| /* Tree lowering pass. This pass converts the GENERIC functions-as-trees |
| tree representation into the GIMPLE form. |
| Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. |
| Major work done by Sebastian Pop <s.pop@laposte.net>, |
| Diego Novillo <dnovillo@redhat.com> and Jason Merrill <jason@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA |
| 02110-1301, USA. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "varray.h" |
| #include "tree-gimple.h" |
| #include "tree-inline.h" |
| #include "diagnostic.h" |
| #include "langhooks.h" |
| #include "langhooks-def.h" |
| #include "tree-flow.h" |
| #include "cgraph.h" |
| #include "timevar.h" |
| #include "except.h" |
| #include "hashtab.h" |
| #include "flags.h" |
| #include "real.h" |
| #include "function.h" |
| #include "output.h" |
| #include "expr.h" |
| #include "ggc.h" |
| #include "toplev.h" |
| #include "target.h" |
| #include "optabs.h" |
| #include "pointer-set.h" |
| |
| |
| enum gimplify_omp_var_data |
| { |
| GOVD_SEEN = 1, |
| GOVD_EXPLICIT = 2, |
| GOVD_SHARED = 4, |
| GOVD_PRIVATE = 8, |
| GOVD_FIRSTPRIVATE = 16, |
| GOVD_LASTPRIVATE = 32, |
| GOVD_REDUCTION = 64, |
| GOVD_LOCAL = 128, |
| GOVD_DEBUG_PRIVATE = 256, |
| GOVD_DATA_SHARE_CLASS = (GOVD_SHARED | GOVD_PRIVATE | GOVD_FIRSTPRIVATE |
| | GOVD_LASTPRIVATE | GOVD_REDUCTION | GOVD_LOCAL) |
| }; |
| |
| struct gimplify_omp_ctx |
| { |
| struct gimplify_omp_ctx *outer_context; |
| splay_tree variables; |
| struct pointer_set_t *privatized_types; |
| location_t location; |
| enum omp_clause_default_kind default_kind; |
| bool is_parallel; |
| bool is_combined_parallel; |
| }; |
| |
| struct gimplify_ctx |
| { |
| struct gimplify_ctx *prev_context; |
| |
| tree current_bind_expr; |
| tree temps; |
| tree conditional_cleanups; |
| tree exit_label; |
| tree return_temp; |
| |
| VEC(tree,heap) *case_labels; |
| /* The formal temporary table. Should this be persistent? */ |
| htab_t temp_htab; |
| |
| int conditions; |
| bool save_stack; |
| bool into_ssa; |
| }; |
| |
| static struct gimplify_ctx *gimplify_ctxp; |
| static struct gimplify_omp_ctx *gimplify_omp_ctxp; |
| |
| |
| |
| /* Formal (expression) temporary table handling: Multiple occurrences of |
| the same scalar expression are evaluated into the same temporary. */ |
| |
| typedef struct gimple_temp_hash_elt |
| { |
| tree val; /* Key */ |
| tree temp; /* Value */ |
| } elt_t; |
| |
| /* Forward declarations. */ |
| static enum gimplify_status gimplify_compound_expr (tree *, tree *, bool); |
| #ifdef ENABLE_CHECKING |
| static bool cpt_same_type (tree a, tree b); |
| #endif |
| |
| |
| /* Return a hash value for a formal temporary table entry. */ |
| |
| static hashval_t |
| gimple_tree_hash (const void *p) |
| { |
| tree t = ((const elt_t *) p)->val; |
| return iterative_hash_expr (t, 0); |
| } |
| |
| /* Compare two formal temporary table entries. */ |
| |
| static int |
| gimple_tree_eq (const void *p1, const void *p2) |
| { |
| tree t1 = ((const elt_t *) p1)->val; |
| tree t2 = ((const elt_t *) p2)->val; |
| enum tree_code code = TREE_CODE (t1); |
| |
| if (TREE_CODE (t2) != code |
| || TREE_TYPE (t1) != TREE_TYPE (t2)) |
| return 0; |
| |
| if (!operand_equal_p (t1, t2, 0)) |
| return 0; |
| |
| /* Only allow them to compare equal if they also hash equal; otherwise |
| results are nondeterminate, and we fail bootstrap comparison. */ |
| gcc_assert (gimple_tree_hash (p1) == gimple_tree_hash (p2)); |
| |
| return 1; |
| } |
| |
| /* Set up a context for the gimplifier. */ |
| |
| void |
| push_gimplify_context (void) |
| { |
| struct gimplify_ctx *c; |
| |
| c = (struct gimplify_ctx *) xcalloc (1, sizeof (struct gimplify_ctx)); |
| c->prev_context = gimplify_ctxp; |
| if (optimize) |
| c->temp_htab = htab_create (1000, gimple_tree_hash, gimple_tree_eq, free); |
| |
| gimplify_ctxp = c; |
| } |
| |
| /* Tear down a context for the gimplifier. If BODY is non-null, then |
| put the temporaries into the outer BIND_EXPR. Otherwise, put them |
| in the unexpanded_var_list. */ |
| |
| void |
| pop_gimplify_context (tree body) |
| { |
| struct gimplify_ctx *c = gimplify_ctxp; |
| tree t; |
| |
| gcc_assert (c && !c->current_bind_expr); |
| gimplify_ctxp = c->prev_context; |
| |
| /* LLVM LOCAL begin */ |
| #ifndef ENABLE_LLVM |
| /* LLVM wants to know about gimple formal temps. */ |
| for (t = c->temps; t ; t = TREE_CHAIN (t)) |
| DECL_GIMPLE_FORMAL_TEMP_P (t) = 0; |
| #else |
| t = 0; |
| #endif |
| /* LLVM LOCAL end */ |
| |
| if (body) |
| declare_vars (c->temps, body, false); |
| else |
| record_vars (c->temps); |
| |
| if (optimize) |
| htab_delete (c->temp_htab); |
| free (c); |
| } |
| |
| static void |
| gimple_push_bind_expr (tree bind) |
| { |
| TREE_CHAIN (bind) = gimplify_ctxp->current_bind_expr; |
| gimplify_ctxp->current_bind_expr = bind; |
| } |
| |
| static void |
| gimple_pop_bind_expr (void) |
| { |
| gimplify_ctxp->current_bind_expr |
| = TREE_CHAIN (gimplify_ctxp->current_bind_expr); |
| } |
| |
| tree |
| gimple_current_bind_expr (void) |
| { |
| return gimplify_ctxp->current_bind_expr; |
| } |
| |
| /* Returns true iff there is a COND_EXPR between us and the innermost |
| CLEANUP_POINT_EXPR. This info is used by gimple_push_cleanup. */ |
| |
| static bool |
| gimple_conditional_context (void) |
| { |
| return gimplify_ctxp->conditions > 0; |
| } |
| |
| /* Note that we've entered a COND_EXPR. */ |
| |
| static void |
| gimple_push_condition (void) |
| { |
| #ifdef ENABLE_CHECKING |
| if (gimplify_ctxp->conditions == 0) |
| gcc_assert (!gimplify_ctxp->conditional_cleanups); |
| #endif |
| ++(gimplify_ctxp->conditions); |
| } |
| |
| /* Note that we've left a COND_EXPR. If we're back at unconditional scope |
| now, add any conditional cleanups we've seen to the prequeue. */ |
| |
| static void |
| gimple_pop_condition (tree *pre_p) |
| { |
| int conds = --(gimplify_ctxp->conditions); |
| |
| gcc_assert (conds >= 0); |
| if (conds == 0) |
| { |
| append_to_statement_list (gimplify_ctxp->conditional_cleanups, pre_p); |
| gimplify_ctxp->conditional_cleanups = NULL_TREE; |
| } |
| } |
| |
| /* A stable comparison routine for use with splay trees and DECLs. */ |
| |
| static int |
| splay_tree_compare_decl_uid (splay_tree_key xa, splay_tree_key xb) |
| { |
| tree a = (tree) xa; |
| tree b = (tree) xb; |
| |
| return DECL_UID (a) - DECL_UID (b); |
| } |
| |
| /* Create a new omp construct that deals with variable remapping. */ |
| |
| static struct gimplify_omp_ctx * |
| new_omp_context (bool is_parallel, bool is_combined_parallel) |
| { |
| struct gimplify_omp_ctx *c; |
| |
| c = XCNEW (struct gimplify_omp_ctx); |
| c->outer_context = gimplify_omp_ctxp; |
| c->variables = splay_tree_new (splay_tree_compare_decl_uid, 0, 0); |
| c->privatized_types = pointer_set_create (); |
| c->location = input_location; |
| c->is_parallel = is_parallel; |
| c->is_combined_parallel = is_combined_parallel; |
| c->default_kind = OMP_CLAUSE_DEFAULT_SHARED; |
| |
| return c; |
| } |
| |
| /* Destroy an omp construct that deals with variable remapping. */ |
| |
| static void |
| delete_omp_context (struct gimplify_omp_ctx *c) |
| { |
| splay_tree_delete (c->variables); |
| pointer_set_destroy (c->privatized_types); |
| XDELETE (c); |
| } |
| |
| static void omp_add_variable (struct gimplify_omp_ctx *, tree, unsigned int); |
| static bool omp_notice_variable (struct gimplify_omp_ctx *, tree, bool); |
| |
| /* A subroutine of append_to_statement_list{,_force}. T is not NULL. */ |
| |
| static void |
| append_to_statement_list_1 (tree t, tree *list_p) |
| { |
| tree list = *list_p; |
| tree_stmt_iterator i; |
| |
| if (!list) |
| { |
| if (t && TREE_CODE (t) == STATEMENT_LIST) |
| { |
| *list_p = t; |
| return; |
| } |
| *list_p = list = alloc_stmt_list (); |
| } |
| |
| i = tsi_last (list); |
| tsi_link_after (&i, t, TSI_CONTINUE_LINKING); |
| } |
| |
| /* Add T to the end of the list container pointed to by LIST_P. |
| If T is an expression with no effects, it is ignored. */ |
| |
| void |
| append_to_statement_list (tree t, tree *list_p) |
| { |
| if (t && TREE_SIDE_EFFECTS (t)) |
| append_to_statement_list_1 (t, list_p); |
| } |
| |
| /* Similar, but the statement is always added, regardless of side effects. */ |
| |
| void |
| append_to_statement_list_force (tree t, tree *list_p) |
| { |
| if (t != NULL_TREE) |
| append_to_statement_list_1 (t, list_p); |
| } |
| |
| /* Both gimplify the statement T and append it to LIST_P. */ |
| |
| void |
| gimplify_and_add (tree t, tree *list_p) |
| { |
| gimplify_stmt (&t); |
| append_to_statement_list (t, list_p); |
| } |
| |
| /* Strip off a legitimate source ending from the input string NAME of |
| length LEN. Rather than having to know the names used by all of |
| our front ends, we strip off an ending of a period followed by |
| up to five characters. (Java uses ".class".) */ |
| |
| static inline void |
| remove_suffix (char *name, int len) |
| { |
| int i; |
| |
| for (i = 2; i < 8 && len > i; i++) |
| { |
| if (name[len - i] == '.') |
| { |
| name[len - i] = '\0'; |
| break; |
| } |
| } |
| } |
| |
| /* Create a nameless artificial label and put it in the current function |
| context. Returns the newly created label. */ |
| |
| tree |
| create_artificial_label (void) |
| { |
| tree lab = build_decl (LABEL_DECL, NULL_TREE, void_type_node); |
| |
| DECL_ARTIFICIAL (lab) = 1; |
| DECL_IGNORED_P (lab) = 1; |
| DECL_CONTEXT (lab) = current_function_decl; |
| return lab; |
| } |
| |
| /* Subroutine for find_single_pointer_decl. */ |
| |
| static tree |
| find_single_pointer_decl_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, |
| void *data) |
| { |
| tree *pdecl = (tree *) data; |
| |
| if (DECL_P (*tp) && POINTER_TYPE_P (TREE_TYPE (*tp))) |
| { |
| if (*pdecl) |
| { |
| /* We already found a pointer decl; return anything other |
| than NULL_TREE to unwind from walk_tree signalling that |
| we have a duplicate. */ |
| return *tp; |
| } |
| *pdecl = *tp; |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Find the single DECL of pointer type in the tree T and return it. |
| If there are zero or more than one such DECLs, return NULL. */ |
| |
| static tree |
| find_single_pointer_decl (tree t) |
| { |
| tree decl = NULL_TREE; |
| |
| if (walk_tree (&t, find_single_pointer_decl_1, &decl, NULL)) |
| { |
| /* find_single_pointer_decl_1 returns a nonzero value, causing |
| walk_tree to return a nonzero value, to indicate that it |
| found more than one pointer DECL. */ |
| return NULL_TREE; |
| } |
| |
| return decl; |
| } |
| |
| /* Create a new temporary name with PREFIX. Returns an identifier. */ |
| |
| static GTY(()) unsigned int tmp_var_id_num; |
| |
| tree |
| create_tmp_var_name (const char *prefix) |
| { |
| char *tmp_name; |
| |
| if (prefix) |
| { |
| char *preftmp = ASTRDUP (prefix); |
| |
| remove_suffix (preftmp, strlen (preftmp)); |
| prefix = preftmp; |
| } |
| |
| ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++); |
| return get_identifier (tmp_name); |
| } |
| |
| |
| /* Create a new temporary variable declaration of type TYPE. |
| Does NOT push it into the current binding. */ |
| |
| tree |
| create_tmp_var_raw (tree type, const char *prefix) |
| { |
| tree tmp_var; |
| tree new_type; |
| |
| /* Make the type of the variable writable. */ |
| new_type = build_type_variant (type, 0, 0); |
| TYPE_ATTRIBUTES (new_type) = TYPE_ATTRIBUTES (type); |
| |
| tmp_var = build_decl (VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL, |
| type); |
| |
| /* The variable was declared by the compiler. */ |
| DECL_ARTIFICIAL (tmp_var) = 1; |
| /* And we don't want debug info for it. */ |
| DECL_IGNORED_P (tmp_var) = 1; |
| |
| /* Make the variable writable. */ |
| TREE_READONLY (tmp_var) = 0; |
| |
| DECL_EXTERNAL (tmp_var) = 0; |
| TREE_STATIC (tmp_var) = 0; |
| TREE_USED (tmp_var) = 1; |
| |
| return tmp_var; |
| } |
| |
| /* Create a new temporary variable declaration of type TYPE. DOES push the |
| variable into the current binding. Further, assume that this is called |
| only from gimplification or optimization, at which point the creation of |
| certain types are bugs. */ |
| |
| tree |
| create_tmp_var (tree type, const char *prefix) |
| { |
| tree tmp_var; |
| |
| /* We don't allow types that are addressable (meaning we can't make copies), |
| or incomplete. We also used to reject every variable size objects here, |
| but now support those for which a constant upper bound can be obtained. |
| The processing for variable sizes is performed in gimple_add_tmp_var, |
| point at which it really matters and possibly reached via paths not going |
| through this function, e.g. after direct calls to create_tmp_var_raw. */ |
| gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type)); |
| |
| tmp_var = create_tmp_var_raw (type, prefix); |
| gimple_add_tmp_var (tmp_var); |
| return tmp_var; |
| } |
| |
| /* Given a tree, try to return a useful variable name that we can use |
| to prefix a temporary that is being assigned the value of the tree. |
| I.E. given <temp> = &A, return A. */ |
| |
| const char * |
| get_name (tree t) |
| { |
| tree stripped_decl; |
| |
| stripped_decl = t; |
| STRIP_NOPS (stripped_decl); |
| if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl)) |
| return IDENTIFIER_POINTER (DECL_NAME (stripped_decl)); |
| else |
| { |
| switch (TREE_CODE (stripped_decl)) |
| { |
| case ADDR_EXPR: |
| return get_name (TREE_OPERAND (stripped_decl, 0)); |
| break; |
| default: |
| return NULL; |
| } |
| } |
| } |
| |
| /* Create a temporary with a name derived from VAL. Subroutine of |
| lookup_tmp_var; nobody else should call this function. */ |
| |
| static inline tree |
| create_tmp_from_val (tree val) |
| { |
| return create_tmp_var (TYPE_MAIN_VARIANT (TREE_TYPE (val)), get_name (val)); |
| } |
| |
| /* Create a temporary to hold the value of VAL. If IS_FORMAL, try to reuse |
| an existing expression temporary. */ |
| |
| static tree |
| lookup_tmp_var (tree val, bool is_formal) |
| { |
| tree ret; |
| |
| /* If not optimizing, never really reuse a temporary. local-alloc |
| won't allocate any variable that is used in more than one basic |
| block, which means it will go into memory, causing much extra |
| work in reload and final and poorer code generation, outweighing |
| the extra memory allocation here. */ |
| /* LLVM LOCAL begin */ |
| #ifdef ENABLE_LLVM |
| if (1) /* LLVM wants temporaries created in SSA form, never reuse one. */ |
| #else |
| if (!optimize || !is_formal || TREE_SIDE_EFFECTS (val)) |
| #endif |
| /* LLVM LOCAL end */ |
| ret = create_tmp_from_val (val); |
| else |
| { |
| elt_t elt, *elt_p; |
| void **slot; |
| |
| elt.val = val; |
| slot = htab_find_slot (gimplify_ctxp->temp_htab, (void *)&elt, INSERT); |
| if (*slot == NULL) |
| { |
| elt_p = XNEW (elt_t); |
| elt_p->val = val; |
| elt_p->temp = ret = create_tmp_from_val (val); |
| *slot = (void *) elt_p; |
| } |
| else |
| { |
| elt_p = (elt_t *) *slot; |
| ret = elt_p->temp; |
| } |
| } |
| |
| if (is_formal) |
| DECL_GIMPLE_FORMAL_TEMP_P (ret) = 1; |
| |
| return ret; |
| } |
| |
| /* Returns a formal temporary variable initialized with VAL. PRE_P is as |
| in gimplify_expr. Only use this function if: |
| |
| 1) The value of the unfactored expression represented by VAL will not |
| change between the initialization and use of the temporary, and |
| 2) The temporary will not be otherwise modified. |
| |
| For instance, #1 means that this is inappropriate for SAVE_EXPR temps, |
| and #2 means it is inappropriate for && temps. |
| |
| For other cases, use get_initialized_tmp_var instead. */ |
| |
| static tree |
| internal_get_tmp_var (tree val, tree *pre_p, tree *post_p, bool is_formal) |
| { |
| tree t, mod; |
| |
| gimplify_expr (&val, pre_p, post_p, is_gimple_formal_tmp_rhs, fb_rvalue); |
| |
| t = lookup_tmp_var (val, is_formal); |
| |
| if (is_formal) |
| { |
| tree u = find_single_pointer_decl (val); |
| |
| if (u && TREE_CODE (u) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (u)) |
| u = DECL_GET_RESTRICT_BASE (u); |
| if (u && TYPE_RESTRICT (TREE_TYPE (u))) |
| { |
| if (DECL_BASED_ON_RESTRICT_P (t)) |
| gcc_assert (u == DECL_GET_RESTRICT_BASE (t)); |
| else |
| { |
| DECL_BASED_ON_RESTRICT_P (t) = 1; |
| SET_DECL_RESTRICT_BASE (t, u); |
| } |
| } |
| } |
| |
| if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE) |
| DECL_COMPLEX_GIMPLE_REG_P (t) = 1; |
| |
| mod = build2 (INIT_EXPR, TREE_TYPE (t), t, val); |
| |
| if (EXPR_HAS_LOCATION (val)) |
| SET_EXPR_LOCUS (mod, EXPR_LOCUS (val)); |
| else |
| SET_EXPR_LOCATION (mod, input_location); |
| |
| /* gimplify_modify_expr might want to reduce this further. */ |
| gimplify_and_add (mod, pre_p); |
| |
| /* If we're gimplifying into ssa, gimplify_modify_expr will have |
| given our temporary an ssa name. Find and return it. */ |
| if (gimplify_ctxp->into_ssa) |
| t = TREE_OPERAND (mod, 0); |
| |
| return t; |
| } |
| |
| /* Returns a formal temporary variable initialized with VAL. PRE_P |
| points to a statement list where side-effects needed to compute VAL |
| should be stored. */ |
| |
| tree |
| get_formal_tmp_var (tree val, tree *pre_p) |
| { |
| return internal_get_tmp_var (val, pre_p, NULL, true); |
| } |
| |
| /* Returns a temporary variable initialized with VAL. PRE_P and POST_P |
| are as in gimplify_expr. */ |
| |
| tree |
| get_initialized_tmp_var (tree val, tree *pre_p, tree *post_p) |
| { |
| return internal_get_tmp_var (val, pre_p, post_p, false); |
| } |
| |
| /* Declares all the variables in VARS in SCOPE. If DEBUG_INFO is |
| true, generate debug info for them; otherwise don't. */ |
| |
| void |
| declare_vars (tree vars, tree scope, bool debug_info) |
| { |
| tree last = vars; |
| if (last) |
| { |
| tree temps, block; |
| |
| /* C99 mode puts the default 'return 0;' for main outside the outer |
| braces. So drill down until we find an actual scope. */ |
| while (TREE_CODE (scope) == COMPOUND_EXPR) |
| scope = TREE_OPERAND (scope, 0); |
| |
| gcc_assert (TREE_CODE (scope) == BIND_EXPR); |
| |
| temps = nreverse (last); |
| |
| block = BIND_EXPR_BLOCK (scope); |
| if (!block || !debug_info) |
| { |
| TREE_CHAIN (last) = BIND_EXPR_VARS (scope); |
| BIND_EXPR_VARS (scope) = temps; |
| } |
| else |
| { |
| /* We need to attach the nodes both to the BIND_EXPR and to its |
| associated BLOCK for debugging purposes. The key point here |
| is that the BLOCK_VARS of the BIND_EXPR_BLOCK of a BIND_EXPR |
| is a subchain of the BIND_EXPR_VARS of the BIND_EXPR. */ |
| if (BLOCK_VARS (block)) |
| BLOCK_VARS (block) = chainon (BLOCK_VARS (block), temps); |
| else |
| { |
| BIND_EXPR_VARS (scope) = chainon (BIND_EXPR_VARS (scope), temps); |
| BLOCK_VARS (block) = temps; |
| } |
| } |
| } |
| } |
| |
| /* For VAR a VAR_DECL of variable size, try to find a constant upper bound |
| for the size and adjust DECL_SIZE/DECL_SIZE_UNIT accordingly. Abort if |
| no such upper bound can be obtained. */ |
| |
| static void |
| force_constant_size (tree var) |
| { |
| /* The only attempt we make is by querying the maximum size of objects |
| of the variable's type. */ |
| |
| HOST_WIDE_INT max_size; |
| |
| gcc_assert (TREE_CODE (var) == VAR_DECL); |
| |
| max_size = max_int_size_in_bytes (TREE_TYPE (var)); |
| |
| gcc_assert (max_size >= 0); |
| |
| DECL_SIZE_UNIT (var) |
| = build_int_cst (TREE_TYPE (DECL_SIZE_UNIT (var)), max_size); |
| DECL_SIZE (var) |
| = build_int_cst (TREE_TYPE (DECL_SIZE (var)), max_size * BITS_PER_UNIT); |
| } |
| |
| void |
| gimple_add_tmp_var (tree tmp) |
| { |
| gcc_assert (!TREE_CHAIN (tmp) && !DECL_SEEN_IN_BIND_EXPR_P (tmp)); |
| |
| /* Later processing assumes that the object size is constant, which might |
| not be true at this point. Force the use of a constant upper bound in |
| this case. */ |
| if (!host_integerp (DECL_SIZE_UNIT (tmp), 1)) |
| force_constant_size (tmp); |
| |
| DECL_CONTEXT (tmp) = current_function_decl; |
| DECL_SEEN_IN_BIND_EXPR_P (tmp) = 1; |
| |
| if (gimplify_ctxp) |
| { |
| TREE_CHAIN (tmp) = gimplify_ctxp->temps; |
| gimplify_ctxp->temps = tmp; |
| |
| /* Mark temporaries local within the nearest enclosing parallel. */ |
| if (gimplify_omp_ctxp) |
| { |
| struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp; |
| while (ctx && !ctx->is_parallel) |
| ctx = ctx->outer_context; |
| if (ctx) |
| omp_add_variable (ctx, tmp, GOVD_LOCAL | GOVD_SEEN); |
| } |
| } |
| else if (cfun) |
| record_vars (tmp); |
| else |
| declare_vars (tmp, DECL_SAVED_TREE (current_function_decl), false); |
| } |
| |
| /* Determines whether to assign a locus to the statement STMT. */ |
| |
| static bool |
| should_carry_locus_p (tree stmt) |
| { |
| /* Don't emit a line note for a label. We particularly don't want to |
| emit one for the break label, since it doesn't actually correspond |
| to the beginning of the loop/switch. */ |
| if (TREE_CODE (stmt) == LABEL_EXPR) |
| return false; |
| |
| /* Do not annotate empty statements, since it confuses gcov. */ |
| if (!TREE_SIDE_EFFECTS (stmt)) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| annotate_one_with_locus (tree t, location_t locus) |
| { |
| if (EXPR_P (t) && ! EXPR_HAS_LOCATION (t) && should_carry_locus_p (t)) |
| SET_EXPR_LOCATION (t, locus); |
| } |
| |
| void |
| annotate_all_with_locus (tree *stmt_p, location_t locus) |
| { |
| tree_stmt_iterator i; |
| |
| if (!*stmt_p) |
| return; |
| |
| for (i = tsi_start (*stmt_p); !tsi_end_p (i); tsi_next (&i)) |
| { |
| tree t = tsi_stmt (i); |
| |
| /* Assuming we've already been gimplified, we shouldn't |
| see nested chaining constructs anymore. */ |
| gcc_assert (TREE_CODE (t) != STATEMENT_LIST |
| && TREE_CODE (t) != COMPOUND_EXPR); |
| |
| annotate_one_with_locus (t, locus); |
| } |
| } |
| |
| /* Similar to copy_tree_r() but do not copy SAVE_EXPR or TARGET_EXPR nodes. |
| These nodes model computations that should only be done once. If we |
| were to unshare something like SAVE_EXPR(i++), the gimplification |
| process would create wrong code. */ |
| |
| static tree |
| mostly_copy_tree_r (tree *tp, int *walk_subtrees, void *data) |
| { |
| enum tree_code code = TREE_CODE (*tp); |
| /* Don't unshare types, decls, constants and SAVE_EXPR nodes. */ |
| if (TREE_CODE_CLASS (code) == tcc_type |
| || TREE_CODE_CLASS (code) == tcc_declaration |
| || TREE_CODE_CLASS (code) == tcc_constant |
| || code == SAVE_EXPR || code == TARGET_EXPR |
| /* We can't do anything sensible with a BLOCK used as an expression, |
| but we also can't just die when we see it because of non-expression |
| uses. So just avert our eyes and cross our fingers. Silly Java. */ |
| || code == BLOCK) |
| *walk_subtrees = 0; |
| else |
| { |
| gcc_assert (code != BIND_EXPR); |
| copy_tree_r (tp, walk_subtrees, data); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Callback for walk_tree to unshare most of the shared trees rooted at |
| *TP. If *TP has been visited already (i.e., TREE_VISITED (*TP) == 1), |
| then *TP is deep copied by calling copy_tree_r. |
| |
| This unshares the same trees as copy_tree_r with the exception of |
| SAVE_EXPR nodes. These nodes model computations that should only be |
| done once. If we were to unshare something like SAVE_EXPR(i++), the |
| gimplification process would create wrong code. */ |
| |
| static tree |
| copy_if_shared_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| tree t = *tp; |
| enum tree_code code = TREE_CODE (t); |
| |
| /* Skip types, decls, and constants. But we do want to look at their |
| types and the bounds of types. Mark them as visited so we properly |
| unmark their subtrees on the unmark pass. If we've already seen them, |
| don't look down further. */ |
| if (TREE_CODE_CLASS (code) == tcc_type |
| || TREE_CODE_CLASS (code) == tcc_declaration |
| || TREE_CODE_CLASS (code) == tcc_constant) |
| { |
| if (TREE_VISITED (t)) |
| *walk_subtrees = 0; |
| else |
| TREE_VISITED (t) = 1; |
| } |
| |
| /* If this node has been visited already, unshare it and don't look |
| any deeper. */ |
| else if (TREE_VISITED (t)) |
| { |
| walk_tree (tp, mostly_copy_tree_r, NULL, NULL); |
| *walk_subtrees = 0; |
| } |
| |
| /* Otherwise, mark the tree as visited and keep looking. */ |
| else |
| TREE_VISITED (t) = 1; |
| |
| return NULL_TREE; |
| } |
| |
| static tree |
| unmark_visited_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| if (TREE_VISITED (*tp)) |
| TREE_VISITED (*tp) = 0; |
| else |
| *walk_subtrees = 0; |
| |
| return NULL_TREE; |
| } |
| |
| /* Unshare all the trees in BODY_P, a pointer into the body of FNDECL, and the |
| bodies of any nested functions if we are unsharing the entire body of |
| FNDECL. */ |
| |
| static void |
| unshare_body (tree *body_p, tree fndecl) |
| { |
| struct cgraph_node *cgn = cgraph_node (fndecl); |
| |
| walk_tree (body_p, copy_if_shared_r, NULL, NULL); |
| if (body_p == &DECL_SAVED_TREE (fndecl)) |
| for (cgn = cgn->nested; cgn; cgn = cgn->next_nested) |
| unshare_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl); |
| } |
| |
| /* Likewise, but mark all trees as not visited. */ |
| |
| static void |
| unvisit_body (tree *body_p, tree fndecl) |
| { |
| struct cgraph_node *cgn = cgraph_node (fndecl); |
| |
| walk_tree (body_p, unmark_visited_r, NULL, NULL); |
| if (body_p == &DECL_SAVED_TREE (fndecl)) |
| for (cgn = cgn->nested; cgn; cgn = cgn->next_nested) |
| unvisit_body (&DECL_SAVED_TREE (cgn->decl), cgn->decl); |
| } |
| |
| /* Unshare T and all the trees reached from T via TREE_CHAIN. */ |
| |
| static void |
| unshare_all_trees (tree t) |
| { |
| walk_tree (&t, copy_if_shared_r, NULL, NULL); |
| walk_tree (&t, unmark_visited_r, NULL, NULL); |
| } |
| |
| /* Unconditionally make an unshared copy of EXPR. This is used when using |
| stored expressions which span multiple functions, such as BINFO_VTABLE, |
| as the normal unsharing process can't tell that they're shared. */ |
| |
| tree |
| unshare_expr (tree expr) |
| { |
| walk_tree (&expr, mostly_copy_tree_r, NULL, NULL); |
| return expr; |
| } |
| |
| /* A terser interface for building a representation of an exception |
| specification. */ |
| |
| tree |
| gimple_build_eh_filter (tree body, tree allowed, tree failure) |
| { |
| tree t; |
| |
| /* FIXME should the allowed types go in TREE_TYPE? */ |
| t = build2 (EH_FILTER_EXPR, void_type_node, allowed, NULL_TREE); |
| append_to_statement_list (failure, &EH_FILTER_FAILURE (t)); |
| |
| t = build2 (TRY_CATCH_EXPR, void_type_node, NULL_TREE, t); |
| append_to_statement_list (body, &TREE_OPERAND (t, 0)); |
| |
| return t; |
| } |
| |
| |
| /* WRAPPER is a code such as BIND_EXPR or CLEANUP_POINT_EXPR which can both |
| contain statements and have a value. Assign its value to a temporary |
| and give it void_type_node. Returns the temporary, or NULL_TREE if |
| WRAPPER was already void. */ |
| |
| tree |
| voidify_wrapper_expr (tree wrapper, tree temp) |
| { |
| tree type = TREE_TYPE (wrapper); |
| if (type && !VOID_TYPE_P (type)) |
| { |
| tree *p; |
| |
| /* Set p to point to the body of the wrapper. Loop until we find |
| something that isn't a wrapper. */ |
| for (p = &wrapper; p && *p; ) |
| { |
| switch (TREE_CODE (*p)) |
| { |
| case BIND_EXPR: |
| TREE_SIDE_EFFECTS (*p) = 1; |
| TREE_TYPE (*p) = void_type_node; |
| /* For a BIND_EXPR, the body is operand 1. */ |
| p = &BIND_EXPR_BODY (*p); |
| break; |
| |
| case CLEANUP_POINT_EXPR: |
| case TRY_FINALLY_EXPR: |
| case TRY_CATCH_EXPR: |
| TREE_SIDE_EFFECTS (*p) = 1; |
| TREE_TYPE (*p) = void_type_node; |
| p = &TREE_OPERAND (*p, 0); |
| break; |
| |
| case STATEMENT_LIST: |
| { |
| tree_stmt_iterator i = tsi_last (*p); |
| TREE_SIDE_EFFECTS (*p) = 1; |
| TREE_TYPE (*p) = void_type_node; |
| p = tsi_end_p (i) ? NULL : tsi_stmt_ptr (i); |
| } |
| break; |
| |
| case COMPOUND_EXPR: |
| /* Advance to the last statement. Set all container types to void. */ |
| for (; TREE_CODE (*p) == COMPOUND_EXPR; p = &TREE_OPERAND (*p, 1)) |
| { |
| TREE_SIDE_EFFECTS (*p) = 1; |
| TREE_TYPE (*p) = void_type_node; |
| } |
| break; |
| |
| default: |
| goto out; |
| } |
| } |
| |
| out: |
| if (p == NULL || IS_EMPTY_STMT (*p)) |
| temp = NULL_TREE; |
| else if (temp) |
| { |
| /* The wrapper is on the RHS of an assignment that we're pushing |
| down. */ |
| gcc_assert (TREE_CODE (temp) == INIT_EXPR |
| || TREE_CODE (temp) == MODIFY_EXPR); |
| TREE_OPERAND (temp, 1) = *p; |
| *p = temp; |
| } |
| else |
| { |
| temp = create_tmp_var (type, "retval"); |
| *p = build2 (INIT_EXPR, type, temp, *p); |
| } |
| |
| return temp; |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Prepare calls to builtins to SAVE and RESTORE the stack as well as |
| a temporary through which they communicate. */ |
| |
| static void |
| build_stack_save_restore (tree *save, tree *restore) |
| { |
| tree save_call, tmp_var; |
| |
| save_call = |
| build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_SAVE], |
| NULL_TREE); |
| tmp_var = create_tmp_var (ptr_type_node, "saved_stack"); |
| |
| *save = build2 (MODIFY_EXPR, ptr_type_node, tmp_var, save_call); |
| *restore = |
| build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_RESTORE], |
| tree_cons (NULL_TREE, tmp_var, NULL_TREE)); |
| } |
| |
| /* Gimplify a BIND_EXPR. Just voidify and recurse. */ |
| |
| static enum gimplify_status |
| gimplify_bind_expr (tree *expr_p, tree *pre_p) |
| { |
| tree bind_expr = *expr_p; |
| bool old_save_stack = gimplify_ctxp->save_stack; |
| tree t; |
| |
| tree temp = voidify_wrapper_expr (bind_expr, NULL); |
| |
| /* Mark variables seen in this bind expr. */ |
| for (t = BIND_EXPR_VARS (bind_expr); t ; t = TREE_CHAIN (t)) |
| { |
| if (TREE_CODE (t) == VAR_DECL) |
| { |
| struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp; |
| |
| /* Mark variable as local. */ |
| if (ctx && !is_global_var (t) |
| && (! DECL_SEEN_IN_BIND_EXPR_P (t) |
| || splay_tree_lookup (ctx->variables, |
| (splay_tree_key) t) == NULL)) |
| omp_add_variable (gimplify_omp_ctxp, t, GOVD_LOCAL | GOVD_SEEN); |
| |
| DECL_SEEN_IN_BIND_EXPR_P (t) = 1; |
| } |
| |
| /* Preliminarily mark non-addressed complex variables as eligible |
| for promotion to gimple registers. We'll transform their uses |
| as we find them. */ |
| if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE |
| && !TREE_THIS_VOLATILE (t) |
| && (TREE_CODE (t) == VAR_DECL && !DECL_HARD_REGISTER (t)) |
| && !needs_to_live_in_memory (t)) |
| DECL_COMPLEX_GIMPLE_REG_P (t) = 1; |
| } |
| |
| gimple_push_bind_expr (bind_expr); |
| gimplify_ctxp->save_stack = false; |
| |
| gimplify_to_stmt_list (&BIND_EXPR_BODY (bind_expr)); |
| |
| if (gimplify_ctxp->save_stack) |
| { |
| tree stack_save, stack_restore; |
| |
| /* Save stack on entry and restore it on exit. Add a try_finally |
| block to achieve this. Note that mudflap depends on the |
| format of the emitted code: see mx_register_decls(). */ |
| build_stack_save_restore (&stack_save, &stack_restore); |
| |
| t = build2 (TRY_FINALLY_EXPR, void_type_node, |
| BIND_EXPR_BODY (bind_expr), NULL_TREE); |
| append_to_statement_list (stack_restore, &TREE_OPERAND (t, 1)); |
| |
| BIND_EXPR_BODY (bind_expr) = NULL_TREE; |
| append_to_statement_list (stack_save, &BIND_EXPR_BODY (bind_expr)); |
| append_to_statement_list (t, &BIND_EXPR_BODY (bind_expr)); |
| } |
| |
| gimplify_ctxp->save_stack = old_save_stack; |
| gimple_pop_bind_expr (); |
| |
| if (temp) |
| { |
| *expr_p = temp; |
| append_to_statement_list (bind_expr, pre_p); |
| return GS_OK; |
| } |
| else |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify a RETURN_EXPR. If the expression to be returned is not a |
| GIMPLE value, it is assigned to a new temporary and the statement is |
| re-written to return the temporary. |
| |
| PRE_P points to the list where side effects that must happen before |
| STMT should be stored. */ |
| |
| static enum gimplify_status |
| gimplify_return_expr (tree stmt, tree *pre_p) |
| { |
| tree ret_expr = TREE_OPERAND (stmt, 0); |
| tree result_decl, result; |
| |
| if (!ret_expr || TREE_CODE (ret_expr) == RESULT_DECL |
| /* APPLE LOCAL radar 6261552 */ |
| /* code to check for cur_block is removed. */ |
| || ret_expr == error_mark_node) |
| return GS_ALL_DONE; |
| |
| if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))) |
| result_decl = NULL_TREE; |
| else |
| { |
| result_decl = TREE_OPERAND (ret_expr, 0); |
| if (TREE_CODE (result_decl) == INDIRECT_REF) |
| /* See through a return by reference. */ |
| result_decl = TREE_OPERAND (result_decl, 0); |
| |
| gcc_assert ((TREE_CODE (ret_expr) == MODIFY_EXPR |
| || TREE_CODE (ret_expr) == INIT_EXPR) |
| && TREE_CODE (result_decl) == RESULT_DECL); |
| } |
| |
| /* If aggregate_value_p is true, then we can return the bare RESULT_DECL. |
| Recall that aggregate_value_p is FALSE for any aggregate type that is |
| returned in registers. If we're returning values in registers, then |
| we don't want to extend the lifetime of the RESULT_DECL, particularly |
| across another call. In addition, for those aggregates for which |
| hard_function_value generates a PARALLEL, we'll die during normal |
| expansion of structure assignments; there's special code in expand_return |
| to handle this case that does not exist in expand_expr. */ |
| if (!result_decl |
| || aggregate_value_p (result_decl, TREE_TYPE (current_function_decl))) |
| result = result_decl; |
| else if (gimplify_ctxp->return_temp) |
| result = gimplify_ctxp->return_temp; |
| else |
| { |
| result = create_tmp_var (TREE_TYPE (result_decl), NULL); |
| |
| /* ??? With complex control flow (usually involving abnormal edges), |
| we can wind up warning about an uninitialized value for this. Due |
| to how this variable is constructed and initialized, this is never |
| true. Give up and never warn. */ |
| TREE_NO_WARNING (result) = 1; |
| |
| gimplify_ctxp->return_temp = result; |
| } |
| |
| /* Smash the lhs of the MODIFY_EXPR to the temporary we plan to use. |
| Then gimplify the whole thing. */ |
| if (result != result_decl) |
| TREE_OPERAND (ret_expr, 0) = result; |
| |
| gimplify_and_add (TREE_OPERAND (stmt, 0), pre_p); |
| |
| /* If we didn't use a temporary, then the result is just the result_decl. |
| Otherwise we need a simple copy. This should already be gimple. */ |
| if (result == result_decl) |
| ret_expr = result; |
| else |
| ret_expr = build2 (MODIFY_EXPR, TREE_TYPE (result), result_decl, result); |
| TREE_OPERAND (stmt, 0) = ret_expr; |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplifies a DECL_EXPR node *STMT_P by making any necessary allocation |
| and initialization explicit. */ |
| |
| static enum gimplify_status |
| gimplify_decl_expr (tree *stmt_p) |
| { |
| tree stmt = *stmt_p; |
| tree decl = DECL_EXPR_DECL (stmt); |
| |
| *stmt_p = NULL_TREE; |
| |
| if (TREE_TYPE (decl) == error_mark_node) |
| return GS_ERROR; |
| |
| if ((TREE_CODE (decl) == TYPE_DECL |
| || TREE_CODE (decl) == VAR_DECL) |
| && !TYPE_SIZES_GIMPLIFIED (TREE_TYPE (decl))) |
| gimplify_type_sizes (TREE_TYPE (decl), stmt_p); |
| |
| if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl)) |
| { |
| tree init = DECL_INITIAL (decl); |
| |
| if (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST) |
| { |
| /* This is a variable-sized decl. Simplify its size and mark it |
| for deferred expansion. Note that mudflap depends on the format |
| of the emitted code: see mx_register_decls(). */ |
| tree t, args, addr, ptr_type, align; |
| |
| gimplify_one_sizepos (&DECL_SIZE (decl), stmt_p); |
| gimplify_one_sizepos (&DECL_SIZE_UNIT (decl), stmt_p); |
| |
| /* All occurrences of this decl in final gimplified code will be |
| replaced by indirection. Setting DECL_VALUE_EXPR does two |
| things: First, it lets the rest of the gimplifier know what |
| replacement to use. Second, it lets the debug info know |
| where to find the value. */ |
| ptr_type = build_pointer_type (TREE_TYPE (decl)); |
| addr = create_tmp_var (ptr_type, get_name (decl)); |
| DECL_IGNORED_P (addr) = 0; |
| t = build_fold_indirect_ref (addr); |
| SET_DECL_VALUE_EXPR (decl, t); |
| DECL_HAS_VALUE_EXPR_P (decl) = 1; |
| |
| /* LLVM LOCAL begin add alloca alignment */ |
| /* We're adding an extra arg with the alignment to the end of the builtin |
| call and making up for it on the other end by not emitting the arg. */ |
| align = build_int_cst(TREE_TYPE(DECL_SIZE_UNIT(decl)), |
| DECL_ALIGN(decl)/BITS_PER_UNIT); |
| args = tree_cons (NULL, align, NULL); |
| args = tree_cons (NULL, DECL_SIZE_UNIT (decl), args); |
| /* LLVM LOCAL end add alloca alignment */ |
| t = built_in_decls[BUILT_IN_ALLOCA]; |
| |
| t = build_function_call_expr (t, args); |
| t = fold_convert (ptr_type, t); |
| t = build2 (MODIFY_EXPR, void_type_node, addr, t); |
| |
| gimplify_and_add (t, stmt_p); |
| |
| /* Indicate that we need to restore the stack level when the |
| enclosing BIND_EXPR is exited. */ |
| gimplify_ctxp->save_stack = true; |
| } |
| |
| if (init && init != error_mark_node) |
| { |
| if (!TREE_STATIC (decl)) |
| { |
| DECL_INITIAL (decl) = NULL_TREE; |
| init = build2 (INIT_EXPR, void_type_node, decl, init); |
| gimplify_and_add (init, stmt_p); |
| } |
| else |
| /* We must still examine initializers for static variables |
| as they may contain a label address. */ |
| walk_tree (&init, force_labels_r, NULL, NULL); |
| } |
| |
| /* Some front ends do not explicitly declare all anonymous |
| artificial variables. We compensate here by declaring the |
| variables, though it would be better if the front ends would |
| explicitly declare them. */ |
| if (!DECL_SEEN_IN_BIND_EXPR_P (decl) |
| && DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE) |
| gimple_add_tmp_var (decl); |
| } |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify a LOOP_EXPR. Normally this just involves gimplifying the body |
| and replacing the LOOP_EXPR with goto, but if the loop contains an |
| EXIT_EXPR, we need to append a label for it to jump to. */ |
| |
| static enum gimplify_status |
| gimplify_loop_expr (tree *expr_p, tree *pre_p) |
| { |
| tree saved_label = gimplify_ctxp->exit_label; |
| tree start_label = build1 (LABEL_EXPR, void_type_node, NULL_TREE); |
| tree jump_stmt = build_and_jump (&LABEL_EXPR_LABEL (start_label)); |
| |
| append_to_statement_list (start_label, pre_p); |
| |
| gimplify_ctxp->exit_label = NULL_TREE; |
| |
| gimplify_and_add (LOOP_EXPR_BODY (*expr_p), pre_p); |
| |
| if (gimplify_ctxp->exit_label) |
| { |
| append_to_statement_list (jump_stmt, pre_p); |
| *expr_p = build1 (LABEL_EXPR, void_type_node, gimplify_ctxp->exit_label); |
| } |
| else |
| *expr_p = jump_stmt; |
| |
| gimplify_ctxp->exit_label = saved_label; |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Compare two case labels. Because the front end should already have |
| made sure that case ranges do not overlap, it is enough to only compare |
| the CASE_LOW values of each case label. */ |
| |
| static int |
| compare_case_labels (const void *p1, const void *p2) |
| { |
| tree case1 = *(tree *)p1; |
| tree case2 = *(tree *)p2; |
| |
| return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2)); |
| } |
| |
| /* Sort the case labels in LABEL_VEC in place in ascending order. */ |
| |
| void |
| sort_case_labels (tree label_vec) |
| { |
| size_t len = TREE_VEC_LENGTH (label_vec); |
| tree default_case = TREE_VEC_ELT (label_vec, len - 1); |
| |
| if (CASE_LOW (default_case)) |
| { |
| size_t i; |
| |
| /* The last label in the vector should be the default case |
| but it is not. */ |
| for (i = 0; i < len; ++i) |
| { |
| tree t = TREE_VEC_ELT (label_vec, i); |
| if (!CASE_LOW (t)) |
| { |
| default_case = t; |
| TREE_VEC_ELT (label_vec, i) = TREE_VEC_ELT (label_vec, len - 1); |
| TREE_VEC_ELT (label_vec, len - 1) = default_case; |
| break; |
| } |
| } |
| } |
| |
| qsort (&TREE_VEC_ELT (label_vec, 0), len - 1, sizeof (tree), |
| compare_case_labels); |
| } |
| |
| /* Gimplify a SWITCH_EXPR, and collect a TREE_VEC of the labels it can |
| branch to. */ |
| |
| static enum gimplify_status |
| gimplify_switch_expr (tree *expr_p, tree *pre_p) |
| { |
| tree switch_expr = *expr_p; |
| enum gimplify_status ret; |
| |
| ret = gimplify_expr (&SWITCH_COND (switch_expr), pre_p, NULL, |
| is_gimple_val, fb_rvalue); |
| |
| if (SWITCH_BODY (switch_expr)) |
| { |
| VEC(tree,heap) *labels, *saved_labels; |
| tree label_vec, default_case = NULL_TREE; |
| size_t i, len; |
| |
| /* If someone can be bothered to fill in the labels, they can |
| be bothered to null out the body too. */ |
| gcc_assert (!SWITCH_LABELS (switch_expr)); |
| |
| saved_labels = gimplify_ctxp->case_labels; |
| gimplify_ctxp->case_labels = VEC_alloc (tree, heap, 8); |
| |
| gimplify_to_stmt_list (&SWITCH_BODY (switch_expr)); |
| |
| labels = gimplify_ctxp->case_labels; |
| gimplify_ctxp->case_labels = saved_labels; |
| |
| i = 0; |
| while (i < VEC_length (tree, labels)) |
| { |
| tree elt = VEC_index (tree, labels, i); |
| tree low = CASE_LOW (elt); |
| bool remove_element = FALSE; |
| |
| if (low) |
| { |
| /* Discard empty ranges. */ |
| tree high = CASE_HIGH (elt); |
| if (high && INT_CST_LT (high, low)) |
| remove_element = TRUE; |
| } |
| else |
| { |
| /* The default case must be the last label in the list. */ |
| gcc_assert (!default_case); |
| default_case = elt; |
| remove_element = TRUE; |
| } |
| |
| if (remove_element) |
| VEC_ordered_remove (tree, labels, i); |
| else |
| i++; |
| } |
| len = i; |
| |
| label_vec = make_tree_vec (len + 1); |
| SWITCH_LABELS (*expr_p) = label_vec; |
| append_to_statement_list (switch_expr, pre_p); |
| |
| if (! default_case) |
| { |
| /* If the switch has no default label, add one, so that we jump |
| around the switch body. */ |
| default_case = build3 (CASE_LABEL_EXPR, void_type_node, NULL_TREE, |
| NULL_TREE, create_artificial_label ()); |
| append_to_statement_list (SWITCH_BODY (switch_expr), pre_p); |
| *expr_p = build1 (LABEL_EXPR, void_type_node, |
| CASE_LABEL (default_case)); |
| } |
| else |
| *expr_p = SWITCH_BODY (switch_expr); |
| |
| for (i = 0; i < len; ++i) |
| TREE_VEC_ELT (label_vec, i) = VEC_index (tree, labels, i); |
| TREE_VEC_ELT (label_vec, len) = default_case; |
| |
| VEC_free (tree, heap, labels); |
| |
| sort_case_labels (label_vec); |
| |
| SWITCH_BODY (switch_expr) = NULL; |
| } |
| else |
| gcc_assert (SWITCH_LABELS (switch_expr)); |
| |
| return ret; |
| } |
| |
| static enum gimplify_status |
| gimplify_case_label_expr (tree *expr_p) |
| { |
| tree expr = *expr_p; |
| struct gimplify_ctx *ctxp; |
| |
| /* Invalid OpenMP programs can play Duff's Device type games with |
| #pragma omp parallel. At least in the C front end, we don't |
| detect such invalid branches until after gimplification. */ |
| for (ctxp = gimplify_ctxp; ; ctxp = ctxp->prev_context) |
| if (ctxp->case_labels) |
| break; |
| |
| VEC_safe_push (tree, heap, ctxp->case_labels, expr); |
| *expr_p = build1 (LABEL_EXPR, void_type_node, CASE_LABEL (expr)); |
| return GS_ALL_DONE; |
| } |
| |
| /* Build a GOTO to the LABEL_DECL pointed to by LABEL_P, building it first |
| if necessary. */ |
| |
| tree |
| build_and_jump (tree *label_p) |
| { |
| if (label_p == NULL) |
| /* If there's nowhere to jump, just fall through. */ |
| return NULL_TREE; |
| |
| if (*label_p == NULL_TREE) |
| { |
| tree label = create_artificial_label (); |
| *label_p = label; |
| } |
| |
| return build1 (GOTO_EXPR, void_type_node, *label_p); |
| } |
| |
| /* Gimplify an EXIT_EXPR by converting to a GOTO_EXPR inside a COND_EXPR. |
| This also involves building a label to jump to and communicating it to |
| gimplify_loop_expr through gimplify_ctxp->exit_label. */ |
| |
| static enum gimplify_status |
| gimplify_exit_expr (tree *expr_p) |
| { |
| tree cond = TREE_OPERAND (*expr_p, 0); |
| tree expr; |
| |
| expr = build_and_jump (&gimplify_ctxp->exit_label); |
| expr = build3 (COND_EXPR, void_type_node, cond, expr, NULL_TREE); |
| *expr_p = expr; |
| |
| return GS_OK; |
| } |
| |
| /* A helper function to be called via walk_tree. Mark all labels under *TP |
| as being forced. To be called for DECL_INITIAL of static variables. */ |
| |
| tree |
| force_labels_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) |
| { |
| if (TYPE_P (*tp)) |
| *walk_subtrees = 0; |
| if (TREE_CODE (*tp) == LABEL_DECL) |
| FORCED_LABEL (*tp) = 1; |
| |
| return NULL_TREE; |
| } |
| |
| /* *EXPR_P is a COMPONENT_REF being used as an rvalue. If its type is |
| different from its canonical type, wrap the whole thing inside a |
| NOP_EXPR and force the type of the COMPONENT_REF to be the canonical |
| type. |
| |
| The canonical type of a COMPONENT_REF is the type of the field being |
| referenced--unless the field is a bit-field which can be read directly |
| in a smaller mode, in which case the canonical type is the |
| sign-appropriate type corresponding to that mode. */ |
| |
| static void |
| canonicalize_component_ref (tree *expr_p) |
| { |
| tree expr = *expr_p; |
| tree type; |
| |
| gcc_assert (TREE_CODE (expr) == COMPONENT_REF); |
| |
| if (INTEGRAL_TYPE_P (TREE_TYPE (expr))) |
| type = TREE_TYPE (get_unwidened (expr, NULL_TREE)); |
| else |
| type = TREE_TYPE (TREE_OPERAND (expr, 1)); |
| |
| if (TREE_TYPE (expr) != type) |
| { |
| tree old_type = TREE_TYPE (expr); |
| |
| /* Set the type of the COMPONENT_REF to the underlying type. */ |
| TREE_TYPE (expr) = type; |
| |
| /* And wrap the whole thing inside a NOP_EXPR. */ |
| expr = build1 (NOP_EXPR, old_type, expr); |
| |
| *expr_p = expr; |
| } |
| } |
| |
| /* If a NOP conversion is changing a pointer to array of foo to a pointer |
| to foo, embed that change in the ADDR_EXPR by converting |
| T array[U]; |
| (T *)&array |
| ==> |
| &array[L] |
| where L is the lower bound. For simplicity, only do this for constant |
| lower bound. */ |
| |
| static void |
| canonicalize_addr_expr (tree *expr_p) |
| { |
| tree expr = *expr_p; |
| tree ctype = TREE_TYPE (expr); |
| tree addr_expr = TREE_OPERAND (expr, 0); |
| tree atype = TREE_TYPE (addr_expr); |
| tree dctype, datype, ddatype, otype, obj_expr; |
| |
| /* Both cast and addr_expr types should be pointers. */ |
| if (!POINTER_TYPE_P (ctype) || !POINTER_TYPE_P (atype)) |
| return; |
| |
| /* The addr_expr type should be a pointer to an array. */ |
| datype = TREE_TYPE (atype); |
| if (TREE_CODE (datype) != ARRAY_TYPE) |
| return; |
| |
| /* Both cast and addr_expr types should address the same object type. */ |
| dctype = TREE_TYPE (ctype); |
| ddatype = TREE_TYPE (datype); |
| if (!lang_hooks.types_compatible_p (ddatype, dctype)) |
| return; |
| |
| /* The addr_expr and the object type should match. */ |
| obj_expr = TREE_OPERAND (addr_expr, 0); |
| otype = TREE_TYPE (obj_expr); |
| if (!lang_hooks.types_compatible_p (otype, datype)) |
| return; |
| |
| /* The lower bound and element sizes must be constant. */ |
| if (!TYPE_SIZE_UNIT (dctype) |
| || TREE_CODE (TYPE_SIZE_UNIT (dctype)) != INTEGER_CST |
| || !TYPE_DOMAIN (datype) || !TYPE_MIN_VALUE (TYPE_DOMAIN (datype)) |
| || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (datype))) != INTEGER_CST) |
| return; |
| |
| /* All checks succeeded. Build a new node to merge the cast. */ |
| *expr_p = build4 (ARRAY_REF, dctype, obj_expr, |
| TYPE_MIN_VALUE (TYPE_DOMAIN (datype)), |
| TYPE_MIN_VALUE (TYPE_DOMAIN (datype)), |
| size_binop (EXACT_DIV_EXPR, TYPE_SIZE_UNIT (dctype), |
| size_int (TYPE_ALIGN_UNIT (dctype)))); |
| *expr_p = build1 (ADDR_EXPR, ctype, *expr_p); |
| } |
| |
| /* *EXPR_P is a NOP_EXPR or CONVERT_EXPR. Remove it and/or other conversions |
| underneath as appropriate. */ |
| |
| static enum gimplify_status |
| gimplify_conversion (tree *expr_p) |
| { |
| gcc_assert (TREE_CODE (*expr_p) == NOP_EXPR |
| || TREE_CODE (*expr_p) == CONVERT_EXPR); |
| |
| /* Then strip away all but the outermost conversion. */ |
| STRIP_SIGN_NOPS (TREE_OPERAND (*expr_p, 0)); |
| |
| /* And remove the outermost conversion if it's useless. */ |
| if (tree_ssa_useless_type_conversion (*expr_p)) |
| *expr_p = TREE_OPERAND (*expr_p, 0); |
| |
| /* If we still have a conversion at the toplevel, |
| then canonicalize some constructs. */ |
| if (TREE_CODE (*expr_p) == NOP_EXPR || TREE_CODE (*expr_p) == CONVERT_EXPR) |
| { |
| tree sub = TREE_OPERAND (*expr_p, 0); |
| |
| /* If a NOP conversion is changing the type of a COMPONENT_REF |
| expression, then canonicalize its type now in order to expose more |
| redundant conversions. */ |
| if (TREE_CODE (sub) == COMPONENT_REF) |
| canonicalize_component_ref (&TREE_OPERAND (*expr_p, 0)); |
| |
| /* If a NOP conversion is changing a pointer to array of foo |
| to a pointer to foo, embed that change in the ADDR_EXPR. */ |
| else if (TREE_CODE (sub) == ADDR_EXPR) |
| canonicalize_addr_expr (expr_p); |
| } |
| |
| return GS_OK; |
| } |
| |
| /* Gimplify a VAR_DECL or PARM_DECL. Returns GS_OK if we expanded a |
| DECL_VALUE_EXPR, and it's worth re-examining things. */ |
| |
| static enum gimplify_status |
| gimplify_var_or_parm_decl (tree *expr_p) |
| { |
| tree decl = *expr_p; |
| |
| /* ??? If this is a local variable, and it has not been seen in any |
| outer BIND_EXPR, then it's probably the result of a duplicate |
| declaration, for which we've already issued an error. It would |
| be really nice if the front end wouldn't leak these at all. |
| Currently the only known culprit is C++ destructors, as seen |
| in g++.old-deja/g++.jason/binding.C. */ |
| if (TREE_CODE (decl) == VAR_DECL |
| && !DECL_SEEN_IN_BIND_EXPR_P (decl) |
| && !TREE_STATIC (decl) && !DECL_EXTERNAL (decl) |
| && decl_function_context (decl) == current_function_decl) |
| { |
| gcc_assert (errorcount || sorrycount); |
| return GS_ERROR; |
| } |
| |
| /* When within an OpenMP context, notice uses of variables. */ |
| if (gimplify_omp_ctxp && omp_notice_variable (gimplify_omp_ctxp, decl, true)) |
| return GS_ALL_DONE; |
| |
| /* If the decl is an alias for another expression, substitute it now. */ |
| if (DECL_HAS_VALUE_EXPR_P (decl)) |
| { |
| *expr_p = unshare_expr (DECL_VALUE_EXPR (decl)); |
| return GS_OK; |
| } |
| |
| return GS_ALL_DONE; |
| } |
| |
| |
| /* Gimplify the COMPONENT_REF, ARRAY_REF, REALPART_EXPR or IMAGPART_EXPR |
| node pointed to by EXPR_P. |
| |
| compound_lval |
| : min_lval '[' val ']' |
| | min_lval '.' ID |
| | compound_lval '[' val ']' |
| | compound_lval '.' ID |
| |
| This is not part of the original SIMPLE definition, which separates |
| array and member references, but it seems reasonable to handle them |
| together. Also, this way we don't run into problems with union |
| aliasing; gcc requires that for accesses through a union to alias, the |
| union reference must be explicit, which was not always the case when we |
| were splitting up array and member refs. |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. |
| |
| POST_P points to the list where side effects that must happen after |
| *EXPR_P should be stored. */ |
| |
| static enum gimplify_status |
| gimplify_compound_lval (tree *expr_p, tree *pre_p, |
| tree *post_p, fallback_t fallback) |
| { |
| tree *p; |
| VEC(tree,heap) *stack; |
| enum gimplify_status ret = GS_OK, tret; |
| int i; |
| |
| /* Create a stack of the subexpressions so later we can walk them in |
| order from inner to outer. */ |
| stack = VEC_alloc (tree, heap, 10); |
| |
| /* We can handle anything that get_inner_reference can deal with. */ |
| for (p = expr_p; ; p = &TREE_OPERAND (*p, 0)) |
| { |
| restart: |
| /* Fold INDIRECT_REFs now to turn them into ARRAY_REFs. */ |
| if (TREE_CODE (*p) == INDIRECT_REF) |
| *p = fold_indirect_ref (*p); |
| |
| if (handled_component_p (*p)) |
| ; |
| /* Expand DECL_VALUE_EXPR now. In some cases that may expose |
| additional COMPONENT_REFs. */ |
| else if ((TREE_CODE (*p) == VAR_DECL || TREE_CODE (*p) == PARM_DECL) |
| && gimplify_var_or_parm_decl (p) == GS_OK) |
| goto restart; |
| else |
| break; |
| |
| VEC_safe_push (tree, heap, stack, *p); |
| } |
| |
| gcc_assert (VEC_length (tree, stack)); |
| |
| /* Now STACK is a stack of pointers to all the refs we've walked through |
| and P points to the innermost expression. |
| |
| Java requires that we elaborated nodes in source order. That |
| means we must gimplify the inner expression followed by each of |
| the indices, in order. But we can't gimplify the inner |
| expression until we deal with any variable bounds, sizes, or |
| positions in order to deal with PLACEHOLDER_EXPRs. |
| |
| So we do this in three steps. First we deal with the annotations |
| for any variables in the components, then we gimplify the base, |
| then we gimplify any indices, from left to right. */ |
| for (i = VEC_length (tree, stack) - 1; i >= 0; i--) |
| { |
| tree t = VEC_index (tree, stack, i); |
| |
| if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) |
| { |
| /* Gimplify the low bound and element type size and put them into |
| the ARRAY_REF. If these values are set, they have already been |
| gimplified. */ |
| /* LLVM LOCAL begin */ |
| /* Handle the LLVM extension that allows: (ARRAY_REF ptr, idx) */ |
| if (!TREE_OPERAND (t, 2) |
| #ifdef ENABLE_LLVM |
| && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == ARRAY_TYPE |
| #endif |
| ) |
| /* LLVM LOCAL end */ |
| { |
| tree low = unshare_expr (array_ref_low_bound (t)); |
| if (!is_gimple_min_invariant (low)) |
| { |
| TREE_OPERAND (t, 2) = low; |
| tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p, |
| is_gimple_formal_tmp_reg, fb_rvalue); |
| ret = MIN (ret, tret); |
| } |
| } |
| |
| /* LLVM LOCAL begin */ |
| /* Handle the LLVM extension that allows: (ARRAY_REF ptr, idx) */ |
| if (!TREE_OPERAND (t, 3) |
| #ifdef ENABLE_LLVM |
| && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == ARRAY_TYPE |
| #endif |
| ) |
| /* LLVM LOCAL end */ |
| { |
| tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0))); |
| tree elmt_size = unshare_expr (array_ref_element_size (t)); |
| tree factor = size_int (TYPE_ALIGN_UNIT (elmt_type)); |
| |
| /* Divide the element size by the alignment of the element |
| type (above). */ |
| elmt_size = size_binop (EXACT_DIV_EXPR, elmt_size, factor); |
| |
| if (!is_gimple_min_invariant (elmt_size)) |
| { |
| TREE_OPERAND (t, 3) = elmt_size; |
| tret = gimplify_expr (&TREE_OPERAND (t, 3), pre_p, post_p, |
| is_gimple_formal_tmp_reg, fb_rvalue); |
| ret = MIN (ret, tret); |
| } |
| } |
| } |
| else if (TREE_CODE (t) == COMPONENT_REF) |
| { |
| /* Set the field offset into T and gimplify it. */ |
| if (!TREE_OPERAND (t, 2)) |
| { |
| tree offset = unshare_expr (component_ref_field_offset (t)); |
| tree field = TREE_OPERAND (t, 1); |
| tree factor |
| = size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT); |
| |
| /* Divide the offset by its alignment. */ |
| offset = size_binop (EXACT_DIV_EXPR, offset, factor); |
| |
| if (!is_gimple_min_invariant (offset)) |
| { |
| TREE_OPERAND (t, 2) = offset; |
| tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p, |
| is_gimple_formal_tmp_reg, fb_rvalue); |
| ret = MIN (ret, tret); |
| } |
| } |
| } |
| } |
| |
| /* Step 2 is to gimplify the base expression. Make sure lvalue is set |
| so as to match the min_lval predicate. Failure to do so may result |
| in the creation of large aggregate temporaries. */ |
| tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval, |
| fallback | fb_lvalue); |
| ret = MIN (ret, tret); |
| |
| /* And finally, the indices and operands to BIT_FIELD_REF. During this |
| loop we also remove any useless conversions. */ |
| for (; VEC_length (tree, stack) > 0; ) |
| { |
| tree t = VEC_pop (tree, stack); |
| |
| if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) |
| { |
| /* Gimplify the dimension. |
| Temporary fix for gcc.c-torture/execute/20040313-1.c. |
| Gimplify non-constant array indices into a temporary |
| variable. |
| FIXME - The real fix is to gimplify post-modify |
| expressions into a minimal gimple lvalue. However, that |
| exposes bugs in alias analysis. The alias analyzer does |
| not handle &PTR->FIELD very well. Will fix after the |
| branch is merged into mainline (dnovillo 2004-05-03). */ |
| if (!is_gimple_min_invariant (TREE_OPERAND (t, 1))) |
| { |
| tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p, |
| is_gimple_formal_tmp_reg, fb_rvalue); |
| ret = MIN (ret, tret); |
| } |
| } |
| else if (TREE_CODE (t) == BIT_FIELD_REF) |
| { |
| tret = gimplify_expr (&TREE_OPERAND (t, 1), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| ret = MIN (ret, tret); |
| tret = gimplify_expr (&TREE_OPERAND (t, 2), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| ret = MIN (ret, tret); |
| } |
| |
| STRIP_USELESS_TYPE_CONVERSION (TREE_OPERAND (t, 0)); |
| |
| /* The innermost expression P may have originally had TREE_SIDE_EFFECTS |
| set which would have caused all the outer expressions in EXPR_P |
| leading to P to also have had TREE_SIDE_EFFECTS set. */ |
| recalculate_side_effects (t); |
| } |
| |
| tret = gimplify_expr (p, pre_p, post_p, is_gimple_min_lval, fallback); |
| ret = MIN (ret, tret); |
| |
| /* If the outermost expression is a COMPONENT_REF, canonicalize its type. */ |
| if ((fallback & fb_rvalue) && TREE_CODE (*expr_p) == COMPONENT_REF) |
| { |
| canonicalize_component_ref (expr_p); |
| ret = MIN (ret, GS_OK); |
| } |
| |
| VEC_free (tree, heap, stack); |
| |
| return ret; |
| } |
| |
| /* Gimplify the self modifying expression pointed to by EXPR_P |
| (++, --, +=, -=). |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. |
| |
| POST_P points to the list where side effects that must happen after |
| *EXPR_P should be stored. |
| |
| WANT_VALUE is nonzero iff we want to use the value of this expression |
| in another expression. */ |
| |
| static enum gimplify_status |
| gimplify_self_mod_expr (tree *expr_p, tree *pre_p, tree *post_p, |
| bool want_value) |
| { |
| enum tree_code code; |
| tree lhs, lvalue, rhs, t1, post = NULL, *orig_post_p = post_p; |
| bool postfix; |
| enum tree_code arith_code; |
| enum gimplify_status ret; |
| |
| code = TREE_CODE (*expr_p); |
| |
| gcc_assert (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR |
| || code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR); |
| |
| /* Prefix or postfix? */ |
| if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR) |
| /* Faster to treat as prefix if result is not used. */ |
| postfix = want_value; |
| else |
| postfix = false; |
| |
| /* For postfix, make sure the inner expression's post side effects |
| are executed after side effects from this expression. */ |
| if (postfix) |
| post_p = &post; |
| |
| /* Add or subtract? */ |
| if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) |
| arith_code = PLUS_EXPR; |
| else |
| arith_code = MINUS_EXPR; |
| |
| /* Gimplify the LHS into a GIMPLE lvalue. */ |
| lvalue = TREE_OPERAND (*expr_p, 0); |
| ret = gimplify_expr (&lvalue, pre_p, post_p, is_gimple_lvalue, fb_lvalue); |
| if (ret == GS_ERROR) |
| return ret; |
| |
| /* Extract the operands to the arithmetic operation. */ |
| lhs = lvalue; |
| rhs = TREE_OPERAND (*expr_p, 1); |
| |
| /* For postfix operator, we evaluate the LHS to an rvalue and then use |
| that as the result value and in the postqueue operation. */ |
| if (postfix) |
| { |
| ret = gimplify_expr (&lhs, pre_p, post_p, is_gimple_val, fb_rvalue); |
| if (ret == GS_ERROR) |
| return ret; |
| } |
| |
| t1 = build2 (arith_code, TREE_TYPE (*expr_p), lhs, rhs); |
| t1 = build2 (MODIFY_EXPR, TREE_TYPE (lvalue), lvalue, t1); |
| |
| if (postfix) |
| { |
| gimplify_and_add (t1, orig_post_p); |
| append_to_statement_list (post, orig_post_p); |
| *expr_p = lhs; |
| return GS_ALL_DONE; |
| } |
| else |
| { |
| *expr_p = t1; |
| return GS_OK; |
| } |
| } |
| |
| /* If *EXPR_P has a variable sized type, wrap it in a WITH_SIZE_EXPR. */ |
| |
| static void |
| maybe_with_size_expr (tree *expr_p) |
| { |
| tree expr = *expr_p; |
| tree type = TREE_TYPE (expr); |
| tree size; |
| |
| /* If we've already wrapped this or the type is error_mark_node, we can't do |
| anything. */ |
| if (TREE_CODE (expr) == WITH_SIZE_EXPR |
| || type == error_mark_node) |
| return; |
| |
| /* If the size isn't known or is a constant, we have nothing to do. */ |
| size = TYPE_SIZE_UNIT (type); |
| if (!size || TREE_CODE (size) == INTEGER_CST) |
| return; |
| |
| /* Otherwise, make a WITH_SIZE_EXPR. */ |
| size = unshare_expr (size); |
| size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, expr); |
| *expr_p = build2 (WITH_SIZE_EXPR, type, expr, size); |
| } |
| |
| /* Subroutine of gimplify_call_expr: Gimplify a single argument. */ |
| |
| static enum gimplify_status |
| gimplify_arg (tree *expr_p, tree *pre_p) |
| { |
| bool (*test) (tree); |
| fallback_t fb; |
| |
| /* In general, we allow lvalues for function arguments to avoid |
| extra overhead of copying large aggregates out of even larger |
| aggregates into temporaries only to copy the temporaries to |
| the argument list. Make optimizers happy by pulling out to |
| temporaries those types that fit in registers. */ |
| if (is_gimple_reg_type (TREE_TYPE (*expr_p))) |
| test = is_gimple_val, fb = fb_rvalue; |
| else |
| test = is_gimple_lvalue, fb = fb_either; |
| |
| /* If this is a variable sized type, we must remember the size. */ |
| maybe_with_size_expr (expr_p); |
| |
| /* There is a sequence point before a function call. Side effects in |
| the argument list must occur before the actual call. So, when |
| gimplifying arguments, force gimplify_expr to use an internal |
| post queue which is then appended to the end of PRE_P. */ |
| return gimplify_expr (expr_p, pre_p, NULL, test, fb); |
| } |
| |
| /* Gimplify the CALL_EXPR node pointed to by EXPR_P. PRE_P points to the |
| list where side effects that must happen before *EXPR_P should be stored. |
| WANT_VALUE is true if the result of the call is desired. */ |
| |
| static enum gimplify_status |
| gimplify_call_expr (tree *expr_p, tree *pre_p, bool want_value) |
| { |
| tree decl; |
| tree arglist; |
| enum gimplify_status ret; |
| |
| gcc_assert (TREE_CODE (*expr_p) == CALL_EXPR); |
| |
| /* For reliable diagnostics during inlining, it is necessary that |
| every call_expr be annotated with file and line. */ |
| if (! EXPR_HAS_LOCATION (*expr_p)) |
| SET_EXPR_LOCATION (*expr_p, input_location); |
| |
| /* This may be a call to a builtin function. |
| |
| Builtin function calls may be transformed into different |
| (and more efficient) builtin function calls under certain |
| circumstances. Unfortunately, gimplification can muck things |
| up enough that the builtin expanders are not aware that certain |
| transformations are still valid. |
| |
| So we attempt transformation/gimplification of the call before |
| we gimplify the CALL_EXPR. At this time we do not manage to |
| transform all calls in the same manner as the expanders do, but |
| we do transform most of them. */ |
| decl = get_callee_fndecl (*expr_p); |
| if (decl && DECL_BUILT_IN (decl)) |
| { |
| tree arglist = TREE_OPERAND (*expr_p, 1); |
| tree new = fold_builtin (decl, arglist, !want_value); |
| |
| if (new && new != *expr_p) |
| { |
| /* There was a transformation of this call which computes the |
| same value, but in a more efficient way. Return and try |
| again. */ |
| *expr_p = new; |
| return GS_OK; |
| } |
| |
| if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL |
| && DECL_FUNCTION_CODE (decl) == BUILT_IN_VA_START) |
| { |
| if (!arglist || !TREE_CHAIN (arglist)) |
| { |
| error ("too few arguments to function %<va_start%>"); |
| *expr_p = build_empty_stmt (); |
| return GS_OK; |
| } |
| |
| if (fold_builtin_next_arg (TREE_CHAIN (arglist))) |
| { |
| *expr_p = build_empty_stmt (); |
| return GS_OK; |
| } |
| /* Avoid gimplifying the second argument to va_start, which needs |
| to be the plain PARM_DECL. */ |
| return gimplify_arg (&TREE_VALUE (TREE_OPERAND (*expr_p, 1)), pre_p); |
| } |
| } |
| |
| /* There is a sequence point before the call, so any side effects in |
| the calling expression must occur before the actual call. Force |
| gimplify_expr to use an internal post queue. */ |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, NULL, |
| is_gimple_call_addr, fb_rvalue); |
| |
| if (PUSH_ARGS_REVERSED) |
| TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1)); |
| for (arglist = TREE_OPERAND (*expr_p, 1); arglist; |
| arglist = TREE_CHAIN (arglist)) |
| { |
| enum gimplify_status t; |
| |
| t = gimplify_arg (&TREE_VALUE (arglist), pre_p); |
| |
| if (t == GS_ERROR) |
| ret = GS_ERROR; |
| } |
| if (PUSH_ARGS_REVERSED) |
| TREE_OPERAND (*expr_p, 1) = nreverse (TREE_OPERAND (*expr_p, 1)); |
| |
| /* Try this again in case gimplification exposed something. */ |
| if (ret != GS_ERROR) |
| { |
| decl = get_callee_fndecl (*expr_p); |
| if (decl && DECL_BUILT_IN (decl)) |
| { |
| tree arglist = TREE_OPERAND (*expr_p, 1); |
| tree new = fold_builtin (decl, arglist, !want_value); |
| |
| if (new && new != *expr_p) |
| { |
| /* There was a transformation of this call which computes the |
| same value, but in a more efficient way. Return and try |
| again. */ |
| *expr_p = new; |
| return GS_OK; |
| } |
| } |
| } |
| |
| /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its |
| decl. This allows us to eliminate redundant or useless |
| calls to "const" functions. */ |
| if (TREE_CODE (*expr_p) == CALL_EXPR |
| && (call_expr_flags (*expr_p) & (ECF_CONST | ECF_PURE))) |
| TREE_SIDE_EFFECTS (*expr_p) = 0; |
| |
| return ret; |
| } |
| |
| /* Handle shortcut semantics in the predicate operand of a COND_EXPR by |
| rewriting it into multiple COND_EXPRs, and possibly GOTO_EXPRs. |
| |
| TRUE_LABEL_P and FALSE_LABEL_P point to the labels to jump to if the |
| condition is true or false, respectively. If null, we should generate |
| our own to skip over the evaluation of this specific expression. |
| |
| This function is the tree equivalent of do_jump. |
| |
| shortcut_cond_r should only be called by shortcut_cond_expr. */ |
| |
| static tree |
| shortcut_cond_r (tree pred, tree *true_label_p, tree *false_label_p) |
| { |
| tree local_label = NULL_TREE; |
| tree t, expr = NULL; |
| |
| /* OK, it's not a simple case; we need to pull apart the COND_EXPR to |
| retain the shortcut semantics. Just insert the gotos here; |
| shortcut_cond_expr will append the real blocks later. */ |
| if (TREE_CODE (pred) == TRUTH_ANDIF_EXPR) |
| { |
| /* Turn if (a && b) into |
| |
| if (a); else goto no; |
| if (b) goto yes; else goto no; |
| (no:) */ |
| |
| if (false_label_p == NULL) |
| false_label_p = &local_label; |
| |
| t = shortcut_cond_r (TREE_OPERAND (pred, 0), NULL, false_label_p); |
| append_to_statement_list (t, &expr); |
| |
| t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p, |
| false_label_p); |
| append_to_statement_list (t, &expr); |
| } |
| else if (TREE_CODE (pred) == TRUTH_ORIF_EXPR) |
| { |
| /* Turn if (a || b) into |
| |
| if (a) goto yes; |
| if (b) goto yes; else goto no; |
| (yes:) */ |
| |
| if (true_label_p == NULL) |
| true_label_p = &local_label; |
| |
| t = shortcut_cond_r (TREE_OPERAND (pred, 0), true_label_p, NULL); |
| append_to_statement_list (t, &expr); |
| |
| t = shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p, |
| false_label_p); |
| append_to_statement_list (t, &expr); |
| } |
| else if (TREE_CODE (pred) == COND_EXPR) |
| { |
| /* As long as we're messing with gotos, turn if (a ? b : c) into |
| if (a) |
| if (b) goto yes; else goto no; |
| else |
| if (c) goto yes; else goto no; */ |
| expr = build3 (COND_EXPR, void_type_node, TREE_OPERAND (pred, 0), |
| shortcut_cond_r (TREE_OPERAND (pred, 1), true_label_p, |
| false_label_p), |
| shortcut_cond_r (TREE_OPERAND (pred, 2), true_label_p, |
| false_label_p)); |
| } |
| else |
| { |
| expr = build3 (COND_EXPR, void_type_node, pred, |
| build_and_jump (true_label_p), |
| build_and_jump (false_label_p)); |
| } |
| |
| if (local_label) |
| { |
| t = build1 (LABEL_EXPR, void_type_node, local_label); |
| append_to_statement_list (t, &expr); |
| } |
| |
| return expr; |
| } |
| |
| static tree |
| shortcut_cond_expr (tree expr) |
| { |
| tree pred = TREE_OPERAND (expr, 0); |
| tree then_ = TREE_OPERAND (expr, 1); |
| tree else_ = TREE_OPERAND (expr, 2); |
| tree true_label, false_label, end_label, t; |
| tree *true_label_p; |
| tree *false_label_p; |
| bool emit_end, emit_false, jump_over_else; |
| bool then_se = then_ && TREE_SIDE_EFFECTS (then_); |
| bool else_se = else_ && TREE_SIDE_EFFECTS (else_); |
| |
| /* First do simple transformations. */ |
| if (!else_se) |
| { |
| /* If there is no 'else', turn (a && b) into if (a) if (b). */ |
| while (TREE_CODE (pred) == TRUTH_ANDIF_EXPR) |
| { |
| TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1); |
| then_ = shortcut_cond_expr (expr); |
| then_se = then_ && TREE_SIDE_EFFECTS (then_); |
| pred = TREE_OPERAND (pred, 0); |
| expr = build3 (COND_EXPR, void_type_node, pred, then_, NULL_TREE); |
| } |
| } |
| if (!then_se) |
| { |
| /* If there is no 'then', turn |
| if (a || b); else d |
| into |
| if (a); else if (b); else d. */ |
| while (TREE_CODE (pred) == TRUTH_ORIF_EXPR) |
| { |
| TREE_OPERAND (expr, 0) = TREE_OPERAND (pred, 1); |
| else_ = shortcut_cond_expr (expr); |
| else_se = else_ && TREE_SIDE_EFFECTS (else_); |
| pred = TREE_OPERAND (pred, 0); |
| expr = build3 (COND_EXPR, void_type_node, pred, NULL_TREE, else_); |
| } |
| } |
| |
| /* If we're done, great. */ |
| if (TREE_CODE (pred) != TRUTH_ANDIF_EXPR |
| && TREE_CODE (pred) != TRUTH_ORIF_EXPR) |
| return expr; |
| |
| /* Otherwise we need to mess with gotos. Change |
| if (a) c; else d; |
| to |
| if (a); else goto no; |
| c; goto end; |
| no: d; end: |
| and recursively gimplify the condition. */ |
| |
| true_label = false_label = end_label = NULL_TREE; |
| |
| /* If our arms just jump somewhere, hijack those labels so we don't |
| generate jumps to jumps. */ |
| |
| if (then_ |
| && TREE_CODE (then_) == GOTO_EXPR |
| && TREE_CODE (GOTO_DESTINATION (then_)) == LABEL_DECL) |
| { |
| true_label = GOTO_DESTINATION (then_); |
| then_ = NULL; |
| then_se = false; |
| } |
| |
| if (else_ |
| && TREE_CODE (else_) == GOTO_EXPR |
| && TREE_CODE (GOTO_DESTINATION (else_)) == LABEL_DECL) |
| { |
| false_label = GOTO_DESTINATION (else_); |
| else_ = NULL; |
| else_se = false; |
| } |
| |
| /* If we aren't hijacking a label for the 'then' branch, it falls through. */ |
| if (true_label) |
| true_label_p = &true_label; |
| else |
| true_label_p = NULL; |
| |
| /* The 'else' branch also needs a label if it contains interesting code. */ |
| if (false_label || else_se) |
| false_label_p = &false_label; |
| else |
| false_label_p = NULL; |
| |
| /* If there was nothing else in our arms, just forward the label(s). */ |
| if (!then_se && !else_se) |
| return shortcut_cond_r (pred, true_label_p, false_label_p); |
| |
| /* If our last subexpression already has a terminal label, reuse it. */ |
| if (else_se) |
| expr = expr_last (else_); |
| else if (then_se) |
| expr = expr_last (then_); |
| else |
| expr = NULL; |
| if (expr && TREE_CODE (expr) == LABEL_EXPR) |
| end_label = LABEL_EXPR_LABEL (expr); |
| |
| /* If we don't care about jumping to the 'else' branch, jump to the end |
| if the condition is false. */ |
| if (!false_label_p) |
| false_label_p = &end_label; |
| |
| /* We only want to emit these labels if we aren't hijacking them. */ |
| emit_end = (end_label == NULL_TREE); |
| emit_false = (false_label == NULL_TREE); |
| |
| /* We only emit the jump over the else clause if we have to--if the |
| then clause may fall through. Otherwise we can wind up with a |
| useless jump and a useless label at the end of gimplified code, |
| which will cause us to think that this conditional as a whole |
| falls through even if it doesn't. If we then inline a function |
| which ends with such a condition, that can cause us to issue an |
| inappropriate warning about control reaching the end of a |
| non-void function. */ |
| jump_over_else = block_may_fallthru (then_); |
| |
| pred = shortcut_cond_r (pred, true_label_p, false_label_p); |
| |
| expr = NULL; |
| append_to_statement_list (pred, &expr); |
| |
| append_to_statement_list (then_, &expr); |
| if (else_se) |
| { |
| if (jump_over_else) |
| { |
| t = build_and_jump (&end_label); |
| append_to_statement_list (t, &expr); |
| } |
| if (emit_false) |
| { |
| t = build1 (LABEL_EXPR, void_type_node, false_label); |
| append_to_statement_list (t, &expr); |
| } |
| append_to_statement_list (else_, &expr); |
| } |
| if (emit_end && end_label) |
| { |
| t = build1 (LABEL_EXPR, void_type_node, end_label); |
| append_to_statement_list (t, &expr); |
| } |
| |
| return expr; |
| } |
| |
| /* EXPR is used in a boolean context; make sure it has BOOLEAN_TYPE. */ |
| |
| tree |
| gimple_boolify (tree expr) |
| { |
| tree type = TREE_TYPE (expr); |
| |
| if (TREE_CODE (type) == BOOLEAN_TYPE) |
| return expr; |
| |
| switch (TREE_CODE (expr)) |
| { |
| case TRUTH_AND_EXPR: |
| case TRUTH_OR_EXPR: |
| case TRUTH_XOR_EXPR: |
| case TRUTH_ANDIF_EXPR: |
| case TRUTH_ORIF_EXPR: |
| /* Also boolify the arguments of truth exprs. */ |
| TREE_OPERAND (expr, 1) = gimple_boolify (TREE_OPERAND (expr, 1)); |
| /* FALLTHRU */ |
| |
| case TRUTH_NOT_EXPR: |
| TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0)); |
| /* FALLTHRU */ |
| |
| case EQ_EXPR: case NE_EXPR: |
| case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR: |
| /* These expressions always produce boolean results. */ |
| TREE_TYPE (expr) = boolean_type_node; |
| return expr; |
| |
| default: |
| /* Other expressions that get here must have boolean values, but |
| might need to be converted to the appropriate mode. */ |
| return fold_convert (boolean_type_node, expr); |
| } |
| } |
| |
| /* Convert the conditional expression pointed to by EXPR_P '(p) ? a : b;' |
| into |
| |
| if (p) if (p) |
| t1 = a; a; |
| else or else |
| t1 = b; b; |
| t1; |
| |
| The second form is used when *EXPR_P is of type void. |
| |
| TARGET is the tree for T1 above. |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. */ |
| |
| static enum gimplify_status |
| gimplify_cond_expr (tree *expr_p, tree *pre_p, fallback_t fallback) |
| { |
| tree expr = *expr_p; |
| tree tmp, tmp2, type; |
| enum gimplify_status ret; |
| |
| type = TREE_TYPE (expr); |
| |
| /* If this COND_EXPR has a value, copy the values into a temporary within |
| the arms. */ |
| if (! VOID_TYPE_P (type)) |
| { |
| tree result; |
| |
| if ((fallback & fb_lvalue) == 0) |
| { |
| result = tmp2 = tmp = create_tmp_var (TREE_TYPE (expr), "iftmp"); |
| ret = GS_ALL_DONE; |
| } |
| else |
| { |
| tree type = build_pointer_type (TREE_TYPE (expr)); |
| |
| if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node) |
| TREE_OPERAND (expr, 1) = |
| build_fold_addr_expr (TREE_OPERAND (expr, 1)); |
| |
| if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node) |
| TREE_OPERAND (expr, 2) = |
| build_fold_addr_expr (TREE_OPERAND (expr, 2)); |
| |
| tmp2 = tmp = create_tmp_var (type, "iftmp"); |
| |
| expr = build3 (COND_EXPR, void_type_node, TREE_OPERAND (expr, 0), |
| TREE_OPERAND (expr, 1), TREE_OPERAND (expr, 2)); |
| |
| result = build_fold_indirect_ref (tmp); |
| ret = GS_ALL_DONE; |
| } |
| |
| /* Build the then clause, 't1 = a;'. But don't build an assignment |
| if this branch is void; in C++ it can be, if it's a throw. */ |
| if (TREE_TYPE (TREE_OPERAND (expr, 1)) != void_type_node) |
| TREE_OPERAND (expr, 1) |
| = build2 (MODIFY_EXPR, void_type_node, tmp, TREE_OPERAND (expr, 1)); |
| |
| /* Build the else clause, 't1 = b;'. */ |
| if (TREE_TYPE (TREE_OPERAND (expr, 2)) != void_type_node) |
| TREE_OPERAND (expr, 2) |
| = build2 (MODIFY_EXPR, void_type_node, tmp2, TREE_OPERAND (expr, 2)); |
| |
| TREE_TYPE (expr) = void_type_node; |
| recalculate_side_effects (expr); |
| |
| /* Move the COND_EXPR to the prequeue. */ |
| gimplify_and_add (expr, pre_p); |
| |
| *expr_p = result; |
| return ret; |
| } |
| |
| /* Make sure the condition has BOOLEAN_TYPE. */ |
| TREE_OPERAND (expr, 0) = gimple_boolify (TREE_OPERAND (expr, 0)); |
| |
| /* Break apart && and || conditions. */ |
| if (TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ANDIF_EXPR |
| || TREE_CODE (TREE_OPERAND (expr, 0)) == TRUTH_ORIF_EXPR) |
| { |
| expr = shortcut_cond_expr (expr); |
| |
| if (expr != *expr_p) |
| { |
| *expr_p = expr; |
| |
| /* We can't rely on gimplify_expr to re-gimplify the expanded |
| form properly, as cleanups might cause the target labels to be |
| wrapped in a TRY_FINALLY_EXPR. To prevent that, we need to |
| set up a conditional context. */ |
| gimple_push_condition (); |
| gimplify_stmt (expr_p); |
| gimple_pop_condition (pre_p); |
| |
| return GS_ALL_DONE; |
| } |
| } |
| |
| /* Now do the normal gimplification. */ |
| ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL, |
| is_gimple_condexpr, fb_rvalue); |
| |
| gimple_push_condition (); |
| |
| gimplify_to_stmt_list (&TREE_OPERAND (expr, 1)); |
| gimplify_to_stmt_list (&TREE_OPERAND (expr, 2)); |
| recalculate_side_effects (expr); |
| |
| gimple_pop_condition (pre_p); |
| |
| if (ret == GS_ERROR) |
| ; |
| else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))) |
| ret = GS_ALL_DONE; |
| else if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 2))) |
| /* Rewrite "if (a); else b" to "if (!a) b" */ |
| { |
| TREE_OPERAND (expr, 0) = invert_truthvalue (TREE_OPERAND (expr, 0)); |
| ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, NULL, |
| is_gimple_condexpr, fb_rvalue); |
| |
| tmp = TREE_OPERAND (expr, 1); |
| TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 2); |
| TREE_OPERAND (expr, 2) = tmp; |
| } |
| else |
| /* Both arms are empty; replace the COND_EXPR with its predicate. */ |
| expr = TREE_OPERAND (expr, 0); |
| |
| *expr_p = expr; |
| return ret; |
| } |
| |
| /* A subroutine of gimplify_modify_expr. Replace a MODIFY_EXPR with |
| a call to __builtin_memcpy. */ |
| |
| static enum gimplify_status |
| gimplify_modify_expr_to_memcpy (tree *expr_p, tree size, bool want_value) |
| { |
| tree args, t, to, to_ptr, from; |
| |
| to = TREE_OPERAND (*expr_p, 0); |
| from = TREE_OPERAND (*expr_p, 1); |
| |
| args = tree_cons (NULL, size, NULL); |
| |
| t = build_fold_addr_expr (from); |
| args = tree_cons (NULL, t, args); |
| |
| to_ptr = build_fold_addr_expr (to); |
| args = tree_cons (NULL, to_ptr, args); |
| t = implicit_built_in_decls[BUILT_IN_MEMCPY]; |
| t = build_function_call_expr (t, args); |
| |
| if (want_value) |
| { |
| t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t); |
| t = build1 (INDIRECT_REF, TREE_TYPE (to), t); |
| } |
| |
| *expr_p = t; |
| return GS_OK; |
| } |
| |
| /* A subroutine of gimplify_modify_expr. Replace a MODIFY_EXPR with |
| a call to __builtin_memset. In this case we know that the RHS is |
| a CONSTRUCTOR with an empty element list. */ |
| |
| static enum gimplify_status |
| gimplify_modify_expr_to_memset (tree *expr_p, tree size, bool want_value) |
| { |
| tree args, t, to, to_ptr; |
| |
| to = TREE_OPERAND (*expr_p, 0); |
| |
| args = tree_cons (NULL, size, NULL); |
| |
| args = tree_cons (NULL, integer_zero_node, args); |
| |
| to_ptr = build_fold_addr_expr (to); |
| args = tree_cons (NULL, to_ptr, args); |
| t = implicit_built_in_decls[BUILT_IN_MEMSET]; |
| t = build_function_call_expr (t, args); |
| |
| if (want_value) |
| { |
| t = build1 (NOP_EXPR, TREE_TYPE (to_ptr), t); |
| t = build1 (INDIRECT_REF, TREE_TYPE (to), t); |
| } |
| |
| *expr_p = t; |
| return GS_OK; |
| } |
| |
| /* A subroutine of gimplify_init_ctor_preeval. Called via walk_tree, |
| determine, cautiously, if a CONSTRUCTOR overlaps the lhs of an |
| assignment. Returns non-null if we detect a potential overlap. */ |
| |
| struct gimplify_init_ctor_preeval_data |
| { |
| /* The base decl of the lhs object. May be NULL, in which case we |
| have to assume the lhs is indirect. */ |
| tree lhs_base_decl; |
| |
| /* The alias set of the lhs object. */ |
| int lhs_alias_set; |
| }; |
| |
| static tree |
| gimplify_init_ctor_preeval_1 (tree *tp, int *walk_subtrees, void *xdata) |
| { |
| struct gimplify_init_ctor_preeval_data *data |
| = (struct gimplify_init_ctor_preeval_data *) xdata; |
| tree t = *tp; |
| |
| /* If we find the base object, obviously we have overlap. */ |
| if (data->lhs_base_decl == t) |
| return t; |
| |
| /* If the constructor component is indirect, determine if we have a |
| potential overlap with the lhs. The only bits of information we |
| have to go on at this point are addressability and alias sets. */ |
| if (TREE_CODE (t) == INDIRECT_REF |
| && (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl)) |
| && alias_sets_conflict_p (data->lhs_alias_set, get_alias_set (t))) |
| return t; |
| |
| /* If the constructor component is a call, determine if it can hide a |
| potential overlap with the lhs through an INDIRECT_REF like above. */ |
| if (TREE_CODE (t) == CALL_EXPR) |
| { |
| tree type, fntype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (t, 0))); |
| |
| for (type = TYPE_ARG_TYPES (fntype); type; type = TREE_CHAIN (type)) |
| if (POINTER_TYPE_P (TREE_VALUE (type)) |
| && (!data->lhs_base_decl || TREE_ADDRESSABLE (data->lhs_base_decl)) |
| && alias_sets_conflict_p (data->lhs_alias_set, |
| get_alias_set |
| (TREE_TYPE (TREE_VALUE (type))))) |
| return t; |
| } |
| |
| if (IS_TYPE_OR_DECL_P (t)) |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| |
| /* A subroutine of gimplify_init_constructor. Pre-evaluate *EXPR_P, |
| force values that overlap with the lhs (as described by *DATA) |
| into temporaries. */ |
| |
| static void |
| gimplify_init_ctor_preeval (tree *expr_p, tree *pre_p, tree *post_p, |
| struct gimplify_init_ctor_preeval_data *data) |
| { |
| enum gimplify_status one; |
| |
| /* If the value is invariant, then there's nothing to pre-evaluate. |
| But ensure it doesn't have any side-effects since a SAVE_EXPR is |
| invariant but has side effects and might contain a reference to |
| the object we're initializing. */ |
| if (TREE_INVARIANT (*expr_p) && !TREE_SIDE_EFFECTS (*expr_p)) |
| return; |
| |
| /* If the type has non-trivial constructors, we can't pre-evaluate. */ |
| if (TREE_ADDRESSABLE (TREE_TYPE (*expr_p))) |
| return; |
| |
| /* Recurse for nested constructors. */ |
| if (TREE_CODE (*expr_p) == CONSTRUCTOR) |
| { |
| unsigned HOST_WIDE_INT ix; |
| constructor_elt *ce; |
| VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (*expr_p); |
| |
| for (ix = 0; VEC_iterate (constructor_elt, v, ix, ce); ix++) |
| gimplify_init_ctor_preeval (&ce->value, pre_p, post_p, data); |
| return; |
| } |
| |
| /* If this is a variable sized type, we must remember the size. */ |
| maybe_with_size_expr (expr_p); |
| |
| /* Gimplify the constructor element to something appropriate for the rhs |
| of a MODIFY_EXPR. Given that we know the lhs is an aggregate, we know |
| the gimplifier will consider this a store to memory. Doing this |
| gimplification now means that we won't have to deal with complicated |
| language-specific trees, nor trees like SAVE_EXPR that can induce |
| exponential search behavior. */ |
| one = gimplify_expr (expr_p, pre_p, post_p, is_gimple_mem_rhs, fb_rvalue); |
| if (one == GS_ERROR) |
| { |
| *expr_p = NULL; |
| return; |
| } |
| |
| /* If we gimplified to a bare decl, we can be sure that it doesn't overlap |
| with the lhs, since "a = { .x=a }" doesn't make sense. This will |
| always be true for all scalars, since is_gimple_mem_rhs insists on a |
| temporary variable for them. */ |
| if (DECL_P (*expr_p)) |
| return; |
| |
| /* If this is of variable size, we have no choice but to assume it doesn't |
| overlap since we can't make a temporary for it. */ |
| if (TREE_CODE (TYPE_SIZE (TREE_TYPE (*expr_p))) != INTEGER_CST) |
| return; |
| |
| /* Otherwise, we must search for overlap ... */ |
| if (!walk_tree (expr_p, gimplify_init_ctor_preeval_1, data, NULL)) |
| return; |
| |
| /* ... and if found, force the value into a temporary. */ |
| *expr_p = get_formal_tmp_var (*expr_p, pre_p); |
| } |
| |
| /* A subroutine of gimplify_init_ctor_eval. Create a loop for |
| a RANGE_EXPR in a CONSTRUCTOR for an array. |
| |
| var = lower; |
| loop_entry: |
| object[var] = value; |
| if (var == upper) |
| goto loop_exit; |
| var = var + 1; |
| goto loop_entry; |
| loop_exit: |
| |
| We increment var _after_ the loop exit check because we might otherwise |
| fail if upper == TYPE_MAX_VALUE (type for upper). |
| |
| Note that we never have to deal with SAVE_EXPRs here, because this has |
| already been taken care of for us, in gimplify_init_ctor_preeval(). */ |
| |
| static void gimplify_init_ctor_eval (tree, VEC(constructor_elt,gc) *, |
| tree *, bool); |
| |
| static void |
| gimplify_init_ctor_eval_range (tree object, tree lower, tree upper, |
| tree value, tree array_elt_type, |
| tree *pre_p, bool cleared) |
| { |
| tree loop_entry_label, loop_exit_label; |
| tree var, var_type, cref; |
| |
| loop_entry_label = create_artificial_label (); |
| loop_exit_label = create_artificial_label (); |
| |
| /* Create and initialize the index variable. */ |
| var_type = TREE_TYPE (upper); |
| var = create_tmp_var (var_type, NULL); |
| append_to_statement_list (build2 (MODIFY_EXPR, var_type, var, lower), pre_p); |
| |
| /* Add the loop entry label. */ |
| append_to_statement_list (build1 (LABEL_EXPR, |
| void_type_node, |
| loop_entry_label), |
| pre_p); |
| |
| /* Build the reference. */ |
| cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object), |
| var, NULL_TREE, NULL_TREE); |
| |
| /* If we are a constructor, just call gimplify_init_ctor_eval to do |
| the store. Otherwise just assign value to the reference. */ |
| |
| if (TREE_CODE (value) == CONSTRUCTOR) |
| /* NB we might have to call ourself recursively through |
| gimplify_init_ctor_eval if the value is a constructor. */ |
| gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value), |
| pre_p, cleared); |
| else |
| append_to_statement_list (build2 (MODIFY_EXPR, TREE_TYPE (cref), |
| cref, value), |
| pre_p); |
| |
| /* We exit the loop when the index var is equal to the upper bound. */ |
| gimplify_and_add (build3 (COND_EXPR, void_type_node, |
| build2 (EQ_EXPR, boolean_type_node, |
| var, upper), |
| build1 (GOTO_EXPR, |
| void_type_node, |
| loop_exit_label), |
| NULL_TREE), |
| pre_p); |
| |
| /* Otherwise, increment the index var... */ |
| append_to_statement_list (build2 (MODIFY_EXPR, var_type, var, |
| build2 (PLUS_EXPR, var_type, var, |
| fold_convert (var_type, |
| integer_one_node))), |
| pre_p); |
| |
| /* ...and jump back to the loop entry. */ |
| append_to_statement_list (build1 (GOTO_EXPR, |
| void_type_node, |
| loop_entry_label), |
| pre_p); |
| |
| /* Add the loop exit label. */ |
| append_to_statement_list (build1 (LABEL_EXPR, |
| void_type_node, |
| loop_exit_label), |
| pre_p); |
| } |
| |
| /* Return true if FDECL is accessing a field that is zero sized. */ |
| |
| static bool |
| zero_sized_field_decl (tree fdecl) |
| { |
| if (TREE_CODE (fdecl) == FIELD_DECL && DECL_SIZE (fdecl) |
| && integer_zerop (DECL_SIZE (fdecl))) |
| return true; |
| return false; |
| } |
| |
| /* Return true if TYPE is zero sized. */ |
| |
| static bool |
| zero_sized_type (tree type) |
| { |
| if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) |
| && integer_zerop (TYPE_SIZE (type))) |
| return true; |
| return false; |
| } |
| |
| /* A subroutine of gimplify_init_constructor. Generate individual |
| MODIFY_EXPRs for a CONSTRUCTOR. OBJECT is the LHS against which the |
| assignments should happen. ELTS is the CONSTRUCTOR_ELTS of the |
| CONSTRUCTOR. CLEARED is true if the entire LHS object has been |
| zeroed first. */ |
| |
| static void |
| gimplify_init_ctor_eval (tree object, VEC(constructor_elt,gc) *elts, |
| tree *pre_p, bool cleared) |
| { |
| tree array_elt_type = NULL; |
| unsigned HOST_WIDE_INT ix; |
| tree purpose, value; |
| |
| if (TREE_CODE (TREE_TYPE (object)) == ARRAY_TYPE) |
| array_elt_type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (object))); |
| |
| FOR_EACH_CONSTRUCTOR_ELT (elts, ix, purpose, value) |
| { |
| tree cref, init; |
| |
| /* NULL values are created above for gimplification errors. */ |
| if (value == NULL) |
| continue; |
| |
| if (cleared && initializer_zerop (value)) |
| continue; |
| |
| /* ??? Here's to hoping the front end fills in all of the indices, |
| so we don't have to figure out what's missing ourselves. */ |
| gcc_assert (purpose); |
| |
| /* Skip zero-sized fields, unless value has side-effects. This can |
| happen with calls to functions returning a zero-sized type, which |
| we shouldn't discard. As a number of downstream passes don't |
| expect sets of zero-sized fields, we rely on the gimplification of |
| the MODIFY_EXPR we make below to drop the assignment statement. */ |
| if (! TREE_SIDE_EFFECTS (value) && zero_sized_field_decl (purpose)) |
| continue; |
| |
| /* If we have a RANGE_EXPR, we have to build a loop to assign the |
| whole range. */ |
| if (TREE_CODE (purpose) == RANGE_EXPR) |
| { |
| tree lower = TREE_OPERAND (purpose, 0); |
| tree upper = TREE_OPERAND (purpose, 1); |
| |
| /* If the lower bound is equal to upper, just treat it as if |
| upper was the index. */ |
| if (simple_cst_equal (lower, upper)) |
| purpose = upper; |
| else |
| { |
| gimplify_init_ctor_eval_range (object, lower, upper, value, |
| array_elt_type, pre_p, cleared); |
| continue; |
| } |
| } |
| |
| if (array_elt_type) |
| { |
| cref = build4 (ARRAY_REF, array_elt_type, unshare_expr (object), |
| purpose, NULL_TREE, NULL_TREE); |
| } |
| else |
| { |
| gcc_assert (TREE_CODE (purpose) == FIELD_DECL); |
| cref = build3 (COMPONENT_REF, TREE_TYPE (purpose), |
| unshare_expr (object), purpose, NULL_TREE); |
| } |
| |
| if (TREE_CODE (value) == CONSTRUCTOR |
| && TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE) |
| gimplify_init_ctor_eval (cref, CONSTRUCTOR_ELTS (value), |
| pre_p, cleared); |
| else |
| { |
| init = build2 (INIT_EXPR, TREE_TYPE (cref), cref, value); |
| gimplify_and_add (init, pre_p); |
| } |
| } |
| } |
| |
| /* A subroutine of gimplify_modify_expr. Break out elements of a |
| CONSTRUCTOR used as an initializer into separate MODIFY_EXPRs. |
| |
| Note that we still need to clear any elements that don't have explicit |
| initializers, so if not all elements are initialized we keep the |
| original MODIFY_EXPR, we just remove all of the constructor elements. */ |
| |
| static enum gimplify_status |
| gimplify_init_constructor (tree *expr_p, tree *pre_p, |
| tree *post_p, bool want_value) |
| { |
| tree object; |
| tree ctor = TREE_OPERAND (*expr_p, 1); |
| tree type = TREE_TYPE (ctor); |
| enum gimplify_status ret; |
| VEC(constructor_elt,gc) *elts; |
| |
| if (TREE_CODE (ctor) != CONSTRUCTOR) |
| return GS_UNHANDLED; |
| |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| is_gimple_lvalue, fb_lvalue); |
| if (ret == GS_ERROR) |
| return ret; |
| object = TREE_OPERAND (*expr_p, 0); |
| |
| elts = CONSTRUCTOR_ELTS (ctor); |
| |
| ret = GS_ALL_DONE; |
| switch (TREE_CODE (type)) |
| { |
| case RECORD_TYPE: |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| case ARRAY_TYPE: |
| { |
| struct gimplify_init_ctor_preeval_data preeval_data; |
| HOST_WIDE_INT num_type_elements, num_ctor_elements; |
| HOST_WIDE_INT num_nonzero_elements; |
| bool cleared, valid_const_initializer; |
| |
| /* Aggregate types must lower constructors to initialization of |
| individual elements. The exception is that a CONSTRUCTOR node |
| with no elements indicates zero-initialization of the whole. */ |
| if (VEC_empty (constructor_elt, elts)) |
| break; |
| |
| /* Fetch information about the constructor to direct later processing. |
| We might want to make static versions of it in various cases, and |
| can only do so if it known to be a valid constant initializer. */ |
| valid_const_initializer |
| = categorize_ctor_elements (ctor, &num_nonzero_elements, |
| &num_ctor_elements, &cleared); |
| |
| /* If a const aggregate variable is being initialized, then it |
| should never be a lose to promote the variable to be static. */ |
| if (valid_const_initializer |
| && num_nonzero_elements > 1 |
| && TREE_READONLY (object) |
| /* APPLE LOCAL begin CW asm blocks */ |
| && TREE_CODE (object) == VAR_DECL |
| && !DECL_IASM_DONT_PROMOTE_TO_STATIC (object)) |
| /* APPLE LOCAL end CW asm blocks */ |
| { |
| DECL_INITIAL (object) = ctor; |
| TREE_STATIC (object) = 1; |
| if (!DECL_NAME (object)) |
| DECL_NAME (object) = create_tmp_var_name ("C"); |
| walk_tree (&DECL_INITIAL (object), force_labels_r, NULL, NULL); |
| |
| /* ??? C++ doesn't automatically append a .<number> to the |
| assembler name, and even when it does, it looks a FE private |
| data structures to figure out what that number should be, |
| which are not set for this variable. I suppose this is |
| important for local statics for inline functions, which aren't |
| "local" in the object file sense. So in order to get a unique |
| TU-local symbol, we must invoke the lhd version now. */ |
| lhd_set_decl_assembler_name (object); |
| |
| *expr_p = NULL_TREE; |
| break; |
| } |
| |
| /* If there are "lots" of initialized elements, even discounting |
| those that are not address constants (and thus *must* be |
| computed at runtime), then partition the constructor into |
| constant and non-constant parts. Block copy the constant |
| parts in, then generate code for the non-constant parts. */ |
| /* TODO. There's code in cp/typeck.c to do this. */ |
| |
| num_type_elements = count_type_elements (type, true); |
| |
| /* If count_type_elements could not determine number of type elements |
| for a constant-sized object, assume clearing is needed. |
| Don't do this for variable-sized objects, as store_constructor |
| will ignore the clearing of variable-sized objects. */ |
| if (num_type_elements < 0 && int_size_in_bytes (type) >= 0) |
| cleared = true; |
| /* If there are "lots" of zeros, then block clear the object first. */ |
| else if (num_type_elements - num_nonzero_elements > CLEAR_RATIO |
| && num_nonzero_elements < num_type_elements/4) |
| cleared = true; |
| /* ??? This bit ought not be needed. For any element not present |
| in the initializer, we should simply set them to zero. Except |
| we'd need to *find* the elements that are not present, and that |
| requires trickery to avoid quadratic compile-time behavior in |
| large cases or excessive memory use in small cases. */ |
| else if (num_ctor_elements < num_type_elements) |
| cleared = true; |
| |
| /* If there are "lots" of initialized elements, and all of them |
| are valid address constants, then the entire initializer can |
| be dropped to memory, and then memcpy'd out. Don't do this |
| for sparse arrays, though, as it's more efficient to follow |
| the standard CONSTRUCTOR behavior of memset followed by |
| individual element initialization. */ |
| if (valid_const_initializer && !cleared) |
| { |
| HOST_WIDE_INT size = int_size_in_bytes (type); |
| unsigned int align; |
| |
| /* ??? We can still get unbounded array types, at least |
| from the C++ front end. This seems wrong, but attempt |
| to work around it for now. */ |
| if (size < 0) |
| { |
| size = int_size_in_bytes (TREE_TYPE (object)); |
| if (size >= 0) |
| TREE_TYPE (ctor) = type = TREE_TYPE (object); |
| } |
| |
| /* Find the maximum alignment we can assume for the object. */ |
| /* ??? Make use of DECL_OFFSET_ALIGN. */ |
| if (DECL_P (object)) |
| align = DECL_ALIGN (object); |
| else |
| align = TYPE_ALIGN (type); |
| |
| if (size > 0 && !can_move_by_pieces (size, align)) |
| { |
| tree new = create_tmp_var_raw (type, "C"); |
| |
| gimple_add_tmp_var (new); |
| TREE_STATIC (new) = 1; |
| TREE_READONLY (new) = 1; |
| /* LLVM LOCAL begin */ |
| /* On Darwin, we can't emit temporaries like this with private |
| * linkage, because it breaks 'atomization' of stuff in the |
| * object file by the linker. We need to emit this as a l label |
| * without .globl. |
| */ |
| #ifndef CONFIG_DARWIN_H |
| #ifdef ENABLE_LLVM |
| DECL_LLVM_PRIVATE (new) = 1; |
| #endif |
| #endif |
| /* LLVM LOCAL end */ |
| DECL_INITIAL (new) = ctor; |
| if (align > DECL_ALIGN (new)) |
| { |
| DECL_ALIGN (new) = align; |
| DECL_USER_ALIGN (new) = 1; |
| } |
| walk_tree (&DECL_INITIAL (new), force_labels_r, NULL, NULL); |
| |
| TREE_OPERAND (*expr_p, 1) = new; |
| |
| /* This is no longer an assignment of a CONSTRUCTOR, but |
| we still may have processing to do on the LHS. So |
| pretend we didn't do anything here to let that happen. */ |
| return GS_UNHANDLED; |
| } |
| } |
| |
| /* If there are nonzero elements, pre-evaluate to capture elements |
| overlapping with the lhs into temporaries. We must do this before |
| clearing to fetch the values before they are zeroed-out. */ |
| if (num_nonzero_elements > 0) |
| { |
| preeval_data.lhs_base_decl = get_base_address (object); |
| if (!DECL_P (preeval_data.lhs_base_decl)) |
| preeval_data.lhs_base_decl = NULL; |
| preeval_data.lhs_alias_set = get_alias_set (object); |
| |
| gimplify_init_ctor_preeval (&TREE_OPERAND (*expr_p, 1), |
| pre_p, post_p, &preeval_data); |
| } |
| |
| if (cleared) |
| { |
| /* Zap the CONSTRUCTOR element list, which simplifies this case. |
| Note that we still have to gimplify, in order to handle the |
| case of variable sized types. Avoid shared tree structures. */ |
| CONSTRUCTOR_ELTS (ctor) = NULL; |
| object = unshare_expr (object); |
| gimplify_stmt (expr_p); |
| append_to_statement_list (*expr_p, pre_p); |
| } |
| |
| /* If we have not block cleared the object, or if there are nonzero |
| elements in the constructor, add assignments to the individual |
| scalar fields of the object. */ |
| if (!cleared || num_nonzero_elements > 0) |
| gimplify_init_ctor_eval (object, elts, pre_p, cleared); |
| |
| *expr_p = NULL_TREE; |
| } |
| break; |
| |
| case COMPLEX_TYPE: |
| { |
| tree r, i; |
| |
| /* Extract the real and imaginary parts out of the ctor. */ |
| gcc_assert (VEC_length (constructor_elt, elts) == 2); |
| r = VEC_index (constructor_elt, elts, 0)->value; |
| i = VEC_index (constructor_elt, elts, 1)->value; |
| if (r == NULL || i == NULL) |
| { |
| tree zero = fold_convert (TREE_TYPE (type), integer_zero_node); |
| if (r == NULL) |
| r = zero; |
| if (i == NULL) |
| i = zero; |
| } |
| |
| /* Complex types have either COMPLEX_CST or COMPLEX_EXPR to |
| represent creation of a complex value. */ |
| if (TREE_CONSTANT (r) && TREE_CONSTANT (i)) |
| { |
| ctor = build_complex (type, r, i); |
| TREE_OPERAND (*expr_p, 1) = ctor; |
| } |
| else |
| { |
| ctor = build2 (COMPLEX_EXPR, type, r, i); |
| TREE_OPERAND (*expr_p, 1) = ctor; |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p, |
| rhs_predicate_for (TREE_OPERAND (*expr_p, 0)), |
| fb_rvalue); |
| } |
| } |
| break; |
| |
| case VECTOR_TYPE: |
| { |
| unsigned HOST_WIDE_INT ix; |
| constructor_elt *ce; |
| |
| /* Go ahead and simplify constant constructors to VECTOR_CST. */ |
| if (TREE_CONSTANT (ctor)) |
| { |
| bool constant_p = true; |
| tree value; |
| |
| /* Even when ctor is constant, it might contain non-*_CST |
| elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't |
| belong into VECTOR_CST nodes. */ |
| FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value) |
| if (!CONSTANT_CLASS_P (value)) |
| { |
| constant_p = false; |
| break; |
| } |
| |
| if (constant_p) |
| { |
| TREE_OPERAND (*expr_p, 1) = build_vector_from_ctor (type, elts); |
| break; |
| } |
| |
| /* Don't reduce a TREE_CONSTANT vector ctor even if we can't |
| make a VECTOR_CST. It won't do anything for us, and it'll |
| prevent us from representing it as a single constant. */ |
| break; |
| } |
| |
| /* Vector types use CONSTRUCTOR all the way through gimple |
| compilation as a general initializer. */ |
| for (ix = 0; VEC_iterate (constructor_elt, elts, ix, ce); ix++) |
| { |
| enum gimplify_status tret; |
| tret = gimplify_expr (&ce->value, pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| if (tret == GS_ERROR) |
| ret = GS_ERROR; |
| } |
| } |
| break; |
| |
| default: |
| /* So how did we get a CONSTRUCTOR for a scalar type? */ |
| gcc_unreachable (); |
| } |
| |
| if (ret == GS_ERROR) |
| return GS_ERROR; |
| else if (want_value) |
| { |
| append_to_statement_list (*expr_p, pre_p); |
| *expr_p = object; |
| return GS_OK; |
| } |
| else |
| return GS_ALL_DONE; |
| } |
| |
| /* Given a pointer value OP0, return a simplified version of an |
| indirection through OP0, or NULL_TREE if no simplification is |
| possible. This may only be applied to a rhs of an expression. |
| Note that the resulting type may be different from the type pointed |
| to in the sense that it is still compatible from the langhooks |
| point of view. */ |
| |
| static tree |
| fold_indirect_ref_rhs (tree t) |
| { |
| tree type = TREE_TYPE (TREE_TYPE (t)); |
| tree sub = t; |
| tree subtype; |
| |
| STRIP_USELESS_TYPE_CONVERSION (sub); |
| subtype = TREE_TYPE (sub); |
| if (!POINTER_TYPE_P (subtype)) |
| return NULL_TREE; |
| |
| if (TREE_CODE (sub) == ADDR_EXPR) |
| { |
| tree op = TREE_OPERAND (sub, 0); |
| tree optype = TREE_TYPE (op); |
| /* *&p => p */ |
| if (lang_hooks.types_compatible_p (type, optype)) |
| return op; |
| /* *(foo *)&fooarray => fooarray[0] */ |
| else if (TREE_CODE (optype) == ARRAY_TYPE |
| && lang_hooks.types_compatible_p (type, TREE_TYPE (optype))) |
| { |
| tree type_domain = TYPE_DOMAIN (optype); |
| tree min_val = size_zero_node; |
| if (type_domain && TYPE_MIN_VALUE (type_domain)) |
| min_val = TYPE_MIN_VALUE (type_domain); |
| return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE); |
| } |
| } |
| |
| /* *(foo *)fooarrptr => (*fooarrptr)[0] */ |
| if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE |
| && lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype)))) |
| { |
| tree type_domain; |
| tree min_val = size_zero_node; |
| tree osub = sub; |
| sub = fold_indirect_ref_rhs (sub); |
| if (! sub) |
| sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub); |
| type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); |
| if (type_domain && TYPE_MIN_VALUE (type_domain)) |
| min_val = TYPE_MIN_VALUE (type_domain); |
| return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Subroutine of gimplify_modify_expr to do simplifications of MODIFY_EXPRs |
| based on the code of the RHS. We loop for as long as something changes. */ |
| |
| static enum gimplify_status |
| gimplify_modify_expr_rhs (tree *expr_p, tree *from_p, tree *to_p, tree *pre_p, |
| tree *post_p, bool want_value) |
| { |
| enum gimplify_status ret = GS_OK; |
| |
| while (ret != GS_UNHANDLED) |
| switch (TREE_CODE (*from_p)) |
| { |
| case INDIRECT_REF: |
| { |
| /* If we have code like |
| |
| *(const A*)(A*)&x |
| |
| where the type of "x" is a (possibly cv-qualified variant |
| of "A"), treat the entire expression as identical to "x". |
| This kind of code arises in C++ when an object is bound |
| to a const reference, and if "x" is a TARGET_EXPR we want |
| to take advantage of the optimization below. */ |
| tree t = fold_indirect_ref_rhs (TREE_OPERAND (*from_p, 0)); |
| if (t) |
| { |
| *from_p = t; |
| ret = GS_OK; |
| } |
| else |
| ret = GS_UNHANDLED; |
| break; |
| } |
| |
| case TARGET_EXPR: |
| { |
| /* If we are initializing something from a TARGET_EXPR, strip the |
| TARGET_EXPR and initialize it directly, if possible. This can't |
| be done if the initializer is void, since that implies that the |
| temporary is set in some non-trivial way. |
| |
| ??? What about code that pulls out the temp and uses it |
| elsewhere? I think that such code never uses the TARGET_EXPR as |
| an initializer. If I'm wrong, we'll die because the temp won't |
| have any RTL. In that case, I guess we'll need to replace |
| references somehow. */ |
| tree init = TARGET_EXPR_INITIAL (*from_p); |
| |
| if (!VOID_TYPE_P (TREE_TYPE (init))) |
| { |
| *from_p = init; |
| ret = GS_OK; |
| } |
| else |
| ret = GS_UNHANDLED; |
| } |
| break; |
| |
| case COMPOUND_EXPR: |
| /* Remove any COMPOUND_EXPR in the RHS so the following cases will be |
| caught. */ |
| gimplify_compound_expr (from_p, pre_p, true); |
| ret = GS_OK; |
| break; |
| |
| case CONSTRUCTOR: |
| /* If we're initializing from a CONSTRUCTOR, break this into |
| individual MODIFY_EXPRs. */ |
| return gimplify_init_constructor (expr_p, pre_p, post_p, want_value); |
| |
| case COND_EXPR: |
| /* If we're assigning to a non-register type, push the assignment |
| down into the branches. This is mandatory for ADDRESSABLE types, |
| since we cannot generate temporaries for such, but it saves a |
| copy in other cases as well. */ |
| if (!is_gimple_reg_type (TREE_TYPE (*from_p))) |
| { |
| /* This code should mirror the code in gimplify_cond_expr. */ |
| enum tree_code code = TREE_CODE (*expr_p); |
| tree cond = *from_p; |
| tree result = *to_p; |
| |
| ret = gimplify_expr (&result, pre_p, post_p, |
| is_gimple_min_lval, fb_lvalue); |
| if (ret != GS_ERROR) |
| ret = GS_OK; |
| |
| if (TREE_TYPE (TREE_OPERAND (cond, 1)) != void_type_node) |
| TREE_OPERAND (cond, 1) |
| = build2 (code, void_type_node, result, |
| TREE_OPERAND (cond, 1)); |
| if (TREE_TYPE (TREE_OPERAND (cond, 2)) != void_type_node) |
| TREE_OPERAND (cond, 2) |
| = build2 (code, void_type_node, unshare_expr (result), |
| TREE_OPERAND (cond, 2)); |
| |
| TREE_TYPE (cond) = void_type_node; |
| recalculate_side_effects (cond); |
| |
| if (want_value) |
| { |
| gimplify_and_add (cond, pre_p); |
| *expr_p = unshare_expr (result); |
| } |
| else |
| *expr_p = cond; |
| return ret; |
| } |
| else |
| ret = GS_UNHANDLED; |
| break; |
| |
| case CALL_EXPR: |
| /* For calls that return in memory, give *to_p as the CALL_EXPR's |
| return slot so that we don't generate a temporary. */ |
| if (!CALL_EXPR_RETURN_SLOT_OPT (*from_p) |
| && aggregate_value_p (*from_p, *from_p)) |
| { |
| bool use_target; |
| |
| if (!(rhs_predicate_for (*to_p))(*from_p)) |
| /* If we need a temporary, *to_p isn't accurate. */ |
| use_target = false; |
| else if (TREE_CODE (*to_p) == RESULT_DECL |
| && DECL_NAME (*to_p) == NULL_TREE |
| && needs_to_live_in_memory (*to_p)) |
| /* It's OK to use the return slot directly unless it's an NRV. */ |
| use_target = true; |
| else if (is_gimple_reg_type (TREE_TYPE (*to_p)) |
| || (DECL_P (*to_p) && DECL_REGISTER (*to_p))) |
| /* Don't force regs into memory. */ |
| use_target = false; |
| else if (TREE_CODE (*to_p) == VAR_DECL |
| && DECL_GIMPLE_FORMAL_TEMP_P (*to_p)) |
| /* Don't use the original target if it's a formal temp; we |
| don't want to take their addresses. */ |
| use_target = false; |
| else if (TREE_CODE (*expr_p) == INIT_EXPR) |
| /* It's OK to use the target directly if it's being |
| initialized. */ |
| use_target = true; |
| else if (!is_gimple_non_addressable (*to_p)) |
| /* Don't use the original target if it's already addressable; |
| if its address escapes, and the called function uses the |
| NRV optimization, a conforming program could see *to_p |
| change before the called function returns; see c++/19317. |
| When optimizing, the return_slot pass marks more functions |
| as safe after we have escape info. */ |
| use_target = false; |
| else |
| use_target = true; |
| |
| if (use_target) |
| { |
| CALL_EXPR_RETURN_SLOT_OPT (*from_p) = 1; |
| lang_hooks.mark_addressable (*to_p); |
| } |
| } |
| |
| ret = GS_UNHANDLED; |
| break; |
| |
| /* If we're initializing from a container, push the initialization |
| inside it. */ |
| case CLEANUP_POINT_EXPR: |
| case BIND_EXPR: |
| case STATEMENT_LIST: |
| { |
| tree wrap = *from_p; |
| tree t; |
| |
| ret = gimplify_expr (to_p, pre_p, post_p, |
| is_gimple_min_lval, fb_lvalue); |
| if (ret != GS_ERROR) |
| ret = GS_OK; |
| |
| t = voidify_wrapper_expr (wrap, *expr_p); |
| gcc_assert (t == *expr_p); |
| |
| if (want_value) |
| { |
| gimplify_and_add (wrap, pre_p); |
| *expr_p = unshare_expr (*to_p); |
| } |
| else |
| *expr_p = wrap; |
| return GS_OK; |
| } |
| |
| default: |
| ret = GS_UNHANDLED; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* Promote partial stores to COMPLEX variables to total stores. *EXPR_P is |
| a MODIFY_EXPR with a lhs of a REAL/IMAGPART_EXPR of a variable with |
| DECL_COMPLEX_GIMPLE_REG_P set. */ |
| |
| static enum gimplify_status |
| gimplify_modify_expr_complex_part (tree *expr_p, tree *pre_p, bool want_value) |
| { |
| enum tree_code code, ocode; |
| tree lhs, rhs, new_rhs, other, realpart, imagpart; |
| |
| lhs = TREE_OPERAND (*expr_p, 0); |
| rhs = TREE_OPERAND (*expr_p, 1); |
| code = TREE_CODE (lhs); |
| lhs = TREE_OPERAND (lhs, 0); |
| |
| ocode = code == REALPART_EXPR ? IMAGPART_EXPR : REALPART_EXPR; |
| other = build1 (ocode, TREE_TYPE (rhs), lhs); |
| other = get_formal_tmp_var (other, pre_p); |
| |
| realpart = code == REALPART_EXPR ? rhs : other; |
| imagpart = code == REALPART_EXPR ? other : rhs; |
| |
| if (TREE_CONSTANT (realpart) && TREE_CONSTANT (imagpart)) |
| new_rhs = build_complex (TREE_TYPE (lhs), realpart, imagpart); |
| else |
| new_rhs = build2 (COMPLEX_EXPR, TREE_TYPE (lhs), realpart, imagpart); |
| |
| TREE_OPERAND (*expr_p, 0) = lhs; |
| TREE_OPERAND (*expr_p, 1) = new_rhs; |
| |
| if (want_value) |
| { |
| append_to_statement_list (*expr_p, pre_p); |
| *expr_p = rhs; |
| } |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify the MODIFY_EXPR node pointed to by EXPR_P. |
| |
| modify_expr |
| : varname '=' rhs |
| | '*' ID '=' rhs |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. |
| |
| POST_P points to the list where side effects that must happen after |
| *EXPR_P should be stored. |
| |
| WANT_VALUE is nonzero iff we want to use the value of this expression |
| in another expression. */ |
| |
| static enum gimplify_status |
| gimplify_modify_expr (tree *expr_p, tree *pre_p, tree *post_p, bool want_value) |
| { |
| tree *from_p = &TREE_OPERAND (*expr_p, 1); |
| tree *to_p = &TREE_OPERAND (*expr_p, 0); |
| enum gimplify_status ret = GS_UNHANDLED; |
| |
| gcc_assert (TREE_CODE (*expr_p) == MODIFY_EXPR |
| || TREE_CODE (*expr_p) == INIT_EXPR); |
| |
| /* See if any simplifications can be done based on what the RHS is. */ |
| ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p, |
| want_value); |
| if (ret != GS_UNHANDLED) |
| return ret; |
| |
| /* For zero sized types only gimplify the left hand side and right hand |
| side as statements and throw away the assignment. Do this after |
| gimplify_modify_expr_rhs so we handle TARGET_EXPRs of addressable |
| types properly. */ |
| if (zero_sized_type (TREE_TYPE (*from_p))) |
| { |
| gimplify_stmt (from_p); |
| gimplify_stmt (to_p); |
| append_to_statement_list (*from_p, pre_p); |
| append_to_statement_list (*to_p, pre_p); |
| *expr_p = NULL_TREE; |
| return GS_ALL_DONE; |
| } |
| |
| /* If the value being copied is of variable width, compute the length |
| of the copy into a WITH_SIZE_EXPR. Note that we need to do this |
| before gimplifying any of the operands so that we can resolve any |
| PLACEHOLDER_EXPRs in the size. Also note that the RTL expander uses |
| the size of the expression to be copied, not of the destination, so |
| that is what we must here. */ |
| maybe_with_size_expr (from_p); |
| |
| ret = gimplify_expr (to_p, pre_p, post_p, is_gimple_lvalue, fb_lvalue); |
| if (ret == GS_ERROR) |
| return ret; |
| |
| ret = gimplify_expr (from_p, pre_p, post_p, |
| rhs_predicate_for (*to_p), fb_rvalue); |
| if (ret == GS_ERROR) |
| return ret; |
| |
| /* Now see if the above changed *from_p to something we handle specially. */ |
| ret = gimplify_modify_expr_rhs (expr_p, from_p, to_p, pre_p, post_p, |
| want_value); |
| if (ret != GS_UNHANDLED) |
| return ret; |
| |
| /* If we've got a variable sized assignment between two lvalues (i.e. does |
| not involve a call), then we can make things a bit more straightforward |
| by converting the assignment to memcpy or memset. */ |
| if (TREE_CODE (*from_p) == WITH_SIZE_EXPR) |
| { |
| tree from = TREE_OPERAND (*from_p, 0); |
| tree size = TREE_OPERAND (*from_p, 1); |
| |
| if (TREE_CODE (from) == CONSTRUCTOR) |
| return gimplify_modify_expr_to_memset (expr_p, size, want_value); |
| if (is_gimple_addressable (from)) |
| { |
| *from_p = from; |
| return gimplify_modify_expr_to_memcpy (expr_p, size, want_value); |
| } |
| } |
| |
| /* Transform partial stores to non-addressable complex variables into |
| total stores. This allows us to use real instead of virtual operands |
| for these variables, which improves optimization. */ |
| if ((TREE_CODE (*to_p) == REALPART_EXPR |
| || TREE_CODE (*to_p) == IMAGPART_EXPR) |
| && is_gimple_reg (TREE_OPERAND (*to_p, 0))) |
| return gimplify_modify_expr_complex_part (expr_p, pre_p, want_value); |
| |
| if (gimplify_ctxp->into_ssa && is_gimple_reg (*to_p)) |
| { |
| /* If we've somehow already got an SSA_NAME on the LHS, then |
| we're probably modified it twice. Not good. */ |
| gcc_assert (TREE_CODE (*to_p) != SSA_NAME); |
| *to_p = make_ssa_name (*to_p, *expr_p); |
| } |
| |
| if (want_value) |
| { |
| append_to_statement_list (*expr_p, pre_p); |
| *expr_p = *to_p; |
| return GS_OK; |
| } |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify a comparison between two variable-sized objects. Do this |
| with a call to BUILT_IN_MEMCMP. */ |
| |
| static enum gimplify_status |
| gimplify_variable_sized_compare (tree *expr_p) |
| { |
| tree op0 = TREE_OPERAND (*expr_p, 0); |
| tree op1 = TREE_OPERAND (*expr_p, 1); |
| tree args, t, dest; |
| |
| t = TYPE_SIZE_UNIT (TREE_TYPE (op0)); |
| t = unshare_expr (t); |
| t = SUBSTITUTE_PLACEHOLDER_IN_EXPR (t, op0); |
| args = tree_cons (NULL, t, NULL); |
| t = build_fold_addr_expr (op1); |
| args = tree_cons (NULL, t, args); |
| dest = build_fold_addr_expr (op0); |
| args = tree_cons (NULL, dest, args); |
| t = implicit_built_in_decls[BUILT_IN_MEMCMP]; |
| t = build_function_call_expr (t, args); |
| *expr_p |
| = build2 (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), t, integer_zero_node); |
| |
| return GS_OK; |
| } |
| |
| /* Gimplify a comparison between two aggregate objects of integral scalar |
| mode as a comparison between the bitwise equivalent scalar values. */ |
| |
| static enum gimplify_status |
| gimplify_scalar_mode_aggregate_compare (tree *expr_p) |
| { |
| tree op0 = TREE_OPERAND (*expr_p, 0); |
| tree op1 = TREE_OPERAND (*expr_p, 1); |
| |
| tree type = TREE_TYPE (op0); |
| tree scalar_type = lang_hooks.types.type_for_mode (TYPE_MODE (type), 1); |
| |
| op0 = fold_build1 (VIEW_CONVERT_EXPR, scalar_type, op0); |
| op1 = fold_build1 (VIEW_CONVERT_EXPR, scalar_type, op1); |
| |
| *expr_p |
| = fold_build2 (TREE_CODE (*expr_p), TREE_TYPE (*expr_p), op0, op1); |
| |
| return GS_OK; |
| } |
| |
| /* Gimplify TRUTH_ANDIF_EXPR and TRUTH_ORIF_EXPR expressions. EXPR_P |
| points to the expression to gimplify. |
| |
| Expressions of the form 'a && b' are gimplified to: |
| |
| a && b ? true : false |
| |
| gimplify_cond_expr will do the rest. |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. */ |
| |
| static enum gimplify_status |
| gimplify_boolean_expr (tree *expr_p) |
| { |
| /* Preserve the original type of the expression. */ |
| tree type = TREE_TYPE (*expr_p); |
| |
| *expr_p = build3 (COND_EXPR, type, *expr_p, |
| fold_convert (type, boolean_true_node), |
| fold_convert (type, boolean_false_node)); |
| |
| return GS_OK; |
| } |
| |
| /* Gimplifies an expression sequence. This function gimplifies each |
| expression and re-writes the original expression with the last |
| expression of the sequence in GIMPLE form. |
| |
| PRE_P points to the list where the side effects for all the |
| expressions in the sequence will be emitted. |
| |
| WANT_VALUE is true when the result of the last COMPOUND_EXPR is used. */ |
| /* ??? Should rearrange to share the pre-queue with all the indirect |
| invocations of gimplify_expr. Would probably save on creations |
| of statement_list nodes. */ |
| |
| static enum gimplify_status |
| gimplify_compound_expr (tree *expr_p, tree *pre_p, bool want_value) |
| { |
| tree t = *expr_p; |
| |
| do |
| { |
| tree *sub_p = &TREE_OPERAND (t, 0); |
| |
| if (TREE_CODE (*sub_p) == COMPOUND_EXPR) |
| gimplify_compound_expr (sub_p, pre_p, false); |
| else |
| gimplify_stmt (sub_p); |
| append_to_statement_list (*sub_p, pre_p); |
| |
| t = TREE_OPERAND (t, 1); |
| } |
| while (TREE_CODE (t) == COMPOUND_EXPR); |
| |
| *expr_p = t; |
| if (want_value) |
| return GS_OK; |
| else |
| { |
| gimplify_stmt (expr_p); |
| return GS_ALL_DONE; |
| } |
| } |
| |
| /* Gimplifies a statement list. These may be created either by an |
| enlightened front-end, or by shortcut_cond_expr. */ |
| |
| static enum gimplify_status |
| gimplify_statement_list (tree *expr_p, tree *pre_p) |
| { |
| tree temp = voidify_wrapper_expr (*expr_p, NULL); |
| |
| tree_stmt_iterator i = tsi_start (*expr_p); |
| |
| while (!tsi_end_p (i)) |
| { |
| tree t; |
| |
| gimplify_stmt (tsi_stmt_ptr (i)); |
| |
| t = tsi_stmt (i); |
| if (t == NULL) |
| tsi_delink (&i); |
| else if (TREE_CODE (t) == STATEMENT_LIST) |
| { |
| tsi_link_before (&i, t, TSI_SAME_STMT); |
| tsi_delink (&i); |
| } |
| else |
| tsi_next (&i); |
| } |
| |
| if (temp) |
| { |
| append_to_statement_list (*expr_p, pre_p); |
| *expr_p = temp; |
| return GS_OK; |
| } |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify a SAVE_EXPR node. EXPR_P points to the expression to |
| gimplify. After gimplification, EXPR_P will point to a new temporary |
| that holds the original value of the SAVE_EXPR node. |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. */ |
| |
| static enum gimplify_status |
| gimplify_save_expr (tree *expr_p, tree *pre_p, tree *post_p) |
| { |
| enum gimplify_status ret = GS_ALL_DONE; |
| tree val; |
| |
| gcc_assert (TREE_CODE (*expr_p) == SAVE_EXPR); |
| val = TREE_OPERAND (*expr_p, 0); |
| |
| /* If the SAVE_EXPR has not been resolved, then evaluate it once. */ |
| if (!SAVE_EXPR_RESOLVED_P (*expr_p)) |
| { |
| /* The operand may be a void-valued expression such as SAVE_EXPRs |
| generated by the Java frontend for class initialization. It is |
| being executed only for its side-effects. */ |
| if (TREE_TYPE (val) == void_type_node) |
| { |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| is_gimple_stmt, fb_none); |
| append_to_statement_list (TREE_OPERAND (*expr_p, 0), pre_p); |
| val = NULL; |
| } |
| else |
| val = get_initialized_tmp_var (val, pre_p, post_p); |
| |
| TREE_OPERAND (*expr_p, 0) = val; |
| SAVE_EXPR_RESOLVED_P (*expr_p) = 1; |
| } |
| |
| *expr_p = val; |
| |
| return ret; |
| } |
| |
| /* Re-write the ADDR_EXPR node pointed to by EXPR_P |
| |
| unary_expr |
| : ... |
| | '&' varname |
| ... |
| |
| PRE_P points to the list where side effects that must happen before |
| *EXPR_P should be stored. |
| |
| POST_P points to the list where side effects that must happen after |
| *EXPR_P should be stored. */ |
| |
| static enum gimplify_status |
| gimplify_addr_expr (tree *expr_p, tree *pre_p, tree *post_p) |
| { |
| tree expr = *expr_p; |
| tree op0 = TREE_OPERAND (expr, 0); |
| enum gimplify_status ret; |
| |
| switch (TREE_CODE (op0)) |
| { |
| case INDIRECT_REF: |
| case MISALIGNED_INDIRECT_REF: |
| do_indirect_ref: |
| /* Check if we are dealing with an expression of the form '&*ptr'. |
| While the front end folds away '&*ptr' into 'ptr', these |
| expressions may be generated internally by the compiler (e.g., |
| builtins like __builtin_va_end). */ |
| /* Caution: the silent array decomposition semantics we allow for |
| ADDR_EXPR means we can't always discard the pair. */ |
| /* Gimplification of the ADDR_EXPR operand may drop |
| cv-qualification conversions, so make sure we add them if |
| needed. */ |
| { |
| tree op00 = TREE_OPERAND (op0, 0); |
| tree t_expr = TREE_TYPE (expr); |
| tree t_op00 = TREE_TYPE (op00); |
| |
| if (!lang_hooks.types_compatible_p (t_expr, t_op00)) |
| { |
| #ifdef ENABLE_CHECKING |
| tree t_op0 = TREE_TYPE (op0); |
| gcc_assert (POINTER_TYPE_P (t_expr) |
| && cpt_same_type (TREE_CODE (t_op0) == ARRAY_TYPE |
| ? TREE_TYPE (t_op0) : t_op0, |
| TREE_TYPE (t_expr)) |
| && POINTER_TYPE_P (t_op00) |
| && cpt_same_type (t_op0, TREE_TYPE (t_op00))); |
| #endif |
| op00 = fold_convert (TREE_TYPE (expr), op00); |
| } |
| *expr_p = op00; |
| ret = GS_OK; |
| } |
| break; |
| |
| case VIEW_CONVERT_EXPR: |
| /* Take the address of our operand and then convert it to the type of |
| this ADDR_EXPR. |
| |
| ??? The interactions of VIEW_CONVERT_EXPR and aliasing is not at |
| all clear. The impact of this transformation is even less clear. */ |
| |
| /* If the operand is a useless conversion, look through it. Doing so |
| guarantees that the ADDR_EXPR and its operand will remain of the |
| same type. */ |
| if (tree_ssa_useless_type_conversion (TREE_OPERAND (op0, 0))) |
| op0 = TREE_OPERAND (op0, 0); |
| |
| *expr_p = fold_convert (TREE_TYPE (expr), |
| build_fold_addr_expr (TREE_OPERAND (op0, 0))); |
| ret = GS_OK; |
| break; |
| |
| default: |
| /* We use fb_either here because the C frontend sometimes takes |
| the address of a call that returns a struct; see |
| gcc.dg/c99-array-lval-1.c. The gimplifier will correctly make |
| the implied temporary explicit. */ |
| ret = gimplify_expr (&TREE_OPERAND (expr, 0), pre_p, post_p, |
| is_gimple_addressable, fb_either); |
| if (ret != GS_ERROR) |
| { |
| op0 = TREE_OPERAND (expr, 0); |
| |
| /* For various reasons, the gimplification of the expression |
| may have made a new INDIRECT_REF. */ |
| if (TREE_CODE (op0) == INDIRECT_REF) |
| goto do_indirect_ref; |
| |
| /* Make sure TREE_INVARIANT, TREE_CONSTANT, and TREE_SIDE_EFFECTS |
| is set properly. */ |
| recompute_tree_invariant_for_addr_expr (expr); |
| |
| /* Mark the RHS addressable. */ |
| lang_hooks.mark_addressable (TREE_OPERAND (expr, 0)); |
| } |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* Gimplify the operands of an ASM_EXPR. Input operands should be a gimple |
| value; output operands should be a gimple lvalue. */ |
| |
| static enum gimplify_status |
| gimplify_asm_expr (tree *expr_p, tree *pre_p, tree *post_p) |
| { |
| tree expr = *expr_p; |
| int noutputs = list_length (ASM_OUTPUTS (expr)); |
| const char **oconstraints |
| = (const char **) alloca ((noutputs) * sizeof (const char *)); |
| int i; |
| tree link; |
| const char *constraint; |
| bool allows_mem, allows_reg, is_inout; |
| enum gimplify_status ret, tret; |
| |
| ret = GS_ALL_DONE; |
| for (i = 0, link = ASM_OUTPUTS (expr); link; ++i, link = TREE_CHAIN (link)) |
| { |
| size_t constraint_len; |
| oconstraints[i] = constraint |
| = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); |
| constraint_len = strlen (constraint); |
| if (constraint_len == 0) |
| continue; |
| |
| parse_output_constraint (&constraint, i, 0, 0, |
| &allows_mem, &allows_reg, &is_inout); |
| |
| if (!allows_reg && allows_mem) |
| lang_hooks.mark_addressable (TREE_VALUE (link)); |
| |
| tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p, |
| is_inout ? is_gimple_min_lval : is_gimple_lvalue, |
| fb_lvalue | fb_mayfail); |
| if (tret == GS_ERROR) |
| { |
| error ("invalid lvalue in asm output %d", i); |
| ret = tret; |
| } |
| |
| if (is_inout) |
| { |
| /* An input/output operand. To give the optimizers more |
| flexibility, split it into separate input and output |
| operands. */ |
| tree input; |
| char buf[10]; |
| |
| /* Turn the in/out constraint into an output constraint. */ |
| char *p = xstrdup (constraint); |
| p[0] = '='; |
| TREE_VALUE (TREE_PURPOSE (link)) = build_string (constraint_len, p); |
| |
| /* And add a matching input constraint. */ |
| if (allows_reg) |
| { |
| sprintf (buf, "%d", i); |
| |
| /* If there are multiple alternatives in the constraint, |
| handle each of them individually. Those that allow register |
| will be replaced with operand number, the others will stay |
| unchanged. */ |
| if (strchr (p, ',') != NULL) |
| { |
| size_t len = 0, buflen = strlen (buf); |
| char *beg, *end, *str, *dst; |
| |
| for (beg = p + 1;;) |
| { |
| end = strchr (beg, ','); |
| if (end == NULL) |
| end = strchr (beg, '\0'); |
| if ((size_t) (end - beg) < buflen) |
| len += buflen + 1; |
| else |
| len += end - beg + 1; |
| if (*end) |
| beg = end + 1; |
| else |
| break; |
| } |
| |
| str = (char *) alloca (len); |
| for (beg = p + 1, dst = str;;) |
| { |
| const char *tem; |
| bool mem_p, reg_p, inout_p; |
| |
| end = strchr (beg, ','); |
| if (end) |
| *end = '\0'; |
| beg[-1] = '='; |
| tem = beg - 1; |
| parse_output_constraint (&tem, i, 0, 0, |
| &mem_p, ®_p, &inout_p); |
| if (dst != str) |
| *dst++ = ','; |
| if (reg_p) |
| { |
| memcpy (dst, buf, buflen); |
| dst += buflen; |
| } |
| else |
| { |
| if (end) |
| len = end - beg; |
| else |
| len = strlen (beg); |
| memcpy (dst, beg, len); |
| dst += len; |
| } |
| if (end) |
| beg = end + 1; |
| else |
| break; |
| } |
| *dst = '\0'; |
| input = build_string (dst - str, str); |
| } |
| else |
| input = build_string (strlen (buf), buf); |
| } |
| else |
| input = build_string (constraint_len - 1, constraint + 1); |
| |
| free (p); |
| |
| input = build_tree_list (build_tree_list (NULL_TREE, input), |
| unshare_expr (TREE_VALUE (link))); |
| ASM_INPUTS (expr) = chainon (ASM_INPUTS (expr), input); |
| } |
| } |
| |
| for (link = ASM_INPUTS (expr); link; ++i, link = TREE_CHAIN (link)) |
| { |
| constraint |
| = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); |
| parse_input_constraint (&constraint, 0, 0, noutputs, 0, |
| oconstraints, &allows_mem, &allows_reg); |
| |
| /* If we can't make copies, we can only accept memory. */ |
| if (TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (link)))) |
| { |
| if (allows_mem) |
| allows_reg = 0; |
| else |
| { |
| error ("impossible constraint in %<asm%>"); |
| error ("non-memory input %d must stay in memory", i); |
| return GS_ERROR; |
| } |
| } |
| |
| /* If the operand is a memory input, it should be an lvalue. */ |
| if (!allows_reg && allows_mem) |
| { |
| tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p, |
| is_gimple_lvalue, fb_lvalue | fb_mayfail); |
| lang_hooks.mark_addressable (TREE_VALUE (link)); |
| if (tret == GS_ERROR) |
| { |
| error ("memory input %d is not directly addressable", i); |
| ret = tret; |
| } |
| } |
| else |
| { |
| tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p, |
| is_gimple_asm_val, fb_rvalue); |
| if (tret == GS_ERROR) |
| ret = tret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* Gimplify a CLEANUP_POINT_EXPR. Currently this works by adding |
| WITH_CLEANUP_EXPRs to the prequeue as we encounter cleanups while |
| gimplifying the body, and converting them to TRY_FINALLY_EXPRs when we |
| return to this function. |
| |
| FIXME should we complexify the prequeue handling instead? Or use flags |
| for all the cleanups and let the optimizer tighten them up? The current |
| code seems pretty fragile; it will break on a cleanup within any |
| non-conditional nesting. But any such nesting would be broken, anyway; |
| we can't write a TRY_FINALLY_EXPR that starts inside a nesting construct |
| and continues out of it. We can do that at the RTL level, though, so |
| having an optimizer to tighten up try/finally regions would be a Good |
| Thing. */ |
| |
| static enum gimplify_status |
| gimplify_cleanup_point_expr (tree *expr_p, tree *pre_p) |
| { |
| tree_stmt_iterator iter; |
| tree body; |
| |
| tree temp = voidify_wrapper_expr (*expr_p, NULL); |
| |
| /* We only care about the number of conditions between the innermost |
| CLEANUP_POINT_EXPR and the cleanup. So save and reset the count and |
| any cleanups collected outside the CLEANUP_POINT_EXPR. */ |
| int old_conds = gimplify_ctxp->conditions; |
| tree old_cleanups = gimplify_ctxp->conditional_cleanups; |
| gimplify_ctxp->conditions = 0; |
| gimplify_ctxp->conditional_cleanups = NULL_TREE; |
| |
| body = TREE_OPERAND (*expr_p, 0); |
| gimplify_to_stmt_list (&body); |
| |
| gimplify_ctxp->conditions = old_conds; |
| gimplify_ctxp->conditional_cleanups = old_cleanups; |
| |
| for (iter = tsi_start (body); !tsi_end_p (iter); ) |
| { |
| tree *wce_p = tsi_stmt_ptr (iter); |
| tree wce = *wce_p; |
| |
| if (TREE_CODE (wce) == WITH_CLEANUP_EXPR) |
| { |
| if (tsi_one_before_end_p (iter)) |
| { |
| tsi_link_before (&iter, TREE_OPERAND (wce, 0), TSI_SAME_STMT); |
| tsi_delink (&iter); |
| break; |
| } |
| else |
| { |
| tree sl, tfe; |
| enum tree_code code; |
| |
| if (CLEANUP_EH_ONLY (wce)) |
| code = TRY_CATCH_EXPR; |
| else |
| code = TRY_FINALLY_EXPR; |
| |
| sl = tsi_split_statement_list_after (&iter); |
| tfe = build2 (code, void_type_node, sl, NULL_TREE); |
| append_to_statement_list (TREE_OPERAND (wce, 0), |
| &TREE_OPERAND (tfe, 1)); |
| *wce_p = tfe; |
| iter = tsi_start (sl); |
| } |
| } |
| else |
| tsi_next (&iter); |
| } |
| |
| if (temp) |
| { |
| *expr_p = temp; |
| append_to_statement_list (body, pre_p); |
| return GS_OK; |
| } |
| else |
| { |
| *expr_p = body; |
| return GS_ALL_DONE; |
| } |
| } |
| |
| /* Insert a cleanup marker for gimplify_cleanup_point_expr. CLEANUP |
| is the cleanup action required. */ |
| |
| static void |
| gimple_push_cleanup (tree var, tree cleanup, bool eh_only, tree *pre_p) |
| { |
| tree wce; |
| |
| /* Errors can result in improperly nested cleanups. Which results in |
| confusion when trying to resolve the WITH_CLEANUP_EXPR. */ |
| if (errorcount || sorrycount) |
| return; |
| |
| if (gimple_conditional_context ()) |
| { |
| /* If we're in a conditional context, this is more complex. We only |
| want to run the cleanup if we actually ran the initialization that |
| necessitates it, but we want to run it after the end of the |
| conditional context. So we wrap the try/finally around the |
| condition and use a flag to determine whether or not to actually |
| run the destructor. Thus |
| |
| test ? f(A()) : 0 |
| |
| becomes (approximately) |
| |
| flag = 0; |
| try { |
| if (test) { A::A(temp); flag = 1; val = f(temp); } |
| else { val = 0; } |
| } finally { |
| if (flag) A::~A(temp); |
| } |
| val |
| */ |
| |
| tree flag = create_tmp_var (boolean_type_node, "cleanup"); |
| tree ffalse = build2 (MODIFY_EXPR, void_type_node, flag, |
| boolean_false_node); |
| tree ftrue = build2 (MODIFY_EXPR, void_type_node, flag, |
| boolean_true_node); |
| cleanup = build3 (COND_EXPR, void_type_node, flag, cleanup, NULL); |
| wce = build1 (WITH_CLEANUP_EXPR, void_type_node, cleanup); |
| append_to_statement_list (ffalse, &gimplify_ctxp->conditional_cleanups); |
| append_to_statement_list (wce, &gimplify_ctxp->conditional_cleanups); |
| append_to_statement_list (ftrue, pre_p); |
| |
| /* Because of this manipulation, and the EH edges that jump |
| threading cannot redirect, the temporary (VAR) will appear |
| to be used uninitialized. Don't warn. */ |
| TREE_NO_WARNING (var) = 1; |
| } |
| else |
| { |
| wce = build1 (WITH_CLEANUP_EXPR, void_type_node, cleanup); |
| CLEANUP_EH_ONLY (wce) = eh_only; |
| append_to_statement_list (wce, pre_p); |
| } |
| |
| gimplify_stmt (&TREE_OPERAND (wce, 0)); |
| } |
| |
| /* Gimplify a TARGET_EXPR which doesn't appear on the rhs of an INIT_EXPR. */ |
| |
| static enum gimplify_status |
| gimplify_target_expr (tree *expr_p, tree *pre_p, tree *post_p) |
| { |
| tree targ = *expr_p; |
| tree temp = TARGET_EXPR_SLOT (targ); |
| tree init = TARGET_EXPR_INITIAL (targ); |
| enum gimplify_status ret; |
| |
| if (init) |
| { |
| /* TARGET_EXPR temps aren't part of the enclosing block, so add it |
| to the temps list. */ |
| gimple_add_tmp_var (temp); |
| |
| /* If TARGET_EXPR_INITIAL is void, then the mere evaluation of the |
| expression is supposed to initialize the slot. */ |
| if (VOID_TYPE_P (TREE_TYPE (init))) |
| ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt, fb_none); |
| else |
| { |
| init = build2 (INIT_EXPR, void_type_node, temp, init); |
| ret = gimplify_expr (&init, pre_p, post_p, is_gimple_stmt, |
| fb_none); |
| } |
| if (ret == GS_ERROR) |
| { |
| /* PR c++/28266 Make sure this is expanded only once. */ |
| TARGET_EXPR_INITIAL (targ) = NULL_TREE; |
| return GS_ERROR; |
| } |
| append_to_statement_list (init, pre_p); |
| |
| /* If needed, push the cleanup for the temp. */ |
| if (TARGET_EXPR_CLEANUP (targ)) |
| { |
| gimplify_stmt (&TARGET_EXPR_CLEANUP (targ)); |
| gimple_push_cleanup (temp, TARGET_EXPR_CLEANUP (targ), |
| CLEANUP_EH_ONLY (targ), pre_p); |
| } |
| |
| /* Only expand this once. */ |
| TREE_OPERAND (targ, 3) = init; |
| TARGET_EXPR_INITIAL (targ) = NULL_TREE; |
| } |
| else |
| /* We should have expanded this before. */ |
| gcc_assert (DECL_SEEN_IN_BIND_EXPR_P (temp)); |
| |
| *expr_p = temp; |
| return GS_OK; |
| } |
| |
| /* Gimplification of expression trees. */ |
| |
| /* Gimplify an expression which appears at statement context; usually, this |
| means replacing it with a suitably gimple STATEMENT_LIST. */ |
| |
| void |
| gimplify_stmt (tree *stmt_p) |
| { |
| gimplify_expr (stmt_p, NULL, NULL, is_gimple_stmt, fb_none); |
| } |
| |
| /* Similarly, but force the result to be a STATEMENT_LIST. */ |
| |
| void |
| gimplify_to_stmt_list (tree *stmt_p) |
| { |
| gimplify_stmt (stmt_p); |
| if (!*stmt_p) |
| *stmt_p = alloc_stmt_list (); |
| else if (TREE_CODE (*stmt_p) != STATEMENT_LIST) |
| { |
| tree t = *stmt_p; |
| *stmt_p = alloc_stmt_list (); |
| append_to_statement_list (t, stmt_p); |
| } |
| } |
| |
| |
| /* Add FIRSTPRIVATE entries for DECL in the OpenMP the surrounding parallels |
| to CTX. If entries already exist, force them to be some flavor of private. |
| If there is no enclosing parallel, do nothing. */ |
| |
| void |
| omp_firstprivatize_variable (struct gimplify_omp_ctx *ctx, tree decl) |
| { |
| splay_tree_node n; |
| |
| if (decl == NULL || !DECL_P (decl)) |
| return; |
| |
| do |
| { |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl); |
| if (n != NULL) |
| { |
| if (n->value & GOVD_SHARED) |
| n->value = GOVD_FIRSTPRIVATE | (n->value & GOVD_SEEN); |
| else |
| return; |
| } |
| else if (ctx->is_parallel) |
| omp_add_variable (ctx, decl, GOVD_FIRSTPRIVATE); |
| |
| ctx = ctx->outer_context; |
| } |
| while (ctx); |
| } |
| |
| /* Similarly for each of the type sizes of TYPE. */ |
| |
| static void |
| omp_firstprivatize_type_sizes (struct gimplify_omp_ctx *ctx, tree type) |
| { |
| if (type == NULL || type == error_mark_node) |
| return; |
| type = TYPE_MAIN_VARIANT (type); |
| |
| if (pointer_set_insert (ctx->privatized_types, type)) |
| return; |
| |
| switch (TREE_CODE (type)) |
| { |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| case REAL_TYPE: |
| omp_firstprivatize_variable (ctx, TYPE_MIN_VALUE (type)); |
| omp_firstprivatize_variable (ctx, TYPE_MAX_VALUE (type)); |
| break; |
| |
| case ARRAY_TYPE: |
| omp_firstprivatize_type_sizes (ctx, TREE_TYPE (type)); |
| omp_firstprivatize_type_sizes (ctx, TYPE_DOMAIN (type)); |
| break; |
| |
| case RECORD_TYPE: |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| { |
| tree field; |
| for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) |
| if (TREE_CODE (field) == FIELD_DECL) |
| { |
| omp_firstprivatize_variable (ctx, DECL_FIELD_OFFSET (field)); |
| omp_firstprivatize_type_sizes (ctx, TREE_TYPE (field)); |
| } |
| } |
| break; |
| |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| omp_firstprivatize_type_sizes (ctx, TREE_TYPE (type)); |
| break; |
| |
| default: |
| break; |
| } |
| |
| omp_firstprivatize_variable (ctx, TYPE_SIZE (type)); |
| omp_firstprivatize_variable (ctx, TYPE_SIZE_UNIT (type)); |
| lang_hooks.types.omp_firstprivatize_type_sizes (ctx, type); |
| } |
| |
| /* Add an entry for DECL in the OpenMP context CTX with FLAGS. */ |
| |
| static void |
| omp_add_variable (struct gimplify_omp_ctx *ctx, tree decl, unsigned int flags) |
| { |
| splay_tree_node n; |
| unsigned int nflags; |
| tree t; |
| |
| if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node) |
| return; |
| |
| /* Never elide decls whose type has TREE_ADDRESSABLE set. This means |
| there are constructors involved somewhere. */ |
| if (TREE_ADDRESSABLE (TREE_TYPE (decl)) |
| || TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))) |
| flags |= GOVD_SEEN; |
| |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl); |
| if (n != NULL) |
| { |
| /* We shouldn't be re-adding the decl with the same data |
| sharing class. */ |
| gcc_assert ((n->value & GOVD_DATA_SHARE_CLASS & flags) == 0); |
| /* The only combination of data sharing classes we should see is |
| FIRSTPRIVATE and LASTPRIVATE. */ |
| nflags = n->value | flags; |
| gcc_assert ((nflags & GOVD_DATA_SHARE_CLASS) |
| == (GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE)); |
| n->value = nflags; |
| return; |
| } |
| |
| /* When adding a variable-sized variable, we have to handle all sorts |
| of additional bits of data: the pointer replacement variable, and |
| the parameters of the type. */ |
| if (DECL_SIZE (decl) && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST) |
| { |
| /* Add the pointer replacement variable as PRIVATE if the variable |
| replacement is private, else FIRSTPRIVATE since we'll need the |
| address of the original variable either for SHARED, or for the |
| copy into or out of the context. */ |
| if (!(flags & GOVD_LOCAL)) |
| { |
| nflags = flags & GOVD_PRIVATE ? GOVD_PRIVATE : GOVD_FIRSTPRIVATE; |
| nflags |= flags & GOVD_SEEN; |
| t = DECL_VALUE_EXPR (decl); |
| gcc_assert (TREE_CODE (t) == INDIRECT_REF); |
| t = TREE_OPERAND (t, 0); |
| gcc_assert (DECL_P (t)); |
| omp_add_variable (ctx, t, nflags); |
| } |
| |
| /* Add all of the variable and type parameters (which should have |
| been gimplified to a formal temporary) as FIRSTPRIVATE. */ |
| omp_firstprivatize_variable (ctx, DECL_SIZE_UNIT (decl)); |
| omp_firstprivatize_variable (ctx, DECL_SIZE (decl)); |
| omp_firstprivatize_type_sizes (ctx, TREE_TYPE (decl)); |
| |
| /* The variable-sized variable itself is never SHARED, only some form |
| of PRIVATE. The sharing would take place via the pointer variable |
| which we remapped above. */ |
| if (flags & GOVD_SHARED) |
| flags = GOVD_PRIVATE | GOVD_DEBUG_PRIVATE |
| | (flags & (GOVD_SEEN | GOVD_EXPLICIT)); |
| |
| /* We're going to make use of the TYPE_SIZE_UNIT at least in the |
| alloca statement we generate for the variable, so make sure it |
| is available. This isn't automatically needed for the SHARED |
| case, since we won't be allocating local storage then. |
| For local variables TYPE_SIZE_UNIT might not be gimplified yet, |
| in this case omp_notice_variable will be called later |
| on when it is gimplified. */ |
| else if (! (flags & GOVD_LOCAL)) |
| omp_notice_variable (ctx, TYPE_SIZE_UNIT (TREE_TYPE (decl)), true); |
| } |
| else if (lang_hooks.decls.omp_privatize_by_reference (decl)) |
| { |
| gcc_assert ((flags & GOVD_LOCAL) == 0); |
| omp_firstprivatize_type_sizes (ctx, TREE_TYPE (decl)); |
| |
| /* Similar to the direct variable sized case above, we'll need the |
| size of references being privatized. */ |
| if ((flags & GOVD_SHARED) == 0) |
| { |
| t = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (decl))); |
| if (TREE_CODE (t) != INTEGER_CST) |
| omp_notice_variable (ctx, t, true); |
| } |
| } |
| |
| splay_tree_insert (ctx->variables, (splay_tree_key)decl, flags); |
| } |
| |
| /* Record the fact that DECL was used within the OpenMP context CTX. |
| IN_CODE is true when real code uses DECL, and false when we should |
| merely emit default(none) errors. Return true if DECL is going to |
| be remapped and thus DECL shouldn't be gimplified into its |
| DECL_VALUE_EXPR (if any). */ |
| |
| static bool |
| omp_notice_variable (struct gimplify_omp_ctx *ctx, tree decl, bool in_code) |
| { |
| splay_tree_node n; |
| unsigned flags = in_code ? GOVD_SEEN : 0; |
| bool ret = false, shared; |
| |
| if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node) |
| return false; |
| |
| /* Threadprivate variables are predetermined. */ |
| if (is_global_var (decl)) |
| { |
| if (DECL_THREAD_LOCAL_P (decl)) |
| return false; |
| |
| if (DECL_HAS_VALUE_EXPR_P (decl)) |
| { |
| tree value = get_base_address (DECL_VALUE_EXPR (decl)); |
| |
| if (value && DECL_P (value) && DECL_THREAD_LOCAL_P (value)) |
| return false; |
| } |
| } |
| |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl); |
| if (n == NULL) |
| { |
| enum omp_clause_default_kind default_kind, kind; |
| |
| if (!ctx->is_parallel) |
| goto do_outer; |
| |
| /* ??? Some compiler-generated variables (like SAVE_EXPRs) could be |
| remapped firstprivate instead of shared. To some extent this is |
| addressed in omp_firstprivatize_type_sizes, but not effectively. */ |
| default_kind = ctx->default_kind; |
| kind = lang_hooks.decls.omp_predetermined_sharing (decl); |
| if (kind != OMP_CLAUSE_DEFAULT_UNSPECIFIED) |
| default_kind = kind; |
| |
| switch (default_kind) |
| { |
| case OMP_CLAUSE_DEFAULT_NONE: |
| error ("%qs not specified in enclosing parallel", |
| IDENTIFIER_POINTER (DECL_NAME (decl))); |
| error ("%Henclosing parallel", &ctx->location); |
| /* FALLTHRU */ |
| case OMP_CLAUSE_DEFAULT_SHARED: |
| flags |= GOVD_SHARED; |
| break; |
| case OMP_CLAUSE_DEFAULT_PRIVATE: |
| flags |= GOVD_PRIVATE; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| omp_add_variable (ctx, decl, flags); |
| |
| shared = (flags & GOVD_SHARED) != 0; |
| ret = lang_hooks.decls.omp_disregard_value_expr (decl, shared); |
| goto do_outer; |
| } |
| |
| shared = ((flags | n->value) & GOVD_SHARED) != 0; |
| ret = lang_hooks.decls.omp_disregard_value_expr (decl, shared); |
| |
| /* If nothing changed, there's nothing left to do. */ |
| if ((n->value & flags) == flags) |
| return ret; |
| flags |= n->value; |
| n->value = flags; |
| |
| do_outer: |
| /* If the variable is private in the current context, then we don't |
| need to propagate anything to an outer context. */ |
| if (flags & GOVD_PRIVATE) |
| return ret; |
| if (ctx->outer_context |
| && omp_notice_variable (ctx->outer_context, decl, in_code)) |
| return true; |
| return ret; |
| } |
| |
| /* Verify that DECL is private within CTX. If there's specific information |
| to the contrary in the innermost scope, generate an error. */ |
| |
| static bool |
| omp_is_private (struct gimplify_omp_ctx *ctx, tree decl) |
| { |
| splay_tree_node n; |
| |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key)decl); |
| if (n != NULL) |
| { |
| if (n->value & GOVD_SHARED) |
| { |
| if (ctx == gimplify_omp_ctxp) |
| { |
| error ("iteration variable %qs should be private", |
| IDENTIFIER_POINTER (DECL_NAME (decl))); |
| n->value = GOVD_PRIVATE; |
| return true; |
| } |
| else |
| return false; |
| } |
| else if ((n->value & GOVD_EXPLICIT) != 0 |
| && (ctx == gimplify_omp_ctxp |
| || (ctx->is_combined_parallel |
| && gimplify_omp_ctxp->outer_context == ctx))) |
| { |
| if ((n->value & GOVD_FIRSTPRIVATE) != 0) |
| error ("iteration variable %qs should not be firstprivate", |
| IDENTIFIER_POINTER (DECL_NAME (decl))); |
| else if ((n->value & GOVD_REDUCTION) != 0) |
| error ("iteration variable %qs should not be reduction", |
| IDENTIFIER_POINTER (DECL_NAME (decl))); |
| } |
| return true; |
| } |
| |
| if (ctx->is_parallel) |
| return false; |
| else if (ctx->outer_context) |
| return omp_is_private (ctx->outer_context, decl); |
| else |
| return !is_global_var (decl); |
| } |
| |
| /* Return true if DECL is private within a parallel region |
| that binds to the current construct's context or in parallel |
| region's REDUCTION clause. */ |
| |
| static bool |
| omp_check_private (struct gimplify_omp_ctx *ctx, tree decl) |
| { |
| splay_tree_node n; |
| |
| do |
| { |
| ctx = ctx->outer_context; |
| if (ctx == NULL) |
| return !(is_global_var (decl) |
| /* References might be private, but might be shared too. */ |
| || lang_hooks.decls.omp_privatize_by_reference (decl)); |
| |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl); |
| if (n != NULL) |
| return (n->value & GOVD_SHARED) == 0; |
| } |
| while (!ctx->is_parallel); |
| return false; |
| } |
| |
| /* Scan the OpenMP clauses in *LIST_P, installing mappings into a new |
| and previous omp contexts. */ |
| |
| static void |
| gimplify_scan_omp_clauses (tree *list_p, tree *pre_p, bool in_parallel, |
| bool in_combined_parallel) |
| { |
| struct gimplify_omp_ctx *ctx, *outer_ctx; |
| tree c; |
| |
| ctx = new_omp_context (in_parallel, in_combined_parallel); |
| outer_ctx = ctx->outer_context; |
| |
| while ((c = *list_p) != NULL) |
| { |
| enum gimplify_status gs; |
| bool remove = false; |
| bool notice_outer = true; |
| const char *check_non_private = NULL; |
| unsigned int flags; |
| tree decl; |
| |
| switch (OMP_CLAUSE_CODE (c)) |
| { |
| case OMP_CLAUSE_PRIVATE: |
| flags = GOVD_PRIVATE | GOVD_EXPLICIT; |
| notice_outer = false; |
| goto do_add; |
| case OMP_CLAUSE_SHARED: |
| flags = GOVD_SHARED | GOVD_EXPLICIT; |
| goto do_add; |
| case OMP_CLAUSE_FIRSTPRIVATE: |
| flags = GOVD_FIRSTPRIVATE | GOVD_EXPLICIT; |
| check_non_private = "firstprivate"; |
| goto do_add; |
| case OMP_CLAUSE_LASTPRIVATE: |
| flags = GOVD_LASTPRIVATE | GOVD_SEEN | GOVD_EXPLICIT; |
| check_non_private = "lastprivate"; |
| goto do_add; |
| case OMP_CLAUSE_REDUCTION: |
| flags = GOVD_REDUCTION | GOVD_SEEN | GOVD_EXPLICIT; |
| check_non_private = "reduction"; |
| goto do_add; |
| |
| do_add: |
| decl = OMP_CLAUSE_DECL (c); |
| if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node) |
| { |
| remove = true; |
| break; |
| } |
| omp_add_variable (ctx, decl, flags); |
| if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION |
| && OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)) |
| { |
| omp_add_variable (ctx, OMP_CLAUSE_REDUCTION_PLACEHOLDER (c), |
| GOVD_LOCAL | GOVD_SEEN); |
| gimplify_omp_ctxp = ctx; |
| push_gimplify_context (); |
| gimplify_stmt (&OMP_CLAUSE_REDUCTION_INIT (c)); |
| pop_gimplify_context (OMP_CLAUSE_REDUCTION_INIT (c)); |
| push_gimplify_context (); |
| gimplify_stmt (&OMP_CLAUSE_REDUCTION_MERGE (c)); |
| pop_gimplify_context (OMP_CLAUSE_REDUCTION_MERGE (c)); |
| gimplify_omp_ctxp = outer_ctx; |
| } |
| if (notice_outer) |
| goto do_notice; |
| break; |
| |
| case OMP_CLAUSE_COPYIN: |
| case OMP_CLAUSE_COPYPRIVATE: |
| decl = OMP_CLAUSE_DECL (c); |
| if (decl == error_mark_node || TREE_TYPE (decl) == error_mark_node) |
| { |
| remove = true; |
| break; |
| } |
| do_notice: |
| if (outer_ctx) |
| omp_notice_variable (outer_ctx, decl, true); |
| if (check_non_private |
| && !in_parallel |
| && omp_check_private (ctx, decl)) |
| { |
| error ("%s variable %qs is private in outer context", |
| check_non_private, IDENTIFIER_POINTER (DECL_NAME (decl))); |
| remove = true; |
| } |
| break; |
| |
| case OMP_CLAUSE_IF: |
| OMP_CLAUSE_OPERAND (c, 0) |
| = gimple_boolify (OMP_CLAUSE_OPERAND (c, 0)); |
| /* Fall through. */ |
| |
| case OMP_CLAUSE_SCHEDULE: |
| case OMP_CLAUSE_NUM_THREADS: |
| gs = gimplify_expr (&OMP_CLAUSE_OPERAND (c, 0), pre_p, NULL, |
| is_gimple_val, fb_rvalue); |
| if (gs == GS_ERROR) |
| remove = true; |
| break; |
| |
| case OMP_CLAUSE_NOWAIT: |
| case OMP_CLAUSE_ORDERED: |
| break; |
| |
| case OMP_CLAUSE_DEFAULT: |
| ctx->default_kind = OMP_CLAUSE_DEFAULT_KIND (c); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (remove) |
| *list_p = OMP_CLAUSE_CHAIN (c); |
| else |
| list_p = &OMP_CLAUSE_CHAIN (c); |
| } |
| |
| gimplify_omp_ctxp = ctx; |
| } |
| |
| /* For all variables that were not actually used within the context, |
| remove PRIVATE, SHARED, and FIRSTPRIVATE clauses. */ |
| |
| static int |
| gimplify_adjust_omp_clauses_1 (splay_tree_node n, void *data) |
| { |
| tree *list_p = (tree *) data; |
| tree decl = (tree) n->key; |
| unsigned flags = n->value; |
| enum omp_clause_code code; |
| tree clause; |
| bool private_debug; |
| |
| if (flags & (GOVD_EXPLICIT | GOVD_LOCAL)) |
| return 0; |
| if ((flags & GOVD_SEEN) == 0) |
| return 0; |
| if (flags & GOVD_DEBUG_PRIVATE) |
| { |
| gcc_assert ((flags & GOVD_DATA_SHARE_CLASS) == GOVD_PRIVATE); |
| private_debug = true; |
| } |
| else |
| private_debug |
| = lang_hooks.decls.omp_private_debug_clause (decl, |
| !!(flags & GOVD_SHARED)); |
| if (private_debug) |
| code = OMP_CLAUSE_PRIVATE; |
| else if (flags & GOVD_SHARED) |
| { |
| if (is_global_var (decl)) |
| { |
| struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp->outer_context; |
| while (ctx != NULL) |
| { |
| splay_tree_node on |
| = splay_tree_lookup (ctx->variables, (splay_tree_key) decl); |
| if (on && (on->value & (GOVD_FIRSTPRIVATE | GOVD_LASTPRIVATE |
| | GOVD_PRIVATE | GOVD_REDUCTION)) != 0) |
| break; |
| ctx = ctx->outer_context; |
| } |
| if (ctx == NULL) |
| return 0; |
| } |
| code = OMP_CLAUSE_SHARED; |
| } |
| else if (flags & GOVD_PRIVATE) |
| code = OMP_CLAUSE_PRIVATE; |
| else if (flags & GOVD_FIRSTPRIVATE) |
| code = OMP_CLAUSE_FIRSTPRIVATE; |
| else |
| gcc_unreachable (); |
| |
| clause = build_omp_clause (code); |
| OMP_CLAUSE_DECL (clause) = decl; |
| OMP_CLAUSE_CHAIN (clause) = *list_p; |
| if (private_debug) |
| OMP_CLAUSE_PRIVATE_DEBUG (clause) = 1; |
| *list_p = clause; |
| |
| return 0; |
| } |
| |
| static void |
| gimplify_adjust_omp_clauses (tree *list_p) |
| { |
| struct gimplify_omp_ctx *ctx = gimplify_omp_ctxp; |
| tree c, decl; |
| |
| while ((c = *list_p) != NULL) |
| { |
| splay_tree_node n; |
| bool remove = false; |
| |
| switch (OMP_CLAUSE_CODE (c)) |
| { |
| case OMP_CLAUSE_PRIVATE: |
| case OMP_CLAUSE_SHARED: |
| case OMP_CLAUSE_FIRSTPRIVATE: |
| decl = OMP_CLAUSE_DECL (c); |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl); |
| remove = !(n->value & GOVD_SEEN); |
| if (! remove) |
| { |
| bool shared = OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SHARED; |
| if ((n->value & GOVD_DEBUG_PRIVATE) |
| || lang_hooks.decls.omp_private_debug_clause (decl, shared)) |
| { |
| gcc_assert ((n->value & GOVD_DEBUG_PRIVATE) == 0 |
| || ((n->value & GOVD_DATA_SHARE_CLASS) |
| == GOVD_PRIVATE)); |
| OMP_CLAUSE_SET_CODE (c, OMP_CLAUSE_PRIVATE); |
| OMP_CLAUSE_PRIVATE_DEBUG (c) = 1; |
| } |
| } |
| break; |
| |
| case OMP_CLAUSE_LASTPRIVATE: |
| /* Make sure OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE is set to |
| accurately reflect the presence of a FIRSTPRIVATE clause. */ |
| decl = OMP_CLAUSE_DECL (c); |
| n = splay_tree_lookup (ctx->variables, (splay_tree_key) decl); |
| OMP_CLAUSE_LASTPRIVATE_FIRSTPRIVATE (c) |
| = (n->value & GOVD_FIRSTPRIVATE) != 0; |
| break; |
| |
| case OMP_CLAUSE_REDUCTION: |
| case OMP_CLAUSE_COPYIN: |
| case OMP_CLAUSE_COPYPRIVATE: |
| case OMP_CLAUSE_IF: |
| case OMP_CLAUSE_NUM_THREADS: |
| case OMP_CLAUSE_SCHEDULE: |
| case OMP_CLAUSE_NOWAIT: |
| case OMP_CLAUSE_ORDERED: |
| case OMP_CLAUSE_DEFAULT: |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (remove) |
| *list_p = OMP_CLAUSE_CHAIN (c); |
| else |
| list_p = &OMP_CLAUSE_CHAIN (c); |
| } |
| |
| /* Add in any implicit data sharing. */ |
| splay_tree_foreach (ctx->variables, gimplify_adjust_omp_clauses_1, list_p); |
| |
| gimplify_omp_ctxp = ctx->outer_context; |
| delete_omp_context (ctx); |
| } |
| |
| /* Gimplify the contents of an OMP_PARALLEL statement. This involves |
| gimplification of the body, as well as scanning the body for used |
| variables. We need to do this scan now, because variable-sized |
| decls will be decomposed during gimplification. */ |
| |
| static enum gimplify_status |
| gimplify_omp_parallel (tree *expr_p, tree *pre_p) |
| { |
| tree expr = *expr_p; |
| |
| gimplify_scan_omp_clauses (&OMP_PARALLEL_CLAUSES (expr), pre_p, true, |
| OMP_PARALLEL_COMBINED (expr)); |
| |
| push_gimplify_context (); |
| |
| gimplify_stmt (&OMP_PARALLEL_BODY (expr)); |
| |
| if (TREE_CODE (OMP_PARALLEL_BODY (expr)) == BIND_EXPR) |
| pop_gimplify_context (OMP_PARALLEL_BODY (expr)); |
| else |
| pop_gimplify_context (NULL_TREE); |
| |
| gimplify_adjust_omp_clauses (&OMP_PARALLEL_CLAUSES (expr)); |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify the gross structure of an OMP_FOR statement. */ |
| |
| static enum gimplify_status |
| gimplify_omp_for (tree *expr_p, tree *pre_p) |
| { |
| tree for_stmt, decl, t; |
| enum gimplify_status ret = 0; |
| |
| for_stmt = *expr_p; |
| |
| gimplify_scan_omp_clauses (&OMP_FOR_CLAUSES (for_stmt), pre_p, false, false); |
| |
| t = OMP_FOR_INIT (for_stmt); |
| gcc_assert (TREE_CODE (t) == MODIFY_EXPR); |
| decl = TREE_OPERAND (t, 0); |
| gcc_assert (DECL_P (decl)); |
| gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (decl))); |
| |
| /* Make sure the iteration variable is private. */ |
| if (omp_is_private (gimplify_omp_ctxp, decl)) |
| omp_notice_variable (gimplify_omp_ctxp, decl, true); |
| else |
| omp_add_variable (gimplify_omp_ctxp, decl, GOVD_PRIVATE | GOVD_SEEN); |
| |
| ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt), |
| NULL, is_gimple_val, fb_rvalue); |
| |
| t = OMP_FOR_COND (for_stmt); |
| gcc_assert (COMPARISON_CLASS_P (t)); |
| gcc_assert (TREE_OPERAND (t, 0) == decl); |
| |
| ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt), |
| NULL, is_gimple_val, fb_rvalue); |
| |
| t = OMP_FOR_INCR (for_stmt); |
| switch (TREE_CODE (t)) |
| { |
| case PREINCREMENT_EXPR: |
| case POSTINCREMENT_EXPR: |
| t = build_int_cst (TREE_TYPE (decl), 1); |
| goto build_modify; |
| case PREDECREMENT_EXPR: |
| case POSTDECREMENT_EXPR: |
| t = build_int_cst (TREE_TYPE (decl), -1); |
| goto build_modify; |
| build_modify: |
| t = build2 (PLUS_EXPR, TREE_TYPE (decl), decl, t); |
| t = build2 (MODIFY_EXPR, void_type_node, decl, t); |
| OMP_FOR_INCR (for_stmt) = t; |
| break; |
| |
| case MODIFY_EXPR: |
| gcc_assert (TREE_OPERAND (t, 0) == decl); |
| t = TREE_OPERAND (t, 1); |
| switch (TREE_CODE (t)) |
| { |
| case PLUS_EXPR: |
| if (TREE_OPERAND (t, 1) == decl) |
| { |
| TREE_OPERAND (t, 1) = TREE_OPERAND (t, 0); |
| TREE_OPERAND (t, 0) = decl; |
| break; |
| } |
| case MINUS_EXPR: |
| gcc_assert (TREE_OPERAND (t, 0) == decl); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| |
| ret |= gimplify_expr (&TREE_OPERAND (t, 1), &OMP_FOR_PRE_BODY (for_stmt), |
| NULL, is_gimple_val, fb_rvalue); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| gimplify_to_stmt_list (&OMP_FOR_BODY (for_stmt)); |
| gimplify_adjust_omp_clauses (&OMP_FOR_CLAUSES (for_stmt)); |
| |
| return ret == GS_ALL_DONE ? GS_ALL_DONE : GS_ERROR; |
| } |
| |
| /* Gimplify the gross structure of other OpenMP worksharing constructs. |
| In particular, OMP_SECTIONS and OMP_SINGLE. */ |
| |
| static enum gimplify_status |
| gimplify_omp_workshare (tree *expr_p, tree *pre_p) |
| { |
| tree stmt = *expr_p; |
| |
| gimplify_scan_omp_clauses (&OMP_CLAUSES (stmt), pre_p, false, false); |
| gimplify_to_stmt_list (&OMP_BODY (stmt)); |
| gimplify_adjust_omp_clauses (&OMP_CLAUSES (stmt)); |
| |
| return GS_ALL_DONE; |
| } |
| |
| /* A subroutine of gimplify_omp_atomic. The front end is supposed to have |
| stabilized the lhs of the atomic operation as *ADDR. Return true if |
| EXPR is this stabilized form. */ |
| |
| static bool |
| goa_lhs_expr_p (tree expr, tree addr) |
| { |
| /* Also include casts to other type variants. The C front end is fond |
| of adding these for e.g. volatile variables. This is like |
| STRIP_TYPE_NOPS but includes the main variant lookup. */ |
| while ((TREE_CODE (expr) == NOP_EXPR |
| || TREE_CODE (expr) == CONVERT_EXPR |
| || TREE_CODE (expr) == NON_LVALUE_EXPR) |
| && TREE_OPERAND (expr, 0) != error_mark_node |
| && (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) |
| == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (expr, 0))))) |
| expr = TREE_OPERAND (expr, 0); |
| |
| if (TREE_CODE (expr) == INDIRECT_REF && TREE_OPERAND (expr, 0) == addr) |
| return true; |
| if (TREE_CODE (addr) == ADDR_EXPR && expr == TREE_OPERAND (addr, 0)) |
| return true; |
| return false; |
| } |
| |
| /* A subroutine of gimplify_omp_atomic. Attempt to implement the atomic |
| operation as a __sync_fetch_and_op builtin. INDEX is log2 of the |
| size of the data type, and thus usable to find the index of the builtin |
| decl. Returns GS_UNHANDLED if the expression is not of the proper form. */ |
| |
| static enum gimplify_status |
| gimplify_omp_atomic_fetch_op (tree *expr_p, tree addr, tree rhs, int index) |
| { |
| enum built_in_function base; |
| tree decl, args, itype; |
| enum insn_code *optab; |
| |
| /* Check for one of the supported fetch-op operations. */ |
| switch (TREE_CODE (rhs)) |
| { |
| case PLUS_EXPR: |
| base = BUILT_IN_FETCH_AND_ADD_N; |
| optab = sync_add_optab; |
| break; |
| case MINUS_EXPR: |
| base = BUILT_IN_FETCH_AND_SUB_N; |
| optab = sync_add_optab; |
| break; |
| case BIT_AND_EXPR: |
| base = BUILT_IN_FETCH_AND_AND_N; |
| optab = sync_and_optab; |
| break; |
| case BIT_IOR_EXPR: |
| base = BUILT_IN_FETCH_AND_OR_N; |
| optab = sync_ior_optab; |
| break; |
| case BIT_XOR_EXPR: |
| base = BUILT_IN_FETCH_AND_XOR_N; |
| optab = sync_xor_optab; |
| break; |
| default: |
| return GS_UNHANDLED; |
| } |
| |
| /* Make sure the expression is of the proper form. */ |
| if (goa_lhs_expr_p (TREE_OPERAND (rhs, 0), addr)) |
| rhs = TREE_OPERAND (rhs, 1); |
| else if (commutative_tree_code (TREE_CODE (rhs)) |
| && goa_lhs_expr_p (TREE_OPERAND (rhs, 1), addr)) |
| rhs = TREE_OPERAND (rhs, 0); |
| else |
| return GS_UNHANDLED; |
| |
| decl = built_in_decls[base + index + 1]; |
| itype = TREE_TYPE (TREE_TYPE (decl)); |
| |
| /* LLVM LOCAL begin */ |
| #ifdef ENABLE_LLVM |
| /* FIXME: Add target specific check. */ |
| return GS_UNHANDLED; |
| #endif |
| /* LLVM LOCAL end */ |
| if (optab[TYPE_MODE (itype)] == CODE_FOR_nothing) |
| return GS_UNHANDLED; |
| |
| args = tree_cons (NULL, fold_convert (itype, rhs), NULL); |
| args = tree_cons (NULL, addr, args); |
| *expr_p = build_function_call_expr (decl, args); |
| return GS_OK; |
| } |
| |
| /* A subroutine of gimplify_omp_atomic_pipeline. Walk *EXPR_P and replace |
| appearances of *LHS_ADDR with LHS_VAR. If an expression does not involve |
| the lhs, evaluate it into a temporary. Return 1 if the lhs appeared as |
| a subexpression, 0 if it did not, or -1 if an error was encountered. */ |
| |
| static int |
| goa_stabilize_expr (tree *expr_p, tree *pre_p, tree lhs_addr, tree lhs_var) |
| { |
| tree expr = *expr_p; |
| int saw_lhs; |
| |
| if (goa_lhs_expr_p (expr, lhs_addr)) |
| { |
| *expr_p = lhs_var; |
| return 1; |
| } |
| if (is_gimple_val (expr)) |
| return 0; |
| |
| saw_lhs = 0; |
| switch (TREE_CODE_CLASS (TREE_CODE (expr))) |
| { |
| case tcc_binary: |
| saw_lhs |= goa_stabilize_expr (&TREE_OPERAND (expr, 1), pre_p, |
| lhs_addr, lhs_var); |
| case tcc_unary: |
| saw_lhs |= goa_stabilize_expr (&TREE_OPERAND (expr, 0), pre_p, |
| lhs_addr, lhs_var); |
| break; |
| default: |
| break; |
| } |
| |
| if (saw_lhs == 0) |
| { |
| enum gimplify_status gs; |
| gs = gimplify_expr (expr_p, pre_p, NULL, is_gimple_val, fb_rvalue); |
| if (gs != GS_ALL_DONE) |
| saw_lhs = -1; |
| } |
| |
| return saw_lhs; |
| } |
| |
| /* A subroutine of gimplify_omp_atomic. Implement the atomic operation as: |
| |
| oldval = *addr; |
| repeat: |
| newval = rhs; // with oldval replacing *addr in rhs |
| oldval = __sync_val_compare_and_swap (addr, oldval, newval); |
| if (oldval != newval) |
| goto repeat; |
| |
| INDEX is log2 of the size of the data type, and thus usable to find the |
| index of the builtin decl. */ |
| |
| static enum gimplify_status |
| gimplify_omp_atomic_pipeline (tree *expr_p, tree *pre_p, tree addr, |
| tree rhs, int index) |
| { |
| tree oldval, oldival, oldival2, newval, newival, label; |
| tree type, itype, cmpxchg, args, x, iaddr; |
| |
| cmpxchg = built_in_decls[BUILT_IN_VAL_COMPARE_AND_SWAP_N + index + 1]; |
| type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr))); |
| itype = TREE_TYPE (TREE_TYPE (cmpxchg)); |
| |
| /* LLVM LOCAL begin */ |
| #ifdef ENABLE_LLVM |
| /* FIXME: Add target specific check. */ |
| return GS_UNHANDLED; |
| #endif |
| /* LLVM LOCAL end */ |
| if (sync_compare_and_swap[TYPE_MODE (itype)] == CODE_FOR_nothing) |
| return GS_UNHANDLED; |
| |
| oldval = create_tmp_var (type, NULL); |
| newval = create_tmp_var (type, NULL); |
| |
| /* Precompute as much of RHS as possible. In the same walk, replace |
| occurrences of the lhs value with our temporary. */ |
| if (goa_stabilize_expr (&rhs, pre_p, addr, oldval) < 0) |
| return GS_ERROR; |
| |
| x = build_fold_indirect_ref (addr); |
| x = build2 (MODIFY_EXPR, void_type_node, oldval, x); |
| gimplify_and_add (x, pre_p); |
| |
| /* For floating-point values, we'll need to view-convert them to integers |
| so that we can perform the atomic compare and swap. Simplify the |
| following code by always setting up the "i"ntegral variables. */ |
| if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)) |
| { |
| oldival = oldval; |
| newival = newval; |
| iaddr = addr; |
| } |
| else |
| { |
| oldival = create_tmp_var (itype, NULL); |
| newival = create_tmp_var (itype, NULL); |
| |
| x = build1 (VIEW_CONVERT_EXPR, itype, oldval); |
| x = build2 (MODIFY_EXPR, void_type_node, oldival, x); |
| gimplify_and_add (x, pre_p); |
| iaddr = fold_convert (build_pointer_type (itype), addr); |
| } |
| |
| oldival2 = create_tmp_var (itype, NULL); |
| |
| label = create_artificial_label (); |
| x = build1 (LABEL_EXPR, void_type_node, label); |
| gimplify_and_add (x, pre_p); |
| |
| x = build2 (MODIFY_EXPR, void_type_node, newval, rhs); |
| gimplify_and_add (x, pre_p); |
| |
| if (newval != newival) |
| { |
| x = build1 (VIEW_CONVERT_EXPR, itype, newval); |
| x = build2 (MODIFY_EXPR, void_type_node, newival, x); |
| gimplify_and_add (x, pre_p); |
| } |
| |
| x = build2 (MODIFY_EXPR, void_type_node, oldival2, |
| fold_convert (itype, oldival)); |
| gimplify_and_add (x, pre_p); |
| |
| args = tree_cons (NULL, fold_convert (itype, newival), NULL); |
| args = tree_cons (NULL, fold_convert (itype, oldival), args); |
| args = tree_cons (NULL, iaddr, args); |
| x = build_function_call_expr (cmpxchg, args); |
| if (oldval == oldival) |
| x = fold_convert (type, x); |
| x = build2 (MODIFY_EXPR, void_type_node, oldival, x); |
| gimplify_and_add (x, pre_p); |
| |
| /* For floating point, be prepared for the loop backedge. */ |
| if (oldval != oldival) |
| { |
| x = build1 (VIEW_CONVERT_EXPR, type, oldival); |
| x = build2 (MODIFY_EXPR, void_type_node, oldval, x); |
| gimplify_and_add (x, pre_p); |
| } |
| |
| /* Note that we always perform the comparison as an integer, even for |
| floating point. This allows the atomic operation to properly |
| succeed even with NaNs and -0.0. */ |
| x = build3 (COND_EXPR, void_type_node, |
| build2 (NE_EXPR, boolean_type_node, oldival, oldival2), |
| build1 (GOTO_EXPR, void_type_node, label), NULL); |
| gimplify_and_add (x, pre_p); |
| |
| *expr_p = NULL; |
| return GS_ALL_DONE; |
| } |
| |
| /* A subroutine of gimplify_omp_atomic. Implement the atomic operation as: |
| |
| GOMP_atomic_start (); |
| *addr = rhs; |
| GOMP_atomic_end (); |
| |
| The result is not globally atomic, but works so long as all parallel |
| references are within #pragma omp atomic directives. According to |
| responses received from omp@openmp.org, appears to be within spec. |
| Which makes sense, since that's how several other compilers handle |
| this situation as well. */ |
| |
| static enum gimplify_status |
| gimplify_omp_atomic_mutex (tree *expr_p, tree *pre_p, tree addr, tree rhs) |
| { |
| tree t; |
| |
| t = built_in_decls[BUILT_IN_GOMP_ATOMIC_START]; |
| t = build_function_call_expr (t, NULL); |
| gimplify_and_add (t, pre_p); |
| |
| t = build_fold_indirect_ref (addr); |
| t = build2 (MODIFY_EXPR, void_type_node, t, rhs); |
| gimplify_and_add (t, pre_p); |
| |
| t = built_in_decls[BUILT_IN_GOMP_ATOMIC_END]; |
| t = build_function_call_expr (t, NULL); |
| gimplify_and_add (t, pre_p); |
| |
| *expr_p = NULL; |
| return GS_ALL_DONE; |
| } |
| |
| /* Gimplify an OMP_ATOMIC statement. */ |
| |
| static enum gimplify_status |
| gimplify_omp_atomic (tree *expr_p, tree *pre_p) |
| { |
| tree addr = TREE_OPERAND (*expr_p, 0); |
| tree rhs = TREE_OPERAND (*expr_p, 1); |
| tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (addr))); |
| HOST_WIDE_INT index; |
| |
| /* Make sure the type is one of the supported sizes. */ |
| index = tree_low_cst (TYPE_SIZE_UNIT (type), 1); |
| index = exact_log2 (index); |
| if (index >= 0 && index <= 4) |
| { |
| enum gimplify_status gs; |
| unsigned int align; |
| |
| if (DECL_P (TREE_OPERAND (addr, 0))) |
| align = DECL_ALIGN_UNIT (TREE_OPERAND (addr, 0)); |
| else if (TREE_CODE (TREE_OPERAND (addr, 0)) == COMPONENT_REF |
| && TREE_CODE (TREE_OPERAND (TREE_OPERAND (addr, 0), 1)) |
| == FIELD_DECL) |
| align = DECL_ALIGN_UNIT (TREE_OPERAND (TREE_OPERAND (addr, 0), 1)); |
| else |
| align = TYPE_ALIGN_UNIT (type); |
| |
| /* __sync builtins require strict data alignment. */ |
| if (exact_log2 (align) >= index) |
| { |
| /* When possible, use specialized atomic update functions. */ |
| if (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)) |
| { |
| gs = gimplify_omp_atomic_fetch_op (expr_p, addr, rhs, index); |
| if (gs != GS_UNHANDLED) |
| return gs; |
| } |
| |
| /* If we don't have specialized __sync builtins, try and implement |
| as a compare and swap loop. */ |
| gs = gimplify_omp_atomic_pipeline (expr_p, pre_p, addr, rhs, index); |
| if (gs != GS_UNHANDLED) |
| return gs; |
| } |
| } |
| |
| /* The ultimate fallback is wrapping the operation in a mutex. */ |
| return gimplify_omp_atomic_mutex (expr_p, pre_p, addr, rhs); |
| } |
| |
| /* Gimplifies the expression tree pointed to by EXPR_P. Return 0 if |
| gimplification failed. |
| |
| PRE_P points to the list where side effects that must happen before |
| EXPR should be stored. |
| |
| POST_P points to the list where side effects that must happen after |
| EXPR should be stored, or NULL if there is no suitable list. In |
| that case, we copy the result to a temporary, emit the |
| post-effects, and then return the temporary. |
| |
| GIMPLE_TEST_F points to a function that takes a tree T and |
| returns nonzero if T is in the GIMPLE form requested by the |
| caller. The GIMPLE predicates are in tree-gimple.c. |
| |
| This test is used twice. Before gimplification, the test is |
| invoked to determine whether *EXPR_P is already gimple enough. If |
| that fails, *EXPR_P is gimplified according to its code and |
| GIMPLE_TEST_F is called again. If the test still fails, then a new |
| temporary variable is created and assigned the value of the |
| gimplified expression. |
| |
| FALLBACK tells the function what sort of a temporary we want. If the 1 |
| bit is set, an rvalue is OK. If the 2 bit is set, an lvalue is OK. |
| If both are set, either is OK, but an lvalue is preferable. |
| |
| The return value is either GS_ERROR or GS_ALL_DONE, since this function |
| iterates until solution. */ |
| |
| enum gimplify_status |
| gimplify_expr (tree *expr_p, tree *pre_p, tree *post_p, |
| bool (* gimple_test_f) (tree), fallback_t fallback) |
| { |
| tree tmp; |
| tree internal_pre = NULL_TREE; |
| tree internal_post = NULL_TREE; |
| tree save_expr; |
| int is_statement = (pre_p == NULL); |
| location_t saved_location; |
| enum gimplify_status ret; |
| |
| save_expr = *expr_p; |
| if (save_expr == NULL_TREE) |
| return GS_ALL_DONE; |
| |
| /* We used to check the predicate here and return immediately if it |
| succeeds. This is wrong; the design is for gimplification to be |
| idempotent, and for the predicates to only test for valid forms, not |
| whether they are fully simplified. */ |
| |
| /* Set up our internal queues if needed. */ |
| if (pre_p == NULL) |
| pre_p = &internal_pre; |
| if (post_p == NULL) |
| post_p = &internal_post; |
| |
| saved_location = input_location; |
| if (save_expr != error_mark_node |
| && EXPR_HAS_LOCATION (*expr_p)) |
| input_location = EXPR_LOCATION (*expr_p); |
| |
| /* Loop over the specific gimplifiers until the toplevel node |
| remains the same. */ |
| do |
| { |
| /* Strip away as many useless type conversions as possible |
| at the toplevel. */ |
| STRIP_USELESS_TYPE_CONVERSION (*expr_p); |
| |
| /* Remember the expr. */ |
| save_expr = *expr_p; |
| |
| /* Die, die, die, my darling. */ |
| if (save_expr == error_mark_node |
| || (TREE_TYPE (save_expr) |
| && TREE_TYPE (save_expr) == error_mark_node)) |
| { |
| ret = GS_ERROR; |
| break; |
| } |
| |
| /* Do any language-specific gimplification. */ |
| ret = lang_hooks.gimplify_expr (expr_p, pre_p, post_p); |
| if (ret == GS_OK) |
| { |
| if (*expr_p == NULL_TREE) |
| break; |
| if (*expr_p != save_expr) |
| continue; |
| } |
| else if (ret != GS_UNHANDLED) |
| break; |
| |
| ret = GS_OK; |
| switch (TREE_CODE (*expr_p)) |
| { |
| /* First deal with the special cases. */ |
| |
| case POSTINCREMENT_EXPR: |
| case POSTDECREMENT_EXPR: |
| case PREINCREMENT_EXPR: |
| case PREDECREMENT_EXPR: |
| ret = gimplify_self_mod_expr (expr_p, pre_p, post_p, |
| fallback != fb_none); |
| break; |
| |
| case ARRAY_REF: |
| /* LLVM LOCAL begin */ |
| #ifdef ENABLE_LLVM |
| /* Handle the LLVM "ARRAY_REF with pointer base" extension by treating |
| pointer-based ARRAY_REFs as binary expressions. */ |
| if (TREE_CODE (TREE_TYPE (TREE_OPERAND (*expr_p, 0))) != ARRAY_TYPE) { |
| /* LLVM LOCAL 8004649 */ |
| gimplify_type_sizes (TREE_TYPE (*expr_p), pre_p); |
| goto expr_2; |
| } |
| #endif |
| /* LLVM LOCAL end */ |
| |
| case ARRAY_RANGE_REF: |
| case REALPART_EXPR: |
| case IMAGPART_EXPR: |
| case COMPONENT_REF: |
| case VIEW_CONVERT_EXPR: |
| ret = gimplify_compound_lval (expr_p, pre_p, post_p, |
| fallback ? fallback : fb_rvalue); |
| break; |
| |
| case COND_EXPR: |
| ret = gimplify_cond_expr (expr_p, pre_p, fallback); |
| /* C99 code may assign to an array in a structure value of a |
| conditional expression, and this has undefined behavior |
| only on execution, so create a temporary if an lvalue is |
| required. */ |
| if (fallback == fb_lvalue) |
| { |
| *expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p); |
| lang_hooks.mark_addressable (*expr_p); |
| } |
| break; |
| |
| case CALL_EXPR: |
| ret = gimplify_call_expr (expr_p, pre_p, fallback != fb_none); |
| /* C99 code may assign to an array in a structure returned |
| from a function, and this has undefined behavior only on |
| execution, so create a temporary if an lvalue is |
| required. */ |
| if (fallback == fb_lvalue) |
| { |
| *expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p); |
| lang_hooks.mark_addressable (*expr_p); |
| } |
| break; |
| |
| case TREE_LIST: |
| gcc_unreachable (); |
| |
| case COMPOUND_EXPR: |
| ret = gimplify_compound_expr (expr_p, pre_p, fallback != fb_none); |
| break; |
| |
| case MODIFY_EXPR: |
| case INIT_EXPR: |
| ret = gimplify_modify_expr (expr_p, pre_p, post_p, |
| fallback != fb_none); |
| |
| /* The distinction between MODIFY_EXPR and INIT_EXPR is no longer |
| useful. */ |
| if (*expr_p && TREE_CODE (*expr_p) == INIT_EXPR) |
| TREE_SET_CODE (*expr_p, MODIFY_EXPR); |
| break; |
| |
| case TRUTH_ANDIF_EXPR: |
| case TRUTH_ORIF_EXPR: |
| ret = gimplify_boolean_expr (expr_p); |
| break; |
| |
| case TRUTH_NOT_EXPR: |
| TREE_OPERAND (*expr_p, 0) |
| = gimple_boolify (TREE_OPERAND (*expr_p, 0)); |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| recalculate_side_effects (*expr_p); |
| break; |
| |
| case ADDR_EXPR: |
| ret = gimplify_addr_expr (expr_p, pre_p, post_p); |
| break; |
| |
| case VA_ARG_EXPR: |
| ret = gimplify_va_arg_expr (expr_p, pre_p, post_p); |
| break; |
| |
| case CONVERT_EXPR: |
| case NOP_EXPR: |
| if (IS_EMPTY_STMT (*expr_p)) |
| { |
| ret = GS_ALL_DONE; |
| break; |
| } |
| |
| if (VOID_TYPE_P (TREE_TYPE (*expr_p)) |
| || fallback == fb_none) |
| { |
| /* Just strip a conversion to void (or in void context) and |
| try again. */ |
| *expr_p = TREE_OPERAND (*expr_p, 0); |
| break; |
| } |
| |
| ret = gimplify_conversion (expr_p); |
| if (ret == GS_ERROR) |
| break; |
| if (*expr_p != save_expr) |
| break; |
| /* FALLTHRU */ |
| |
| case FIX_TRUNC_EXPR: |
| case FIX_CEIL_EXPR: |
| case FIX_FLOOR_EXPR: |
| case FIX_ROUND_EXPR: |
| /* unary_expr: ... | '(' cast ')' val | ... */ |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| recalculate_side_effects (*expr_p); |
| break; |
| |
| case INDIRECT_REF: |
| *expr_p = fold_indirect_ref (*expr_p); |
| if (*expr_p != save_expr) |
| break; |
| /* else fall through. */ |
| case ALIGN_INDIRECT_REF: |
| case MISALIGNED_INDIRECT_REF: |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| is_gimple_reg, fb_rvalue); |
| recalculate_side_effects (*expr_p); |
| break; |
| |
| /* Constants need not be gimplified. */ |
| case INTEGER_CST: |
| case REAL_CST: |
| case STRING_CST: |
| case COMPLEX_CST: |
| case VECTOR_CST: |
| ret = GS_ALL_DONE; |
| break; |
| |
| case CONST_DECL: |
| /* If we require an lvalue, such as for ADDR_EXPR, retain the |
| CONST_DECL node. Otherwise the decl is replaceable by its |
| value. */ |
| /* ??? Should be == fb_lvalue, but ADDR_EXPR passes fb_either. */ |
| if (fallback & fb_lvalue) |
| ret = GS_ALL_DONE; |
| else |
| *expr_p = DECL_INITIAL (*expr_p); |
| break; |
| |
| case DECL_EXPR: |
| ret = gimplify_decl_expr (expr_p); |
| break; |
| |
| case EXC_PTR_EXPR: |
| /* FIXME make this a decl. */ |
| ret = GS_ALL_DONE; |
| break; |
| |
| case BIND_EXPR: |
| ret = gimplify_bind_expr (expr_p, pre_p); |
| break; |
| |
| case LOOP_EXPR: |
| ret = gimplify_loop_expr (expr_p, pre_p); |
| break; |
| |
| case SWITCH_EXPR: |
| ret = gimplify_switch_expr (expr_p, pre_p); |
| break; |
| |
| case EXIT_EXPR: |
| ret = gimplify_exit_expr (expr_p); |
| break; |
| |
| case GOTO_EXPR: |
| /* If the target is not LABEL, then it is a computed jump |
| and the target needs to be gimplified. */ |
| if (TREE_CODE (GOTO_DESTINATION (*expr_p)) != LABEL_DECL) |
| ret = gimplify_expr (&GOTO_DESTINATION (*expr_p), pre_p, |
| NULL, is_gimple_val, fb_rvalue); |
| break; |
| |
| case LABEL_EXPR: |
| ret = GS_ALL_DONE; |
| gcc_assert (decl_function_context (LABEL_EXPR_LABEL (*expr_p)) |
| == current_function_decl); |
| break; |
| |
| case CASE_LABEL_EXPR: |
| ret = gimplify_case_label_expr (expr_p); |
| break; |
| |
| case RETURN_EXPR: |
| ret = gimplify_return_expr (*expr_p, pre_p); |
| break; |
| |
| case CONSTRUCTOR: |
| /* Don't reduce this in place; let gimplify_init_constructor work its |
| magic. Buf if we're just elaborating this for side effects, just |
| gimplify any element that has side-effects. */ |
| if (fallback == fb_none) |
| { |
| unsigned HOST_WIDE_INT ix; |
| constructor_elt *ce; |
| tree temp = NULL_TREE; |
| for (ix = 0; |
| VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (*expr_p), |
| ix, ce); |
| ix++) |
| if (TREE_SIDE_EFFECTS (ce->value)) |
| append_to_statement_list (ce->value, &temp); |
| |
| *expr_p = temp; |
| ret = GS_OK; |
| } |
| /* C99 code may assign to an array in a constructed |
| structure or union, and this has undefined behavior only |
| on execution, so create a temporary if an lvalue is |
| required. */ |
| else if (fallback == fb_lvalue) |
| { |
| *expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p); |
| lang_hooks.mark_addressable (*expr_p); |
| } |
| else |
| ret = GS_ALL_DONE; |
| break; |
| |
| /* The following are special cases that are not handled by the |
| original GIMPLE grammar. */ |
| |
| /* SAVE_EXPR nodes are converted into a GIMPLE identifier and |
| eliminated. */ |
| case SAVE_EXPR: |
| ret = gimplify_save_expr (expr_p, pre_p, post_p); |
| break; |
| |
| case BIT_FIELD_REF: |
| { |
| enum gimplify_status r0, r1, r2; |
| |
| r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| is_gimple_lvalue, fb_either); |
| r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| r2 = gimplify_expr (&TREE_OPERAND (*expr_p, 2), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| recalculate_side_effects (*expr_p); |
| |
| ret = MIN (r0, MIN (r1, r2)); |
| } |
| break; |
| |
| case NON_LVALUE_EXPR: |
| /* This should have been stripped above. */ |
| gcc_unreachable (); |
| |
| case ASM_EXPR: |
| ret = gimplify_asm_expr (expr_p, pre_p, post_p); |
| break; |
| |
| case TRY_FINALLY_EXPR: |
| case TRY_CATCH_EXPR: |
| gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 0)); |
| gimplify_to_stmt_list (&TREE_OPERAND (*expr_p, 1)); |
| ret = GS_ALL_DONE; |
| break; |
| |
| case CLEANUP_POINT_EXPR: |
| ret = gimplify_cleanup_point_expr (expr_p, pre_p); |
| break; |
| |
| case TARGET_EXPR: |
| ret = gimplify_target_expr (expr_p, pre_p, post_p); |
| break; |
| |
| case CATCH_EXPR: |
| gimplify_to_stmt_list (&CATCH_BODY (*expr_p)); |
| ret = GS_ALL_DONE; |
| break; |
| |
| case EH_FILTER_EXPR: |
| gimplify_to_stmt_list (&EH_FILTER_FAILURE (*expr_p)); |
| ret = GS_ALL_DONE; |
| break; |
| |
| case OBJ_TYPE_REF: |
| { |
| enum gimplify_status r0, r1; |
| r0 = gimplify_expr (&OBJ_TYPE_REF_OBJECT (*expr_p), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| r1 = gimplify_expr (&OBJ_TYPE_REF_EXPR (*expr_p), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| ret = MIN (r0, r1); |
| } |
| break; |
| |
| case LABEL_DECL: |
| /* We get here when taking the address of a label. We mark |
| the label as "forced"; meaning it can never be removed and |
| it is a potential target for any computed goto. */ |
| FORCED_LABEL (*expr_p) = 1; |
| ret = GS_ALL_DONE; |
| break; |
| |
| case STATEMENT_LIST: |
| ret = gimplify_statement_list (expr_p, pre_p); |
| break; |
| |
| case WITH_SIZE_EXPR: |
| { |
| gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, |
| post_p == &internal_post ? NULL : post_p, |
| gimple_test_f, fallback); |
| gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p, |
| is_gimple_val, fb_rvalue); |
| } |
| break; |
| |
| case VAR_DECL: |
| case PARM_DECL: |
| ret = gimplify_var_or_parm_decl (expr_p); |
| break; |
| |
| case RESULT_DECL: |
| /* When within an OpenMP context, notice uses of variables. */ |
| if (gimplify_omp_ctxp) |
| omp_notice_variable (gimplify_omp_ctxp, *expr_p, true); |
| ret = GS_ALL_DONE; |
| break; |
| |
| case SSA_NAME: |
| /* Allow callbacks into the gimplifier during optimization. */ |
| ret = GS_ALL_DONE; |
| break; |
| |
| case OMP_PARALLEL: |
| ret = gimplify_omp_parallel (expr_p, pre_p); |
| break; |
| |
| case OMP_FOR: |
| ret = gimplify_omp_for (expr_p, pre_p); |
| break; |
| |
| case OMP_SECTIONS: |
| case OMP_SINGLE: |
| ret = gimplify_omp_workshare (expr_p, pre_p); |
| break; |
| |
| case OMP_SECTION: |
| case OMP_MASTER: |
| case OMP_ORDERED: |
| case OMP_CRITICAL: |
| gimplify_to_stmt_list (&OMP_BODY (*expr_p)); |
| break; |
| |
| case OMP_ATOMIC: |
| ret = gimplify_omp_atomic (expr_p, pre_p); |
| break; |
| |
| case OMP_RETURN: |
| case OMP_CONTINUE: |
| ret = GS_ALL_DONE; |
| break; |
| |
| default: |
| switch (TREE_CODE_CLASS (TREE_CODE (*expr_p))) |
| { |
| case tcc_comparison: |
| /* Handle comparison of objects of non scalar mode aggregates |
| with a call to memcmp. It would be nice to only have to do |
| this for variable-sized objects, but then we'd have to allow |
| the same nest of reference nodes we allow for MODIFY_EXPR and |
| that's too complex. |
| |
| Compare scalar mode aggregates as scalar mode values. Using |
| memcmp for them would be very inefficient at best, and is |
| plain wrong if bitfields are involved. */ |
| |
| { |
| tree type = TREE_TYPE (TREE_OPERAND (*expr_p, 1)); |
| |
| if (!AGGREGATE_TYPE_P (type)) |
| goto expr_2; |
| else if (TYPE_MODE (type) != BLKmode) |
| ret = gimplify_scalar_mode_aggregate_compare (expr_p); |
| else |
| ret = gimplify_variable_sized_compare (expr_p); |
| |
| break; |
| } |
| |
| /* If *EXPR_P does not need to be special-cased, handle it |
| according to its class. */ |
| case tcc_unary: |
| ret = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, |
| post_p, is_gimple_val, fb_rvalue); |
| break; |
| |
| case tcc_binary: |
| expr_2: |
| { |
| enum gimplify_status r0, r1; |
| |
| r0 = gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, |
| post_p, is_gimple_val, fb_rvalue); |
| r1 = gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, |
| post_p, is_gimple_val, fb_rvalue); |
| |
| ret = MIN (r0, r1); |
| break; |
| } |
| |
| case tcc_declaration: |
| case tcc_constant: |
| ret = GS_ALL_DONE; |
| goto dont_recalculate; |
| |
| default: |
| gcc_assert (TREE_CODE (*expr_p) == TRUTH_AND_EXPR |
| || TREE_CODE (*expr_p) == TRUTH_OR_EXPR |
| || TREE_CODE (*expr_p) == TRUTH_XOR_EXPR); |
| goto expr_2; |
| } |
| |
| recalculate_side_effects (*expr_p); |
| dont_recalculate: |
| break; |
| } |
| |
| /* If we replaced *expr_p, gimplify again. */ |
| if (ret == GS_OK && (*expr_p == NULL || *expr_p == save_expr)) |
| ret = GS_ALL_DONE; |
| } |
| while (ret == GS_OK); |
| |
| /* If we encountered an error_mark somewhere nested inside, either |
| stub out the statement or propagate the error back out. */ |
| if (ret == GS_ERROR) |
| { |
| if (is_statement) |
| *expr_p = NULL; |
| goto out; |
| } |
| |
| /* This was only valid as a return value from the langhook, which |
| we handled. Make sure it doesn't escape from any other context. */ |
| gcc_assert (ret != GS_UNHANDLED); |
| |
| if (fallback == fb_none && *expr_p && !is_gimple_stmt (*expr_p)) |
| { |
| /* We aren't looking for a value, and we don't have a valid |
| statement. If it doesn't have side-effects, throw it away. */ |
| if (!TREE_SIDE_EFFECTS (*expr_p)) |
| *expr_p = NULL; |
| else if (!TREE_THIS_VOLATILE (*expr_p)) |
| { |
| /* This is probably a _REF that contains something nested that |
| has side effects. Recurse through the operands to find it. */ |
| enum tree_code code = TREE_CODE (*expr_p); |
| |
| switch (code) |
| { |
| case COMPONENT_REF: |
| case REALPART_EXPR: |
| case IMAGPART_EXPR: |
| case VIEW_CONVERT_EXPR: |
| gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| gimple_test_f, fallback); |
| break; |
| |
| case ARRAY_REF: |
| case ARRAY_RANGE_REF: |
| gimplify_expr (&TREE_OPERAND (*expr_p, 0), pre_p, post_p, |
| gimple_test_f, fallback); |
| gimplify_expr (&TREE_OPERAND (*expr_p, 1), pre_p, post_p, |
| gimple_test_f, fallback); |
| break; |
| |
| default: |
| /* Anything else with side-effects must be converted to |
| a valid statement before we get here. */ |
| gcc_unreachable (); |
| } |
| |
| *expr_p = NULL; |
| } |
| else if (COMPLETE_TYPE_P (TREE_TYPE (*expr_p)) |
| && TYPE_MODE (TREE_TYPE (*expr_p)) != BLKmode) |
| { |
| /* Historically, the compiler has treated a bare reference |
| to a non-BLKmode volatile lvalue as forcing a load. */ |
| tree type = TYPE_MAIN_VARIANT (TREE_TYPE (*expr_p)); |
| /* Normally, we do not want to create a temporary for a |
| TREE_ADDRESSABLE type because such a type should not be |
| copied by bitwise-assignment. However, we make an |
| exception here, as all we are doing here is ensuring that |
| we read the bytes that make up the type. We use |
| create_tmp_var_raw because create_tmp_var will abort when |
| given a TREE_ADDRESSABLE type. */ |
| tree tmp = create_tmp_var_raw (type, "vol"); |
| gimple_add_tmp_var (tmp); |
| *expr_p = build2 (MODIFY_EXPR, type, tmp, *expr_p); |
| } |
| else |
| /* We can't do anything useful with a volatile reference to |
| an incomplete type, so just throw it away. Likewise for |
| a BLKmode type, since any implicit inner load should |
| already have been turned into an explicit one by the |
| gimplification process. */ |
| *expr_p = NULL; |
| } |
| |
| /* If we are gimplifying at the statement level, we're done. Tack |
| everything together and replace the original statement with the |
| gimplified form. */ |
| if (fallback == fb_none || is_statement) |
| { |
| if (internal_pre || internal_post) |
| { |
| append_to_statement_list (*expr_p, &internal_pre); |
| append_to_statement_list (internal_post, &internal_pre); |
| annotate_all_with_locus (&internal_pre, input_location); |
| *expr_p = internal_pre; |
| } |
| else if (!*expr_p) |
| ; |
| else if (TREE_CODE (*expr_p) == STATEMENT_LIST) |
| annotate_all_with_locus (expr_p, input_location); |
| else |
| annotate_one_with_locus (*expr_p, input_location); |
| goto out; |
| } |
| |
| /* Otherwise we're gimplifying a subexpression, so the resulting value is |
| interesting. */ |
| |
| /* If it's sufficiently simple already, we're done. Unless we are |
| handling some post-effects internally; if that's the case, we need to |
| copy into a temp before adding the post-effects to the tree. */ |
| if (!internal_post && (*gimple_test_f) (*expr_p)) |
| goto out; |
| |
| /* Otherwise, we need to create a new temporary for the gimplified |
| expression. */ |
| |
| /* We can't return an lvalue if we have an internal postqueue. The |
| object the lvalue refers to would (probably) be modified by the |
| postqueue; we need to copy the value out first, which means an |
| rvalue. */ |
| if ((fallback & fb_lvalue) && !internal_post |
| && is_gimple_addressable (*expr_p)) |
| { |
| /* An lvalue will do. Take the address of the expression, store it |
| in a temporary, and replace the expression with an INDIRECT_REF of |
| that temporary. */ |
| tmp = build_fold_addr_expr (*expr_p); |
| gimplify_expr (&tmp, pre_p, post_p, is_gimple_reg, fb_rvalue); |
| *expr_p = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (tmp)), tmp); |
| } |
| else if ((fallback & fb_rvalue) && is_gimple_formal_tmp_rhs (*expr_p)) |
| { |
| gcc_assert (!VOID_TYPE_P (TREE_TYPE (*expr_p))); |
| |
| /* An rvalue will do. Assign the gimplified expression into a new |
| temporary TMP and replace the original expression with TMP. */ |
| |
| if (internal_post || (fallback & fb_lvalue)) |
| /* The postqueue might change the value of the expression between |
| the initialization and use of the temporary, so we can't use a |
| formal temp. FIXME do we care? */ |
| *expr_p = get_initialized_tmp_var (*expr_p, pre_p, post_p); |
| else |
| *expr_p = get_formal_tmp_var (*expr_p, pre_p); |
| |
| if (TREE_CODE (*expr_p) != SSA_NAME) |
| DECL_GIMPLE_FORMAL_TEMP_P (*expr_p) = 1; |
| } |
| else |
| { |
| #ifdef ENABLE_CHECKING |
| if (!(fallback & fb_mayfail)) |
| { |
| fprintf (stderr, "gimplification failed:\n"); |
| print_generic_expr (stderr, *expr_p, 0); |
| debug_tree (*expr_p); |
| internal_error ("gimplification failed"); |
| } |
| #endif |
| gcc_assert (fallback & fb_mayfail); |
| /* If this is an asm statement, and the user asked for the |
| impossible, don't die. Fail and let gimplify_asm_expr |
| issue an error. */ |
| ret = GS_ERROR; |
| goto out; |
| } |
| |
| /* Make sure the temporary matches our predicate. */ |
| gcc_assert ((*gimple_test_f) (*expr_p)); |
| |
| if (internal_post) |
| { |
| annotate_all_with_locus (&internal_post, input_location); |
| append_to_statement_list (internal_post, pre_p); |
| } |
| |
| out: |
| input_location = saved_location; |
| return ret; |
| } |
| |
| /* Look through TYPE for variable-sized objects and gimplify each such |
| size that we find. Add to LIST_P any statements generated. */ |
| |
| void |
| gimplify_type_sizes (tree type, tree *list_p) |
| { |
| tree field, t; |
| |
| if (type == NULL || type == error_mark_node) |
| return; |
| |
| /* We first do the main variant, then copy into any other variants. */ |
| type = TYPE_MAIN_VARIANT (type); |
| |
| /* Avoid infinite recursion. */ |
| if (TYPE_SIZES_GIMPLIFIED (type)) |
| return; |
| |
| TYPE_SIZES_GIMPLIFIED (type) = 1; |
| |
| switch (TREE_CODE (type)) |
| { |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| case REAL_TYPE: |
| gimplify_one_sizepos (&TYPE_MIN_VALUE (type), list_p); |
| gimplify_one_sizepos (&TYPE_MAX_VALUE (type), list_p); |
| |
| for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) |
| { |
| TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (type); |
| TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (type); |
| } |
| break; |
| |
| case ARRAY_TYPE: |
| /* These types may not have declarations, so handle them here. */ |
| gimplify_type_sizes (TREE_TYPE (type), list_p); |
| gimplify_type_sizes (TYPE_DOMAIN (type), list_p); |
| break; |
| |
| case RECORD_TYPE: |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) |
| if (TREE_CODE (field) == FIELD_DECL) |
| { |
| gimplify_one_sizepos (&DECL_FIELD_OFFSET (field), list_p); |
| gimplify_type_sizes (TREE_TYPE (field), list_p); |
| } |
| break; |
| |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| /* We used to recurse on the pointed-to type here, which turned out to |
| be incorrect because its definition might refer to variables not |
| yet initialized at this point if a forward declaration is involved. |
| |
| It was actually useful for anonymous pointed-to types to ensure |
| that the sizes evaluation dominates every possible later use of the |
| values. Restricting to such types here would be safe since there |
| is no possible forward declaration around, but would introduce an |
| undesirable middle-end semantic to anonymity. We then defer to |
| front-ends the responsibility of ensuring that the sizes are |
| evaluated both early and late enough, e.g. by attaching artificial |
| type declarations to the tree. */ |
| break; |
| |
| default: |
| break; |
| } |
| |
| gimplify_one_sizepos (&TYPE_SIZE (type), list_p); |
| gimplify_one_sizepos (&TYPE_SIZE_UNIT (type), list_p); |
| |
| for (t = TYPE_NEXT_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) |
| { |
| TYPE_SIZE (t) = TYPE_SIZE (type); |
| TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (type); |
| TYPE_SIZES_GIMPLIFIED (t) = 1; |
| } |
| } |
| |
| /* A subroutine of gimplify_type_sizes to make sure that *EXPR_P, |
| a size or position, has had all of its SAVE_EXPRs evaluated. |
| We add any required statements to STMT_P. */ |
| |
| void |
| gimplify_one_sizepos (tree *expr_p, tree *stmt_p) |
| { |
| tree type, expr = *expr_p; |
| |
| /* We don't do anything if the value isn't there, is constant, or contains |
| A PLACEHOLDER_EXPR. We also don't want to do anything if it's already |
| a VAR_DECL. If it's a VAR_DECL from another function, the gimplifier |
| will want to replace it with a new variable, but that will cause problems |
| if this type is from outside the function. It's OK to have that here. */ |
| if (expr == NULL_TREE || TREE_CONSTANT (expr) |
| || TREE_CODE (expr) == VAR_DECL |
| || CONTAINS_PLACEHOLDER_P (expr)) |
| return; |
| |
| type = TREE_TYPE (expr); |
| *expr_p = unshare_expr (expr); |
| |
| gimplify_expr (expr_p, stmt_p, NULL, is_gimple_val, fb_rvalue); |
| expr = *expr_p; |
| |
| /* Verify that we've an exact type match with the original expression. |
| In particular, we do not wish to drop a "sizetype" in favour of a |
| type of similar dimensions. We don't want to pollute the generic |
| type-stripping code with this knowledge because it doesn't matter |
| for the bulk of GENERIC/GIMPLE. It only matters that TYPE_SIZE_UNIT |
| and friends retain their "sizetype-ness". */ |
| if (TREE_TYPE (expr) != type |
| && TREE_CODE (type) == INTEGER_TYPE |
| && TYPE_IS_SIZETYPE (type)) |
| { |
| tree tmp; |
| |
| *expr_p = create_tmp_var (type, NULL); |
| tmp = build1 (NOP_EXPR, type, expr); |
| tmp = build2 (MODIFY_EXPR, type, *expr_p, tmp); |
| if (EXPR_HAS_LOCATION (expr)) |
| SET_EXPR_LOCUS (tmp, EXPR_LOCUS (expr)); |
| else |
| SET_EXPR_LOCATION (tmp, input_location); |
| |
| gimplify_and_add (tmp, stmt_p); |
| } |
| } |
| |
| #ifdef ENABLE_CHECKING |
| /* Compare types A and B for a "close enough" match. */ |
| |
| static bool |
| cpt_same_type (tree a, tree b) |
| { |
| if (lang_hooks.types_compatible_p (a, b)) |
| return true; |
| |
| /* ??? The C++ FE decomposes METHOD_TYPES to FUNCTION_TYPES and doesn't |
| link them together. This routine is intended to catch type errors |
| that will affect the optimizers, and the optimizers don't add new |
| dereferences of function pointers, so ignore it. */ |
| if ((TREE_CODE (a) == FUNCTION_TYPE || TREE_CODE (a) == METHOD_TYPE) |
| && (TREE_CODE (b) == FUNCTION_TYPE || TREE_CODE (b) == METHOD_TYPE)) |
| return true; |
| |
| /* ??? The C FE pushes type qualifiers after the fact into the type of |
| the element from the type of the array. See build_unary_op's handling |
| of ADDR_EXPR. This seems wrong -- if we were going to do this, we |
| should have done it when creating the variable in the first place. |
| Alternately, why aren't the two array types made variants? */ |
| if (TREE_CODE (a) == ARRAY_TYPE && TREE_CODE (b) == ARRAY_TYPE) |
| return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b)); |
| |
| /* And because of those, we have to recurse down through pointers. */ |
| if (POINTER_TYPE_P (a) && POINTER_TYPE_P (b)) |
| return cpt_same_type (TREE_TYPE (a), TREE_TYPE (b)); |
| |
| return false; |
| } |
| |
| /* Check for some cases of the front end missing cast expressions. |
| The type of a dereference should correspond to the pointer type; |
| similarly the type of an address should match its object. */ |
| |
| static tree |
| check_pointer_types_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| tree t = *tp; |
| tree ptype, otype, dtype; |
| |
| switch (TREE_CODE (t)) |
| { |
| case INDIRECT_REF: |
| case ARRAY_REF: |
| otype = TREE_TYPE (t); |
| ptype = TREE_TYPE (TREE_OPERAND (t, 0)); |
| dtype = TREE_TYPE (ptype); |
| gcc_assert (cpt_same_type (otype, dtype)); |
| break; |
| |
| case ADDR_EXPR: |
| ptype = TREE_TYPE (t); |
| otype = TREE_TYPE (TREE_OPERAND (t, 0)); |
| dtype = TREE_TYPE (ptype); |
| if (!cpt_same_type (otype, dtype)) |
| { |
| /* &array is allowed to produce a pointer to the element, rather than |
| a pointer to the array type. We must allow this in order to |
| properly represent assigning the address of an array in C into |
| pointer to the element type. */ |
| gcc_assert (TREE_CODE (otype) == ARRAY_TYPE |
| && POINTER_TYPE_P (ptype) |
| && cpt_same_type (TREE_TYPE (otype), dtype)); |
| break; |
| } |
| break; |
| |
| default: |
| return NULL_TREE; |
| } |
| |
| |
| return NULL_TREE; |
| } |
| #endif |
| |
| /* Gimplify the body of statements pointed to by BODY_P. FNDECL is the |
| function decl containing BODY. */ |
| |
| void |
| gimplify_body (tree *body_p, tree fndecl, bool do_parms) |
| { |
| location_t saved_location = input_location; |
| tree body, parm_stmts; |
| |
| timevar_push (TV_TREE_GIMPLIFY); |
| |
| gcc_assert (gimplify_ctxp == NULL); |
| push_gimplify_context (); |
| |
| /* Unshare most shared trees in the body and in that of any nested functions. |
| It would seem we don't have to do this for nested functions because |
| they are supposed to be output and then the outer function gimplified |
| first, but the g++ front end doesn't always do it that way. */ |
| unshare_body (body_p, fndecl); |
| unvisit_body (body_p, fndecl); |
| |
| /* Make sure input_location isn't set to something wierd. */ |
| input_location = DECL_SOURCE_LOCATION (fndecl); |
| |
| /* Resolve callee-copies. This has to be done before processing |
| the body so that DECL_VALUE_EXPR gets processed correctly. */ |
| parm_stmts = do_parms ? gimplify_parameters () : NULL; |
| |
| /* Gimplify the function's body. */ |
| gimplify_stmt (body_p); |
| body = *body_p; |
| |
| if (!body) |
| body = alloc_stmt_list (); |
| else if (TREE_CODE (body) == STATEMENT_LIST) |
| { |
| tree t = expr_only (*body_p); |
| if (t) |
| body = t; |
| } |
| |
| /* If there isn't an outer BIND_EXPR, add one. */ |
| if (TREE_CODE (body) != BIND_EXPR) |
| { |
| tree b = build3 (BIND_EXPR, void_type_node, NULL_TREE, |
| NULL_TREE, NULL_TREE); |
| TREE_SIDE_EFFECTS (b) = 1; |
| append_to_statement_list_force (body, &BIND_EXPR_BODY (b)); |
| body = b; |
| } |
| |
| /* If we had callee-copies statements, insert them at the beginning |
| of the function. */ |
| if (parm_stmts) |
| { |
| append_to_statement_list_force (BIND_EXPR_BODY (body), &parm_stmts); |
| BIND_EXPR_BODY (body) = parm_stmts; |
| } |
| |
| /* Unshare again, in case gimplification was sloppy. */ |
| unshare_all_trees (body); |
| |
| *body_p = body; |
| |
| pop_gimplify_context (body); |
| gcc_assert (gimplify_ctxp == NULL); |
| |
| #ifdef ENABLE_CHECKING |
| walk_tree (body_p, check_pointer_types_r, NULL, NULL); |
| #endif |
| |
| timevar_pop (TV_TREE_GIMPLIFY); |
| input_location = saved_location; |
| } |
| |
| /* Entry point to the gimplification pass. FNDECL is the FUNCTION_DECL |
| node for the function we want to gimplify. */ |
| |
| void |
| gimplify_function_tree (tree fndecl) |
| { |
| tree oldfn, parm, ret; |
| |
| oldfn = current_function_decl; |
| current_function_decl = fndecl; |
| cfun = DECL_STRUCT_FUNCTION (fndecl); |
| if (cfun == NULL) |
| allocate_struct_function (fndecl); |
| |
| for (parm = DECL_ARGUMENTS (fndecl); parm ; parm = TREE_CHAIN (parm)) |
| { |
| /* Preliminarily mark non-addressed complex variables as eligible |
| for promotion to gimple registers. We'll transform their uses |
| as we find them. */ |
| if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE |
| && !TREE_THIS_VOLATILE (parm) |
| && !needs_to_live_in_memory (parm)) |
| DECL_COMPLEX_GIMPLE_REG_P (parm) = 1; |
| } |
| |
| ret = DECL_RESULT (fndecl); |
| if (TREE_CODE (TREE_TYPE (ret)) == COMPLEX_TYPE |
| && !needs_to_live_in_memory (ret)) |
| DECL_COMPLEX_GIMPLE_REG_P (ret) = 1; |
| |
| gimplify_body (&DECL_SAVED_TREE (fndecl), fndecl, true); |
| |
| /* If we're instrumenting function entry/exit, then prepend the call to |
| the entry hook and wrap the whole function in a TRY_FINALLY_EXPR to |
| catch the exit hook. */ |
| /* ??? Add some way to ignore exceptions for this TFE. */ |
| if (flag_instrument_function_entry_exit |
| && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl)) |
| { |
| tree tf, x, bind; |
| |
| tf = build2 (TRY_FINALLY_EXPR, void_type_node, NULL, NULL); |
| TREE_SIDE_EFFECTS (tf) = 1; |
| x = DECL_SAVED_TREE (fndecl); |
| append_to_statement_list (x, &TREE_OPERAND (tf, 0)); |
| x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_EXIT]; |
| x = build_function_call_expr (x, NULL); |
| append_to_statement_list (x, &TREE_OPERAND (tf, 1)); |
| |
| bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL); |
| TREE_SIDE_EFFECTS (bind) = 1; |
| x = implicit_built_in_decls[BUILT_IN_PROFILE_FUNC_ENTER]; |
| x = build_function_call_expr (x, NULL); |
| append_to_statement_list (x, &BIND_EXPR_BODY (bind)); |
| append_to_statement_list (tf, &BIND_EXPR_BODY (bind)); |
| |
| DECL_SAVED_TREE (fndecl) = bind; |
| } |
| |
| current_function_decl = oldfn; |
| cfun = oldfn ? DECL_STRUCT_FUNCTION (oldfn) : NULL; |
| } |
| |
| |
| /* Expands EXPR to list of gimple statements STMTS. If SIMPLE is true, |
| force the result to be either ssa_name or an invariant, otherwise |
| just force it to be a rhs expression. If VAR is not NULL, make the |
| base variable of the final destination be VAR if suitable. */ |
| |
| tree |
| force_gimple_operand (tree expr, tree *stmts, bool simple, tree var) |
| { |
| tree t; |
| enum gimplify_status ret; |
| gimple_predicate gimple_test_f; |
| |
| *stmts = NULL_TREE; |
| |
| if (is_gimple_val (expr)) |
| return expr; |
| |
| gimple_test_f = simple ? is_gimple_val : is_gimple_reg_rhs; |
| |
| push_gimplify_context (); |
| gimplify_ctxp->into_ssa = in_ssa_p; |
| |
| if (var) |
| expr = build2 (MODIFY_EXPR, TREE_TYPE (var), var, expr); |
| |
| ret = gimplify_expr (&expr, stmts, NULL, |
| gimple_test_f, fb_rvalue); |
| gcc_assert (ret != GS_ERROR); |
| |
| if (referenced_vars) |
| { |
| for (t = gimplify_ctxp->temps; t ; t = TREE_CHAIN (t)) |
| add_referenced_var (t); |
| } |
| |
| pop_gimplify_context (NULL); |
| |
| return expr; |
| } |
| |
| /* Invokes force_gimple_operand for EXPR with parameters SIMPLE_P and VAR. If |
| some statements are produced, emits them before BSI. */ |
| |
| tree |
| force_gimple_operand_bsi (block_stmt_iterator *bsi, tree expr, |
| bool simple_p, tree var) |
| { |
| tree stmts; |
| |
| expr = force_gimple_operand (expr, &stmts, simple_p, var); |
| if (stmts) |
| bsi_insert_before (bsi, stmts, BSI_SAME_STMT); |
| |
| return expr; |
| } |
| |
| #include "gt-gimplify.h" |