_8 * restrict src; | 
|  | const GFC_LOGICAL_4 * restrict msrc; | 
|  | GFC_INTEGER_8 result; | 
|  | src = base; | 
|  | msrc = mbase; | 
|  | { | 
|  |  | 
|  | GFC_INTEGER_8 minval; | 
|  | minval = GFC_INTEGER_8_HUGE; | 
|  | result = 0; | 
|  | if (len <= 0) | 
|  | *dest = 0; | 
|  | else | 
|  | { | 
|  | for (n = 0; n < len; n++, src += delta, msrc += mdelta) | 
|  | { | 
|  |  | 
|  | if (*msrc && (*src < minval || !result)) | 
|  | { | 
|  | minval = *src; | 
|  | result = (GFC_INTEGER_8)n + 1; | 
|  | } | 
|  | } | 
|  | *dest = result; | 
|  | } | 
|  | } | 
|  | /* Advance to the next element.  */ | 
|  | count[0]++; | 
|  | base += sstride[0]; | 
|  | mbase += mstride[0]; | 
|  | dest += dstride[0]; | 
|  | n = 0; | 
|  | while (count[n] == extent[n]) | 
|  | { | 
|  | /* When we get to the end of a dimension, reset it and increment | 
|  | the next dimension.  */ | 
|  | count[n] = 0; | 
|  | /* We could precalculate these products, but this is a less | 
|  | frequently used path so probably not worth it.  */ | 
|  | base -= sstride[n] * extent[n]; | 
|  | mbase -= mstride[n] * extent[n]; | 
|  | dest -= dstride[n] * extent[n]; | 
|  | n++; | 
|  | if (n == rank) | 
|  | { | 
|  | /* Break out of the look.  */ | 
|  | base = NULL; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | count[n]++; | 
|  | base += sstride[n]; | 
|  | mbase += mstride[n]; | 
|  | dest += dstride[n]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | extern void sminloc1_8_i8 (gfc_array_i8 * const restrict, | 
|  | gfc_array_i8 * const restrict, const index_type * const restrict, | 
|  | GFC_LOGICAL_4 *); | 
|  | export_proto(sminloc1_8_i8); | 
|  |  | 
|  | void | 
|  | sminloc1_8_i8 (gfc_array_i8 * const restrict retarray, | 
|  | gfc_array_i8 * const restrict array, | 
|  | const index_type * const restrict pdim, | 
|  | GFC_LOGICAL_4 * mask) | 
|  | { | 
|  | index_type rank; | 
|  | index_type n; | 
|  | index_type dstride; | 
|  | GFC_INTEGER_8 *dest; | 
|  |  | 
|  | if (*mask) | 
|  | { | 
|  | minloc1_8_i8 (retarray, array, pdim); | 
|  | return; | 
|  | } | 
|  | rank = GFC_DESCRIPTOR_RANK (array); | 
|  | if (rank <= 0) | 
|  | runtime_error ("Rank of array needs to be > 0"); | 
|  |  | 
|  | if (retarray->data == NULL) | 
|  | { | 
|  | retarray->dim[0].lbound = 0; | 
|  | retarray->dim[0].ubound = rank-1; | 
|  | retarray->dim[0].stride = 1; | 
|  | retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; | 
|  | retarray->offset = 0; | 
|  | retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (GFC_DESCRIPTOR_RANK (retarray) != 1) | 
|  | runtime_error ("rank of return array does not equal 1"); | 
|  |  | 
|  | if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank) | 
|  | runtime_error ("dimension of return array incorrect"); | 
|  | } | 
|  |  | 
|  | dstride = retarray->dim[0].stride; | 
|  | dest = retarray->data; | 
|  |  | 
|  | for (n = 0; n < rank; n++) | 
|  | dest[n * dstride] = 0 ; | 
|  | } | 
|  |  | 
|  | #endif |