llvm / llvm-archive / 58b05407658c2569b188facf1d1f15e1c0e95aa4 / . / support / include / llvm / ADT / APInt.h

//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// | |

// | |

// The LLVM Compiler Infrastructure | |

// | |

// This file was developed by Sheng Zhou and is distributed under the | |

// University of Illinois Open Source License. See LICENSE.TXT for details. | |

// | |

//===----------------------------------------------------------------------===// | |

// | |

// This file implements a class to represent arbitrary precision integral | |

// constant values and operations on them. | |

// | |

//===----------------------------------------------------------------------===// | |

#ifndef LLVM_APINT_H | |

#define LLVM_APINT_H | |

#include "llvm/Support/DataTypes.h" | |

#include <cassert> | |

#include <string> | |

#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] | |

namespace llvm { | |

class Serializer; | |

class Deserializer; | |

/* An unsigned host type used as a single part of a multi-part | |

bignum. */ | |

typedef uint64_t integerPart; | |

const unsigned int host_char_bit = 8; | |

const unsigned int integerPartWidth = host_char_bit * sizeof(integerPart); | |

//===----------------------------------------------------------------------===// | |

// APInt Class | |

//===----------------------------------------------------------------------===// | |

/// APInt - This class represents arbitrary precision constant integral values. | |

/// It is a functional replacement for common case unsigned integer type like | |

/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width | |

/// integer sizes and large integer value types such as 3-bits, 15-bits, or more | |

/// than 64-bits of precision. APInt provides a variety of arithmetic operators | |

/// and methods to manipulate integer values of any bit-width. It supports both | |

/// the typical integer arithmetic and comparison operations as well as bitwise | |

/// manipulation. | |

/// | |

/// The class has several invariants worth noting: | |

/// * All bit, byte, and word positions are zero-based. | |

/// * Once the bit width is set, it doesn't change except by the Truncate, | |

/// SignExtend, or ZeroExtend operations. | |

/// * All binary operators must be on APInt instances of the same bit width. | |

/// Attempting to use these operators on instances with different bit | |

/// widths will yield an assertion. | |

/// * The value is stored canonically as an unsigned value. For operations | |

/// where it makes a difference, there are both signed and unsigned variants | |

/// of the operation. For example, sdiv and udiv. However, because the bit | |

/// widths must be the same, operations such as Mul and Add produce the same | |

/// results regardless of whether the values are interpreted as signed or | |

/// not. | |

/// * In general, the class tries to follow the style of computation that LLVM | |

/// uses in its IR. This simplifies its use for LLVM. | |

/// | |

/// @brief Class for arbitrary precision integers. | |

class APInt { | |

uint32_t BitWidth; ///< The number of bits in this APInt. | |

/// This union is used to store the integer value. When the | |

/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. | |

union { | |

uint64_t VAL; ///< Used to store the <= 64 bits integer value. | |

uint64_t *pVal; ///< Used to store the >64 bits integer value. | |

}; | |

/// This enum is used to hold the constants we needed for APInt. | |

enum { | |

APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, ///< Bits in a word | |

APINT_WORD_SIZE = sizeof(uint64_t) ///< Byte size of a word | |

}; | |

/// This constructor is used only internally for speed of construction of | |

/// temporaries. It is unsafe for general use so it is not public. | |

/// @brief Fast internal constructor | |

APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { } | |

/// @returns true if the number of bits <= 64, false otherwise. | |

/// @brief Determine if this APInt just has one word to store value. | |

inline bool isSingleWord() const { | |

return BitWidth <= APINT_BITS_PER_WORD; | |

} | |

/// @returns the word position for the specified bit position. | |

/// @brief Determine which word a bit is in. | |

static inline uint32_t whichWord(uint32_t bitPosition) { | |

return bitPosition / APINT_BITS_PER_WORD; | |

} | |

/// @returns the bit position in a word for the specified bit position | |

/// in the APInt. | |

/// @brief Determine which bit in a word a bit is in. | |

static inline uint32_t whichBit(uint32_t bitPosition) { | |

return bitPosition % APINT_BITS_PER_WORD; | |

} | |

/// This method generates and returns a uint64_t (word) mask for a single | |

/// bit at a specific bit position. This is used to mask the bit in the | |

/// corresponding word. | |

/// @returns a uint64_t with only bit at "whichBit(bitPosition)" set | |

/// @brief Get a single bit mask. | |

static inline uint64_t maskBit(uint32_t bitPosition) { | |

return 1ULL << whichBit(bitPosition); | |

} | |

/// This method is used internally to clear the to "N" bits in the high order | |

/// word that are not used by the APInt. This is needed after the most | |

/// significant word is assigned a value to ensure that those bits are | |

/// zero'd out. | |

/// @brief Clear unused high order bits | |

inline APInt& clearUnusedBits() { | |

// Compute how many bits are used in the final word | |

uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD; | |

if (wordBits == 0) | |

// If all bits are used, we want to leave the value alone. This also | |

// avoids the undefined behavior of >> when the shfit is the same size as | |

// the word size (64). | |

return *this; | |

// Mask out the hight bits. | |

uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); | |

if (isSingleWord()) | |

VAL &= mask; | |

else | |

pVal[getNumWords() - 1] &= mask; | |

return *this; | |

} | |

/// @returns the corresponding word for the specified bit position. | |

/// @brief Get the word corresponding to a bit position | |

inline uint64_t getWord(uint32_t bitPosition) const { | |

return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; | |

} | |

/// This is used by the constructors that take string arguments. | |

/// @brief Convert a char array into an APInt | |

void fromString(uint32_t numBits, const char *strStart, uint32_t slen, | |

uint8_t radix); | |

/// This is used by the toString method to divide by the radix. It simply | |

/// provides a more convenient form of divide for internal use since KnuthDiv | |

/// has specific constraints on its inputs. If those constraints are not met | |

/// then it provides a simpler form of divide. | |

/// @brief An internal division function for dividing APInts. | |

static void divide(const APInt LHS, uint32_t lhsWords, | |

const APInt &RHS, uint32_t rhsWords, | |

APInt *Quotient, APInt *Remainder); | |

public: | |

/// @name Constructors | |

/// @{ | |

/// If isSigned is true then val is treated as if it were a signed value | |

/// (i.e. as an int64_t) and the appropriate sign extension to the bit width | |

/// will be done. Otherwise, no sign extension occurs (high order bits beyond | |

/// the range of val are zero filled). | |

/// @param numBits the bit width of the constructed APInt | |

/// @param val the initial value of the APInt | |

/// @param isSigned how to treat signedness of val | |

/// @brief Create a new APInt of numBits width, initialized as val. | |

APInt(uint32_t numBits, uint64_t val, bool isSigned = false); | |

/// Note that numWords can be smaller or larger than the corresponding bit | |

/// width but any extraneous bits will be dropped. | |

/// @param numBits the bit width of the constructed APInt | |

/// @param numWords the number of words in bigVal | |

/// @param bigVal a sequence of words to form the initial value of the APInt | |

/// @brief Construct an APInt of numBits width, initialized as bigVal[]. | |

APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]); | |

/// This constructor interprets Val as a string in the given radix. The | |

/// interpretation stops when the first charater that is not suitable for the | |

/// radix is encountered. Acceptable radix values are 2, 8, 10 and 16. It is | |

/// an error for the value implied by the string to require more bits than | |

/// numBits. | |

/// @param numBits the bit width of the constructed APInt | |

/// @param val the string to be interpreted | |

/// @param radix the radix of Val to use for the intepretation | |

/// @brief Construct an APInt from a string representation. | |

APInt(uint32_t numBits, const std::string& val, uint8_t radix); | |

/// This constructor interprets the slen characters starting at StrStart as | |

/// a string in the given radix. The interpretation stops when the first | |

/// character that is not suitable for the radix is encountered. Acceptable | |

/// radix values are 2, 8, 10 and 16. It is an error for the value implied by | |

/// the string to require more bits than numBits. | |

/// @param numBits the bit width of the constructed APInt | |

/// @param strStart the start of the string to be interpreted | |

/// @param slen the maximum number of characters to interpret | |

/// @param radix the radix to use for the conversion | |

/// @brief Construct an APInt from a string representation. | |

APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix); | |

/// Simply makes *this a copy of that. | |

/// @brief Copy Constructor. | |

APInt(const APInt& that); | |

/// @brief Destructor. | |

~APInt(); | |

/// Default constructor that creates an uninitialized APInt. This is useful | |

/// for object deserialization (pair this with the static method Read). | |

explicit APInt() : BitWidth(1) {} | |

/// @brief Used by the Bitcode serializer to emit APInts to Bitcode. | |

void Emit(Serializer& S) const; | |

/// @brief Used by the Bitcode deserializer to deserialize APInts. | |

void Read(Deserializer& D); | |

/// @} | |

/// @name Value Tests | |

/// @{ | |

/// This tests the high bit of this APInt to determine if it is set. | |

/// @returns true if this APInt is negative, false otherwise | |

/// @brief Determine sign of this APInt. | |

bool isNegative() const { | |

return (*this)[BitWidth - 1]; | |

} | |

/// This tests the high bit of the APInt to determine if it is unset. | |

/// @brief Determine if this APInt Value is positive (not negative). | |

bool isPositive() const { | |

return !isNegative(); | |

} | |

/// This tests if the value of this APInt is strictly positive (> 0). | |

/// @returns true if this APInt is Positive and not zero. | |

/// @brief Determine if this APInt Value is strictly positive. | |

inline bool isStrictlyPositive() const { | |

return isPositive() && (*this) != 0; | |

} | |

/// This checks to see if the value has all bits of the APInt are set or not. | |

/// @brief Determine if all bits are set | |

inline bool isAllOnesValue() const { | |

return countPopulation() == BitWidth; | |

} | |

/// This checks to see if the value of this APInt is the maximum unsigned | |

/// value for the APInt's bit width. | |

/// @brief Determine if this is the largest unsigned value. | |

bool isMaxValue() const { | |

return countPopulation() == BitWidth; | |

} | |

/// This checks to see if the value of this APInt is the maximum signed | |

/// value for the APInt's bit width. | |

/// @brief Determine if this is the largest signed value. | |

bool isMaxSignedValue() const { | |

return BitWidth == 1 ? VAL == 0 : | |

!isNegative() && countPopulation() == BitWidth - 1; | |

} | |

/// This checks to see if the value of this APInt is the minimum unsigned | |

/// value for the APInt's bit width. | |

/// @brief Determine if this is the smallest unsigned value. | |

bool isMinValue() const { | |

return countPopulation() == 0; | |

} | |

/// This checks to see if the value of this APInt is the minimum signed | |

/// value for the APInt's bit width. | |

/// @brief Determine if this is the smallest signed value. | |

bool isMinSignedValue() const { | |

return BitWidth == 1 ? VAL == 1 : | |

isNegative() && countPopulation() == 1; | |

} | |

/// @brief Check if this APInt has an N-bits integer value. | |

inline bool isIntN(uint32_t N) const { | |

assert(N && "N == 0 ???"); | |

if (isSingleWord()) { | |

return VAL == (VAL & (~0ULL >> (64 - N))); | |

} else { | |

APInt Tmp(N, getNumWords(), pVal); | |

return Tmp == (*this); | |

} | |

} | |

/// @returns true if the argument APInt value is a power of two > 0. | |

bool isPowerOf2() const; | |

/// isSignBit - Return true if this is the value returned by getSignBit. | |

bool isSignBit() const { return isMinSignedValue(); } | |

/// This converts the APInt to a boolean value as a test against zero. | |

/// @brief Boolean conversion function. | |

inline bool getBoolValue() const { | |

return *this != 0; | |

} | |

/// getLimitedValue - If this value is smaller than the specified limit, | |

/// return it, otherwise return the limit value. This causes the value | |

/// to saturate to the limit. | |

uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { | |

return (getActiveBits() > 64 || getZExtValue() > Limit) ? | |

Limit : getZExtValue(); | |

} | |

/// @} | |

/// @name Value Generators | |

/// @{ | |

/// @brief Gets maximum unsigned value of APInt for specific bit width. | |

static APInt getMaxValue(uint32_t numBits) { | |

return APInt(numBits, 0).set(); | |

} | |

/// @brief Gets maximum signed value of APInt for a specific bit width. | |

static APInt getSignedMaxValue(uint32_t numBits) { | |

return APInt(numBits, 0).set().clear(numBits - 1); | |

} | |

/// @brief Gets minimum unsigned value of APInt for a specific bit width. | |

static APInt getMinValue(uint32_t numBits) { | |

return APInt(numBits, 0); | |

} | |

/// @brief Gets minimum signed value of APInt for a specific bit width. | |

static APInt getSignedMinValue(uint32_t numBits) { | |

return APInt(numBits, 0).set(numBits - 1); | |

} | |

/// getSignBit - This is just a wrapper function of getSignedMinValue(), and | |

/// it helps code readability when we want to get a SignBit. | |

/// @brief Get the SignBit for a specific bit width. | |

inline static APInt getSignBit(uint32_t BitWidth) { | |

return getSignedMinValue(BitWidth); | |

} | |

/// @returns the all-ones value for an APInt of the specified bit-width. | |

/// @brief Get the all-ones value. | |

static APInt getAllOnesValue(uint32_t numBits) { | |

return APInt(numBits, 0).set(); | |

} | |

/// @returns the '0' value for an APInt of the specified bit-width. | |

/// @brief Get the '0' value. | |

static APInt getNullValue(uint32_t numBits) { | |

return APInt(numBits, 0); | |

} | |

/// Get an APInt with the same BitWidth as this APInt, just zero mask | |

/// the low bits and right shift to the least significant bit. | |

/// @returns the high "numBits" bits of this APInt. | |

APInt getHiBits(uint32_t numBits) const; | |

/// Get an APInt with the same BitWidth as this APInt, just zero mask | |

/// the high bits. | |

/// @returns the low "numBits" bits of this APInt. | |

APInt getLoBits(uint32_t numBits) const; | |

/// Constructs an APInt value that has a contiguous range of bits set. The | |

/// bits from loBit to hiBit will be set. All other bits will be zero. For | |

/// example, with parameters(32, 15, 0) you would get 0x0000FFFF. If hiBit is | |

/// less than loBit then the set bits "wrap". For example, with | |

/// parameters (32, 3, 28), you would get 0xF000000F. | |

/// @param numBits the intended bit width of the result | |

/// @param loBit the index of the lowest bit set. | |

/// @param hiBit the index of the highest bit set. | |

/// @returns An APInt value with the requested bits set. | |

/// @brief Get a value with a block of bits set. | |

static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) { | |

assert(hiBit < numBits && "hiBit out of range"); | |

assert(loBit < numBits && "loBit out of range"); | |

if (hiBit < loBit) | |

return getLowBitsSet(numBits, hiBit+1) | | |

getHighBitsSet(numBits, numBits-loBit+1); | |

return getLowBitsSet(numBits, hiBit-loBit+1).shl(loBit); | |

} | |

/// Constructs an APInt value that has the top hiBitsSet bits set. | |

/// @param numBits the bitwidth of the result | |

/// @param hiBitsSet the number of high-order bits set in the result. | |

/// @brief Get a value with high bits set | |

static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) { | |

assert(hiBitsSet <= numBits && "Too many bits to set!"); | |

// Handle a degenerate case, to avoid shifting by word size | |

if (hiBitsSet == 0) | |

return APInt(numBits, 0); | |

uint32_t shiftAmt = numBits - hiBitsSet; | |

// For small values, return quickly | |

if (numBits <= APINT_BITS_PER_WORD) | |

return APInt(numBits, ~0ULL << shiftAmt); | |

return (~APInt(numBits, 0)).shl(shiftAmt); | |

} | |

/// Constructs an APInt value that has the bottom loBitsSet bits set. | |

/// @param numBits the bitwidth of the result | |

/// @param loBitsSet the number of low-order bits set in the result. | |

/// @brief Get a value with low bits set | |

static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) { | |

assert(loBitsSet <= numBits && "Too many bits to set!"); | |

// Handle a degenerate case, to avoid shifting by word size | |

if (loBitsSet == 0) | |

return APInt(numBits, 0); | |

if (loBitsSet == APINT_BITS_PER_WORD) | |

return APInt(numBits, -1ULL); | |

// For small values, return quickly | |

if (numBits < APINT_BITS_PER_WORD) | |

return APInt(numBits, (1ULL << loBitsSet) - 1); | |

return (~APInt(numBits, 0)).lshr(numBits - loBitsSet); | |

} | |

/// The hash value is computed as the sum of the words and the bit width. | |

/// @returns A hash value computed from the sum of the APInt words. | |

/// @brief Get a hash value based on this APInt | |

uint64_t getHashValue() const; | |

/// This function returns a pointer to the internal storage of the APInt. | |

/// This is useful for writing out the APInt in binary form without any | |

/// conversions. | |

inline const uint64_t* getRawData() const { | |

if (isSingleWord()) | |

return &VAL; | |

return &pVal[0]; | |

} | |

/// @} | |

/// @name Unary Operators | |

/// @{ | |

/// @returns a new APInt value representing *this incremented by one | |

/// @brief Postfix increment operator. | |

inline const APInt operator++(int) { | |

APInt API(*this); | |

++(*this); | |

return API; | |

} | |

/// @returns *this incremented by one | |

/// @brief Prefix increment operator. | |

APInt& operator++(); | |

/// @returns a new APInt representing *this decremented by one. | |

/// @brief Postfix decrement operator. | |

inline const APInt operator--(int) { | |

APInt API(*this); | |

--(*this); | |

return API; | |

} | |

/// @returns *this decremented by one. | |

/// @brief Prefix decrement operator. | |

APInt& operator--(); | |

/// Performs a bitwise complement operation on this APInt. | |

/// @returns an APInt that is the bitwise complement of *this | |

/// @brief Unary bitwise complement operator. | |

APInt operator~() const; | |

/// Negates *this using two's complement logic. | |

/// @returns An APInt value representing the negation of *this. | |

/// @brief Unary negation operator | |

inline APInt operator-() const { | |

return APInt(BitWidth, 0) - (*this); | |

} | |

/// Performs logical negation operation on this APInt. | |

/// @returns true if *this is zero, false otherwise. | |

/// @brief Logical negation operator. | |

bool operator !() const; | |

/// @} | |

/// @name Assignment Operators | |

/// @{ | |

/// @returns *this after assignment of RHS. | |

/// @brief Copy assignment operator. | |

APInt& operator=(const APInt& RHS); | |

/// The RHS value is assigned to *this. If the significant bits in RHS exceed | |

/// the bit width, the excess bits are truncated. If the bit width is larger | |

/// than 64, the value is zero filled in the unspecified high order bits. | |

/// @returns *this after assignment of RHS value. | |

/// @brief Assignment operator. | |

APInt& operator=(uint64_t RHS); | |

/// Performs a bitwise AND operation on this APInt and RHS. The result is | |

/// assigned to *this. | |

/// @returns *this after ANDing with RHS. | |

/// @brief Bitwise AND assignment operator. | |

APInt& operator&=(const APInt& RHS); | |

/// Performs a bitwise OR operation on this APInt and RHS. The result is | |

/// assigned *this; | |

/// @returns *this after ORing with RHS. | |

/// @brief Bitwise OR assignment operator. | |

APInt& operator|=(const APInt& RHS); | |

/// Performs a bitwise XOR operation on this APInt and RHS. The result is | |

/// assigned to *this. | |

/// @returns *this after XORing with RHS. | |

/// @brief Bitwise XOR assignment operator. | |

APInt& operator^=(const APInt& RHS); | |

/// Multiplies this APInt by RHS and assigns the result to *this. | |

/// @returns *this | |

/// @brief Multiplication assignment operator. | |

APInt& operator*=(const APInt& RHS); | |

/// Adds RHS to *this and assigns the result to *this. | |

/// @returns *this | |

/// @brief Addition assignment operator. | |

APInt& operator+=(const APInt& RHS); | |

/// Subtracts RHS from *this and assigns the result to *this. | |

/// @returns *this | |

/// @brief Subtraction assignment operator. | |

APInt& operator-=(const APInt& RHS); | |

/// Shifts *this left by shiftAmt and assigns the result to *this. | |

/// @returns *this after shifting left by shiftAmt | |

/// @brief Left-shift assignment function. | |

inline APInt& operator<<=(uint32_t shiftAmt) { | |

*this = shl(shiftAmt); | |

return *this; | |

} | |

/// @} | |

/// @name Binary Operators | |

/// @{ | |

/// Performs a bitwise AND operation on *this and RHS. | |

/// @returns An APInt value representing the bitwise AND of *this and RHS. | |

/// @brief Bitwise AND operator. | |

APInt operator&(const APInt& RHS) const; | |

APInt And(const APInt& RHS) const { | |

return this->operator&(RHS); | |

} | |

/// Performs a bitwise OR operation on *this and RHS. | |

/// @returns An APInt value representing the bitwise OR of *this and RHS. | |

/// @brief Bitwise OR operator. | |

APInt operator|(const APInt& RHS) const; | |

APInt Or(const APInt& RHS) const { | |

return this->operator|(RHS); | |

} | |

/// Performs a bitwise XOR operation on *this and RHS. | |

/// @returns An APInt value representing the bitwise XOR of *this and RHS. | |

/// @brief Bitwise XOR operator. | |

APInt operator^(const APInt& RHS) const; | |

APInt Xor(const APInt& RHS) const { | |

return this->operator^(RHS); | |

} | |

/// Multiplies this APInt by RHS and returns the result. | |

/// @brief Multiplication operator. | |

APInt operator*(const APInt& RHS) const; | |

/// Adds RHS to this APInt and returns the result. | |

/// @brief Addition operator. | |

APInt operator+(const APInt& RHS) const; | |

APInt operator+(uint64_t RHS) const { | |

return (*this) + APInt(BitWidth, RHS); | |

} | |

/// Subtracts RHS from this APInt and returns the result. | |

/// @brief Subtraction operator. | |

APInt operator-(const APInt& RHS) const; | |

APInt operator-(uint64_t RHS) const { | |

return (*this) - APInt(BitWidth, RHS); | |

} | |

APInt operator<<(unsigned Bits) const { | |

return shl(Bits); | |

} | |

/// Arithmetic right-shift this APInt by shiftAmt. | |

/// @brief Arithmetic right-shift function. | |

APInt ashr(uint32_t shiftAmt) const; | |

/// Logical right-shift this APInt by shiftAmt. | |

/// @brief Logical right-shift function. | |

APInt lshr(uint32_t shiftAmt) const; | |

/// Left-shift this APInt by shiftAmt. | |

/// @brief Left-shift function. | |

APInt shl(uint32_t shiftAmt) const; | |

/// @brief Rotate left by rotateAmt. | |

APInt rotl(uint32_t rotateAmt) const; | |

/// @brief Rotate right by rotateAmt. | |

APInt rotr(uint32_t rotateAmt) const; | |

/// Perform an unsigned divide operation on this APInt by RHS. Both this and | |

/// RHS are treated as unsigned quantities for purposes of this division. | |

/// @returns a new APInt value containing the division result | |

/// @brief Unsigned division operation. | |

APInt udiv(const APInt& RHS) const; | |

/// Signed divide this APInt by APInt RHS. | |

/// @brief Signed division function for APInt. | |

inline APInt sdiv(const APInt& RHS) const { | |

if (isNegative()) | |

if (RHS.isNegative()) | |

return (-(*this)).udiv(-RHS); | |

else | |

return -((-(*this)).udiv(RHS)); | |

else if (RHS.isNegative()) | |

return -(this->udiv(-RHS)); | |

return this->udiv(RHS); | |

} | |

/// Perform an unsigned remainder operation on this APInt with RHS being the | |

/// divisor. Both this and RHS are treated as unsigned quantities for purposes | |

/// of this operation. Note that this is a true remainder operation and not | |

/// a modulo operation because the sign follows the sign of the dividend | |

/// which is *this. | |

/// @returns a new APInt value containing the remainder result | |

/// @brief Unsigned remainder operation. | |

APInt urem(const APInt& RHS) const; | |

/// Signed remainder operation on APInt. | |

/// @brief Function for signed remainder operation. | |

inline APInt srem(const APInt& RHS) const { | |

if (isNegative()) | |

if (RHS.isNegative()) | |

return -((-(*this)).urem(-RHS)); | |

else | |

return -((-(*this)).urem(RHS)); | |

else if (RHS.isNegative()) | |

return this->urem(-RHS); | |

return this->urem(RHS); | |

} | |

/// Sometimes it is convenient to divide two APInt values and obtain both | |

/// the quotient and remainder. This function does both operations in the | |

/// same computation making it a little more efficient. | |

/// @brief Dual division/remainder interface. | |

static void udivrem(const APInt &LHS, const APInt &RHS, | |

APInt &Quotient, APInt &Remainder); | |

static void sdivrem(const APInt &LHS, const APInt &RHS, | |

APInt &Quotient, APInt &Remainder) | |

{ | |

if (LHS.isNegative()) { | |

if (RHS.isNegative()) | |

APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | |

else | |

APInt::udivrem(-LHS, RHS, Quotient, Remainder); | |

Quotient = -Quotient; | |

Remainder = -Remainder; | |

} else if (RHS.isNegative()) { | |

APInt::udivrem(LHS, -RHS, Quotient, Remainder); | |

Quotient = -Quotient; | |

} else { | |

APInt::udivrem(LHS, RHS, Quotient, Remainder); | |

} | |

} | |

/// @returns the bit value at bitPosition | |

/// @brief Array-indexing support. | |

bool operator[](uint32_t bitPosition) const; | |

/// @} | |

/// @name Comparison Operators | |

/// @{ | |

/// Compares this APInt with RHS for the validity of the equality | |

/// relationship. | |

/// @brief Equality operator. | |

bool operator==(const APInt& RHS) const; | |

/// Compares this APInt with a uint64_t for the validity of the equality | |

/// relationship. | |

/// @returns true if *this == Val | |

/// @brief Equality operator. | |

bool operator==(uint64_t Val) const; | |

/// Compares this APInt with RHS for the validity of the equality | |

/// relationship. | |

/// @returns true if *this == Val | |

/// @brief Equality comparison. | |

bool eq(const APInt &RHS) const { | |

return (*this) == RHS; | |

} | |

/// Compares this APInt with RHS for the validity of the inequality | |

/// relationship. | |

/// @returns true if *this != Val | |

/// @brief Inequality operator. | |

inline bool operator!=(const APInt& RHS) const { | |

return !((*this) == RHS); | |

} | |

/// Compares this APInt with a uint64_t for the validity of the inequality | |

/// relationship. | |

/// @returns true if *this != Val | |

/// @brief Inequality operator. | |

inline bool operator!=(uint64_t Val) const { | |

return !((*this) == Val); | |

} | |

/// Compares this APInt with RHS for the validity of the inequality | |

/// relationship. | |

/// @returns true if *this != Val | |

/// @brief Inequality comparison | |

bool ne(const APInt &RHS) const { | |

return !((*this) == RHS); | |

} | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// the validity of the less-than relationship. | |

/// @returns true if *this < RHS when both are considered unsigned. | |

/// @brief Unsigned less than comparison | |

bool ult(const APInt& RHS) const; | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the less-than relationship. | |

/// @returns true if *this < RHS when both are considered signed. | |

/// @brief Signed less than comparison | |

bool slt(const APInt& RHS) const; | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// validity of the less-or-equal relationship. | |

/// @returns true if *this <= RHS when both are considered unsigned. | |

/// @brief Unsigned less or equal comparison | |

bool ule(const APInt& RHS) const { | |

return ult(RHS) || eq(RHS); | |

} | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the less-or-equal relationship. | |

/// @returns true if *this <= RHS when both are considered signed. | |

/// @brief Signed less or equal comparison | |

bool sle(const APInt& RHS) const { | |

return slt(RHS) || eq(RHS); | |

} | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// the validity of the greater-than relationship. | |

/// @returns true if *this > RHS when both are considered unsigned. | |

/// @brief Unsigned greather than comparison | |

bool ugt(const APInt& RHS) const { | |

return !ult(RHS) && !eq(RHS); | |

} | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// the validity of the greater-than relationship. | |

/// @returns true if *this > RHS when both are considered signed. | |

/// @brief Signed greather than comparison | |

bool sgt(const APInt& RHS) const { | |

return !slt(RHS) && !eq(RHS); | |

} | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// validity of the greater-or-equal relationship. | |

/// @returns true if *this >= RHS when both are considered unsigned. | |

/// @brief Unsigned greater or equal comparison | |

bool uge(const APInt& RHS) const { | |

return !ult(RHS); | |

} | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the greater-or-equal relationship. | |

/// @returns true if *this >= RHS when both are considered signed. | |

/// @brief Signed greather or equal comparison | |

bool sge(const APInt& RHS) const { | |

return !slt(RHS); | |

} | |

/// @} | |

/// @name Resizing Operators | |

/// @{ | |

/// Truncate the APInt to a specified width. It is an error to specify a width | |

/// that is greater than or equal to the current width. | |

/// @brief Truncate to new width. | |

APInt &trunc(uint32_t width); | |

/// This operation sign extends the APInt to a new width. If the high order | |

/// bit is set, the fill on the left will be done with 1 bits, otherwise zero. | |

/// It is an error to specify a width that is less than or equal to the | |

/// current width. | |

/// @brief Sign extend to a new width. | |

APInt &sext(uint32_t width); | |

/// This operation zero extends the APInt to a new width. The high order bits | |

/// are filled with 0 bits. It is an error to specify a width that is less | |

/// than or equal to the current width. | |

/// @brief Zero extend to a new width. | |

APInt &zext(uint32_t width); | |

/// Make this APInt have the bit width given by \p width. The value is sign | |

/// extended, truncated, or left alone to make it that width. | |

/// @brief Sign extend or truncate to width | |

APInt &sextOrTrunc(uint32_t width); | |

/// Make this APInt have the bit width given by \p width. The value is zero | |

/// extended, truncated, or left alone to make it that width. | |

/// @brief Zero extend or truncate to width | |

APInt &zextOrTrunc(uint32_t width); | |

/// @} | |

/// @name Bit Manipulation Operators | |

/// @{ | |

/// @brief Set every bit to 1. | |

APInt& set(); | |

/// Set the given bit to 1 whose position is given as "bitPosition". | |

/// @brief Set a given bit to 1. | |

APInt& set(uint32_t bitPosition); | |

/// @brief Set every bit to 0. | |

APInt& clear(); | |

/// Set the given bit to 0 whose position is given as "bitPosition". | |

/// @brief Set a given bit to 0. | |

APInt& clear(uint32_t bitPosition); | |

/// @brief Toggle every bit to its opposite value. | |

APInt& flip(); | |

/// Toggle a given bit to its opposite value whose position is given | |

/// as "bitPosition". | |

/// @brief Toggles a given bit to its opposite value. | |

APInt& flip(uint32_t bitPosition); | |

/// @} | |

/// @name Value Characterization Functions | |

/// @{ | |

/// @returns the total number of bits. | |

inline uint32_t getBitWidth() const { | |

return BitWidth; | |

} | |

/// Here one word's bitwidth equals to that of uint64_t. | |

/// @returns the number of words to hold the integer value of this APInt. | |

/// @brief Get the number of words. | |

inline uint32_t getNumWords() const { | |

return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | |

} | |

/// This function returns the number of active bits which is defined as the | |

/// bit width minus the number of leading zeros. This is used in several | |

/// computations to see how "wide" the value is. | |

/// @brief Compute the number of active bits in the value | |

inline uint32_t getActiveBits() const { | |

return BitWidth - countLeadingZeros(); | |

} | |

/// This function returns the number of active words in the value of this | |

/// APInt. This is used in conjunction with getActiveData to extract the raw | |

/// value of the APInt. | |

inline uint32_t getActiveWords() const { | |

return whichWord(getActiveBits()-1) + 1; | |

} | |

/// Computes the minimum bit width for this APInt while considering it to be | |

/// a signed (and probably negative) value. If the value is not negative, | |

/// this function returns the same value as getActiveBits(). Otherwise, it | |

/// returns the smallest bit width that will retain the negative value. For | |

/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so | |

/// for -1, this function will always return 1. | |

/// @brief Get the minimum bit size for this signed APInt | |

inline uint32_t getMinSignedBits() const { | |

if (isNegative()) | |

return BitWidth - countLeadingOnes() + 1; | |

return getActiveBits()+1; | |

} | |

/// This method attempts to return the value of this APInt as a zero extended | |

/// uint64_t. The bitwidth must be <= 64 or the value must fit within a | |

/// uint64_t. Otherwise an assertion will result. | |

/// @brief Get zero extended value | |

inline uint64_t getZExtValue() const { | |

if (isSingleWord()) | |

return VAL; | |

assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); | |

return pVal[0]; | |

} | |

/// This method attempts to return the value of this APInt as a sign extended | |

/// int64_t. The bit width must be <= 64 or the value must fit within an | |

/// int64_t. Otherwise an assertion will result. | |

/// @brief Get sign extended value | |

inline int64_t getSExtValue() const { | |

if (isSingleWord()) | |

return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> | |

(APINT_BITS_PER_WORD - BitWidth); | |

assert(getActiveBits() <= 64 && "Too many bits for int64_t"); | |

return int64_t(pVal[0]); | |

} | |

/// This method determines how many bits are required to hold the APInt | |

/// equivalent of the string given by \p str of length \p slen. | |

/// @brief Get bits required for string value. | |

static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix); | |

/// countLeadingZeros - This function is an APInt version of the | |

/// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number | |

/// of zeros from the most significant bit to the first one bit. | |

/// @returns BitWidth if the value is zero. | |

/// @returns the number of zeros from the most significant bit to the first | |

/// one bits. | |

uint32_t countLeadingZeros() const; | |

/// countLeadingOnes - This function counts the number of contiguous 1 bits | |

/// in the high order bits. The count stops when the first 0 bit is reached. | |

/// @returns 0 if the high order bit is not set | |

/// @returns the number of 1 bits from the most significant to the least | |

/// @brief Count the number of leading one bits. | |

uint32_t countLeadingOnes() const; | |

/// countTrailingZeros - This function is an APInt version of the | |

/// countTrailingZoers_{32,64} functions in MathExtras.h. It counts | |

/// the number of zeros from the least significant bit to the first set bit. | |

/// @returns BitWidth if the value is zero. | |

/// @returns the number of zeros from the least significant bit to the first | |

/// one bit. | |

/// @brief Count the number of trailing zero bits. | |

uint32_t countTrailingZeros() const; | |

/// countPopulation - This function is an APInt version of the | |

/// countPopulation_{32,64} functions in MathExtras.h. It counts the number | |

/// of 1 bits in the APInt value. | |

/// @returns 0 if the value is zero. | |

/// @returns the number of set bits. | |

/// @brief Count the number of bits set. | |

uint32_t countPopulation() const; | |

/// @} | |

/// @name Conversion Functions | |

/// @{ | |

/// This is used internally to convert an APInt to a string. | |

/// @brief Converts an APInt to a std::string | |

std::string toString(uint8_t radix, bool wantSigned) const; | |

/// Considers the APInt to be unsigned and converts it into a string in the | |

/// radix given. The radix can be 2, 8, 10 or 16. | |

/// @returns a character interpretation of the APInt | |

/// @brief Convert unsigned APInt to string representation. | |

inline std::string toStringUnsigned(uint8_t radix = 10) const { | |

return toString(radix, false); | |

} | |

/// Considers the APInt to be unsigned and converts it into a string in the | |

/// radix given. The radix can be 2, 8, 10 or 16. | |

/// @returns a character interpretation of the APInt | |

/// @brief Convert unsigned APInt to string representation. | |

inline std::string toStringSigned(uint8_t radix = 10) const { | |

return toString(radix, true); | |

} | |

/// @returns a byte-swapped representation of this APInt Value. | |

APInt byteSwap() const; | |

/// @brief Converts this APInt to a double value. | |

double roundToDouble(bool isSigned) const; | |

/// @brief Converts this unsigned APInt to a double value. | |

double roundToDouble() const { | |

return roundToDouble(false); | |

} | |

/// @brief Converts this signed APInt to a double value. | |

double signedRoundToDouble() const { | |

return roundToDouble(true); | |

} | |

/// The conversion does not do a translation from integer to double, it just | |

/// re-interprets the bits as a double. Note that it is valid to do this on | |

/// any bit width. Exactly 64 bits will be translated. | |

/// @brief Converts APInt bits to a double | |

double bitsToDouble() const { | |

union { | |

uint64_t I; | |

double D; | |

} T; | |

T.I = (isSingleWord() ? VAL : pVal[0]); | |

return T.D; | |

} | |

/// The conversion does not do a translation from integer to float, it just | |

/// re-interprets the bits as a float. Note that it is valid to do this on | |

/// any bit width. Exactly 32 bits will be translated. | |

/// @brief Converts APInt bits to a double | |

float bitsToFloat() const { | |

union { | |

uint32_t I; | |

float F; | |

} T; | |

T.I = uint32_t((isSingleWord() ? VAL : pVal[0])); | |

return T.F; | |

} | |

/// The conversion does not do a translation from double to integer, it just | |

/// re-interprets the bits of the double. Note that it is valid to do this on | |

/// any bit width but bits from V may get truncated. | |

/// @brief Converts a double to APInt bits. | |

APInt& doubleToBits(double V) { | |

union { | |

uint64_t I; | |

double D; | |

} T; | |

T.D = V; | |

if (isSingleWord()) | |

VAL = T.I; | |

else | |

pVal[0] = T.I; | |

return clearUnusedBits(); | |

} | |

/// The conversion does not do a translation from float to integer, it just | |

/// re-interprets the bits of the float. Note that it is valid to do this on | |

/// any bit width but bits from V may get truncated. | |

/// @brief Converts a float to APInt bits. | |

APInt& floatToBits(float V) { | |

union { | |

uint32_t I; | |

float F; | |

} T; | |

T.F = V; | |

if (isSingleWord()) | |

VAL = T.I; | |

else | |

pVal[0] = T.I; | |

return clearUnusedBits(); | |

} | |

/// @} | |

/// @name Mathematics Operations | |

/// @{ | |

/// @returns the floor log base 2 of this APInt. | |

inline uint32_t logBase2() const { | |

return BitWidth - 1 - countLeadingZeros(); | |

} | |

/// @returns the log base 2 of this APInt if its an exact power of two, -1 | |

/// otherwise | |

inline int32_t exactLogBase2() const { | |

if (!isPowerOf2()) | |

return -1; | |

return logBase2(); | |

} | |

/// @brief Compute the square root | |

APInt sqrt() const; | |

/// If *this is < 0 then return -(*this), otherwise *this; | |

/// @brief Get the absolute value; | |

APInt abs() const { | |

if (isNegative()) | |

return -(*this); | |

return *this; | |

} | |

/// @} | |

/// @} | |

/// @name Building-block Operations for APInt and APFloat | |

/// @{ | |

// These building block operations operate on a representation of | |

// arbitrary precision, two's-complement, bignum integer values. | |

// They should be sufficient to implement APInt and APFloat bignum | |

// requirements. Inputs are generally a pointer to the base of an | |

// array of integer parts, representing an unsigned bignum, and a | |

// count of how many parts there are. | |

/// Sets the least significant part of a bignum to the input value, | |

/// and zeroes out higher parts. */ | |

static void tcSet(integerPart *, integerPart, unsigned int); | |

/// Assign one bignum to another. | |

static void tcAssign(integerPart *, const integerPart *, unsigned int); | |

/// Returns true if a bignum is zero, false otherwise. | |

static bool tcIsZero(const integerPart *, unsigned int); | |

/// Extract the given bit of a bignum; returns 0 or 1. Zero-based. | |

static int tcExtractBit(const integerPart *, unsigned int bit); | |

/// Copy the bit vector of width srcBITS from SRC, starting at bit | |

/// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB | |

/// becomes the least significant bit of DST. All high bits above | |

/// srcBITS in DST are zero-filled. | |

static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *, | |

unsigned int srcBits, unsigned int srcLSB); | |

/// Set the given bit of a bignum. Zero-based. | |

static void tcSetBit(integerPart *, unsigned int bit); | |

/// Returns the bit number of the least or most significant set bit | |

/// of a number. If the input number has no bits set -1U is | |

/// returned. | |

static unsigned int tcLSB(const integerPart *, unsigned int); | |

static unsigned int tcMSB(const integerPart *, unsigned int); | |

/// Negate a bignum in-place. | |

static void tcNegate(integerPart *, unsigned int); | |

/// DST += RHS + CARRY where CARRY is zero or one. Returns the | |

/// carry flag. | |

static integerPart tcAdd(integerPart *, const integerPart *, | |

integerPart carry, unsigned); | |

/// DST -= RHS + CARRY where CARRY is zero or one. Returns the | |

/// carry flag. | |

static integerPart tcSubtract(integerPart *, const integerPart *, | |

integerPart carry, unsigned); | |

/// DST += SRC * MULTIPLIER + PART if add is true | |

/// DST = SRC * MULTIPLIER + PART if add is false | |

/// | |

/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC | |

/// they must start at the same point, i.e. DST == SRC. | |

/// | |

/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is | |

/// returned. Otherwise DST is filled with the least significant | |

/// DSTPARTS parts of the result, and if all of the omitted higher | |

/// parts were zero return zero, otherwise overflow occurred and | |

/// return one. | |

static int tcMultiplyPart(integerPart *dst, const integerPart *src, | |

integerPart multiplier, integerPart carry, | |

unsigned int srcParts, unsigned int dstParts, | |

bool add); | |

/// DST = LHS * RHS, where DST has the same width as the operands | |

/// and is filled with the least significant parts of the result. | |

/// Returns one if overflow occurred, otherwise zero. DST must be | |

/// disjoint from both operands. | |

static int tcMultiply(integerPart *, const integerPart *, | |

const integerPart *, unsigned); | |

/// DST = LHS * RHS, where DST has width the sum of the widths of | |

/// the operands. No overflow occurs. DST must be disjoint from | |

/// both operands. Returns the number of parts required to hold the | |

/// result. | |

static unsigned int tcFullMultiply(integerPart *, const integerPart *, | |

const integerPart *, unsigned, unsigned); | |

/// If RHS is zero LHS and REMAINDER are left unchanged, return one. | |

/// Otherwise set LHS to LHS / RHS with the fractional part | |

/// discarded, set REMAINDER to the remainder, return zero. i.e. | |

/// | |

/// OLD_LHS = RHS * LHS + REMAINDER | |

/// | |

/// SCRATCH is a bignum of the same size as the operands and result | |

/// for use by the routine; its contents need not be initialized | |

/// and are destroyed. LHS, REMAINDER and SCRATCH must be | |

/// distinct. | |

static int tcDivide(integerPart *lhs, const integerPart *rhs, | |

integerPart *remainder, integerPart *scratch, | |

unsigned int parts); | |

/// Shift a bignum left COUNT bits. Shifted in bits are zero. | |

/// There are no restrictions on COUNT. | |

static void tcShiftLeft(integerPart *, unsigned int parts, | |

unsigned int count); | |

/// Shift a bignum right COUNT bits. Shifted in bits are zero. | |

/// There are no restrictions on COUNT. | |

static void tcShiftRight(integerPart *, unsigned int parts, | |

unsigned int count); | |

/// The obvious AND, OR and XOR and complement operations. | |

static void tcAnd(integerPart *, const integerPart *, unsigned int); | |

static void tcOr(integerPart *, const integerPart *, unsigned int); | |

static void tcXor(integerPart *, const integerPart *, unsigned int); | |

static void tcComplement(integerPart *, unsigned int); | |

/// Comparison (unsigned) of two bignums. | |

static int tcCompare(const integerPart *, const integerPart *, | |

unsigned int); | |

/// Increment a bignum in-place. Return the carry flag. | |

static integerPart tcIncrement(integerPart *, unsigned int); | |

/// Set the least significant BITS and clear the rest. | |

static void tcSetLeastSignificantBits(integerPart *, unsigned int, | |

unsigned int bits); | |

/// @brief debug method | |

void dump() const; | |

/// @} | |

}; | |

inline bool operator==(uint64_t V1, const APInt& V2) { | |

return V2 == V1; | |

} | |

inline bool operator!=(uint64_t V1, const APInt& V2) { | |

return V2 != V1; | |

} | |

namespace APIntOps { | |

/// @brief Determine the smaller of two APInts considered to be signed. | |

inline APInt smin(const APInt &A, const APInt &B) { | |

return A.slt(B) ? A : B; | |

} | |

/// @brief Determine the larger of two APInts considered to be signed. | |

inline APInt smax(const APInt &A, const APInt &B) { | |

return A.sgt(B) ? A : B; | |

} | |

/// @brief Determine the smaller of two APInts considered to be signed. | |

inline APInt umin(const APInt &A, const APInt &B) { | |

return A.ult(B) ? A : B; | |

} | |

/// @brief Determine the larger of two APInts considered to be unsigned. | |

inline APInt umax(const APInt &A, const APInt &B) { | |

return A.ugt(B) ? A : B; | |

} | |

/// @brief Check if the specified APInt has a N-bits integer value. | |

inline bool isIntN(uint32_t N, const APInt& APIVal) { | |

return APIVal.isIntN(N); | |

} | |

/// @returns true if the argument APInt value is a sequence of ones | |

/// starting at the least significant bit with the remainder zero. | |

inline bool isMask(uint32_t numBits, const APInt& APIVal) { | |

return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0; | |

} | |

/// @returns true if the argument APInt value contains a sequence of ones | |

/// with the remainder zero. | |

inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) { | |

return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal); | |

} | |

/// @returns a byte-swapped representation of the specified APInt Value. | |

inline APInt byteSwap(const APInt& APIVal) { | |

return APIVal.byteSwap(); | |

} | |

/// @returns the floor log base 2 of the specified APInt value. | |

inline uint32_t logBase2(const APInt& APIVal) { | |

return APIVal.logBase2(); | |

} | |

/// GreatestCommonDivisor - This function returns the greatest common | |

/// divisor of the two APInt values using Enclid's algorithm. | |

/// @returns the greatest common divisor of Val1 and Val2 | |

/// @brief Compute GCD of two APInt values. | |

APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2); | |

/// Treats the APInt as an unsigned value for conversion purposes. | |

/// @brief Converts the given APInt to a double value. | |

inline double RoundAPIntToDouble(const APInt& APIVal) { | |

return APIVal.roundToDouble(); | |

} | |

/// Treats the APInt as a signed value for conversion purposes. | |

/// @brief Converts the given APInt to a double value. | |

inline double RoundSignedAPIntToDouble(const APInt& APIVal) { | |

return APIVal.signedRoundToDouble(); | |

} | |

/// @brief Converts the given APInt to a float vlalue. | |

inline float RoundAPIntToFloat(const APInt& APIVal) { | |

return float(RoundAPIntToDouble(APIVal)); | |

} | |

/// Treast the APInt as a signed value for conversion purposes. | |

/// @brief Converts the given APInt to a float value. | |

inline float RoundSignedAPIntToFloat(const APInt& APIVal) { | |

return float(APIVal.signedRoundToDouble()); | |

} | |

/// RoundDoubleToAPInt - This function convert a double value to an APInt value. | |

/// @brief Converts the given double value into a APInt. | |

APInt RoundDoubleToAPInt(double Double, uint32_t width); | |

/// RoundFloatToAPInt - Converts a float value into an APInt value. | |

/// @brief Converts a float value into a APInt. | |

inline APInt RoundFloatToAPInt(float Float, uint32_t width) { | |

return RoundDoubleToAPInt(double(Float), width); | |

} | |

/// Arithmetic right-shift the APInt by shiftAmt. | |

/// @brief Arithmetic right-shift function. | |

inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) { | |

return LHS.ashr(shiftAmt); | |

} | |

/// Logical right-shift the APInt by shiftAmt. | |

/// @brief Logical right-shift function. | |

inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) { | |

return LHS.lshr(shiftAmt); | |

} | |

/// Left-shift the APInt by shiftAmt. | |

/// @brief Left-shift function. | |

inline APInt shl(const APInt& LHS, uint32_t shiftAmt) { | |

return LHS.shl(shiftAmt); | |

} | |

/// Signed divide APInt LHS by APInt RHS. | |

/// @brief Signed division function for APInt. | |

inline APInt sdiv(const APInt& LHS, const APInt& RHS) { | |

return LHS.sdiv(RHS); | |

} | |

/// Unsigned divide APInt LHS by APInt RHS. | |

/// @brief Unsigned division function for APInt. | |

inline APInt udiv(const APInt& LHS, const APInt& RHS) { | |

return LHS.udiv(RHS); | |

} | |

/// Signed remainder operation on APInt. | |

/// @brief Function for signed remainder operation. | |

inline APInt srem(const APInt& LHS, const APInt& RHS) { | |

return LHS.srem(RHS); | |

} | |

/// Unsigned remainder operation on APInt. | |

/// @brief Function for unsigned remainder operation. | |

inline APInt urem(const APInt& LHS, const APInt& RHS) { | |

return LHS.urem(RHS); | |

} | |

/// Performs multiplication on APInt values. | |

/// @brief Function for multiplication operation. | |

inline APInt mul(const APInt& LHS, const APInt& RHS) { | |

return LHS * RHS; | |

} | |

/// Performs addition on APInt values. | |

/// @brief Function for addition operation. | |

inline APInt add(const APInt& LHS, const APInt& RHS) { | |

return LHS + RHS; | |

} | |

/// Performs subtraction on APInt values. | |

/// @brief Function for subtraction operation. | |

inline APInt sub(const APInt& LHS, const APInt& RHS) { | |

return LHS - RHS; | |

} | |

/// Performs bitwise AND operation on APInt LHS and | |

/// APInt RHS. | |

/// @brief Bitwise AND function for APInt. | |

inline APInt And(const APInt& LHS, const APInt& RHS) { | |

return LHS & RHS; | |

} | |

/// Performs bitwise OR operation on APInt LHS and APInt RHS. | |

/// @brief Bitwise OR function for APInt. | |

inline APInt Or(const APInt& LHS, const APInt& RHS) { | |

return LHS | RHS; | |

} | |

/// Performs bitwise XOR operation on APInt. | |

/// @brief Bitwise XOR function for APInt. | |

inline APInt Xor(const APInt& LHS, const APInt& RHS) { | |

return LHS ^ RHS; | |

} | |

/// Performs a bitwise complement operation on APInt. | |

/// @brief Bitwise complement function. | |

inline APInt Not(const APInt& APIVal) { | |

return ~APIVal; | |

} | |

} // End of APIntOps namespace | |

} // End of llvm namespace | |

#endif |