blob: 1e8ed8c0820b66121b3d6b6b094e1ebb87c3612b [file] [log] [blame]
/* Internal interfaces between the LLVM backend components
Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Chris Lattner (sabre@nondot.org)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
//===----------------------------------------------------------------------===//
// This is a C++ header file that defines the internal interfaces shared among
// the llvm-*.cpp files.
//===----------------------------------------------------------------------===//
#ifndef LLVM_INTERNAL_H
#define LLVM_INTERNAL_H
// LLVM headers
#include "llvm/CallingConv.h"
#include "llvm/Intrinsics.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetFolder.h"
#include "llvm/Support/raw_os_ostream.h"
// System headers
#include <vector>
#include <cassert>
#include <map>
#include <string>
namespace llvm {
class Module;
class GlobalVariable;
class Function;
class GlobalValue;
class BasicBlock;
class Instruction;
class AllocaInst;
class BranchInst;
class Value;
class Constant;
class ConstantInt;
class Type;
class FunctionType;
class TargetMachine;
class TargetData;
class DebugInfo;
template<typename> class AssertingVH;
}
using namespace llvm;
typedef IRBuilder<true, TargetFolder> LLVMBuilder;
// Global state.
/// TheModule - This is the current global module that we are compiling into.
///
extern llvm::Module *TheModule;
/// TheDebugInfo - This object is responsible for gather all debug information.
/// If it's value is NULL then no debug information should be gathered.
extern llvm::DebugInfo *TheDebugInfo;
/// TheTarget - The current target being compiled for.
///
extern llvm::TargetMachine *TheTarget;
/// TheFolder - The constant folder to use.
extern TargetFolder *TheFolder;
/// getTargetData - Return the current TargetData object from TheTarget.
const TargetData &getTargetData();
/// AttributeUsedGlobals - The list of globals that are marked attribute(used).
extern SmallSetVector<Constant *,32> AttributeUsedGlobals;
extern Constant* ConvertMetadataStringToGV(const char* str);
/// AddAnnotateAttrsToGlobal - Adds decls that have a
/// annotate attribute to a vector to be emitted later.
extern void AddAnnotateAttrsToGlobal(GlobalValue *GV, union tree_node* decl);
// Statistics.
/// NoteBasicBlock - Called once for each GCC basic block converted.
extern void NoteBasicBlock(basic_block bb);
/// NoteStatement - Called once for each GCC gimple statement converted.
extern void NoteStatement(gimple stmt);
// Mapping between GCC declarations and LLVM values.
/// DECL_LLVM - Holds the LLVM expression for the value of a variable or
/// function. This value can be evaluated lazily for functions and variables
/// with static storage duration.
extern Value *make_decl_llvm(union tree_node *);
#define DECL_LLVM(NODE) make_decl_llvm(NODE)
/// SET_DECL_LLVM - Set the DECL_LLVM for NODE to LLVM.
extern Value *set_decl_llvm(union tree_node *, Value *);
#define SET_DECL_LLVM(NODE, LLVM) set_decl_llvm(NODE, LLVM)
/// DECL_LLVM_IF_SET - The DECL_LLVM for NODE, if it is set, or NULL, if it is
/// not set.
extern Value *get_decl_llvm(union tree_node *);
#define DECL_LLVM_IF_SET(NODE) (HAS_RTL_P(NODE) ? get_decl_llvm(NODE) : NULL)
/// DECL_LLVM_SET_P - Returns nonzero if the DECL_LLVM for NODE has already
/// been set.
#define DECL_LLVM_SET_P(NODE) (DECL_LLVM_IF_SET(NODE) != NULL)
void changeLLVMConstant(Constant *Old, Constant *New);
void readLLVMTypesStringTable();
void writeLLVMTypesStringTable();
void readLLVMValues();
void writeLLVMValues();
void eraseLocalLLVMValues();
void clearTargetBuiltinCache();
const char* extractRegisterName(union tree_node*);
void handleVisibility(union tree_node* decl, GlobalValue *GV);
Twine getLLVMAssemblerName(union tree_node *);
struct StructTypeConversionInfo;
/// Return true if and only if field no. N from struct type T is a padding
/// element added to match llvm struct type size and gcc struct type size.
bool isPaddingElement(union tree_node*, unsigned N);
/// TypeConverter - Implement the converter from GCC types to LLVM types.
///
class TypeConverter {
/// ConvertingStruct - If we are converting a RECORD or UNION to an LLVM type
/// we set this flag to true.
bool ConvertingStruct;
/// PointersToReresolve - When ConvertingStruct is true, we handling of
/// POINTER_TYPE and REFERENCE_TYPE is changed to return
/// opaque*'s instead of recursively calling ConvertType. When this happens,
/// we add the POINTER_TYPE to this list.
///
std::vector<tree_node*> PointersToReresolve;
/// FieldIndexMap - Holds the mapping from a FIELD_DECL to the index of the
/// corresponding LLVM field.
std::map<tree_node *, unsigned int> FieldIndexMap;
public:
TypeConverter() : ConvertingStruct(false) {}
const Type *ConvertType(tree_node *type);
/// GetFieldIndex - Returns the index of the LLVM field corresponding to
/// this FIELD_DECL.
unsigned int GetFieldIndex(tree_node *field_decl);
/// GCCTypeOverlapsWithLLVMTypePadding - Return true if the specified GCC type
/// has any data that overlaps with structure padding in the specified LLVM
/// type.
static bool GCCTypeOverlapsWithLLVMTypePadding(tree_node *t, const Type *Ty);
/// ConvertFunctionType - Convert the specified FUNCTION_TYPE or METHOD_TYPE
/// tree to an LLVM type. This does the same thing that ConvertType does, but
/// it also returns the function's LLVM calling convention and attributes.
const FunctionType *ConvertFunctionType(tree_node *type,
tree_node *decl,
tree_node *static_chain,
CallingConv::ID &CallingConv,
AttrListPtr &PAL);
/// ConvertArgListToFnType - Given a DECL_ARGUMENTS list on an GCC tree,
/// return the LLVM type corresponding to the function. This is useful for
/// turning "T foo(...)" functions into "T foo(void)" functions.
const FunctionType *ConvertArgListToFnType(tree_node *type,
tree_node *arglist,
tree_node *static_chain,
CallingConv::ID &CallingConv,
AttrListPtr &PAL);
private:
const Type *ConvertRECORD(tree_node *type, tree_node *orig_type);
const Type *ConvertUNION(tree_node *type, tree_node *orig_type);
void SetFieldIndex(tree_node *field_decl, unsigned int Index);
bool DecodeStructFields(tree_node *Field, StructTypeConversionInfo &Info);
void DecodeStructBitField(tree_node *Field, StructTypeConversionInfo &Info);
};
extern TypeConverter *TheTypeConverter;
/// ConvertType - Convert the specified tree type to an LLVM type.
///
inline const Type *ConvertType(tree_node *type) {
return TheTypeConverter->ConvertType(type);
}
/// GetFieldIndex - Given FIELD_DECL obtain its index.
///
inline unsigned int GetFieldIndex(tree_node *field_decl) {
return TheTypeConverter->GetFieldIndex(field_decl);
}
/// getINTEGER_CSTVal - Return the specified INTEGER_CST value as a uint64_t.
///
uint64_t getINTEGER_CSTVal(tree_node *exp);
/// isInt64 - Return true if t is an INTEGER_CST that fits in a 64 bit integer.
/// If Unsigned is false, returns whether it fits in a int64_t. If Unsigned is
/// true, returns whether the value is non-negative and fits in a uint64_t.
/// Always returns false for overflowed constants.
bool isInt64(tree_node *t, bool Unsigned);
/// getInt64 - Extract the value of an INTEGER_CST as a 64 bit integer. If
/// Unsigned is false, the value must fit in a int64_t. If Unsigned is true,
/// the value must be non-negative and fit in a uint64_t. Must not be used on
/// overflowed constants. These conditions can be checked by calling isInt64.
uint64_t getInt64(tree_node *t, bool Unsigned);
/// isPassedByInvisibleReference - Return true if the specified type should be
/// passed by 'invisible reference'. In other words, instead of passing the
/// thing by value, pass the address of a temporary.
bool isPassedByInvisibleReference(tree_node *type);
/// isSequentialCompatible - Return true if the specified gcc array or pointer
/// type and the corresponding LLVM SequentialType lay out their components
/// identically in memory, so doing a GEP accesses the right memory location.
/// We assume that objects without a known size do not.
bool isSequentialCompatible(tree_node *type);
/// isBitfield - Returns whether to treat the specified field as a bitfield.
bool isBitfield(tree_node *field_decl);
/// getDeclaredType - Get the declared type for the specified field, and
/// not the shrunk-to-fit type that GCC gives us in TREE_TYPE.
tree_node *getDeclaredType(tree_node *field_decl);
/// ValidateRegisterVariable - Check that a static "asm" variable is
/// well-formed. If not, emit error messages and return true. If so, return
/// false.
bool ValidateRegisterVariable(tree_node *decl);
/// MemRef - This struct holds the information needed for a memory access:
/// a pointer to the memory, its alignment and whether the access is volatile.
struct MemRef {
Value *Ptr;
bool Volatile;
private:
unsigned char LogAlign;
public:
MemRef() : Ptr(0), Volatile(false), LogAlign(0) {}
MemRef(Value *P, uint32_t A, bool V) : Ptr(P), Volatile(V) {
// Forbid alignment 0 along with non-power-of-2 alignment values.
assert(isPowerOf2_32(A) && "Alignment not a power of 2!");
LogAlign = Log2_32(A);
}
uint32_t getAlignment() const {
return 1U << LogAlign;
}
};
/// LValue - This struct represents an lvalue in the program. In particular,
/// the Ptr member indicates the memory that the lvalue lives in. Alignment
/// is the alignment of the memory (in bytes).If this is a bitfield reference,
/// BitStart indicates the first bit in the memory that is part of the field
/// and BitSize indicates the extent.
///
/// "LValue" is intended to be a light-weight object passed around by-value.
struct LValue {
Value *Ptr;
unsigned char BitStart;
unsigned char BitSize;
private:
unsigned char LogAlign;
public:
LValue() : Ptr(0), BitStart(255), BitSize(255), LogAlign(0) {}
LValue(Value *P, uint32_t A) : Ptr(P), BitStart(255), BitSize(255) {
// Forbid alignment 0 along with non-power-of-2 alignment values.
assert(isPowerOf2_32(A) && "Alignment not a power of 2!");
LogAlign = Log2_32(A);
}
LValue(Value *P, uint32_t A, unsigned BSt, unsigned BSi)
: Ptr(P), BitStart(BSt), BitSize(BSi) {
assert(BitStart == BSt && BitSize == BSi &&
"Bit values larger than 256?");
// Forbid alignment 0 along with non-power-of-2 alignment values.
assert(isPowerOf2_32(A) && "Alignment not a power of 2!");
LogAlign = Log2_32(A);
}
uint32_t getAlignment() const {
return 1U << LogAlign;
}
bool isBitfield() const { return BitStart != 255; }
};
/// PhiRecord - This struct holds the LLVM PHI node associated with a GCC phi.
struct PhiRecord {
gimple gcc_phi;
PHINode *PHI;
};
/// TreeToLLVM - An instance of this class is created and used to convert the
/// body of each function to LLVM.
///
class TreeToLLVM {
// State that is initialized when the function starts.
const TargetData &TD;
tree_node *FnDecl;
Function *Fn;
BasicBlock *ReturnBB;
BasicBlock *UnwindBB;
unsigned ReturnOffset;
// State that changes as the function is emitted.
/// Builder - Instruction creator, the location to insert into is always the
/// same as &Fn->back().
LLVMBuilder Builder;
// AllocaInsertionPoint - Place to insert alloca instructions. Lazily created
// and managed by CreateTemporary.
Instruction *AllocaInsertionPoint;
// SSAInsertionPoint - Place to insert reads corresponding to SSA default
// definitions.
Instruction *SSAInsertionPoint;
/// BasicBlocks - Map from GCC to LLVM basic blocks.
DenseMap<basic_block, BasicBlock*> BasicBlocks;
/// PendingPhis - Phi nodes which have not yet been populated with operands.
SmallVector<PhiRecord, 16> PendingPhis;
// SSANames - Map from GCC ssa names to the defining LLVM value.
DenseMap<tree, AssertingVH<> > SSANames;
//===---------------------- Exception Handling --------------------------===//
/// LandingPads - The landing pad for a given EH region.
IndexedMap<BasicBlock *> LandingPads;
/// PostPads - The post landing pad for a given EH region.
IndexedMap<BasicBlock *> PostPads;
/// ExceptionValue - Is the local to receive the current exception.
Value *ExceptionValue;
/// ExceptionSelectorValue - Is the local to receive the current exception
/// selector.
Value *ExceptionSelectorValue;
/// FuncEHException - Function used to receive the exception.
Function *FuncEHException;
/// FuncEHSelector - Function used to receive the exception selector.
Function *FuncEHSelector;
/// FuncEHGetTypeID - Function used to return type id for give typeinfo.
Function *FuncEHGetTypeID;
/// NumAddressTakenBlocks - Count the number of labels whose addresses are
/// taken.
uint64_t NumAddressTakenBlocks;
/// AddressTakenBBNumbers - For each label with its address taken, we keep
/// track of its unique ID.
std::map<BasicBlock*, ConstantInt*> AddressTakenBBNumbers;
/// IndirectGotoBlock - If non-null, the block that indirect goto's in this
/// function branch to.
BasicBlock *IndirectGotoBlock;
/// IndirectGotoValue - This is set to be the alloca temporary that the
/// indirect goto block switches on.
Value *IndirectGotoValue;
public:
TreeToLLVM(tree_node *fndecl);
~TreeToLLVM();
/// getFUNCTION_DECL - Return the FUNCTION_DECL node for the current function
/// being compiled.
tree_node *getFUNCTION_DECL() const { return FnDecl; }
/// EmitFunction - Convert 'fndecl' to LLVM code.
Function *EmitFunction();
/// EmitBasicBlock - Convert the given basic block.
void EmitBasicBlock(basic_block bb);
/// EmitLV - Convert the specified l-value tree node to LLVM code, returning
/// the address of the result.
LValue EmitLV(tree_node *exp);
/// getIndirectGotoBlockNumber - Return the unique ID of the specified basic
/// block for uses that take the address of it.
Constant *getIndirectGotoBlockNumber(BasicBlock *BB);
/// getIndirectGotoBlock - Get (and potentially lazily create) the indirect
/// goto block.
BasicBlock *getIndirectGotoBlock();
void TODO(tree_node *exp = 0);
/// CastToAnyType - Cast the specified value to the specified type regardless
/// of the types involved. This is an inferred cast.
Value *CastToAnyType (Value *V, bool VSigned, const Type* Ty, bool TySigned);
/// CastToUIntType - Cast the specified value to the specified type assuming
/// that V's type and Ty are integral types. This arbitrates between BitCast,
/// Trunc and ZExt.
Value *CastToUIntType(Value *V, const Type* Ty);
/// CastToSIntType - Cast the specified value to the specified type assuming
/// that V's type and Ty are integral types. This arbitrates between BitCast,
/// Trunc and SExt.
Value *CastToSIntType(Value *V, const Type* Ty);
/// CastToFPType - Cast the specified value to the specified type assuming
/// that V's type and Ty are floating point types. This arbitrates between
/// BitCast, FPTrunc and FPExt.
Value *CastToFPType(Value *V, const Type* Ty);
/// CreateTemporary - Create a new alloca instruction of the specified type,
/// inserting it into the entry block and returning it. The resulting
/// instruction's type is a pointer to the specified type.
AllocaInst *CreateTemporary(const Type *Ty);
/// CreateTempLoc - Like CreateTemporary, but returns a MemRef.
MemRef CreateTempLoc(const Type *Ty);
/// EmitAggregateCopy - Copy the elements from SrcLoc to DestLoc, using the
/// GCC type specified by GCCType to know which elements to copy.
void EmitAggregateCopy(MemRef DestLoc, MemRef SrcLoc, tree_node *GCCType);
private: // Helper functions.
/// StartFunctionBody - Start the emission of 'fndecl', outputing all
/// declarations for parameters and setting things up.
void StartFunctionBody();
/// FinishFunctionBody - Once the body of the function has been emitted, this
/// cleans up and returns the result function.
Function *FinishFunctionBody();
/// PopulatePhiNodes - Populate generated phi nodes with their operands.
void PopulatePhiNodes();
/// getBasicBlock - Find or create the LLVM basic block corresponding to BB.
BasicBlock *getBasicBlock(basic_block bb);
public:
/// getLabelDeclBlock - Lazily get and create a basic block for the specified
/// label.
BasicBlock *getLabelDeclBlock(tree_node *LabelDecl);
private:
/// Emit - Convert the specified tree node to LLVM code. If the node is an
/// expression that fits into an LLVM scalar value, the result is returned. If
/// the result is an aggregate, it is stored into the location specified by
/// DestLoc.
Value *Emit(tree_node *exp, const MemRef *DestLoc);
/// EmitBlock - Add the specified basic block to the end of the function. If
/// the previous block falls through into it, add an explicit branch.
void EmitBlock(BasicBlock *BB);
/// EmitAggregateZero - Zero the elements of DestLoc.
///
void EmitAggregateZero(MemRef DestLoc, tree_node *GCCType);
/// EmitMemCpy/EmitMemMove/EmitMemSet - Emit an llvm.memcpy/llvm.memmove or
/// llvm.memset call with the specified operands. Returns DestPtr bitcast
/// to i8*.
Value *EmitMemCpy(Value *DestPtr, Value *SrcPtr, Value *Size, unsigned Align);
Value *EmitMemMove(Value *DestPtr, Value *SrcPtr, Value *Size, unsigned Align);
Value *EmitMemSet(Value *DestPtr, Value *SrcVal, Value *Size, unsigned Align);
/// EmitLandingPads - Emit EH landing pads.
void EmitLandingPads();
/// EmitPostPads - Emit EH post landing pads.
void EmitPostPads();
/// EmitUnwindBlock - Emit the lazily created EH unwind block.
void EmitUnwindBlock();
private: // Helpers for exception handling.
/// CreateExceptionValues - Create values used internally by exception
/// handling.
void CreateExceptionValues();
/// getPostPad - Return the post landing pad for the given exception handling
/// region, creating it if necessary.
BasicBlock *getPostPad(unsigned RegionNo);
private:
// Render* - Convert GIMPLE to LLVM.
void RenderGIMPLE_ASM(gimple stmt);
void RenderGIMPLE_ASSIGN(gimple stmt);
void RenderGIMPLE_CALL(gimple stmt);
void RenderGIMPLE_COND(gimple stmt);
void RenderGIMPLE_GOTO(gimple stmt);
void RenderGIMPLE_RESX(gimple stmt);
void RenderGIMPLE_RETURN(gimple stmt);
void RenderGIMPLE_SWITCH(gimple stmt);
// Render helpers.
void WriteScalarToLHS(tree lhs, Value *Scalar);
private:
void EmitAutomaticVariableDecl(tree_node *decl);
/// isNoopCast - Return true if a cast from V to Ty does not change any bits.
///
static bool isNoopCast(Value *V, const Type *Ty);
void HandleMultiplyDefinedGimpleTemporary(tree_node *var);
/// EmitAnnotateIntrinsic - Emits call to annotate attr intrinsic
void EmitAnnotateIntrinsic(Value *V, tree_node *decl);
/// EmitTypeGcroot - Emits call to make type a gcroot
void EmitTypeGcroot(Value *V, tree_node *decl);
private:
// Emit* - These are delegates from Emit, and have the same parameter
// characteristics.
// Expressions.
Value *EmitSSA_NAME(tree_node *exp);
Value *EmitGimpleAssignRHS(gimple stmt, const MemRef *DestLoc);
Value *EmitGimpleCallRHS(gimple stmt, const MemRef *DestLoc);
Value *EmitLoadOfLValue(tree_node *exp, const MemRef *DestLoc);
Value *EmitOBJ_TYPE_REF(tree_node *exp, const MemRef *DestLoc);
Value *EmitADDR_EXPR(tree_node *exp);
Value *EmitOBJ_TYPE_REF(tree_node *exp);
Value *EmitCallOf(Value *Callee, gimple stmt, const MemRef *DestLoc,
const AttrListPtr &PAL);
Value *EmitNOP_EXPR(tree_node *type, tree_node *op, const MemRef *DestLoc);
Value *EmitCONVERT_EXPR(tree_node *type, tree_node *op);
Value *EmitVIEW_CONVERT_EXPR(tree_node *exp, const MemRef *DestLoc);
Value *EmitNEGATE_EXPR(tree_node *op, const MemRef *DestLoc);
Value *EmitCONJ_EXPR(tree_node *op, const MemRef *DestLoc);
Value *EmitABS_EXPR(tree_node *op);
Value *EmitBIT_NOT_EXPR(tree_node *op);
Value *EmitTRUTH_NOT_EXPR(tree_node *type, tree_node *op);
Value *EmitCompare(tree_node *lhs, tree_node *rhs, tree_code code);
Value *EmitBinOp(tree_node *type, tree_code code, tree_node *op0,
tree_node *op1, const MemRef *DestLoc, unsigned Opc);
Value *EmitTruthOp(tree_node *type, tree_node *op0, tree_node *op1,
unsigned Opc);
Value *EmitShiftOp(tree_node *op0, tree_node* op1, unsigned Opc);
Value *EmitRotateOp(tree_node *type, tree_node *op0, tree_node *op1,
unsigned Opc1, unsigned Opc2);
Value *EmitMinMaxExpr(tree_node *type, tree_node *op0, tree_node* op1,
unsigned UIPred, unsigned SIPred, unsigned Opc,
bool isMax);
Value *EmitFLOOR_MOD_EXPR(tree_node *type, tree_node *op0, tree_node *op1);
Value *EmitCEIL_DIV_EXPR(tree_node *type, tree_node *op0, tree_node *op1);
Value *EmitFLOOR_DIV_EXPR(tree_node *type, tree_node *op0, tree_node *op1);
Value *EmitROUND_DIV_EXPR(tree_node *type, tree_node *op0, tree_node *op1);
Value *EmitFieldAnnotation(Value *FieldPtr, tree_node *FieldDecl);
Value *EmitPOINTER_PLUS_EXPR(tree_node *type, tree_node *op0, tree_node *op1);
// Exception Handling.
Value *EmitEXC_PTR_EXPR(tree_node *exp);
Value *EmitFILTER_EXPR(tree_node *exp);
// Inline Assembly and Register Variables.
Value *EmitReadOfRegisterVariable(tree_node *vardecl, const MemRef *DestLoc);
void EmitModifyOfRegisterVariable(tree_node *vardecl, Value *RHS);
// Helpers for Builtin Function Expansion.
void EmitMemoryBarrier(bool ll, bool ls, bool sl, bool ss);
Value *BuildVector(const std::vector<Value*> &Elts);
Value *BuildVector(Value *Elt, ...);
Value *BuildVectorShuffle(Value *InVec1, Value *InVec2, ...);
Value *BuildBinaryAtomicBuiltin(gimple stmt, Intrinsic::ID id);
Value *BuildCmpAndSwapAtomicBuiltin(gimple stmt, tree_node *type,
bool isBool);
// Builtin Function Expansion.
bool EmitBuiltinCall(gimple stmt, tree_node *fndecl,
const MemRef *DestLoc, Value *&Result);
bool EmitFrontendExpandedBuiltinCall(gimple stmt, tree_node *fndecl,
const MemRef *DestLoc, Value *&Result);
bool EmitBuiltinUnaryOp(Value *InVal, Value *&Result, Intrinsic::ID Id);
Value *EmitBuiltinSQRT(gimple stmt);
Value *EmitBuiltinPOWI(gimple stmt);
Value *EmitBuiltinPOW(gimple stmt);
bool EmitBuiltinConstantP(gimple stmt, Value *&Result);
bool EmitBuiltinAlloca(gimple stmt, Value *&Result);
bool EmitBuiltinExpect(gimple stmt, const MemRef *DestLoc, Value *&Result);
bool EmitBuiltinExtendPointer(gimple stmt, Value *&Result);
bool EmitBuiltinVAStart(gimple stmt);
bool EmitBuiltinVAEnd(gimple stmt);
bool EmitBuiltinVACopy(gimple stmt);
bool EmitBuiltinMemCopy(gimple stmt, Value *&Result,
bool isMemMove, bool SizeCheck);
bool EmitBuiltinMemSet(gimple stmt, Value *&Result, bool SizeCheck);
bool EmitBuiltinBZero(gimple stmt, Value *&Result);
bool EmitBuiltinPrefetch(gimple stmt);
bool EmitBuiltinReturnAddr(gimple stmt, Value *&Result, bool isFrame);
bool EmitBuiltinExtractReturnAddr(gimple stmt, Value *&Result);
bool EmitBuiltinFrobReturnAddr(gimple stmt, Value *&Result);
bool EmitBuiltinStackSave(gimple stmt, Value *&Result);
bool EmitBuiltinStackRestore(gimple stmt);
bool EmitBuiltinDwarfCFA(gimple stmt, Value *&Result);
bool EmitBuiltinDwarfSPColumn(gimple stmt, Value *&Result);
bool EmitBuiltinEHReturnDataRegno(gimple stmt, Value *&Result);
bool EmitBuiltinEHReturn(gimple stmt, Value *&Result);
bool EmitBuiltinInitDwarfRegSizes(gimple stmt, Value *&Result);
bool EmitBuiltinUnwindInit(gimple stmt, Value *&Result);
bool EmitBuiltinInitTrampoline(gimple stmt, Value *&Result);
// Complex Math Expressions.
void EmitLoadFromComplex(Value *&Real, Value *&Imag, MemRef SrcComplex);
void EmitStoreToComplex(MemRef DestComplex, Value *Real, Value *Imag);
void EmitCOMPLEX_CST(tree_node *exp, const MemRef *DestLoc);
void EmitCOMPLEX_EXPR(tree_node *op0, tree_node *op1, const MemRef *DestLoc);
Value *EmitComplexBinOp(tree_node *type, tree_code code, tree_node *op0,
tree_node *op1, const MemRef *DestLoc);
// L-Value Expressions.
LValue EmitLV_ARRAY_REF(tree_node *exp);
LValue EmitLV_BIT_FIELD_REF(tree_node *exp);
LValue EmitLV_COMPONENT_REF(tree_node *exp);
LValue EmitLV_DECL(tree_node *exp);
LValue EmitLV_EXC_PTR_EXPR(tree_node *exp);
LValue EmitLV_FILTER_EXPR(tree_node *exp);
LValue EmitLV_INDIRECT_REF(tree_node *exp);
LValue EmitLV_VIEW_CONVERT_EXPR(tree_node *exp);
LValue EmitLV_WITH_SIZE_EXPR(tree_node *exp);
LValue EmitLV_XXXXPART_EXPR(tree_node *exp, unsigned Idx);
// Constant Expressions.
Value *EmitINTEGER_CST(tree_node *exp);
Value *EmitREAL_CST(tree_node *exp);
Value *EmitCONSTRUCTOR(tree_node *exp, const MemRef *DestLoc);
// Optional target defined builtin intrinsic expanding function.
bool TargetIntrinsicLower(gimple stmt,
unsigned FnCode,
const MemRef *DestLoc,
Value *&Result,
const Type *ResultType,
std::vector<Value*> &Ops);
};
/// TreeConstantToLLVM - An instance of this class is created and used to
/// convert tree constant values to LLVM. This is primarily for things like
/// global variable initializers.
///
class TreeConstantToLLVM {
public:
// Constant Expressions
static Constant *Convert(tree_node *exp);
static Constant *ConvertINTEGER_CST(tree_node *exp);
static Constant *ConvertREAL_CST(tree_node *exp);
static Constant *ConvertVECTOR_CST(tree_node *exp);
static Constant *ConvertSTRING_CST(tree_node *exp);
static Constant *ConvertCOMPLEX_CST(tree_node *exp);
static Constant *ConvertNOP_EXPR(tree_node *exp);
static Constant *ConvertCONVERT_EXPR(tree_node *exp);
static Constant *ConvertBinOp_CST(tree_node *exp);
static Constant *ConvertCONSTRUCTOR(tree_node *exp);
static Constant *ConvertArrayCONSTRUCTOR(tree_node *exp);
static Constant *ConvertRecordCONSTRUCTOR(tree_node *exp);
static Constant *ConvertUnionCONSTRUCTOR(tree_node *exp);
static Constant *ConvertPOINTER_PLUS_EXPR(tree_node *exp);
// Constant Expression l-values.
static Constant *EmitLV(tree_node *exp);
static Constant *EmitLV_Decl(tree_node *exp);
static Constant *EmitLV_LABEL_DECL(tree_node *exp);
static Constant *EmitLV_COMPLEX_CST(tree_node *exp);
static Constant *EmitLV_STRING_CST(tree_node *exp);
static Constant *EmitLV_COMPONENT_REF(tree_node *exp);
static Constant *EmitLV_ARRAY_REF(tree_node *exp);
};
#endif /* LLVM_INTERNAL_H */