| /* Inline functions for tree-flow.h |
| Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc. |
| Contributed by Diego Novillo <dnovillo@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to |
| the Free Software Foundation, 51 Franklin Street, Fifth Floor, |
| Boston, MA 02110-1301, USA. */ |
| |
| #ifndef _TREE_FLOW_INLINE_H |
| #define _TREE_FLOW_INLINE_H 1 |
| |
| /* Inline functions for manipulating various data structures defined in |
| tree-flow.h. See tree-flow.h for documentation. */ |
| |
| /* Initialize the hashtable iterator HTI to point to hashtable TABLE */ |
| |
| static inline void * |
| first_htab_element (htab_iterator *hti, htab_t table) |
| { |
| hti->htab = table; |
| hti->slot = table->entries; |
| hti->limit = hti->slot + htab_size (table); |
| do |
| { |
| PTR x = *(hti->slot); |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| break; |
| } while (++(hti->slot) < hti->limit); |
| |
| if (hti->slot < hti->limit) |
| return *(hti->slot); |
| return NULL; |
| } |
| |
| /* Return current non-empty/deleted slot of the hashtable pointed to by HTI, |
| or NULL if we have reached the end. */ |
| |
| static inline bool |
| end_htab_p (htab_iterator *hti) |
| { |
| if (hti->slot >= hti->limit) |
| return true; |
| return false; |
| } |
| |
| /* Advance the hashtable iterator pointed to by HTI to the next element of the |
| hashtable. */ |
| |
| static inline void * |
| next_htab_element (htab_iterator *hti) |
| { |
| while (++(hti->slot) < hti->limit) |
| { |
| PTR x = *(hti->slot); |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| return x; |
| }; |
| return NULL; |
| } |
| |
| /* Initialize ITER to point to the first referenced variable in the |
| referenced_vars hashtable, and return that variable. */ |
| |
| static inline tree |
| first_referenced_var (referenced_var_iterator *iter) |
| { |
| struct int_tree_map *itm; |
| itm = (struct int_tree_map *) first_htab_element (&iter->hti, |
| referenced_vars); |
| if (!itm) |
| return NULL; |
| return itm->to; |
| } |
| |
| /* Return true if we have hit the end of the referenced variables ITER is |
| iterating through. */ |
| |
| static inline bool |
| end_referenced_vars_p (referenced_var_iterator *iter) |
| { |
| return end_htab_p (&iter->hti); |
| } |
| |
| /* Make ITER point to the next referenced_var in the referenced_var hashtable, |
| and return that variable. */ |
| |
| static inline tree |
| next_referenced_var (referenced_var_iterator *iter) |
| { |
| struct int_tree_map *itm; |
| itm = (struct int_tree_map *) next_htab_element (&iter->hti); |
| if (!itm) |
| return NULL; |
| return itm->to; |
| } |
| |
| /* Fill up VEC with the variables in the referenced vars hashtable. */ |
| |
| static inline void |
| fill_referenced_var_vec (VEC (tree, heap) **vec) |
| { |
| referenced_var_iterator rvi; |
| tree var; |
| *vec = NULL; |
| FOR_EACH_REFERENCED_VAR (var, rvi) |
| VEC_safe_push (tree, heap, *vec, var); |
| } |
| |
| /* Return the variable annotation for T, which must be a _DECL node. |
| Return NULL if the variable annotation doesn't already exist. */ |
| static inline var_ann_t |
| var_ann (tree t) |
| { |
| gcc_assert (t); |
| gcc_assert (DECL_P (t)); |
| gcc_assert (TREE_CODE (t) != FUNCTION_DECL); |
| gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN); |
| |
| return (var_ann_t) t->common.ann; |
| } |
| |
| /* Return the variable annotation for T, which must be a _DECL node. |
| Create the variable annotation if it doesn't exist. */ |
| static inline var_ann_t |
| get_var_ann (tree var) |
| { |
| var_ann_t ann = var_ann (var); |
| return (ann) ? ann : create_var_ann (var); |
| } |
| |
| /* Return the function annotation for T, which must be a FUNCTION_DECL node. |
| Return NULL if the function annotation doesn't already exist. */ |
| static inline function_ann_t |
| function_ann (tree t) |
| { |
| gcc_assert (t); |
| gcc_assert (TREE_CODE (t) == FUNCTION_DECL); |
| gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN); |
| |
| return (function_ann_t) t->common.ann; |
| } |
| |
| /* Return the function annotation for T, which must be a FUNCTION_DECL node. |
| Create the function annotation if it doesn't exist. */ |
| static inline function_ann_t |
| get_function_ann (tree var) |
| { |
| function_ann_t ann = function_ann (var); |
| gcc_assert (!var->common.ann || var->common.ann->common.type == FUNCTION_ANN); |
| return (ann) ? ann : create_function_ann (var); |
| } |
| |
| /* Return the statement annotation for T, which must be a statement |
| node. Return NULL if the statement annotation doesn't exist. */ |
| static inline stmt_ann_t |
| stmt_ann (tree t) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (is_gimple_stmt (t)); |
| #endif |
| gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN); |
| return (stmt_ann_t) t->common.ann; |
| } |
| |
| /* Return the statement annotation for T, which must be a statement |
| node. Create the statement annotation if it doesn't exist. */ |
| static inline stmt_ann_t |
| get_stmt_ann (tree stmt) |
| { |
| stmt_ann_t ann = stmt_ann (stmt); |
| return (ann) ? ann : create_stmt_ann (stmt); |
| } |
| |
| /* Return the annotation type for annotation ANN. */ |
| static inline enum tree_ann_type |
| ann_type (tree_ann_t ann) |
| { |
| return ann->common.type; |
| } |
| |
| /* Return the basic block for statement T. */ |
| static inline basic_block |
| bb_for_stmt (tree t) |
| { |
| stmt_ann_t ann; |
| |
| if (TREE_CODE (t) == PHI_NODE) |
| return PHI_BB (t); |
| |
| ann = stmt_ann (t); |
| return ann ? ann->bb : NULL; |
| } |
| |
| /* Return the may_aliases varray for variable VAR, or NULL if it has |
| no may aliases. */ |
| static inline VEC(tree, gc) * |
| may_aliases (tree var) |
| { |
| var_ann_t ann = var_ann (var); |
| return ann ? ann->may_aliases : NULL; |
| } |
| |
| /* Return the line number for EXPR, or return -1 if we have no line |
| number information for it. */ |
| static inline int |
| get_lineno (tree expr) |
| { |
| if (expr == NULL_TREE) |
| return -1; |
| |
| if (TREE_CODE (expr) == COMPOUND_EXPR) |
| expr = TREE_OPERAND (expr, 0); |
| |
| if (! EXPR_HAS_LOCATION (expr)) |
| return -1; |
| |
| return EXPR_LINENO (expr); |
| } |
| |
| /* Return the file name for EXPR, or return "???" if we have no |
| filename information. */ |
| static inline const char * |
| get_filename (tree expr) |
| { |
| const char *filename; |
| if (expr == NULL_TREE) |
| return "???"; |
| |
| if (TREE_CODE (expr) == COMPOUND_EXPR) |
| expr = TREE_OPERAND (expr, 0); |
| |
| if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr))) |
| return filename; |
| else |
| return "???"; |
| } |
| |
| /* Return true if T is a noreturn call. */ |
| static inline bool |
| noreturn_call_p (tree t) |
| { |
| tree call = get_call_expr_in (t); |
| return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0; |
| } |
| |
| /* Mark statement T as modified. */ |
| static inline void |
| mark_stmt_modified (tree t) |
| { |
| stmt_ann_t ann; |
| if (TREE_CODE (t) == PHI_NODE) |
| return; |
| |
| ann = stmt_ann (t); |
| if (ann == NULL) |
| ann = create_stmt_ann (t); |
| else if (noreturn_call_p (t)) |
| VEC_safe_push (tree, gc, modified_noreturn_calls, t); |
| ann->modified = 1; |
| } |
| |
| /* Mark statement T as modified, and update it. */ |
| static inline void |
| update_stmt (tree t) |
| { |
| if (TREE_CODE (t) == PHI_NODE) |
| return; |
| mark_stmt_modified (t); |
| update_stmt_operands (t); |
| } |
| |
| static inline void |
| update_stmt_if_modified (tree t) |
| { |
| if (stmt_modified_p (t)) |
| update_stmt_operands (t); |
| } |
| |
| /* Return true if T is marked as modified, false otherwise. */ |
| static inline bool |
| stmt_modified_p (tree t) |
| { |
| stmt_ann_t ann = stmt_ann (t); |
| |
| /* Note that if the statement doesn't yet have an annotation, we consider it |
| modified. This will force the next call to update_stmt_operands to scan |
| the statement. */ |
| return ann ? ann->modified : true; |
| } |
| |
| /* Delink an immediate_uses node from its chain. */ |
| static inline void |
| delink_imm_use (ssa_use_operand_t *linknode) |
| { |
| /* Return if this node is not in a list. */ |
| if (linknode->prev == NULL) |
| return; |
| |
| linknode->prev->next = linknode->next; |
| linknode->next->prev = linknode->prev; |
| linknode->prev = NULL; |
| linknode->next = NULL; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ |
| static inline void |
| link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) |
| { |
| /* Link the new node at the head of the list. If we are in the process of |
| traversing the list, we won't visit any new nodes added to it. */ |
| linknode->prev = list; |
| linknode->next = list->next; |
| list->next->prev = linknode; |
| list->next = linknode; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ |
| static inline void |
| link_imm_use (ssa_use_operand_t *linknode, tree def) |
| { |
| ssa_use_operand_t *root; |
| |
| if (!def || TREE_CODE (def) != SSA_NAME) |
| linknode->prev = NULL; |
| else |
| { |
| root = &(SSA_NAME_IMM_USE_NODE (def)); |
| #ifdef ENABLE_CHECKING |
| if (linknode->use) |
| gcc_assert (*(linknode->use) == def); |
| #endif |
| link_imm_use_to_list (linknode, root); |
| } |
| } |
| |
| /* Set the value of a use pointed to by USE to VAL. */ |
| static inline void |
| set_ssa_use_from_ptr (use_operand_p use, tree val) |
| { |
| delink_imm_use (use); |
| *(use->use) = val; |
| link_imm_use (use, val); |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring |
| in STMT. */ |
| static inline void |
| link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt) |
| { |
| if (stmt) |
| link_imm_use (linknode, def); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->stmt = stmt; |
| } |
| |
| /* Relink a new node in place of an old node in the list. */ |
| static inline void |
| relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) |
| { |
| /* The node one had better be in the same list. */ |
| gcc_assert (*(old->use) == *(node->use)); |
| node->prev = old->prev; |
| node->next = old->next; |
| if (old->prev) |
| { |
| old->prev->next = node; |
| old->next->prev = node; |
| /* Remove the old node from the list. */ |
| old->prev = NULL; |
| } |
| } |
| |
| /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring |
| in STMT. */ |
| static inline void |
| relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt) |
| { |
| if (stmt) |
| relink_imm_use (linknode, old); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->stmt = stmt; |
| } |
| |
| |
| /* Return true is IMM has reached the end of the immediate use list. */ |
| static inline bool |
| end_readonly_imm_use_p (imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Initialize iterator IMM to process the list for VAR. */ |
| static inline use_operand_p |
| first_readonly_imm_use (imm_use_iterator *imm, tree var) |
| { |
| gcc_assert (TREE_CODE (var) == SSA_NAME); |
| |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| #ifdef ENABLE_CHECKING |
| imm->iter_node.next = imm->imm_use->next; |
| #endif |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| /* Bump IMM to the next use in the list. */ |
| static inline use_operand_p |
| next_readonly_imm_use (imm_use_iterator *imm) |
| { |
| use_operand_p old = imm->imm_use; |
| |
| #ifdef ENABLE_CHECKING |
| /* If this assertion fails, it indicates the 'next' pointer has changed |
| since we the last bump. This indicates that the list is being modified |
| via stmt changes, or SET_USE, or somesuch thing, and you need to be |
| using the SAFE version of the iterator. */ |
| gcc_assert (imm->iter_node.next == old->next); |
| imm->iter_node.next = old->next->next; |
| #endif |
| |
| imm->imm_use = old->next; |
| if (end_readonly_imm_use_p (imm)) |
| return old; |
| return imm->imm_use; |
| } |
| |
| /* Return true if VAR has no uses. */ |
| static inline bool |
| has_zero_uses (tree var) |
| { |
| ssa_use_operand_t *ptr; |
| ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| /* A single use means there is no items in the list. */ |
| return (ptr == ptr->next); |
| } |
| |
| /* Return true if VAR has a single use. */ |
| static inline bool |
| has_single_use (tree var) |
| { |
| ssa_use_operand_t *ptr; |
| ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| /* A single use means there is one item in the list. */ |
| return (ptr != ptr->next && ptr == ptr->next->next); |
| } |
| |
| /* If VAR has only a single immediate use, return true, and set USE_P and STMT |
| to the use pointer and stmt of occurrence. */ |
| static inline bool |
| single_imm_use (tree var, use_operand_p *use_p, tree *stmt) |
| { |
| ssa_use_operand_t *ptr; |
| |
| ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| if (ptr != ptr->next && ptr == ptr->next->next) |
| { |
| *use_p = ptr->next; |
| *stmt = ptr->next->stmt; |
| return true; |
| } |
| *use_p = NULL_USE_OPERAND_P; |
| *stmt = NULL_TREE; |
| return false; |
| } |
| |
| /* Return the number of immediate uses of VAR. */ |
| static inline unsigned int |
| num_imm_uses (tree var) |
| { |
| ssa_use_operand_t *ptr, *start; |
| unsigned int num; |
| |
| start = &(SSA_NAME_IMM_USE_NODE (var)); |
| num = 0; |
| for (ptr = start->next; ptr != start; ptr = ptr->next) |
| num++; |
| |
| return num; |
| } |
| |
| |
| /* Return the tree pointer to by USE. */ |
| static inline tree |
| get_use_from_ptr (use_operand_p use) |
| { |
| return *(use->use); |
| } |
| |
| /* Return the tree pointer to by DEF. */ |
| static inline tree |
| get_def_from_ptr (def_operand_p def) |
| { |
| return *def; |
| } |
| |
| /* Return a def_operand_p pointer for the result of PHI. */ |
| static inline def_operand_p |
| get_phi_result_ptr (tree phi) |
| { |
| return &(PHI_RESULT_TREE (phi)); |
| } |
| |
| /* Return a use_operand_p pointer for argument I of phinode PHI. */ |
| static inline use_operand_p |
| get_phi_arg_def_ptr (tree phi, int i) |
| { |
| return &(PHI_ARG_IMM_USE_NODE (phi,i)); |
| } |
| |
| |
| /* Return the bitmap of addresses taken by STMT, or NULL if it takes |
| no addresses. */ |
| static inline bitmap |
| addresses_taken (tree stmt) |
| { |
| stmt_ann_t ann = stmt_ann (stmt); |
| return ann ? ann->addresses_taken : NULL; |
| } |
| |
| /* Return the PHI nodes for basic block BB, or NULL if there are no |
| PHI nodes. */ |
| static inline tree |
| phi_nodes (basic_block bb) |
| { |
| return bb->phi_nodes; |
| } |
| |
| /* Set list of phi nodes of a basic block BB to L. */ |
| |
| static inline void |
| set_phi_nodes (basic_block bb, tree l) |
| { |
| tree phi; |
| |
| bb->phi_nodes = l; |
| for (phi = l; phi; phi = PHI_CHAIN (phi)) |
| set_bb_for_stmt (phi, bb); |
| } |
| |
| /* Return the phi argument which contains the specified use. */ |
| |
| static inline int |
| phi_arg_index_from_use (use_operand_p use) |
| { |
| struct phi_arg_d *element, *root; |
| int index; |
| tree phi; |
| |
| /* Since the use is the first thing in a PHI argument element, we can |
| calculate its index based on casting it to an argument, and performing |
| pointer arithmetic. */ |
| |
| phi = USE_STMT (use); |
| gcc_assert (TREE_CODE (phi) == PHI_NODE); |
| |
| element = (struct phi_arg_d *)use; |
| root = &(PHI_ARG_ELT (phi, 0)); |
| index = element - root; |
| |
| #ifdef ENABLE_CHECKING |
| /* Make sure the calculation doesn't have any leftover bytes. If it does, |
| then imm_use is likely not the first element in phi_arg_d. */ |
| gcc_assert ( |
| (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); |
| gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi)); |
| #endif |
| |
| return index; |
| } |
| |
| /* Mark VAR as used, so that it'll be preserved during rtl expansion. */ |
| |
| static inline void |
| set_is_used (tree var) |
| { |
| var_ann_t ann = get_var_ann (var); |
| ann->used = 1; |
| } |
| |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| /* Return true if T is an executable statement. */ |
| static inline bool |
| is_exec_stmt (tree t) |
| { |
| return (t && !IS_EMPTY_STMT (t) && t != error_mark_node); |
| } |
| |
| |
| /* Return true if this stmt can be the target of a control transfer stmt such |
| as a goto. */ |
| static inline bool |
| is_label_stmt (tree t) |
| { |
| if (t) |
| switch (TREE_CODE (t)) |
| { |
| case LABEL_DECL: |
| case LABEL_EXPR: |
| case CASE_LABEL_EXPR: |
| return true; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| /* PHI nodes should contain only ssa_names and invariants. A test |
| for ssa_name is definitely simpler; don't let invalid contents |
| slip in in the meantime. */ |
| |
| static inline bool |
| phi_ssa_name_p (tree t) |
| { |
| if (TREE_CODE (t) == SSA_NAME) |
| return true; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (is_gimple_min_invariant (t)); |
| #endif |
| return false; |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| /* Return a block_stmt_iterator that points to beginning of basic |
| block BB. */ |
| static inline block_stmt_iterator |
| bsi_start (basic_block bb) |
| { |
| block_stmt_iterator bsi; |
| if (bb->stmt_list) |
| bsi.tsi = tsi_start (bb->stmt_list); |
| else |
| { |
| gcc_assert (bb->index < NUM_FIXED_BLOCKS); |
| bsi.tsi.ptr = NULL; |
| bsi.tsi.container = NULL; |
| } |
| bsi.bb = bb; |
| return bsi; |
| } |
| |
| /* Return a block statement iterator that points to the first non-label |
| statement in block BB. */ |
| |
| static inline block_stmt_iterator |
| bsi_after_labels (basic_block bb) |
| { |
| block_stmt_iterator bsi = bsi_start (bb); |
| |
| while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR) |
| bsi_next (&bsi); |
| |
| return bsi; |
| } |
| |
| /* Return a block statement iterator that points to the end of basic |
| block BB. */ |
| static inline block_stmt_iterator |
| bsi_last (basic_block bb) |
| { |
| block_stmt_iterator bsi; |
| if (bb->stmt_list) |
| bsi.tsi = tsi_last (bb->stmt_list); |
| else |
| { |
| gcc_assert (bb->index < NUM_FIXED_BLOCKS); |
| bsi.tsi.ptr = NULL; |
| bsi.tsi.container = NULL; |
| } |
| bsi.bb = bb; |
| return bsi; |
| } |
| |
| /* Return true if block statement iterator I has reached the end of |
| the basic block. */ |
| static inline bool |
| bsi_end_p (block_stmt_iterator i) |
| { |
| return tsi_end_p (i.tsi); |
| } |
| |
| /* Modify block statement iterator I so that it is at the next |
| statement in the basic block. */ |
| static inline void |
| bsi_next (block_stmt_iterator *i) |
| { |
| tsi_next (&i->tsi); |
| } |
| |
| /* Modify block statement iterator I so that it is at the previous |
| statement in the basic block. */ |
| static inline void |
| bsi_prev (block_stmt_iterator *i) |
| { |
| tsi_prev (&i->tsi); |
| } |
| |
| /* Return the statement that block statement iterator I is currently |
| at. */ |
| static inline tree |
| bsi_stmt (block_stmt_iterator i) |
| { |
| return tsi_stmt (i.tsi); |
| } |
| |
| /* Return a pointer to the statement that block statement iterator I |
| is currently at. */ |
| static inline tree * |
| bsi_stmt_ptr (block_stmt_iterator i) |
| { |
| return tsi_stmt_ptr (i.tsi); |
| } |
| |
| /* Returns the loop of the statement STMT. */ |
| |
| static inline struct loop * |
| loop_containing_stmt (tree stmt) |
| { |
| basic_block bb = bb_for_stmt (stmt); |
| if (!bb) |
| return NULL; |
| |
| return bb->loop_father; |
| } |
| |
| /* Return true if VAR is a clobbered by function calls. */ |
| static inline bool |
| is_call_clobbered (tree var) |
| { |
| if (!MTAG_P (var)) |
| return DECL_CALL_CLOBBERED (var); |
| else |
| return bitmap_bit_p (call_clobbered_vars, DECL_UID (var)); |
| } |
| |
| /* Mark variable VAR as being clobbered by function calls. */ |
| static inline void |
| mark_call_clobbered (tree var, unsigned int escape_type) |
| { |
| var_ann (var)->escape_mask |= escape_type; |
| if (!MTAG_P (var)) |
| DECL_CALL_CLOBBERED (var) = true; |
| bitmap_set_bit (call_clobbered_vars, DECL_UID (var)); |
| } |
| |
| /* Clear the call-clobbered attribute from variable VAR. */ |
| static inline void |
| clear_call_clobbered (tree var) |
| { |
| var_ann_t ann = var_ann (var); |
| ann->escape_mask = 0; |
| if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG) |
| MTAG_GLOBAL (var) = 0; |
| if (!MTAG_P (var)) |
| DECL_CALL_CLOBBERED (var) = false; |
| bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); |
| } |
| |
| /* Mark variable VAR as being non-addressable. */ |
| static inline void |
| mark_non_addressable (tree var) |
| { |
| if (!MTAG_P (var)) |
| DECL_CALL_CLOBBERED (var) = false; |
| bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); |
| TREE_ADDRESSABLE (var) = 0; |
| } |
| |
| /* Return the common annotation for T. Return NULL if the annotation |
| doesn't already exist. */ |
| static inline tree_ann_common_t |
| tree_common_ann (tree t) |
| { |
| return &t->common.ann->common; |
| } |
| |
| /* Return a common annotation for T. Create the constant annotation if it |
| doesn't exist. */ |
| static inline tree_ann_common_t |
| get_tree_common_ann (tree t) |
| { |
| tree_ann_common_t ann = tree_common_ann (t); |
| return (ann) ? ann : create_tree_common_ann (t); |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| /* The following set of routines are used to iterator over various type of |
| SSA operands. */ |
| |
| /* Return true if PTR is finished iterating. */ |
| static inline bool |
| op_iter_done (ssa_op_iter *ptr) |
| { |
| return ptr->done; |
| } |
| |
| /* Get the next iterator use value for PTR. */ |
| static inline use_operand_p |
| op_iter_next_use (ssa_op_iter *ptr) |
| { |
| use_operand_p use_p; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_use); |
| #endif |
| if (ptr->uses) |
| { |
| use_p = USE_OP_PTR (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return use_p; |
| } |
| if (ptr->vuses) |
| { |
| use_p = VUSE_OP_PTR (ptr->vuses); |
| ptr->vuses = ptr->vuses->next; |
| return use_p; |
| } |
| if (ptr->mayuses) |
| { |
| use_p = MAYDEF_OP_PTR (ptr->mayuses); |
| ptr->mayuses = ptr->mayuses->next; |
| return use_p; |
| } |
| if (ptr->mustkills) |
| { |
| use_p = MUSTDEF_KILL_PTR (ptr->mustkills); |
| ptr->mustkills = ptr->mustkills->next; |
| return use_p; |
| } |
| if (ptr->phi_i < ptr->num_phi) |
| { |
| return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); |
| } |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| /* Get the next iterator def value for PTR. */ |
| static inline def_operand_p |
| op_iter_next_def (ssa_op_iter *ptr) |
| { |
| def_operand_p def_p; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_def); |
| #endif |
| if (ptr->defs) |
| { |
| def_p = DEF_OP_PTR (ptr->defs); |
| ptr->defs = ptr->defs->next; |
| return def_p; |
| } |
| if (ptr->mustdefs) |
| { |
| def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs); |
| ptr->mustdefs = ptr->mustdefs->next; |
| return def_p; |
| } |
| if (ptr->maydefs) |
| { |
| def_p = MAYDEF_RESULT_PTR (ptr->maydefs); |
| ptr->maydefs = ptr->maydefs->next; |
| return def_p; |
| } |
| ptr->done = true; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| /* Get the next iterator tree value for PTR. */ |
| static inline tree |
| op_iter_next_tree (ssa_op_iter *ptr) |
| { |
| tree val; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_tree); |
| #endif |
| if (ptr->uses) |
| { |
| val = USE_OP (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return val; |
| } |
| if (ptr->vuses) |
| { |
| val = VUSE_OP (ptr->vuses); |
| ptr->vuses = ptr->vuses->next; |
| return val; |
| } |
| if (ptr->mayuses) |
| { |
| val = MAYDEF_OP (ptr->mayuses); |
| ptr->mayuses = ptr->mayuses->next; |
| return val; |
| } |
| if (ptr->mustkills) |
| { |
| val = MUSTDEF_KILL (ptr->mustkills); |
| ptr->mustkills = ptr->mustkills->next; |
| return val; |
| } |
| if (ptr->defs) |
| { |
| val = DEF_OP (ptr->defs); |
| ptr->defs = ptr->defs->next; |
| return val; |
| } |
| if (ptr->mustdefs) |
| { |
| val = MUSTDEF_RESULT (ptr->mustdefs); |
| ptr->mustdefs = ptr->mustdefs->next; |
| return val; |
| } |
| if (ptr->maydefs) |
| { |
| val = MAYDEF_RESULT (ptr->maydefs); |
| ptr->maydefs = ptr->maydefs->next; |
| return val; |
| } |
| |
| ptr->done = true; |
| return NULL_TREE; |
| |
| } |
| |
| |
| /* This functions clears the iterator PTR, and marks it done. This is normally |
| used to prevent warnings in the compile about might be uninitialized |
| components. */ |
| |
| static inline void |
| clear_and_done_ssa_iter (ssa_op_iter *ptr) |
| { |
| ptr->defs = NULL; |
| ptr->uses = NULL; |
| ptr->vuses = NULL; |
| ptr->maydefs = NULL; |
| ptr->mayuses = NULL; |
| ptr->mustdefs = NULL; |
| ptr->mustkills = NULL; |
| ptr->iter_type = ssa_op_iter_none; |
| ptr->phi_i = 0; |
| ptr->num_phi = 0; |
| ptr->phi_stmt = NULL_TREE; |
| ptr->done = true; |
| } |
| |
| /* Initialize the iterator PTR to the virtual defs in STMT. */ |
| static inline void |
| op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (stmt_ann (stmt)); |
| #endif |
| |
| ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL; |
| ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL; |
| ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL; |
| ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL; |
| ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL; |
| ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL; |
| ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL; |
| ptr->done = false; |
| |
| ptr->phi_i = 0; |
| ptr->num_phi = 0; |
| ptr->phi_stmt = NULL_TREE; |
| } |
| |
| /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return |
| the first use. */ |
| static inline use_operand_p |
| op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) |
| { |
| gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return |
| the first def. */ |
| static inline def_operand_p |
| op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags) |
| { |
| gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_def; |
| return op_iter_next_def (ptr); |
| } |
| |
| /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return |
| the first operand as a tree. */ |
| static inline tree |
| op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags) |
| { |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_tree; |
| return op_iter_next_tree (ptr); |
| } |
| |
| /* Get the next iterator mustdef value for PTR, returning the mustdef values in |
| KILL and DEF. */ |
| static inline void |
| op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def, |
| ssa_op_iter *ptr) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef); |
| #endif |
| if (ptr->mayuses) |
| { |
| *def = MAYDEF_RESULT_PTR (ptr->mayuses); |
| *use = MAYDEF_OP_PTR (ptr->mayuses); |
| ptr->mayuses = ptr->mayuses->next; |
| return; |
| } |
| |
| if (ptr->mustkills) |
| { |
| *def = MUSTDEF_RESULT_PTR (ptr->mustkills); |
| *use = MUSTDEF_KILL_PTR (ptr->mustkills); |
| ptr->mustkills = ptr->mustkills->next; |
| return; |
| } |
| |
| *def = NULL_DEF_OPERAND_P; |
| *use = NULL_USE_OPERAND_P; |
| ptr->done = true; |
| return; |
| } |
| |
| |
| /* Initialize iterator PTR to the operands in STMT. Return the first operands |
| in USE and DEF. */ |
| static inline void |
| op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, |
| def_operand_p *def) |
| { |
| gcc_assert (TREE_CODE (stmt) != PHI_NODE); |
| |
| op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); |
| ptr->iter_type = ssa_op_iter_maymustdef; |
| op_iter_next_maymustdef (use, def, ptr); |
| } |
| |
| |
| /* Initialize iterator PTR to the operands in STMT. Return the first operands |
| in KILL and DEF. */ |
| static inline void |
| op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, |
| def_operand_p *def) |
| { |
| gcc_assert (TREE_CODE (stmt) != PHI_NODE); |
| |
| op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL); |
| ptr->iter_type = ssa_op_iter_maymustdef; |
| op_iter_next_maymustdef (kill, def, ptr); |
| } |
| |
| /* Initialize iterator PTR to the operands in STMT. Return the first operands |
| in KILL and DEF. */ |
| static inline void |
| op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt, |
| use_operand_p *kill, def_operand_p *def) |
| { |
| gcc_assert (TREE_CODE (stmt) != PHI_NODE); |
| |
| op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE); |
| ptr->iter_type = ssa_op_iter_maymustdef; |
| op_iter_next_maymustdef (kill, def, ptr); |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline tree |
| single_ssa_tree_operand (tree stmt, int flags) |
| { |
| tree var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_tree (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_TREE; |
| op_iter_next_tree (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_TREE; |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline use_operand_p |
| single_ssa_use_operand (tree stmt, int flags) |
| { |
| use_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_use (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_USE_OPERAND_P; |
| op_iter_next_use (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline def_operand_p |
| single_ssa_def_operand (tree stmt, int flags) |
| { |
| def_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_def (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_DEF_OPERAND_P; |
| op_iter_next_def (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| |
| /* Return true if there are zero operands in STMT matching the type |
| given in FLAGS. */ |
| static inline bool |
| zero_ssa_operands (tree stmt, int flags) |
| { |
| ssa_op_iter iter; |
| |
| op_iter_init_tree (&iter, stmt, flags); |
| return op_iter_done (&iter); |
| } |
| |
| |
| /* Return the number of operands matching FLAGS in STMT. */ |
| static inline int |
| num_ssa_operands (tree stmt, int flags) |
| { |
| ssa_op_iter iter; |
| tree t; |
| int num = 0; |
| |
| FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) |
| num++; |
| return num; |
| } |
| |
| |
| /* Delink all immediate_use information for STMT. */ |
| static inline void |
| delink_stmt_imm_use (tree stmt) |
| { |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| |
| if (ssa_operands_active ()) |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, |
| (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)) |
| delink_imm_use (use_p); |
| } |
| |
| |
| /* This routine will compare all the operands matching FLAGS in STMT1 to those |
| in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */ |
| static inline bool |
| compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags) |
| { |
| ssa_op_iter iter1, iter2; |
| tree op1 = NULL_TREE; |
| tree op2 = NULL_TREE; |
| bool look1, look2; |
| |
| if (stmt1 == stmt2) |
| return true; |
| |
| look1 = stmt1 && stmt_ann (stmt1); |
| look2 = stmt2 && stmt_ann (stmt2); |
| |
| if (look1) |
| { |
| op1 = op_iter_init_tree (&iter1, stmt1, flags); |
| if (!look2) |
| return op_iter_done (&iter1); |
| } |
| else |
| clear_and_done_ssa_iter (&iter1); |
| |
| if (look2) |
| { |
| op2 = op_iter_init_tree (&iter2, stmt2, flags); |
| if (!look1) |
| return op_iter_done (&iter2); |
| } |
| else |
| clear_and_done_ssa_iter (&iter2); |
| |
| while (!op_iter_done (&iter1) && !op_iter_done (&iter2)) |
| { |
| if (op1 != op2) |
| return false; |
| op1 = op_iter_next_tree (&iter1); |
| op2 = op_iter_next_tree (&iter2); |
| } |
| |
| return (op_iter_done (&iter1) && op_iter_done (&iter2)); |
| } |
| |
| |
| /* If there is a single DEF in the PHI node which matches FLAG, return it. |
| Otherwise return NULL_DEF_OPERAND_P. */ |
| static inline tree |
| single_phi_def (tree stmt, int flags) |
| { |
| tree def = PHI_RESULT (stmt); |
| if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) |
| return def; |
| if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) |
| return def; |
| return NULL_TREE; |
| } |
| |
| /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should |
| be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ |
| static inline use_operand_p |
| op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags) |
| { |
| tree phi_def = PHI_RESULT (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| /* If the PHI node doesn't the operand type we care about, we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| ptr->phi_stmt = phi; |
| ptr->num_phi = PHI_NUM_ARGS (phi); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| |
| /* Start an iterator for a PHI definition. */ |
| |
| static inline def_operand_p |
| op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags) |
| { |
| tree phi_def = PHI_RESULT (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); |
| |
| /* If the PHI node doesn't the operand type we care about, we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| ptr->iter_type = ssa_op_iter_def; |
| /* The first call to op_iter_next_def will terminate the iterator since |
| all the fields are NULL. Simply return the result here as the first and |
| therefore only result. */ |
| return PHI_RESULT_PTR (phi); |
| } |
| |
| /* Return true is IMM has reached the end of the immediate use stmt list. */ |
| |
| static inline bool |
| end_imm_use_stmt_p (imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Finished the traverse of an immediate use stmt list IMM by removing the |
| placeholder node from the list. */ |
| |
| static inline void |
| end_imm_use_stmt_traverse (imm_use_iterator *imm) |
| { |
| delink_imm_use (&(imm->iter_node)); |
| } |
| |
| /* Immediate use traversal of uses within a stmt require that all the |
| uses on a stmt be sequentially listed. This routine is used to build up |
| this sequential list by adding USE_P to the end of the current list |
| currently delimited by HEAD and LAST_P. The new LAST_P value is |
| returned. */ |
| |
| static inline use_operand_p |
| move_use_after_head (use_operand_p use_p, use_operand_p head, |
| use_operand_p last_p) |
| { |
| gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); |
| /* Skip head when we find it. */ |
| if (use_p != head) |
| { |
| /* If use_p is already linked in after last_p, continue. */ |
| if (last_p->next == use_p) |
| last_p = use_p; |
| else |
| { |
| /* Delink from current location, and link in at last_p. */ |
| delink_imm_use (use_p); |
| link_imm_use_to_list (use_p, last_p); |
| last_p = use_p; |
| } |
| } |
| return last_p; |
| } |
| |
| |
| /* This routine will relink all uses with the same stmt as HEAD into the list |
| immediately following HEAD for iterator IMM. */ |
| |
| static inline void |
| link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) |
| { |
| use_operand_p use_p; |
| use_operand_p last_p = head; |
| tree head_stmt = USE_STMT (head); |
| tree use = USE_FROM_PTR (head); |
| ssa_op_iter op_iter; |
| int flag; |
| |
| /* Only look at virtual or real uses, depending on the type of HEAD. */ |
| flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| if (TREE_CODE (head_stmt) == PHI_NODE) |
| { |
| FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| else |
| { |
| FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| /* LInk iter node in after last_p. */ |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| link_imm_use_to_list (&(imm->iter_node), last_p); |
| } |
| |
| /* Initialize IMM to traverse over uses of VAR. Return the first statement. */ |
| static inline tree |
| first_imm_use_stmt (imm_use_iterator *imm, tree var) |
| { |
| gcc_assert (TREE_CODE (var) == SSA_NAME); |
| |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| imm->next_imm_name = NULL_USE_OPERAND_P; |
| |
| /* iter_node is used as a marker within the immediate use list to indicate |
| where the end of the current stmt's uses are. Initialize it to NULL |
| stmt and use, which indicates a marker node. */ |
| imm->iter_node.prev = NULL_USE_OPERAND_P; |
| imm->iter_node.next = NULL_USE_OPERAND_P; |
| imm->iter_node.stmt = NULL_TREE; |
| imm->iter_node.use = NULL_USE_OPERAND_P; |
| |
| if (end_imm_use_stmt_p (imm)) |
| return NULL_TREE; |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* Bump IMM to the next stmt which has a use of var. */ |
| |
| static inline tree |
| next_imm_use_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->iter_node.next; |
| if (end_imm_use_stmt_p (imm)) |
| { |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| return NULL_TREE; |
| } |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| return USE_STMT (imm->imm_use); |
| |
| } |
| |
| /* This routine will return the first use on the stmt IMM currently refers |
| to. */ |
| |
| static inline use_operand_p |
| first_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| |
| /* Return TRUE if the last use on the stmt IMM refers to has been visited. */ |
| |
| static inline bool |
| end_imm_use_on_stmt_p (imm_use_iterator *imm) |
| { |
| return (imm->imm_use == &(imm->iter_node)); |
| } |
| |
| /* Bump to the next use on the stmt IMM refers to, return NULL if done. */ |
| |
| static inline use_operand_p |
| next_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->next_imm_name; |
| if (end_imm_use_on_stmt_p (imm)) |
| return NULL_USE_OPERAND_P; |
| else |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| } |
| |
| /* Return true if VAR cannot be modified by the program. */ |
| |
| static inline bool |
| unmodifiable_var_p (tree var) |
| { |
| if (TREE_CODE (var) == SSA_NAME) |
| var = SSA_NAME_VAR (var); |
| |
| if (MTAG_P (var)) |
| return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var)); |
| |
| return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); |
| } |
| |
| /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ |
| |
| static inline bool |
| array_ref_contains_indirect_ref (tree ref) |
| { |
| gcc_assert (TREE_CODE (ref) == ARRAY_REF); |
| |
| do { |
| ref = TREE_OPERAND (ref, 0); |
| } while (handled_component_p (ref)); |
| |
| return TREE_CODE (ref) == INDIRECT_REF; |
| } |
| |
| /* Return true if REF, a handled component reference, has an ARRAY_REF |
| somewhere in it. */ |
| |
| static inline bool |
| ref_contains_array_ref (tree ref) |
| { |
| gcc_assert (handled_component_p (ref)); |
| |
| do { |
| if (TREE_CODE (ref) == ARRAY_REF) |
| return true; |
| ref = TREE_OPERAND (ref, 0); |
| } while (handled_component_p (ref)); |
| |
| return false; |
| } |
| |
| /* Given a variable VAR, lookup and return a pointer to the list of |
| subvariables for it. */ |
| |
| static inline subvar_t * |
| lookup_subvars_for_var (tree var) |
| { |
| var_ann_t ann = var_ann (var); |
| gcc_assert (ann); |
| return &ann->subvars; |
| } |
| |
| /* Given a variable VAR, return a linked list of subvariables for VAR, or |
| NULL, if there are no subvariables. */ |
| |
| static inline subvar_t |
| get_subvars_for_var (tree var) |
| { |
| subvar_t subvars; |
| |
| gcc_assert (SSA_VAR_P (var)); |
| |
| if (TREE_CODE (var) == SSA_NAME) |
| subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var))); |
| else |
| subvars = *(lookup_subvars_for_var (var)); |
| return subvars; |
| } |
| |
| /* Return the subvariable of VAR at offset OFFSET. */ |
| |
| static inline tree |
| get_subvar_at (tree var, unsigned HOST_WIDE_INT offset) |
| { |
| subvar_t sv; |
| |
| for (sv = get_subvars_for_var (var); sv; sv = sv->next) |
| if (SFT_OFFSET (sv->var) == offset) |
| return sv->var; |
| |
| return NULL_TREE; |
| } |
| |
| /* Return true if V is a tree that we can have subvars for. |
| Normally, this is any aggregate type. Also complex |
| types which are not gimple registers can have subvars. */ |
| |
| static inline bool |
| var_can_have_subvars (tree v) |
| { |
| /* Volatile variables should never have subvars. */ |
| if (TREE_THIS_VOLATILE (v)) |
| return false; |
| |
| /* Non decls or memory tags can never have subvars. */ |
| if (!DECL_P (v) || MTAG_P (v)) |
| return false; |
| |
| /* Aggregates can have subvars. */ |
| if (AGGREGATE_TYPE_P (TREE_TYPE (v))) |
| return true; |
| |
| /* Complex types variables which are not also a gimple register can |
| have subvars. */ |
| if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE |
| && !DECL_COMPLEX_GIMPLE_REG_P (v)) |
| return true; |
| |
| return false; |
| } |
| |
| |
| /* Return true if OFFSET and SIZE define a range that overlaps with some |
| portion of the range of SV, a subvar. If there was an exact overlap, |
| *EXACT will be set to true upon return. */ |
| |
| static inline bool |
| overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, |
| tree sv, bool *exact) |
| { |
| /* There are three possible cases of overlap. |
| 1. We can have an exact overlap, like so: |
| |offset, offset + size | |
| |sv->offset, sv->offset + sv->size | |
| |
| 2. We can have offset starting after sv->offset, like so: |
| |
| |offset, offset + size | |
| |sv->offset, sv->offset + sv->size | |
| |
| 3. We can have offset starting before sv->offset, like so: |
| |
| |offset, offset + size | |
| |sv->offset, sv->offset + sv->size| |
| */ |
| |
| if (exact) |
| *exact = false; |
| if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv)) |
| { |
| if (exact) |
| *exact = true; |
| return true; |
| } |
| else if (offset >= SFT_OFFSET (sv) |
| && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv))) |
| { |
| return true; |
| } |
| else if (offset < SFT_OFFSET (sv) |
| && (size > SFT_OFFSET (sv) - offset)) |
| { |
| return true; |
| } |
| return false; |
| |
| } |
| |
| #endif /* _TREE_FLOW_INLINE_H */ |