| /* Vector API for GDB. |
| Copyright (C) 2004-2012 Free Software Foundation, Inc. |
| Contributed by Nathan Sidwell <nathan@codesourcery.com> |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #if !defined (GDB_VEC_H) |
| #define GDB_VEC_H |
| |
| #include <stddef.h> |
| |
| #ifndef GDBSERVER |
| #include "gdb_string.h" |
| #include "gdb_assert.h" |
| #endif |
| |
| /* The macros here implement a set of templated vector types and |
| associated interfaces. These templates are implemented with |
| macros, as we're not in C++ land. The interface functions are |
| typesafe and use static inline functions, sometimes backed by |
| out-of-line generic functions. |
| |
| Because of the different behavior of structure objects, scalar |
| objects and of pointers, there are three flavors, one for each of |
| these variants. Both the structure object and pointer variants |
| pass pointers to objects around -- in the former case the pointers |
| are stored into the vector and in the latter case the pointers are |
| dereferenced and the objects copied into the vector. The scalar |
| object variant is suitable for int-like objects, and the vector |
| elements are returned by value. |
| |
| There are both 'index' and 'iterate' accessors. The iterator |
| returns a boolean iteration condition and updates the iteration |
| variable passed by reference. Because the iterator will be |
| inlined, the address-of can be optimized away. |
| |
| The vectors are implemented using the trailing array idiom, thus |
| they are not resizeable without changing the address of the vector |
| object itself. This means you cannot have variables or fields of |
| vector type -- always use a pointer to a vector. The one exception |
| is the final field of a structure, which could be a vector type. |
| You will have to use the embedded_size & embedded_init calls to |
| create such objects, and they will probably not be resizeable (so |
| don't use the 'safe' allocation variants). The trailing array |
| idiom is used (rather than a pointer to an array of data), because, |
| if we allow NULL to also represent an empty vector, empty vectors |
| occupy minimal space in the structure containing them. |
| |
| Each operation that increases the number of active elements is |
| available in 'quick' and 'safe' variants. The former presumes that |
| there is sufficient allocated space for the operation to succeed |
| (it dies if there is not). The latter will reallocate the |
| vector, if needed. Reallocation causes an exponential increase in |
| vector size. If you know you will be adding N elements, it would |
| be more efficient to use the reserve operation before adding the |
| elements with the 'quick' operation. This will ensure there are at |
| least as many elements as you ask for, it will exponentially |
| increase if there are too few spare slots. If you want reserve a |
| specific number of slots, but do not want the exponential increase |
| (for instance, you know this is the last allocation), use a |
| negative number for reservation. You can also create a vector of a |
| specific size from the get go. |
| |
| You should prefer the push and pop operations, as they append and |
| remove from the end of the vector. If you need to remove several |
| items in one go, use the truncate operation. The insert and remove |
| operations allow you to change elements in the middle of the |
| vector. There are two remove operations, one which preserves the |
| element ordering 'ordered_remove', and one which does not |
| 'unordered_remove'. The latter function copies the end element |
| into the removed slot, rather than invoke a memmove operation. The |
| 'lower_bound' function will determine where to place an item in the |
| array using insert that will maintain sorted order. |
| |
| If you need to directly manipulate a vector, then the 'address' |
| accessor will return the address of the start of the vector. Also |
| the 'space' predicate will tell you whether there is spare capacity |
| in the vector. You will not normally need to use these two functions. |
| |
| Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro. |
| Variables of vector type are declared using a VEC(TYPEDEF) macro. |
| The characters O, P and I indicate whether TYPEDEF is a pointer |
| (P), object (O) or integral (I) type. Be careful to pick the |
| correct one, as you'll get an awkward and inefficient API if you |
| use the wrong one. There is a check, which results in a |
| compile-time warning, for the P and I versions, but there is no |
| check for the O versions, as that is not possible in plain C. |
| |
| An example of their use would be, |
| |
| DEF_VEC_P(tree); // non-managed tree vector. |
| |
| struct my_struct { |
| VEC(tree) *v; // A (pointer to) a vector of tree pointers. |
| }; |
| |
| struct my_struct *s; |
| |
| if (VEC_length(tree, s->v)) { we have some contents } |
| VEC_safe_push(tree, s->v, decl); // append some decl onto the end |
| for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++) |
| { do something with elt } |
| |
| */ |
| |
| /* Macros to invoke API calls. A single macro works for both pointer |
| and object vectors, but the argument and return types might well be |
| different. In each macro, T is the typedef of the vector elements. |
| Some of these macros pass the vector, V, by reference (by taking |
| its address), this is noted in the descriptions. */ |
| |
| /* Length of vector |
| unsigned VEC_T_length(const VEC(T) *v); |
| |
| Return the number of active elements in V. V can be NULL, in which |
| case zero is returned. */ |
| |
| #define VEC_length(T,V) (VEC_OP(T,length)(V)) |
| |
| |
| /* Check if vector is empty |
| int VEC_T_empty(const VEC(T) *v); |
| |
| Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ |
| |
| #define VEC_empty(T,V) (VEC_length (T,V) == 0) |
| |
| |
| /* Get the final element of the vector. |
| T VEC_T_last(VEC(T) *v); // Integer |
| T VEC_T_last(VEC(T) *v); // Pointer |
| T *VEC_T_last(VEC(T) *v); // Object |
| |
| Return the final element. V must not be empty. */ |
| |
| #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO)) |
| |
| /* Index into vector |
| T VEC_T_index(VEC(T) *v, unsigned ix); // Integer |
| T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer |
| T *VEC_T_index(VEC(T) *v, unsigned ix); // Object |
| |
| Return the IX'th element. If IX must be in the domain of V. */ |
| |
| #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO)) |
| |
| /* Iterate over vector |
| int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer |
| int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer |
| int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object |
| |
| Return iteration condition and update PTR to point to the IX'th |
| element. At the end of iteration, sets PTR to NULL. Use this to |
| iterate over the elements of a vector as follows, |
| |
| for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) |
| continue; */ |
| |
| #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P))) |
| |
| /* Allocate new vector. |
| VEC(T,A) *VEC_T_alloc(int reserve); |
| |
| Allocate a new vector with space for RESERVE objects. If RESERVE |
| is zero, NO vector is created. */ |
| |
| #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N)) |
| |
| /* Free a vector. |
| void VEC_T_free(VEC(T,A) *&); |
| |
| Free a vector and set it to NULL. */ |
| |
| #define VEC_free(T,V) (VEC_OP(T,free)(&V)) |
| |
| /* A cleanup function for a vector. |
| void VEC_T_cleanup(void *); |
| |
| Clean up a vector. */ |
| |
| #define VEC_cleanup(T) (VEC_OP(T,cleanup)) |
| |
| /* Use these to determine the required size and initialization of a |
| vector embedded within another structure (as the final member). |
| |
| size_t VEC_T_embedded_size(int reserve); |
| void VEC_T_embedded_init(VEC(T) *v, int reserve); |
| |
| These allow the caller to perform the memory allocation. */ |
| |
| #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N)) |
| #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N)) |
| |
| /* Copy a vector. |
| VEC(T,A) *VEC_T_copy(VEC(T) *); |
| |
| Copy the live elements of a vector into a new vector. The new and |
| old vectors need not be allocated by the same mechanism. */ |
| |
| #define VEC_copy(T,V) (VEC_OP(T,copy)(V)) |
| |
| /* Determine if a vector has additional capacity. |
| |
| int VEC_T_space (VEC(T) *v,int reserve) |
| |
| If V has space for RESERVE additional entries, return nonzero. You |
| usually only need to use this if you are doing your own vector |
| reallocation, for instance on an embedded vector. This returns |
| nonzero in exactly the same circumstances that VEC_T_reserve |
| will. */ |
| |
| #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO)) |
| |
| /* Reserve space. |
| int VEC_T_reserve(VEC(T,A) *&v, int reserve); |
| |
| Ensure that V has at least abs(RESERVE) slots available. The |
| signedness of RESERVE determines the reallocation behavior. A |
| negative value will not create additional headroom beyond that |
| requested. A positive value will create additional headroom. Note |
| this can cause V to be reallocated. Returns nonzero iff |
| reallocation actually occurred. */ |
| |
| #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO)) |
| |
| /* Push object with no reallocation |
| T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer |
| T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer |
| T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object |
| |
| Push a new element onto the end, returns a pointer to the slot |
| filled in. For object vectors, the new value can be NULL, in which |
| case NO initialization is performed. There must |
| be sufficient space in the vector. */ |
| |
| #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO)) |
| |
| /* Push object with reallocation |
| T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer |
| T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer |
| T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object |
| |
| Push a new element onto the end, returns a pointer to the slot |
| filled in. For object vectors, the new value can be NULL, in which |
| case NO initialization is performed. Reallocates V, if needed. */ |
| |
| #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO)) |
| |
| /* Pop element off end |
| T VEC_T_pop (VEC(T) *v); // Integer |
| T VEC_T_pop (VEC(T) *v); // Pointer |
| void VEC_T_pop (VEC(T) *v); // Object |
| |
| Pop the last element off the end. Returns the element popped, for |
| pointer vectors. */ |
| |
| #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO)) |
| |
| /* Truncate to specific length |
| void VEC_T_truncate (VEC(T) *v, unsigned len); |
| |
| Set the length as specified. The new length must be less than or |
| equal to the current length. This is an O(1) operation. */ |
| |
| #define VEC_truncate(T,V,I) \ |
| (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO)) |
| |
| /* Grow to a specific length. |
| void VEC_T_safe_grow (VEC(T,A) *&v, int len); |
| |
| Grow the vector to a specific length. The LEN must be as |
| long or longer than the current length. The new elements are |
| uninitialized. */ |
| |
| #define VEC_safe_grow(T,V,I) \ |
| (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO)) |
| |
| /* Replace element |
| T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer |
| T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer |
| T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object |
| |
| Replace the IXth element of V with a new value, VAL. For pointer |
| vectors returns the original value. For object vectors returns a |
| pointer to the new value. For object vectors the new value can be |
| NULL, in which case no overwriting of the slot is actually |
| performed. */ |
| |
| #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO)) |
| |
| /* Insert object with no reallocation |
| T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer |
| T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer |
| T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object |
| |
| Insert an element, VAL, at the IXth position of V. Return a pointer |
| to the slot created. For vectors of object, the new value can be |
| NULL, in which case no initialization of the inserted slot takes |
| place. There must be sufficient space. */ |
| |
| #define VEC_quick_insert(T,V,I,O) \ |
| (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO)) |
| |
| /* Insert object with reallocation |
| T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer |
| T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer |
| T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object |
| |
| Insert an element, VAL, at the IXth position of V. Return a pointer |
| to the slot created. For vectors of object, the new value can be |
| NULL, in which case no initialization of the inserted slot takes |
| place. Reallocate V, if necessary. */ |
| |
| #define VEC_safe_insert(T,V,I,O) \ |
| (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO)) |
| |
| /* Remove element retaining order |
| T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer |
| T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer |
| void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object |
| |
| Remove an element from the IXth position of V. Ordering of |
| remaining elements is preserved. For pointer vectors returns the |
| removed object. This is an O(N) operation due to a memmove. */ |
| |
| #define VEC_ordered_remove(T,V,I) \ |
| (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO)) |
| |
| /* Remove element destroying order |
| T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer |
| T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer |
| void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object |
| |
| Remove an element from the IXth position of V. Ordering of |
| remaining elements is destroyed. For pointer vectors returns the |
| removed object. This is an O(1) operation. */ |
| |
| #define VEC_unordered_remove(T,V,I) \ |
| (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO)) |
| |
| /* Remove a block of elements |
| void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); |
| |
| Remove LEN elements starting at the IXth. Ordering is retained. |
| This is an O(N) operation due to memmove. */ |
| |
| #define VEC_block_remove(T,V,I,L) \ |
| (VEC_OP(T,block_remove)(V,I,L VEC_ASSERT_INFO)) |
| |
| /* Get the address of the array of elements |
| T *VEC_T_address (VEC(T) v) |
| |
| If you need to directly manipulate the array (for instance, you |
| want to feed it to qsort), use this accessor. */ |
| |
| #define VEC_address(T,V) (VEC_OP(T,address)(V)) |
| |
| /* Find the first index in the vector not less than the object. |
| unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
| int (*lessthan) (const T, const T)); // Integer |
| unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
| int (*lessthan) (const T, const T)); // Pointer |
| unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, |
| int (*lessthan) (const T*, const T*)); // Object |
| |
| Find the first position in which VAL could be inserted without |
| changing the ordering of V. LESSTHAN is a function that returns |
| true if the first argument is strictly less than the second. */ |
| |
| #define VEC_lower_bound(T,V,O,LT) \ |
| (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO)) |
| |
| /* Reallocate an array of elements with prefix. */ |
| extern void *vec_p_reserve (void *, int); |
| extern void *vec_o_reserve (void *, int, size_t, size_t); |
| #define vec_free_(V) xfree (V) |
| |
| #define VEC_ASSERT_INFO ,__FILE__,__LINE__ |
| #define VEC_ASSERT_DECL ,const char *file_,unsigned line_ |
| #define VEC_ASSERT_PASS ,file_,line_ |
| #define vec_assert(expr, op) \ |
| ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, \ |
| ASSERT_FUNCTION), 0))) |
| |
| #define VEC(T) VEC_##T |
| #define VEC_OP(T,OP) VEC_##T##_##OP |
| |
| #define VEC_T(T) \ |
| typedef struct VEC(T) \ |
| { \ |
| unsigned num; \ |
| unsigned alloc; \ |
| T vec[1]; \ |
| } VEC(T) |
| |
| /* Vector of integer-like object. */ |
| #define DEF_VEC_I(T) \ |
| static inline void VEC_OP (T,must_be_integral_type) (void) \ |
| { \ |
| (void)~(T)0; \ |
| } \ |
| \ |
| VEC_T(T); \ |
| DEF_VEC_FUNC_P(T) \ |
| DEF_VEC_ALLOC_FUNC_I(T) \ |
| struct vec_swallow_trailing_semi |
| |
| /* Vector of pointer to object. */ |
| #define DEF_VEC_P(T) \ |
| static inline void VEC_OP (T,must_be_pointer_type) (void) \ |
| { \ |
| (void)((T)1 == (void *)1); \ |
| } \ |
| \ |
| VEC_T(T); \ |
| DEF_VEC_FUNC_P(T) \ |
| DEF_VEC_ALLOC_FUNC_P(T) \ |
| struct vec_swallow_trailing_semi |
| |
| /* Vector of object. */ |
| #define DEF_VEC_O(T) \ |
| VEC_T(T); \ |
| DEF_VEC_FUNC_O(T) \ |
| DEF_VEC_ALLOC_FUNC_O(T) \ |
| struct vec_swallow_trailing_semi |
| |
| #define DEF_VEC_ALLOC_FUNC_I(T) \ |
| static inline VEC(T) *VEC_OP (T,alloc) \ |
| (int alloc_) \ |
| { \ |
| /* We must request exact size allocation, hence the negation. */ \ |
| return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ |
| offsetof (VEC(T),vec), sizeof (T)); \ |
| } \ |
| \ |
| static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ |
| { \ |
| size_t len_ = vec_ ? vec_->num : 0; \ |
| VEC (T) *new_vec_ = NULL; \ |
| \ |
| if (len_) \ |
| { \ |
| /* We must request exact size allocation, hence the negation. */ \ |
| new_vec_ = (VEC (T) *) \ |
| vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ |
| \ |
| new_vec_->num = len_; \ |
| memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ |
| } \ |
| return new_vec_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,free) \ |
| (VEC(T) **vec_) \ |
| { \ |
| if (*vec_) \ |
| vec_free_ (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,cleanup) \ |
| (void *arg_) \ |
| { \ |
| VEC(T) **vec_ = arg_; \ |
| if (*vec_) \ |
| vec_free_ (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,reserve) \ |
| (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,space) \ |
| (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \ |
| offsetof (VEC(T),vec), sizeof (T)); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,safe_grow) \ |
| (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ |
| "safe_grow"); \ |
| VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \ |
| VEC_ASSERT_PASS); \ |
| (*vec_)->num = size_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,safe_push) \ |
| (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ |
| \ |
| return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,safe_insert) \ |
| (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ |
| \ |
| return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ |
| } |
| |
| #define DEF_VEC_FUNC_P(T) \ |
| static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ |
| { \ |
| return vec_ ? vec_->num : 0; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,last) \ |
| (const VEC(T) *vec_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_ && vec_->num, "last"); \ |
| \ |
| return vec_->vec[vec_->num - 1]; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,index) \ |
| (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_ && ix_ < vec_->num, "index"); \ |
| \ |
| return vec_->vec[ix_]; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,iterate) \ |
| (const VEC(T) *vec_, unsigned ix_, T *ptr) \ |
| { \ |
| if (vec_ && ix_ < vec_->num) \ |
| { \ |
| *ptr = vec_->vec[ix_]; \ |
| return 1; \ |
| } \ |
| else \ |
| { \ |
| *ptr = 0; \ |
| return 0; \ |
| } \ |
| } \ |
| \ |
| static inline size_t VEC_OP (T,embedded_size) \ |
| (int alloc_) \ |
| { \ |
| return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,embedded_init) \ |
| (VEC(T) *vec_, int alloc_) \ |
| { \ |
| vec_->num = 0; \ |
| vec_->alloc = alloc_; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,space) \ |
| (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (alloc_ >= 0, "space"); \ |
| return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,quick_push) \ |
| (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (vec_->num < vec_->alloc, "quick_push"); \ |
| slot_ = &vec_->vec[vec_->num++]; \ |
| *slot_ = obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ |
| { \ |
| T obj_; \ |
| \ |
| vec_assert (vec_->num, "pop"); \ |
| obj_ = vec_->vec[--vec_->num]; \ |
| \ |
| return obj_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,truncate) \ |
| (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ |
| if (vec_) \ |
| vec_->num = size_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,replace) \ |
| (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| T old_obj_; \ |
| \ |
| vec_assert (ix_ < vec_->num, "replace"); \ |
| old_obj_ = vec_->vec[ix_]; \ |
| vec_->vec[ix_] = obj_; \ |
| \ |
| return old_obj_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,quick_insert) \ |
| (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
| *slot_ = obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,ordered_remove) \ |
| (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| T obj_; \ |
| \ |
| vec_assert (ix_ < vec_->num, "ordered_remove"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| obj_ = *slot_; \ |
| memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
| \ |
| return obj_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,unordered_remove) \ |
| (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| T obj_; \ |
| \ |
| vec_assert (ix_ < vec_->num, "unordered_remove"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| obj_ = *slot_; \ |
| *slot_ = vec_->vec[--vec_->num]; \ |
| \ |
| return obj_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,block_remove) \ |
| (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| vec_->num -= len_; \ |
| memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,address) \ |
| (VEC(T) *vec_) \ |
| { \ |
| return vec_ ? vec_->vec : 0; \ |
| } \ |
| \ |
| static inline unsigned VEC_OP (T,lower_bound) \ |
| (VEC(T) *vec_, const T obj_, \ |
| int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \ |
| { \ |
| unsigned int len_ = VEC_OP (T, length) (vec_); \ |
| unsigned int half_, middle_; \ |
| unsigned int first_ = 0; \ |
| while (len_ > 0) \ |
| { \ |
| T middle_elem_; \ |
| half_ = len_ >> 1; \ |
| middle_ = first_; \ |
| middle_ += half_; \ |
| middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ |
| if (lessthan_ (middle_elem_, obj_)) \ |
| { \ |
| first_ = middle_; \ |
| ++first_; \ |
| len_ = len_ - half_ - 1; \ |
| } \ |
| else \ |
| len_ = half_; \ |
| } \ |
| return first_; \ |
| } |
| |
| #define DEF_VEC_ALLOC_FUNC_P(T) \ |
| static inline VEC(T) *VEC_OP (T,alloc) \ |
| (int alloc_) \ |
| { \ |
| /* We must request exact size allocation, hence the negation. */ \ |
| return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,free) \ |
| (VEC(T) **vec_) \ |
| { \ |
| if (*vec_) \ |
| vec_free_ (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,cleanup) \ |
| (void *arg_) \ |
| { \ |
| VEC(T) **vec_ = arg_; \ |
| if (*vec_) \ |
| vec_free_ (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ |
| { \ |
| size_t len_ = vec_ ? vec_->num : 0; \ |
| VEC (T) *new_vec_ = NULL; \ |
| \ |
| if (len_) \ |
| { \ |
| /* We must request exact size allocation, hence the negation. */ \ |
| new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \ |
| \ |
| new_vec_->num = len_; \ |
| memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ |
| } \ |
| return new_vec_; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,reserve) \ |
| (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,space) \ |
| (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,safe_grow) \ |
| (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ |
| "safe_grow"); \ |
| VEC_OP (T,reserve) \ |
| (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ |
| (*vec_)->num = size_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,safe_push) \ |
| (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ |
| \ |
| return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,safe_insert) \ |
| (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ |
| { \ |
| VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ |
| \ |
| return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ |
| } |
| |
| #define DEF_VEC_FUNC_O(T) \ |
| static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ |
| { \ |
| return vec_ ? vec_->num : 0; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_ && vec_->num, "last"); \ |
| \ |
| return &vec_->vec[vec_->num - 1]; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,index) \ |
| (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_ && ix_ < vec_->num, "index"); \ |
| \ |
| return &vec_->vec[ix_]; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,iterate) \ |
| (VEC(T) *vec_, unsigned ix_, T **ptr) \ |
| { \ |
| if (vec_ && ix_ < vec_->num) \ |
| { \ |
| *ptr = &vec_->vec[ix_]; \ |
| return 1; \ |
| } \ |
| else \ |
| { \ |
| *ptr = 0; \ |
| return 0; \ |
| } \ |
| } \ |
| \ |
| static inline size_t VEC_OP (T,embedded_size) \ |
| (int alloc_) \ |
| { \ |
| return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,embedded_init) \ |
| (VEC(T) *vec_, int alloc_) \ |
| { \ |
| vec_->num = 0; \ |
| vec_->alloc = alloc_; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,space) \ |
| (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (alloc_ >= 0, "space"); \ |
| return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,quick_push) \ |
| (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (vec_->num < vec_->alloc, "quick_push"); \ |
| slot_ = &vec_->vec[vec_->num++]; \ |
| if (obj_) \ |
| *slot_ = *obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_->num, "pop"); \ |
| --vec_->num; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,truncate) \ |
| (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ |
| if (vec_) \ |
| vec_->num = size_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,replace) \ |
| (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (ix_ < vec_->num, "replace"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| if (obj_) \ |
| *slot_ = *obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,quick_insert) \ |
| (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
| if (obj_) \ |
| *slot_ = *obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,ordered_remove) \ |
| (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (ix_ < vec_->num, "ordered_remove"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,unordered_remove) \ |
| (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (ix_ < vec_->num, "unordered_remove"); \ |
| vec_->vec[ix_] = vec_->vec[--vec_->num]; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,block_remove) \ |
| (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ |
| slot_ = &vec_->vec[ix_]; \ |
| vec_->num -= len_; \ |
| memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,address) \ |
| (VEC(T) *vec_) \ |
| { \ |
| return vec_ ? vec_->vec : 0; \ |
| } \ |
| \ |
| static inline unsigned VEC_OP (T,lower_bound) \ |
| (VEC(T) *vec_, const T *obj_, \ |
| int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \ |
| { \ |
| unsigned int len_ = VEC_OP (T, length) (vec_); \ |
| unsigned int half_, middle_; \ |
| unsigned int first_ = 0; \ |
| while (len_ > 0) \ |
| { \ |
| T *middle_elem_; \ |
| half_ = len_ >> 1; \ |
| middle_ = first_; \ |
| middle_ += half_; \ |
| middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ |
| if (lessthan_ (middle_elem_, obj_)) \ |
| { \ |
| first_ = middle_; \ |
| ++first_; \ |
| len_ = len_ - half_ - 1; \ |
| } \ |
| else \ |
| len_ = half_; \ |
| } \ |
| return first_; \ |
| } |
| |
| #define DEF_VEC_ALLOC_FUNC_O(T) \ |
| static inline VEC(T) *VEC_OP (T,alloc) \ |
| (int alloc_) \ |
| { \ |
| /* We must request exact size allocation, hence the negation. */ \ |
| return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ |
| offsetof (VEC(T),vec), sizeof (T)); \ |
| } \ |
| \ |
| static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ |
| { \ |
| size_t len_ = vec_ ? vec_->num : 0; \ |
| VEC (T) *new_vec_ = NULL; \ |
| \ |
| if (len_) \ |
| { \ |
| /* We must request exact size allocation, hence the negation. */ \ |
| new_vec_ = (VEC (T) *) \ |
| vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ |
| \ |
| new_vec_->num = len_; \ |
| memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ |
| } \ |
| return new_vec_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,free) \ |
| (VEC(T) **vec_) \ |
| { \ |
| if (*vec_) \ |
| vec_free_ (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,cleanup) \ |
| (void *arg_) \ |
| { \ |
| VEC(T) **vec_ = arg_; \ |
| if (*vec_) \ |
| vec_free_ (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,reserve) \ |
| (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \ |
| VEC_ASSERT_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T) *) \ |
| vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,safe_grow) \ |
| (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ |
| { \ |
| vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ |
| "safe_grow"); \ |
| VEC_OP (T,reserve) \ |
| (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ |
| (*vec_)->num = size_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,safe_push) \ |
| (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \ |
| { \ |
| VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ |
| \ |
| return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,safe_insert) \ |
| (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ |
| { \ |
| VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ |
| \ |
| return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ |
| } |
| |
| #endif /* GDB_VEC_H */ |