| /* Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation |
| |
| This file is part of libgcj. |
| |
| This software is copyrighted work licensed under the terms of the |
| Libgcj License. Please consult the file "LIBGCJ_LICENSE" for |
| details. */ |
| |
| /* Written by Tom Tromey <tromey@redhat.com> */ |
| |
| /* Uncomment this to enable debugging output. */ |
| /* #define VERIFY_DEBUG */ |
| |
| #include "config.h" |
| |
| #include "verify.h" |
| |
| /* Hack to work around namespace pollution from java-tree.h. */ |
| #undef current_class |
| |
| #ifdef VERIFY_DEBUG |
| #include <stdio.h> |
| #endif /* VERIFY_DEBUG */ |
| |
| /* This is used to mark states which are not scheduled for |
| verification. */ |
| #define INVALID_STATE ((state *) -1) |
| |
| #ifdef VERIFY_DEBUG |
| static void |
| debug_print (const char *fmt, ...) |
| { |
| va_list ap; |
| va_start (ap, fmt); |
| vfprintf (stderr, fmt, ap); |
| va_end (ap); |
| } |
| #else |
| static void |
| debug_print (const char *fmt ATTRIBUTE_UNUSED, ...) |
| { |
| } |
| #endif /* VERIFY_DEBUG */ |
| |
| /* This started as a fairly ordinary verifier, and for the most part |
| it remains so. It works in the obvious way, by modeling the effect |
| of each opcode as it is encountered. For most opcodes, this is a |
| straightforward operation. |
| |
| This verifier does not do type merging. It used to, but this |
| results in difficulty verifying some relatively simple code |
| involving interfaces, and it pushed some verification work into the |
| interpreter. |
| |
| Instead of merging reference types, when we reach a point where two |
| flows of control merge, we simply keep the union of reference types |
| from each branch. Then, when we need to verify a fact about a |
| reference on the stack (e.g., that it is compatible with the |
| argument type of a method), we check to ensure that all possible |
| types satisfy the requirement. |
| |
| Another area this verifier differs from the norm is in its handling |
| of subroutines. The JVM specification has some confusing things to |
| say about subroutines. For instance, it makes claims about not |
| allowing subroutines to merge and it rejects recursive subroutines. |
| For the most part these are red herrings; we used to try to follow |
| these things but they lead to problems. For example, the notion of |
| "being in a subroutine" is not well-defined: is an exception |
| handler in a subroutine? If you never execute the `ret' but |
| instead `goto 1' do you remain in the subroutine? |
| |
| For clarity on what is really required for type safety, read |
| "Simple Verification Technique for Complex Java Bytecode |
| Subroutines" by Alessandro Coglio. Among other things this paper |
| shows that recursive subroutines are not harmful to type safety. |
| We implement something similar to what he proposes. Note that this |
| means that this verifier will accept code that is rejected by some |
| other verifiers. |
| |
| For those not wanting to read the paper, the basic observation is |
| that we can maintain split states in subroutines. We maintain one |
| state for each calling `jsr'. In other words, we re-verify a |
| subroutine once for each caller, using the exact types held by the |
| callers (as opposed to the old approach of merging types and |
| keeping a bitmap registering what did or did not change). This |
| approach lets us continue to verify correctly even when a |
| subroutine is exited via `goto' or `athrow' and not `ret'. |
| |
| In some other areas the JVM specification is (mildly) incorrect, |
| so we diverge. For instance, you cannot |
| violate type safety by allocating an object with `new' and then |
| failing to initialize it, no matter how one branches or where one |
| stores the uninitialized reference. See "Improving the official |
| specification of Java bytecode verification" by Alessandro Coglio. |
| |
| Note that there's no real point in enforcing that padding bytes or |
| the mystery byte of invokeinterface must be 0, but we do that |
| regardless. |
| |
| The verifier is currently neither completely lazy nor eager when it |
| comes to loading classes. It tries to represent types by name when |
| possible, and then loads them when it needs to verify a fact about |
| the type. Checking types by name is valid because we only use |
| names which come from the current class' constant pool. Since all |
| such names are looked up using the same class loader, there is no |
| danger that we might be fooled into comparing different types with |
| the same name. |
| |
| In the future we plan to allow for a completely lazy mode of |
| operation, where the verifier will construct a list of type |
| assertions to be checked later. |
| |
| Some test cases for the verifier live in the "verify" module of the |
| Mauve test suite. However, some of these are presently |
| (2004-01-20) believed to be incorrect. (More precisely the notion |
| of "correct" is not well-defined, and this verifier differs from |
| others while remaining type-safe.) Some other tests live in the |
| libgcj test suite. |
| |
| This verifier is also written to be pluggable. This means that it |
| is intended for use in a variety of environments, not just libgcj. |
| As a result the verifier expects a number of type and method |
| declarations to be declared in "verify.h". The intent is that you |
| recompile the verifier for your particular environment. This |
| approach was chosen so that operations could be inlined in verify.h |
| as much as possible. |
| |
| See the verify.h that accompanies this copy of the verifier to see |
| what types, preprocessor defines, and functions must be declared. |
| The interface is ad hoc, but was defined so that it could be |
| implemented to connect to a pure C program. |
| */ |
| |
| #define FLAG_INSN_START 1 |
| #define FLAG_BRANCH_TARGET 2 |
| #define FLAG_INSN_SEEN 4 |
| |
| struct state; |
| struct type; |
| struct ref_intersection; |
| |
| typedef struct state state; |
| typedef struct type type; |
| typedef struct ref_intersection ref_intersection; |
| |
| /*typedef struct state_list state_list;*/ |
| |
| typedef struct state_list |
| { |
| state *val; |
| struct state_list *next; |
| } state_list; |
| |
| typedef struct vfy_string_list |
| { |
| vfy_string val; |
| struct vfy_string_list *next; |
| } vfy_string_list; |
| |
| typedef struct verifier_context |
| { |
| /* The current PC. */ |
| int PC; |
| /* The PC corresponding to the start of the current instruction. */ |
| int start_PC; |
| |
| /* The current state of the stack, locals, etc. */ |
| state *current_state; |
| |
| /* At each branch target we keep a linked list of all the states we |
| can process at that point. We'll only have multiple states at a |
| given PC if they both have different return-address types in the |
| same stack or local slot. This array is indexed by PC and holds |
| the list of all such states. */ |
| state_list **states; |
| |
| /* We keep a linked list of all the states which we must reverify. |
| This is the head of the list. */ |
| state *next_verify_state; |
| |
| /* We keep some flags for each instruction. The values are the |
| FLAG_* constants defined above. This is an array indexed by PC. */ |
| char *flags; |
| |
| /* The bytecode itself. */ |
| const unsigned char *bytecode; |
| /* The exceptions. */ |
| vfy_exception *exception; |
| |
| /* Defining class. */ |
| vfy_jclass current_class; |
| /* This method. */ |
| vfy_method *current_method; |
| |
| /* A linked list of utf8 objects we allocate. */ |
| vfy_string_list *utf8_list; |
| |
| /* A linked list of all ref_intersection objects we allocate. */ |
| ref_intersection *isect_list; |
| } verifier_context; |
| |
| /* The current verifier's state data. This is maintained by |
| {push/pop}_verifier_context to provide a shorthand form to access |
| the verification state. */ |
| static GTY(()) verifier_context *vfr; |
| |
| /* Local function declarations. */ |
| bool type_initialized (type *t); |
| int ref_count_dimensions (ref_intersection *ref); |
| |
| static void |
| verify_fail_pc (const char *s, int pc) |
| { |
| vfy_fail (s, pc, vfr->current_class, vfr->current_method); |
| } |
| |
| static void |
| verify_fail (const char *s) |
| { |
| verify_fail_pc (s, vfr->PC); |
| } |
| |
| /* This enum holds a list of tags for all the different types we |
| need to handle. Reference types are treated specially by the |
| type class. */ |
| typedef enum type_val |
| { |
| void_type, |
| |
| /* The values for primitive types are chosen to correspond to values |
| specified to newarray. */ |
| boolean_type = 4, |
| char_type = 5, |
| float_type = 6, |
| double_type = 7, |
| byte_type = 8, |
| short_type = 9, |
| int_type = 10, |
| long_type = 11, |
| |
| /* Used when overwriting second word of a double or long in the |
| local variables. Also used after merging local variable states |
| to indicate an unusable value. */ |
| unsuitable_type, |
| return_address_type, |
| /* This is the second word of a two-word value, i.e., a double or |
| a long. */ |
| continuation_type, |
| |
| /* Everything after `reference_type' must be a reference type. */ |
| reference_type, |
| null_type, |
| uninitialized_reference_type |
| } type_val; |
| |
| /* This represents a merged class type. Some verifiers (including |
| earlier versions of this one) will compute the intersection of |
| two class types when merging states. However, this loses |
| critical information about interfaces implemented by the various |
| classes. So instead we keep track of all the actual classes that |
| have been merged. */ |
| struct ref_intersection |
| { |
| /* Whether or not this type has been resolved. */ |
| bool is_resolved; |
| |
| /* Actual type data. */ |
| union |
| { |
| /* For a resolved reference type, this is a pointer to the class. */ |
| vfy_jclass klass; |
| /* For other reference types, this it the name of the class. */ |
| vfy_string name; |
| } data; |
| |
| /* Link to the next reference in the intersection. */ |
| ref_intersection *ref_next; |
| |
| /* This is used to keep track of all the allocated |
| ref_intersection objects, so we can free them. |
| FIXME: we should allocate these in chunks. */ |
| ref_intersection *alloc_next; |
| }; |
| |
| static ref_intersection * |
| make_ref (void) |
| { |
| ref_intersection *new_ref = |
| (ref_intersection *) vfy_alloc (sizeof (ref_intersection)); |
| |
| new_ref->alloc_next = vfr->isect_list; |
| vfr->isect_list = new_ref; |
| return new_ref; |
| } |
| |
| static ref_intersection * |
| clone_ref (ref_intersection *dup) |
| { |
| ref_intersection *new_ref = make_ref (); |
| |
| new_ref->is_resolved = dup->is_resolved; |
| new_ref->data = dup->data; |
| return new_ref; |
| } |
| |
| static void |
| resolve_ref (ref_intersection *ref) |
| { |
| if (ref->is_resolved) |
| return; |
| ref->data.klass = vfy_find_class (vfr->current_class, ref->data.name); |
| ref->is_resolved = true; |
| } |
| |
| static bool |
| refs_equal (ref_intersection *ref1, ref_intersection *ref2) |
| { |
| if (! ref1->is_resolved && ! ref2->is_resolved |
| && vfy_strings_equal (ref1->data.name, ref2->data.name)) |
| return true; |
| if (! ref1->is_resolved) |
| resolve_ref (ref1); |
| if (! ref2->is_resolved) |
| resolve_ref (ref2); |
| return ref1->data.klass == ref2->data.klass; |
| } |
| |
| /* Merge REF1 type into REF2, returning the result. This will |
| return REF2 if all the classes in THIS already appear in |
| REF2. */ |
| static ref_intersection * |
| merge_refs (ref_intersection *ref1, ref_intersection *ref2) |
| { |
| ref_intersection *tail = ref2; |
| for (; ref1 != NULL; ref1 = ref1->ref_next) |
| { |
| bool add = true; |
| ref_intersection *iter; |
| for (iter = ref2; iter != NULL; iter = iter->ref_next) |
| { |
| if (refs_equal (ref1, iter)) |
| { |
| add = false; |
| break; |
| } |
| } |
| |
| if (add) |
| { |
| ref_intersection *new_tail = clone_ref (ref1); |
| new_tail->ref_next = tail; |
| tail = new_tail; |
| } |
| } |
| return tail; |
| } |
| |
| /* See if an object of type SOURCE can be assigned to an object of |
| type TARGET. This might resolve classes in one chain or the other. */ |
| static bool |
| ref_compatible (ref_intersection *target, ref_intersection *source) |
| { |
| for (; target != NULL; target = target->ref_next) |
| { |
| ref_intersection *source_iter = source; |
| |
| for (; source_iter != NULL; source_iter = source_iter->ref_next) |
| { |
| /* Avoid resolving if possible. */ |
| if (! target->is_resolved |
| && ! source_iter->is_resolved |
| && vfy_strings_equal (target->data.name, |
| source_iter->data.name)) |
| continue; |
| |
| if (! target->is_resolved) |
| resolve_ref (target); |
| if (! source_iter->is_resolved) |
| resolve_ref (source_iter); |
| |
| if (! vfy_is_assignable_from (target->data.klass, |
| source_iter->data.klass)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool |
| ref_isarray (ref_intersection *ref) |
| { |
| /* assert (ref_next == NULL); */ |
| if (ref->is_resolved) |
| return vfy_is_array (ref->data.klass); |
| else |
| return vfy_string_bytes (ref->data.name)[0] == '['; |
| } |
| |
| static bool |
| ref_isinterface (ref_intersection *ref) |
| { |
| /* assert (ref_next == NULL); */ |
| if (! ref->is_resolved) |
| resolve_ref (ref); |
| return vfy_is_interface (ref->data.klass); |
| } |
| |
| static bool |
| ref_isabstract (ref_intersection *ref) |
| { |
| /* assert (ref_next == NULL); */ |
| if (! ref->is_resolved) |
| resolve_ref (ref); |
| return vfy_is_abstract (ref->data.klass); |
| } |
| |
| static vfy_jclass |
| ref_getclass (ref_intersection *ref) |
| { |
| if (! ref->is_resolved) |
| resolve_ref (ref); |
| return ref->data.klass; |
| } |
| |
| int |
| ref_count_dimensions (ref_intersection *ref) |
| { |
| int ndims = 0; |
| if (ref->is_resolved) |
| { |
| vfy_jclass k = ref->data.klass; |
| while (vfy_is_array (k)) |
| { |
| k = vfy_get_component_type (k); |
| ++ndims; |
| } |
| } |
| else |
| { |
| const char *p = vfy_string_bytes (ref->data.name); |
| while (*p++ == '[') |
| ++ndims; |
| } |
| return ndims; |
| } |
| |
| /* Return the type_val corresponding to a primitive signature |
| character. For instance `I' returns `int.class'. */ |
| static type_val |
| get_type_val_for_signature (char sig) |
| { |
| type_val rt; |
| switch (sig) |
| { |
| case 'Z': |
| rt = boolean_type; |
| break; |
| case 'B': |
| rt = byte_type; |
| break; |
| case 'C': |
| rt = char_type; |
| break; |
| case 'S': |
| rt = short_type; |
| break; |
| case 'I': |
| rt = int_type; |
| break; |
| case 'J': |
| rt = long_type; |
| break; |
| case 'F': |
| rt = float_type; |
| break; |
| case 'D': |
| rt = double_type; |
| break; |
| case 'V': |
| rt = void_type; |
| break; |
| default: |
| verify_fail ("invalid signature"); |
| return null_type; |
| } |
| return rt; |
| } |
| |
| /* Return the type_val corresponding to a primitive class. */ |
| static type_val |
| get_type_val_for_primtype (vfy_jclass k) |
| { |
| return get_type_val_for_signature (vfy_get_primitive_char (k)); |
| } |
| |
| /* The `type' class is used to represent a single type in the verifier. */ |
| struct type |
| { |
| /* The type key. */ |
| type_val key; |
| |
| /* For reference types, the representation of the type. */ |
| ref_intersection *klass; |
| |
| /* This is used in two situations. |
| |
| First, when constructing a new object, it is the PC of the |
| `new' instruction which created the object. We use the special |
| value UNINIT to mean that this is uninitialized. The special |
| value SELF is used for the case where the current method is |
| itself the <init> method. the special value EITHER is used |
| when we may optionally allow either an uninitialized or |
| initialized reference to match. |
| |
| Second, when the key is return_address_type, this holds the PC |
| of the instruction following the `jsr'. */ |
| int pc; |
| |
| #define UNINIT -2 |
| #define SELF -1 |
| #define EITHER -3 |
| }; |
| |
| /* Make a new instance given the type tag. We assume a generic |
| `reference_type' means Object. */ |
| static void |
| init_type_from_tag (type *t, type_val k) |
| { |
| t->key = k; |
| /* For reference_type, if KLASS==NULL then that means we are |
| looking for a generic object of any kind, including an |
| uninitialized reference. */ |
| t->klass = NULL; |
| t->pc = UNINIT; |
| } |
| |
| /* Make a type for the given type_val tag K. */ |
| static type |
| make_type (type_val k) |
| { |
| type t; |
| init_type_from_tag (&t, k); |
| return t; |
| } |
| |
| /* Make a new instance given a class. */ |
| static void |
| init_type_from_class (type *t, vfy_jclass k) |
| { |
| t->key = reference_type; |
| t->klass = make_ref (); |
| t->klass->is_resolved = true; |
| t->klass->data.klass = k; |
| t->klass->ref_next = NULL; |
| t->pc = UNINIT; |
| } |
| |
| static type |
| make_type_from_class (vfy_jclass k) |
| { |
| type t; |
| init_type_from_class (&t, k); |
| return t; |
| } |
| |
| static void |
| init_type_from_string (type *t, vfy_string n) |
| { |
| t->key = reference_type; |
| t->klass = make_ref (); |
| t->klass->is_resolved = false; |
| t->klass->data.name = n; |
| t->klass->ref_next = NULL; |
| t->pc = UNINIT; |
| } |
| |
| static type |
| make_type_from_string (vfy_string n) |
| { |
| type t; |
| init_type_from_string (&t, n); |
| return t; |
| } |
| |
| /* Promote a numeric type. */ |
| static void |
| vfy_promote_type (type *t) |
| { |
| if (t->key == boolean_type || t->key == char_type |
| || t->key == byte_type || t->key == short_type) |
| t->key = int_type; |
| } |
| #define promote_type vfy_promote_type |
| |
| /* Mark this type as the uninitialized result of `new'. */ |
| static void |
| type_set_uninitialized (type *t, int npc) |
| { |
| if (t->key == reference_type) |
| t->key = uninitialized_reference_type; |
| else |
| verify_fail ("internal error in type::uninitialized"); |
| t->pc = npc; |
| } |
| |
| /* Mark this type as now initialized. */ |
| static void |
| type_set_initialized (type *t, int npc) |
| { |
| if (npc != UNINIT && t->pc == npc && t->key == uninitialized_reference_type) |
| { |
| t->key = reference_type; |
| t->pc = UNINIT; |
| } |
| } |
| |
| /* Mark this type as a particular return address. */ |
| static void type_set_return_address (type *t, int npc) |
| { |
| t->pc = npc; |
| } |
| |
| /* Return true if this type and type OTHER are considered |
| mergeable for the purposes of state merging. This is related |
| to subroutine handling. For this purpose two types are |
| considered unmergeable if they are both return-addresses but |
| have different PCs. */ |
| static bool |
| type_state_mergeable_p (type *t1, type *t2) |
| { |
| return (t1->key != return_address_type |
| || t2->key != return_address_type |
| || t1->pc == t2->pc); |
| } |
| |
| /* Return true if an object of type K can be assigned to a variable |
| of type T. Handle various special cases too. Might modify |
| T or K. Note however that this does not perform numeric |
| promotion. */ |
| static bool |
| types_compatible (type *t, type *k) |
| { |
| /* Any type is compatible with the unsuitable type. */ |
| if (k->key == unsuitable_type) |
| return true; |
| |
| if (t->key < reference_type || k->key < reference_type) |
| return t->key == k->key; |
| |
| /* The `null' type is convertible to any initialized reference |
| type. */ |
| if (t->key == null_type) |
| return k->key != uninitialized_reference_type; |
| if (k->key == null_type) |
| return t->key != uninitialized_reference_type; |
| |
| /* A special case for a generic reference. */ |
| if (t->klass == NULL) |
| return true; |
| if (k->klass == NULL) |
| verify_fail ("programmer error in type::compatible"); |
| |
| /* Handle the special 'EITHER' case, which is only used in a |
| special case of 'putfield'. Note that we only need to handle |
| this on the LHS of a check. */ |
| if (! type_initialized (t) && t->pc == EITHER) |
| { |
| /* If the RHS is uninitialized, it must be an uninitialized |
| 'this'. */ |
| if (! type_initialized (k) && k->pc != SELF) |
| return false; |
| } |
| else if (type_initialized (t) != type_initialized (k)) |
| { |
| /* An initialized type and an uninitialized type are not |
| otherwise compatible. */ |
| return false; |
| } |
| else |
| { |
| /* Two uninitialized objects are compatible if either: |
| * The PCs are identical, or |
| * One PC is UNINIT. */ |
| if (type_initialized (t)) |
| { |
| if (t->pc != k->pc && t->pc != UNINIT && k->pc != UNINIT) |
| return false; |
| } |
| } |
| |
| return ref_compatible (t->klass, k->klass); |
| } |
| |
| /* Return true if two types are equal. Only valid for reference |
| types. */ |
| static bool |
| types_equal (type *t1, type *t2) |
| { |
| if ((t1->key != reference_type && t1->key != uninitialized_reference_type) |
| || (t2->key != reference_type |
| && t2->key != uninitialized_reference_type)) |
| return false; |
| /* Only single-ref types are allowed. */ |
| if (t1->klass->ref_next || t2->klass->ref_next) |
| return false; |
| return refs_equal (t1->klass, t2->klass); |
| } |
| |
| static bool |
| type_isvoid (type *t) |
| { |
| return t->key == void_type; |
| } |
| |
| static bool |
| type_iswide (type *t) |
| { |
| return t->key == long_type || t->key == double_type; |
| } |
| |
| /* Return number of stack or local variable slots taken by this type. */ |
| static int |
| type_depth (type *t) |
| { |
| return type_iswide (t) ? 2 : 1; |
| } |
| |
| static bool |
| type_isarray (type *t) |
| { |
| /* We treat null_type as not an array. This is ok based on the |
| current uses of this method. */ |
| if (t->key == reference_type) |
| return ref_isarray (t->klass); |
| return false; |
| } |
| |
| static bool |
| type_isnull (type *t) |
| { |
| return t->key == null_type; |
| } |
| |
| static bool |
| type_isinterface (type *t) |
| { |
| if (t->key != reference_type) |
| return false; |
| return ref_isinterface (t->klass); |
| } |
| |
| static bool |
| type_isabstract (type *t) |
| { |
| if (t->key != reference_type) |
| return false; |
| return ref_isabstract (t->klass); |
| } |
| |
| /* Return the element type of an array. */ |
| static type |
| type_array_element (type *t) |
| { |
| type et; |
| vfy_jclass k; |
| |
| if (t->key != reference_type) |
| verify_fail ("programmer error in type::element_type()"); |
| |
| k = vfy_get_component_type (ref_getclass (t->klass)); |
| if (vfy_is_primitive (k)) |
| init_type_from_tag (&et, get_type_val_for_primtype (k)); |
| else |
| init_type_from_class (&et, k); |
| return et; |
| } |
| |
| /* Return the array type corresponding to an initialized |
| reference. We could expand this to work for other kinds of |
| types, but currently we don't need to. */ |
| static type |
| type_to_array (type *t) |
| { |
| type at; |
| vfy_jclass k; |
| |
| if (t->key != reference_type) |
| verify_fail ("internal error in type::to_array()"); |
| |
| k = ref_getclass (t->klass); |
| init_type_from_class (&at, vfy_get_array_class (k)); |
| return at; |
| } |
| |
| static bool |
| type_isreference (type *t) |
| { |
| return t->key >= reference_type; |
| } |
| |
| static int |
| type_get_pc (type *t) |
| { |
| return t->pc; |
| } |
| |
| bool |
| type_initialized (type *t) |
| { |
| return t->key == reference_type || t->key == null_type; |
| } |
| |
| static void |
| type_verify_dimensions (type *t, int ndims) |
| { |
| /* The way this is written, we don't need to check isarray(). */ |
| if (t->key != reference_type) |
| verify_fail ("internal error in verify_dimensions:" |
| " not a reference type"); |
| |
| if (ref_count_dimensions (t->klass) < ndims) |
| verify_fail ("array type has fewer dimensions" |
| " than required"); |
| } |
| |
| /* Merge OLD_TYPE into this. On error throw exception. Return |
| true if the merge caused a type change. */ |
| static bool |
| merge_types (type *t, type *old_type, bool local_semantics) |
| { |
| bool changed = false; |
| bool refo = type_isreference (old_type); |
| bool refn = type_isreference (t); |
| if (refo && refn) |
| { |
| if (old_type->key == null_type) |
| ; |
| else if (t->key == null_type) |
| { |
| *t = *old_type; |
| changed = true; |
| } |
| else if (type_initialized (t) != type_initialized (old_type)) |
| verify_fail ("merging initialized and uninitialized types"); |
| else |
| { |
| ref_intersection *merged; |
| if (! type_initialized (t)) |
| { |
| if (t->pc == UNINIT) |
| t->pc = old_type->pc; |
| else if (old_type->pc == UNINIT) |
| ; |
| else if (t->pc != old_type->pc) |
| verify_fail ("merging different uninitialized types"); |
| } |
| |
| merged = merge_refs (old_type->klass, t->klass); |
| if (merged != t->klass) |
| { |
| t->klass = merged; |
| changed = true; |
| } |
| } |
| } |
| else if (refo || refn || t->key != old_type->key) |
| { |
| if (local_semantics) |
| { |
| /* If we already have an `unsuitable' type, then we |
| don't need to change again. */ |
| if (t->key != unsuitable_type) |
| { |
| t->key = unsuitable_type; |
| changed = true; |
| } |
| } |
| else |
| verify_fail ("unmergeable type"); |
| } |
| return changed; |
| } |
| |
| #ifdef VERIFY_DEBUG |
| static void |
| type_print (type *t) |
| { |
| char c = '?'; |
| switch (t->key) |
| { |
| case boolean_type: c = 'Z'; break; |
| case byte_type: c = 'B'; break; |
| case char_type: c = 'C'; break; |
| case short_type: c = 'S'; break; |
| case int_type: c = 'I'; break; |
| case long_type: c = 'J'; break; |
| case float_type: c = 'F'; break; |
| case double_type: c = 'D'; break; |
| case void_type: c = 'V'; break; |
| case unsuitable_type: c = '-'; break; |
| case return_address_type: c = 'r'; break; |
| case continuation_type: c = '+'; break; |
| case reference_type: c = 'L'; break; |
| case null_type: c = '@'; break; |
| case uninitialized_reference_type: c = 'U'; break; |
| } |
| debug_print ("%c", c); |
| } |
| #endif /* VERIFY_DEBUG */ |
| |
| /* This class holds all the state information we need for a given |
| location. */ |
| struct state |
| { |
| /* The current top of the stack, in terms of slots. */ |
| int stacktop; |
| /* The current depth of the stack. This will be larger than |
| STACKTOP when wide types are on the stack. */ |
| int stackdepth; |
| /* The stack. */ |
| type *stack; |
| /* The local variables. */ |
| type *locals; |
| /* We keep track of the type of `this' specially. This is used to |
| ensure that an instance initializer invokes another initializer |
| on `this' before returning. We must keep track of this |
| specially because otherwise we might be confused by code which |
| assigns to locals[0] (overwriting `this') and then returns |
| without really initializing. */ |
| type this_type; |
| |
| /* The PC for this state. This is only valid on states which are |
| permanently attached to a given PC. For an object like |
| `current_state', which is used transiently, this has no |
| meaning. */ |
| int pc; |
| /* We keep a linked list of all states requiring reverification. |
| If this is the special value INVALID_STATE then this state is |
| not on the list. NULL marks the end of the linked list. */ |
| state *next; |
| }; |
| |
| /* NO_NEXT is the PC value meaning that a new state must be |
| acquired from the verification list. */ |
| #define NO_NEXT -1 |
| |
| static void |
| init_state_with_stack (state *s, int max_stack, int max_locals) |
| { |
| int i; |
| s->stacktop = 0; |
| s->stackdepth = 0; |
| s->stack = (type *) vfy_alloc (max_stack * sizeof (type)); |
| for (i = 0; i < max_stack; ++i) |
| init_type_from_tag (&s->stack[i], unsuitable_type); |
| s->locals = (type *) vfy_alloc (max_locals * sizeof (type)); |
| for (i = 0; i < max_locals; ++i) |
| init_type_from_tag (&s->locals[i], unsuitable_type); |
| init_type_from_tag (&s->this_type, unsuitable_type); |
| s->pc = NO_NEXT; |
| s->next = INVALID_STATE; |
| } |
| |
| static void |
| copy_state (state *s, state *copy, int max_stack, int max_locals) |
| { |
| int i; |
| s->stacktop = copy->stacktop; |
| s->stackdepth = copy->stackdepth; |
| for (i = 0; i < max_stack; ++i) |
| s->stack[i] = copy->stack[i]; |
| for (i = 0; i < max_locals; ++i) |
| s->locals[i] = copy->locals[i]; |
| |
| s->this_type = copy->this_type; |
| /* Don't modify `next' or `pc'. */ |
| } |
| |
| static void |
| copy_state_with_stack (state *s, state *orig, int max_stack, int max_locals) |
| { |
| init_state_with_stack (s, max_stack, max_locals); |
| copy_state (s, orig, max_stack, max_locals); |
| } |
| |
| /* Allocate a new state, copying ORIG. */ |
| static state * |
| make_state_copy (state *orig, int max_stack, int max_locals) |
| { |
| state *s = vfy_alloc (sizeof (state)); |
| copy_state_with_stack (s, orig, max_stack, max_locals); |
| return s; |
| } |
| |
| static state * |
| make_state (int max_stack, int max_locals) |
| { |
| state *s = vfy_alloc (sizeof (state)); |
| init_state_with_stack (s, max_stack, max_locals); |
| return s; |
| } |
| |
| static void |
| free_state (state *s) |
| { |
| if (s->stack != NULL) |
| vfy_free (s->stack); |
| if (s->locals != NULL) |
| vfy_free (s->locals); |
| } |
| |
| /* Modify this state to reflect entry to an exception handler. */ |
| static void |
| state_set_exception (state *s, type *t, int max_stack) |
| { |
| int i; |
| s->stackdepth = 1; |
| s->stacktop = 1; |
| s->stack[0] = *t; |
| for (i = s->stacktop; i < max_stack; ++i) |
| init_type_from_tag (&s->stack[i], unsuitable_type); |
| } |
| |
| /* Merge STATE_OLD into this state. Destructively modifies this |
| state. Returns true if the new state was in fact changed. |
| Will throw an exception if the states are not mergeable. */ |
| static bool |
| merge_states (state *s, state *state_old, int max_locals) |
| { |
| int i; |
| bool changed = false; |
| |
| /* Special handling for `this'. If one or the other is |
| uninitialized, then the merge is uninitialized. */ |
| if (type_initialized (&s->this_type)) |
| s->this_type = state_old->this_type; |
| |
| /* Merge stacks. */ |
| if (state_old->stacktop != s->stacktop) /* FIXME stackdepth instead? */ |
| verify_fail ("stack sizes differ"); |
| for (i = 0; i < state_old->stacktop; ++i) |
| { |
| if (merge_types (&s->stack[i], &state_old->stack[i], false)) |
| changed = true; |
| } |
| |
| /* Merge local variables. */ |
| for (i = 0; i < max_locals; ++i) |
| { |
| if (merge_types (&s->locals[i], &state_old->locals[i], true)) |
| changed = true; |
| } |
| |
| return changed; |
| } |
| |
| /* Ensure that `this' has been initialized. */ |
| static void |
| state_check_this_initialized (state *s) |
| { |
| if (type_isreference (&s->this_type) && ! type_initialized (&s->this_type)) |
| verify_fail ("`this' is uninitialized"); |
| } |
| |
| /* Set type of `this'. */ |
| static void |
| state_set_this_type (state *s, type *k) |
| { |
| s->this_type = *k; |
| } |
| |
| /* Mark each `new'd object we know of that was allocated at PC as |
| initialized. */ |
| static void |
| state_set_initialized (state *s, int pc, int max_locals) |
| { |
| int i; |
| for (i = 0; i < s->stacktop; ++i) |
| type_set_initialized (&s->stack[i], pc); |
| for (i = 0; i < max_locals; ++i) |
| type_set_initialized (&s->locals[i], pc); |
| type_set_initialized (&s->this_type, pc); |
| } |
| |
| /* This tests to see whether two states can be considered "merge |
| compatible". If both states have a return-address in the same |
| slot, and the return addresses are different, then they are not |
| compatible and we must not try to merge them. */ |
| static bool |
| state_mergeable_p (state *s, state *other, int max_locals) |
| |
| { |
| int i; |
| |
| /* This is tricky: if the stack sizes differ, then not only are |
| these not mergeable, but in fact we should give an error, as |
| we've found two execution paths that reach a branch target |
| with different stack depths. FIXME stackdepth instead? */ |
| if (s->stacktop != other->stacktop) |
| verify_fail ("stack sizes differ"); |
| |
| for (i = 0; i < s->stacktop; ++i) |
| if (! type_state_mergeable_p (&s->stack[i], &other->stack[i])) |
| return false; |
| for (i = 0; i < max_locals; ++i) |
| if (! type_state_mergeable_p (&s->locals[i], &other->locals[i])) |
| return false; |
| return true; |
| } |
| |
| static void |
| state_reverify (state *s) |
| { |
| if (s->next == INVALID_STATE) |
| { |
| s->next = vfr->next_verify_state; |
| vfr->next_verify_state = s; |
| } |
| } |
| |
| #ifdef VERIFY_DEBUG |
| static void |
| debug_print_state (state *s, const char *leader, int pc, int max_stack, |
| int max_locals) |
| { |
| int i; |
| debug_print ("%s [%4d]: [stack] ", leader, pc); |
| for (i = 0; i < s->stacktop; ++i) |
| type_print (&s->stack[i]); |
| for (; i < max_stack; ++i) |
| debug_print ("."); |
| debug_print (" [local] "); |
| for (i = 0; i < max_locals; ++i) |
| type_print (&s->locals[i]); |
| debug_print (" | %p\n", s); |
| } |
| #else |
| static void |
| debug_print_state (state *s ATTRIBUTE_UNUSED, |
| const char *leader ATTRIBUTE_UNUSED, |
| int pc ATTRIBUTE_UNUSED, int max_stack ATTRIBUTE_UNUSED, |
| int max_locals ATTRIBUTE_UNUSED) |
| { |
| } |
| #endif /* VERIFY_DEBUG */ |
| |
| static type |
| pop_raw (void) |
| { |
| type r; |
| state *s = vfr->current_state; |
| if (s->stacktop <= 0) |
| verify_fail ("stack empty"); |
| r = s->stack[--s->stacktop]; |
| s->stackdepth -= type_depth (&r); |
| if (s->stackdepth < 0) |
| verify_fail_pc ("stack empty", vfr->start_PC); |
| return r; |
| } |
| |
| static type |
| pop32 (void) |
| { |
| type r = pop_raw (); |
| if (type_iswide (&r)) |
| verify_fail ("narrow pop of wide type"); |
| return r; |
| } |
| |
| static type |
| vfy_pop_type_t (type match) |
| { |
| type t; |
| vfy_promote_type (&match); |
| t = pop_raw (); |
| if (! types_compatible (&match, &t)) |
| verify_fail ("incompatible type on stack"); |
| return t; |
| } |
| |
| static type |
| vfy_pop_type (type_val match) |
| { |
| type t = make_type (match); |
| return vfy_pop_type_t (t); |
| } |
| |
| #define pop_type vfy_pop_type |
| #define pop_type_t vfy_pop_type_t |
| |
| /* Pop a reference which is guaranteed to be initialized. MATCH |
| doesn't have to be a reference type; in this case this acts like |
| pop_type. */ |
| static type |
| pop_init_ref_t (type match) |
| { |
| type t = pop_raw (); |
| if (type_isreference (&t) && ! type_initialized (&t)) |
| verify_fail ("initialized reference required"); |
| else if (! types_compatible (&match, &t)) |
| verify_fail ("incompatible type on stack"); |
| return t; |
| } |
| |
| static type |
| pop_init_ref (type_val match) |
| { |
| type t = make_type (match); |
| return pop_init_ref_t (t); |
| } |
| |
| /* Pop a reference type or a return address. */ |
| static type |
| pop_ref_or_return (void) |
| { |
| type t = pop_raw (); |
| if (! type_isreference (&t) && t.key != return_address_type) |
| verify_fail ("expected reference or return address on stack"); |
| return t; |
| } |
| |
| static void |
| vfy_push_type_t (type t) |
| { |
| int depth; |
| state *s = vfr->current_state; |
| /* If T is a numeric type like short, promote it to int. */ |
| promote_type (&t); |
| |
| depth = type_depth (&t); |
| |
| if (s->stackdepth + depth > vfr->current_method->max_stack) |
| verify_fail ("stack overflow"); |
| s->stack[s->stacktop++] = t; |
| s->stackdepth += depth; |
| } |
| |
| static void |
| vfy_push_type (type_val tval) |
| { |
| type t = make_type (tval); |
| vfy_push_type_t (t); |
| } |
| |
| #define push_type vfy_push_type |
| #define push_type_t vfy_push_type_t |
| |
| static void |
| set_variable (int index, type t) |
| { |
| int depth; |
| state *s = vfr->current_state; |
| /* If T is a numeric type like short, promote it to int. */ |
| promote_type (&t); |
| |
| depth = type_depth (&t); |
| if (index > vfr->current_method->max_locals - depth) |
| verify_fail ("invalid local variable"); |
| s->locals[index] = t; |
| |
| if (depth == 2) |
| init_type_from_tag (&s->locals[index + 1], continuation_type); |
| if (index > 0 && type_iswide (&s->locals[index - 1])) |
| init_type_from_tag (&s->locals[index - 1], unsuitable_type); |
| } |
| |
| static type |
| get_variable_t (int index, type *t) |
| { |
| state *s = vfr->current_state; |
| int depth = type_depth (t); |
| if (index > vfr->current_method->max_locals - depth) |
| verify_fail ("invalid local variable"); |
| if (! types_compatible (t, &s->locals[index])) |
| verify_fail ("incompatible type in local variable"); |
| if (depth == 2) |
| { |
| type cont = make_type (continuation_type); |
| if (! types_compatible (&s->locals[index + 1], &cont)) |
| verify_fail ("invalid local variable"); |
| } |
| return s->locals[index]; |
| } |
| |
| static type |
| get_variable (int index, type_val v) |
| { |
| type t = make_type (v); |
| return get_variable_t (index, &t); |
| } |
| |
| /* Make sure ARRAY is an array type and that its elements are |
| compatible with type ELEMENT. Returns the actual element type. */ |
| static type |
| require_array_type_t (type array, type element) |
| { |
| type t; |
| /* An odd case. Here we just pretend that everything went ok. If |
| the requested element type is some kind of reference, return |
| the null type instead. */ |
| if (type_isnull (&array)) |
| return type_isreference (&element) ? make_type (null_type) : element; |
| |
| if (! type_isarray (&array)) |
| verify_fail ("array required"); |
| |
| t = type_array_element (&array); |
| if (! types_compatible (&element, &t)) |
| { |
| /* Special case for byte arrays, which must also be boolean |
| arrays. */ |
| bool ok = true; |
| if (element.key == byte_type) |
| { |
| type e2 = make_type (boolean_type); |
| ok = types_compatible (&e2, &t); |
| } |
| if (! ok) |
| verify_fail ("incompatible array element type"); |
| } |
| |
| /* Return T and not ELEMENT, because T might be specialized. */ |
| return t; |
| } |
| |
| static type |
| require_array_type (type array, type_val element) |
| { |
| type t = make_type (element); |
| return require_array_type_t (array, t); |
| } |
| |
| static jint |
| get_byte (void) |
| { |
| if (vfr->PC >= vfr->current_method->code_length) |
| verify_fail ("premature end of bytecode"); |
| return (jint) vfr->bytecode[vfr->PC++] & 0xff; |
| } |
| |
| static jint |
| get_ushort (void) |
| { |
| jint b1 = get_byte (); |
| jint b2 = get_byte (); |
| return (jint) ((b1 << 8) | b2) & 0xffff; |
| } |
| |
| static jint |
| get_short (void) |
| { |
| signed char b1 = (signed char) get_byte (); |
| jint b2 = get_byte (); |
| jshort s = (b1 << 8) | b2; |
| return (jint) s; |
| } |
| |
| static jint |
| get_int (void) |
| { |
| jint b1 = get_byte (); |
| jint b2 = get_byte (); |
| jint b3 = get_byte (); |
| jint b4 = get_byte (); |
| jword result = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4; |
| /* In the compiler, 'jint' might have more than 32 bits, so we must |
| sign extend. */ |
| return WORD_TO_INT (result); |
| } |
| |
| static int |
| compute_jump (int offset) |
| { |
| int npc = vfr->start_PC + offset; |
| if (npc < 0 || npc >= vfr->current_method->code_length) |
| verify_fail_pc ("branch out of range", vfr->start_PC); |
| return npc; |
| } |
| |
| /* Add a new state to the state list at NPC. */ |
| static state * |
| add_new_state (int npc, state *old_state) |
| { |
| state_list *nlink; |
| vfy_method *current_method = vfr->current_method; |
| state *new_state = make_state_copy (old_state, current_method->max_stack, |
| current_method->max_locals); |
| debug_print ("== New state in add_new_state\n"); |
| debug_print_state (new_state, "New", npc, current_method->max_stack, |
| current_method->max_locals); |
| |
| nlink = vfy_alloc (sizeof (state_list)); |
| nlink->val = new_state; |
| nlink->next = vfr->states[npc]; |
| vfr->states[npc] = nlink; |
| new_state->pc = npc; |
| return new_state; |
| } |
| |
| /* Merge the indicated state into the state at the branch target and |
| schedule a new PC if there is a change. NPC is the PC of the |
| branch target, and FROM_STATE is the state at the source of the |
| branch. This method returns true if the destination state |
| changed and requires reverification, false otherwise. */ |
| static void |
| merge_into (int npc, state *from_state) |
| { |
| /* Iterate over all target states and merge our state into each, |
| if applicable. FIXME one improvement we could make here is |
| "state destruction". Merging a new state into an existing one |
| might cause a return_address_type to be merged to |
| unsuitable_type. In this case the resulting state may now be |
| mergeable with other states currently held in parallel at this |
| location. So in this situation we could pairwise compare and |
| reduce the number of parallel states. */ |
| state_list *iter; |
| bool applicable = false; |
| for (iter = vfr->states[npc]; iter != NULL; iter = iter->next) |
| { |
| state *new_state = iter->val; |
| vfy_method *current_method = vfr->current_method; |
| |
| if (state_mergeable_p (new_state, from_state, |
| current_method->max_locals)) |
| { |
| bool changed; |
| applicable = true; |
| |
| debug_print ("== Merge states in merge_into\n"); |
| debug_print_state (from_state, "Frm", vfr->start_PC, current_method->max_stack, |
| current_method->max_locals); |
| debug_print_state (new_state, " To", npc, current_method->max_stack, |
| current_method->max_locals); |
| changed = merge_states (new_state, from_state, |
| current_method->max_locals); |
| debug_print_state (new_state, "New", npc, current_method->max_stack, |
| current_method->max_locals); |
| |
| if (changed) |
| state_reverify (new_state); |
| } |
| } |
| |
| if (! applicable) |
| { |
| /* Either we don't yet have a state at NPC, or we have a |
| return-address type that is in conflict with all existing |
| state. So, we need to create a new entry. */ |
| state *new_state = add_new_state (npc, from_state); |
| /* A new state added in this way must always be reverified. */ |
| state_reverify (new_state); |
| } |
| } |
| |
| static void |
| push_jump (int offset) |
| { |
| int npc = compute_jump (offset); |
| /* According to the JVM Spec, we need to check for uninitialized |
| objects here. However, this does not actually affect type |
| safety, and the Eclipse java compiler generates code that |
| violates this constraint. */ |
| merge_into (npc, vfr->current_state); |
| } |
| |
| static void |
| push_exception_jump (type t, int pc) |
| { |
| state s; |
| /* According to the JVM Spec, we need to check for uninitialized |
| objects here. However, this does not actually affect type |
| safety, and the Eclipse java compiler generates code that |
| violates this constraint. */ |
| copy_state_with_stack (&s, vfr->current_state, |
| vfr->current_method->max_stack, |
| vfr->current_method->max_locals); |
| if (vfr->current_method->max_stack < 1) |
| verify_fail ("stack overflow at exception handler"); |
| state_set_exception (&s, &t, vfr->current_method->max_stack); |
| merge_into (pc, &s); |
| /* FIXME: leak.. need free_state or GC */ |
| } |
| |
| static state * |
| pop_jump (void) |
| { |
| state *new_state = vfr->next_verify_state; |
| if (new_state == INVALID_STATE) |
| verify_fail ("programmer error in pop_jump"); |
| if (new_state != NULL) |
| { |
| vfr->next_verify_state = new_state->next; |
| new_state->next = INVALID_STATE; |
| } |
| return new_state; |
| } |
| |
| static void |
| invalidate_pc (void) |
| { |
| vfr->PC = NO_NEXT; |
| } |
| |
| static void |
| note_branch_target (int pc) |
| { |
| /* Don't check `pc <= PC', because we've advanced PC after |
| fetching the target and we haven't yet checked the next |
| instruction. */ |
| if (pc < vfr->PC && ! (vfr->flags[pc] & FLAG_INSN_START)) |
| verify_fail_pc ("branch not to instruction start", vfr->start_PC); |
| vfr->flags[pc] |= FLAG_BRANCH_TARGET; |
| } |
| |
| static void |
| skip_padding (void) |
| { |
| while ((vfr->PC % 4) > 0) |
| if (get_byte () != 0) |
| verify_fail ("found nonzero padding byte"); |
| } |
| |
| /* Do the work for a `ret' instruction. INDEX is the index into the |
| local variables. */ |
| static void |
| handle_ret_insn (int index) |
| { |
| type ret = make_type (return_address_type); |
| type ret_addr = get_variable_t (index, &ret); |
| /* It would be nice if we could do this. However, the JVM Spec |
| doesn't say that this is what happens. It is implied that |
| reusing a return address is invalid, but there's no actual |
| prohibition against it. */ |
| /* set_variable (index, unsuitable_type); */ |
| |
| int npc = type_get_pc (&ret_addr); |
| /* We might be returning to a `jsr' that is at the end of the |
| bytecode. This is ok if we never return from the called |
| subroutine, but if we see this here it is an error. */ |
| if (npc >= vfr->current_method->code_length) |
| verify_fail ("fell off end"); |
| |
| /* According to the JVM Spec, we need to check for uninitialized |
| objects here. However, this does not actually affect type |
| safety, and the Eclipse java compiler generates code that |
| violates this constraint. */ |
| merge_into (npc, vfr->current_state); |
| invalidate_pc (); |
| } |
| |
| static void handle_jsr_insn (int offset) |
| { |
| type ret_addr; |
| int npc = compute_jump (offset); |
| |
| /* According to the JVM Spec, we need to check for uninitialized |
| objects here. However, this does not actually affect type |
| safety, and the Eclipse java compiler generates code that |
| violates this constraint. */ |
| |
| /* Modify our state as appropriate for entry into a subroutine. */ |
| ret_addr = make_type (return_address_type); |
| type_set_return_address (&ret_addr, vfr->PC); |
| vfy_push_type_t (ret_addr); |
| merge_into (npc, vfr->current_state); |
| invalidate_pc (); |
| } |
| |
| static vfy_jclass |
| construct_primitive_array_type (type_val prim) |
| { |
| vfy_jclass k = NULL; |
| switch (prim) |
| { |
| case boolean_type: |
| case char_type: |
| case float_type: |
| case double_type: |
| case byte_type: |
| case short_type: |
| case int_type: |
| case long_type: |
| k = vfy_get_primitive_type ((int) prim); |
| break; |
| |
| /* These aren't used here but we call them out to avoid |
| warnings. */ |
| case void_type: |
| case unsuitable_type: |
| case return_address_type: |
| case continuation_type: |
| case reference_type: |
| case null_type: |
| case uninitialized_reference_type: |
| default: |
| verify_fail ("unknown type in construct_primitive_array_type"); |
| } |
| k = vfy_get_array_class (k); |
| return k; |
| } |
| |
| /* This pass computes the location of branch targets and also |
| instruction starts. */ |
| static void |
| branch_prepass (void) |
| { |
| int i, pc; |
| vfr->flags = (char *) vfy_alloc (vfr->current_method->code_length); |
| |
| for (i = 0; i < vfr->current_method->code_length; ++i) |
| vfr->flags[i] = 0; |
| |
| vfr->PC = 0; |
| while (vfr->PC < vfr->current_method->code_length) |
| { |
| java_opcode opcode; |
| /* Set `start_PC' early so that error checking can have the |
| correct value. */ |
| vfr->start_PC = vfr->PC; |
| vfr->flags[vfr->PC] |= FLAG_INSN_START; |
| |
| opcode = (java_opcode) vfr->bytecode[vfr->PC++]; |
| switch (opcode) |
| { |
| case op_nop: |
| case op_aconst_null: |
| case op_iconst_m1: |
| case op_iconst_0: |
| case op_iconst_1: |
| case op_iconst_2: |
| case op_iconst_3: |
| case op_iconst_4: |
| case op_iconst_5: |
| case op_lconst_0: |
| case op_lconst_1: |
| case op_fconst_0: |
| case op_fconst_1: |
| case op_fconst_2: |
| case op_dconst_0: |
| case op_dconst_1: |
| case op_iload_0: |
| case op_iload_1: |
| case op_iload_2: |
| case op_iload_3: |
| case op_lload_0: |
| case op_lload_1: |
| case op_lload_2: |
| case op_lload_3: |
| case op_fload_0: |
| case op_fload_1: |
| case op_fload_2: |
| case op_fload_3: |
| case op_dload_0: |
| case op_dload_1: |
| case op_dload_2: |
| case op_dload_3: |
| case op_aload_0: |
| case op_aload_1: |
| case op_aload_2: |
| case op_aload_3: |
| case op_iaload: |
| case op_laload: |
| case op_faload: |
| case op_daload: |
| case op_aaload: |
| case op_baload: |
| case op_caload: |
| case op_saload: |
| case op_istore_0: |
| case op_istore_1: |
| case op_istore_2: |
| case op_istore_3: |
| case op_lstore_0: |
| case op_lstore_1: |
| case op_lstore_2: |
| case op_lstore_3: |
| case op_fstore_0: |
| case op_fstore_1: |
| case op_fstore_2: |
| case op_fstore_3: |
| case op_dstore_0: |
| case op_dstore_1: |
| case op_dstore_2: |
| case op_dstore_3: |
| case op_astore_0: |
| case op_astore_1: |
| case op_astore_2: |
| case op_astore_3: |
| case op_iastore: |
| case op_lastore: |
| case op_fastore: |
| case op_dastore: |
| case op_aastore: |
| case op_bastore: |
| case op_castore: |
| case op_sastore: |
| case op_pop: |
| case op_pop2: |
| case op_dup: |
| case op_dup_x1: |
| case op_dup_x2: |
| case op_dup2: |
| case op_dup2_x1: |
| case op_dup2_x2: |
| case op_swap: |
| case op_iadd: |
| case op_isub: |
| case op_imul: |
| case op_idiv: |
| case op_irem: |
| case op_ishl: |
| case op_ishr: |
| case op_iushr: |
| case op_iand: |
| case op_ior: |
| case op_ixor: |
| case op_ladd: |
| case op_lsub: |
| case op_lmul: |
| case op_ldiv: |
| case op_lrem: |
| case op_lshl: |
| case op_lshr: |
| case op_lushr: |
| case op_land: |
| case op_lor: |
| case op_lxor: |
| case op_fadd: |
| case op_fsub: |
| case op_fmul: |
| case op_fdiv: |
| case op_frem: |
| case op_dadd: |
| case op_dsub: |
| case op_dmul: |
| case op_ddiv: |
| case op_drem: |
| case op_ineg: |
| case op_i2b: |
| case op_i2c: |
| case op_i2s: |
| case op_lneg: |
| case op_fneg: |
| case op_dneg: |
| case op_i2l: |
| case op_i2f: |
| case op_i2d: |
| case op_l2i: |
| case op_l2f: |
| case op_l2d: |
| case op_f2i: |
| case op_f2l: |
| case op_f2d: |
| case op_d2i: |
| case op_d2l: |
| case op_d2f: |
| case op_lcmp: |
| case op_fcmpl: |
| case op_fcmpg: |
| case op_dcmpl: |
| case op_dcmpg: |
| case op_monitorenter: |
| case op_monitorexit: |
| case op_ireturn: |
| case op_lreturn: |
| case op_freturn: |
| case op_dreturn: |
| case op_areturn: |
| case op_return: |
| case op_athrow: |
| case op_arraylength: |
| break; |
| |
| case op_bipush: |
| case op_ldc: |
| case op_iload: |
| case op_lload: |
| case op_fload: |
| case op_dload: |
| case op_aload: |
| case op_istore: |
| case op_lstore: |
| case op_fstore: |
| case op_dstore: |
| case op_astore: |
| case op_ret: |
| case op_newarray: |
| get_byte (); |
| break; |
| |
| case op_iinc: |
| case op_sipush: |
| case op_ldc_w: |
| case op_ldc2_w: |
| case op_getstatic: |
| case op_getfield: |
| case op_putfield: |
| case op_putstatic: |
| case op_new: |
| case op_anewarray: |
| case op_instanceof: |
| case op_checkcast: |
| case op_invokespecial: |
| case op_invokestatic: |
| case op_invokevirtual: |
| get_short (); |
| break; |
| |
| case op_multianewarray: |
| get_short (); |
| get_byte (); |
| break; |
| |
| case op_jsr: |
| case op_ifeq: |
| case op_ifne: |
| case op_iflt: |
| case op_ifge: |
| case op_ifgt: |
| case op_ifle: |
| case op_if_icmpeq: |
| case op_if_icmpne: |
| case op_if_icmplt: |
| case op_if_icmpge: |
| case op_if_icmpgt: |
| case op_if_icmple: |
| case op_if_acmpeq: |
| case op_if_acmpne: |
| case op_ifnull: |
| case op_ifnonnull: |
| case op_goto: |
| note_branch_target (compute_jump (get_short ())); |
| break; |
| |
| case op_tableswitch: |
| { |
| jint low, hi; |
| skip_padding (); |
| note_branch_target (compute_jump (get_int ())); |
| low = get_int (); |
| hi = get_int (); |
| if (low > hi) |
| verify_fail_pc ("invalid tableswitch", vfr->start_PC); |
| for (i = low; i <= hi; ++i) |
| note_branch_target (compute_jump (get_int ())); |
| } |
| break; |
| |
| case op_lookupswitch: |
| { |
| int npairs; |
| skip_padding (); |
| note_branch_target (compute_jump (get_int ())); |
| npairs = get_int (); |
| if (npairs < 0) |
| verify_fail_pc ("too few pairs in lookupswitch", vfr->start_PC); |
| while (npairs-- > 0) |
| { |
| get_int (); |
| note_branch_target (compute_jump (get_int ())); |
| } |
| } |
| break; |
| |
| case op_invokeinterface: |
| get_short (); |
| get_byte (); |
| get_byte (); |
| break; |
| |
| case op_wide: |
| { |
| opcode = (java_opcode) get_byte (); |
| get_short (); |
| if (opcode == op_iinc) |
| get_short (); |
| } |
| break; |
| |
| case op_jsr_w: |
| case op_goto_w: |
| note_branch_target (compute_jump (get_int ())); |
| break; |
| |
| #if 0 |
| /* These are unused here, but we call them out explicitly |
| so that -Wswitch-enum doesn't complain. */ |
| case op_putfield_1: |
| case op_putfield_2: |
| case op_putfield_4: |
| case op_putfield_8: |
| case op_putfield_a: |
| case op_putstatic_1: |
| case op_putstatic_2: |
| case op_putstatic_4: |
| case op_putstatic_8: |
| case op_putstatic_a: |
| case op_getfield_1: |
| case op_getfield_2s: |
| case op_getfield_2u: |
| case op_getfield_4: |
| case op_getfield_8: |
| case op_getfield_a: |
| case op_getstatic_1: |
| case op_getstatic_2s: |
| case op_getstatic_2u: |
| case op_getstatic_4: |
| case op_getstatic_8: |
| case op_getstatic_a: |
| #endif /* VFY_FAST_OPCODES */ |
| default: |
| verify_fail_pc ("unrecognized instruction in branch_prepass", |
| vfr->start_PC); |
| } |
| |
| /* See if any previous branch tried to branch to the middle of |
| this instruction. */ |
| for (pc = vfr->start_PC + 1; pc < vfr->PC; ++pc) |
| { |
| if ((vfr->flags[pc] & FLAG_BRANCH_TARGET)) |
| verify_fail_pc ("branch to middle of instruction", pc); |
| } |
| } |
| |
| /* Verify exception handlers. */ |
| for (i = 0; i < vfr->current_method->exc_count; ++i) |
| { |
| int handler, start, end, htype; |
| vfy_get_exception (vfr->exception, i, &handler, &start, &end, &htype); |
| if (! (vfr->flags[handler] & FLAG_INSN_START)) |
| verify_fail_pc ("exception handler not at instruction start", |
| handler); |
| if (! (vfr->flags[start] & FLAG_INSN_START)) |
| verify_fail_pc ("exception start not at instruction start", start); |
| if (end != vfr->current_method->code_length |
| && ! (vfr->flags[end] & FLAG_INSN_START)) |
| verify_fail_pc ("exception end not at instruction start", end); |
| |
| vfr->flags[handler] |= FLAG_BRANCH_TARGET; |
| } |
| } |
| |
| static void |
| check_pool_index (int index) |
| { |
| if (index < 0 || index >= vfy_get_constants_size (vfr->current_class)) |
| verify_fail_pc ("constant pool index out of range", vfr->start_PC); |
| } |
| |
| static type |
| check_class_constant (int index) |
| { |
| type t; |
| vfy_constants *pool; |
| |
| check_pool_index (index); |
| pool = vfy_get_constants (vfr->current_class); |
| if (vfy_tag (pool, index) == JV_CONSTANT_ResolvedClass) |
| init_type_from_class (&t, vfy_get_pool_class (pool, index)); |
| else if (vfy_tag (pool, index) == JV_CONSTANT_Class) |
| init_type_from_string (&t, vfy_get_pool_string (pool, index)); |
| else |
| verify_fail_pc ("expected class constant", vfr->start_PC); |
| return t; |
| } |
| |
| static type |
| check_constant (int index) |
| { |
| type t; |
| vfy_constants *pool; |
| |
| check_pool_index (index); |
| pool = vfy_get_constants (vfr->current_class); |
| if (vfy_tag (pool, index) == JV_CONSTANT_ResolvedString |
| || vfy_tag (pool, index) == JV_CONSTANT_String) |
| init_type_from_class (&t, vfy_string_type ()); |
| else if (vfy_tag (pool, index) == JV_CONSTANT_Integer) |
| init_type_from_tag (&t, int_type); |
| else if (vfy_tag (pool, index) == JV_CONSTANT_Float) |
| init_type_from_tag (&t, float_type); |
| else |
| verify_fail_pc ("String, int, or float constant expected", vfr->start_PC); |
| return t; |
| } |
| |
| static type |
| check_wide_constant (int index) |
| { |
| type t; |
| vfy_constants *pool; |
| |
| check_pool_index (index); |
| pool = vfy_get_constants (vfr->current_class); |
| if (vfy_tag (pool, index) == JV_CONSTANT_Long) |
| init_type_from_tag (&t, long_type); |
| else if (vfy_tag (pool, index) == JV_CONSTANT_Double) |
| init_type_from_tag (&t, double_type); |
| else |
| verify_fail_pc ("long or double constant expected", vfr->start_PC); |
| return t; |
| } |
| |
| /* Helper for both field and method. These are laid out the same in |
| the constant pool. */ |
| static type |
| handle_field_or_method (int index, int expected, |
| vfy_string *name, vfy_string *fmtype) |
| { |
| vfy_uint_16 class_index, name_and_type_index; |
| vfy_uint_16 name_index, desc_index; |
| vfy_constants *pool; |
| |
| check_pool_index (index); |
| pool = vfy_get_constants (vfr->current_class); |
| if (vfy_tag (pool, index) != expected) |
| verify_fail_pc ("didn't see expected constant", vfr->start_PC); |
| /* Once we know we have a Fieldref or Methodref we assume that it |
| is correctly laid out in the constant pool. I think the code |
| in defineclass.cc guarantees this. */ |
| vfy_load_indexes (pool, index, &class_index, &name_and_type_index); |
| vfy_load_indexes (pool, name_and_type_index, &name_index, &desc_index); |
| |
| *name = vfy_get_pool_string (pool, name_index); |
| *fmtype = vfy_get_pool_string (pool, desc_index); |
| |
| return check_class_constant (class_index); |
| } |
| |
| /* Return field's type, compute class' type if requested. If |
| PUTFIELD is true, use the special 'putfield' semantics. */ |
| static type |
| check_field_constant (int index, type *class_type, bool putfield) |
| { |
| vfy_string name, field_type; |
| const char *typec; |
| int len; |
| type t; |
| |
| type ct = handle_field_or_method (index, |
| JV_CONSTANT_Fieldref, |
| &name, &field_type); |
| if (class_type) |
| *class_type = ct; |
| typec = vfy_string_bytes (field_type); |
| len = vfy_string_length (field_type); |
| if (typec[0] == '[' || typec[0] == 'L') |
| init_type_from_string (&t, field_type); |
| else |
| init_type_from_tag (&t, get_type_val_for_signature (typec[0])); |
| |
| /* We have an obscure special case here: we can use `putfield' on a |
| field declared in this class, even if `this' has not yet been |
| initialized. */ |
| if (putfield |
| && ! type_initialized (&vfr->current_state->this_type) |
| && vfr->current_state->this_type.pc == SELF |
| && types_equal (&vfr->current_state->this_type, &ct) |
| && vfy_class_has_field (vfr->current_class, name, field_type)) |
| /* Note that we don't actually know whether we're going to match |
| against 'this' or some other object of the same type. So, |
| here we set things up so that it doesn't matter. This relies |
| on knowing what our caller is up to. */ |
| type_set_uninitialized (class_type, EITHER); |
| |
| return t; |
| } |
| |
| static type |
| check_method_constant (int index, bool is_interface, |
| vfy_string *method_name, |
| vfy_string *method_signature) |
| { |
| return handle_field_or_method (index, |
| (is_interface |
| ? JV_CONSTANT_InterfaceMethodref |
| : JV_CONSTANT_Methodref), |
| method_name, method_signature); |
| } |
| |
| static char * |
| get_one_type (char *p, type *t) |
| { |
| const char *start = p; |
| vfy_jclass k; |
| type_val rt; |
| char v; |
| |
| int arraycount = 0; |
| while (*p == '[') |
| { |
| ++arraycount; |
| ++p; |
| } |
| |
| v = *p++; |
| |
| if (v == 'L') |
| { |
| vfy_string name; |
| while (*p != ';') |
| ++p; |
| ++p; |
| name = vfy_get_string (start, p - start); |
| *t = make_type_from_string (name); |
| return p; |
| } |
| |
| /* Casting to jchar here is ok since we are looking at an ASCII |
| character. */ |
| rt = get_type_val_for_signature (v); |
| |
| if (arraycount == 0) |
| { |
| /* Callers of this function eventually push their arguments on |
| the stack. So, promote them here. */ |
| type new_t = make_type (rt); |
| vfy_promote_type (&new_t); |
| *t = new_t; |
| return p; |
| } |
| |
| k = construct_primitive_array_type (rt); |
| while (--arraycount > 0) |
| k = vfy_get_array_class (k); |
| *t = make_type_from_class (k); |
| return p; |
| } |
| |
| static void |
| compute_argument_types (vfy_string signature, type *types) |
| { |
| int i; |
| char *p = (char *) vfy_string_bytes (signature); |
| |
| /* Skip `('. */ |
| ++p; |
| |
| i = 0; |
| while (*p != ')') |
| p = get_one_type (p, &types[i++]); |
| } |
| |
| static type |
| compute_return_type (vfy_string signature) |
| { |
| char *p = (char *) vfy_string_bytes (signature); |
| type t; |
| while (*p != ')') |
| ++p; |
| ++p; |
| get_one_type (p, &t); |
| return t; |
| } |
| |
| static void |
| check_return_type (type onstack) |
| { |
| type rt = compute_return_type (vfy_get_signature (vfr->current_method)); |
| if (! types_compatible (&rt, &onstack)) |
| verify_fail ("incompatible return type"); |
| } |
| |
| /* Initialize the stack for the new method. Returns true if this |
| method is an instance initializer. */ |
| static bool |
| initialize_stack (void) |
| { |
| int arg_count, i; |
| int var = 0; |
| bool is_init = vfy_strings_equal (vfy_get_method_name (vfr->current_method), |
| vfy_init_name()); |
| bool is_clinit = vfy_strings_equal (vfy_get_method_name (vfr->current_method), |
| vfy_clinit_name()); |
| |
| if (! vfy_is_static (vfr->current_method)) |
| { |
| type kurr = make_type_from_class (vfr->current_class); |
| if (is_init) |
| { |
| type_set_uninitialized (&kurr, SELF); |
| is_init = true; |
| } |
| else if (is_clinit) |
| verify_fail ("<clinit> method must be static"); |
| set_variable (0, kurr); |
| state_set_this_type (vfr->current_state, &kurr); |
| ++var; |
| } |
| else |
| { |
| if (is_init) |
| verify_fail ("<init> method must be non-static"); |
| } |
| |
| /* We have to handle wide arguments specially here. */ |
| arg_count = vfy_count_arguments (vfy_get_signature (vfr->current_method)); |
| { |
| type *arg_types = (type *) vfy_alloc (arg_count * sizeof (type)); |
| compute_argument_types (vfy_get_signature (vfr->current_method), arg_types); |
| for (i = 0; i < arg_count; ++i) |
| { |
| set_variable (var, arg_types[i]); |
| ++var; |
| if (type_iswide (&arg_types[i])) |
| ++var; |
| } |
| vfy_free (arg_types); |
| } |
| |
| return is_init; |
| } |
| |
| static void |
| verify_instructions_0 (void) |
| { |
| int i; |
| bool this_is_init; |
| |
| vfr->current_state = make_state (vfr->current_method->max_stack, |
| vfr->current_method->max_locals); |
| |
| vfr->PC = 0; |
| vfr->start_PC = 0; |
| |
| /* True if we are verifying an instance initializer. */ |
| this_is_init = initialize_stack (); |
| |
| vfr->states = (state_list **) vfy_alloc (sizeof (state_list *) |
| * vfr->current_method->code_length); |
| |
| for (i = 0; i < vfr->current_method->code_length; ++i) |
| vfr->states[i] = NULL; |
| |
| vfr->next_verify_state = NULL; |
| |
| while (true) |
| { |
| java_opcode opcode; |
| |
| /* If the PC was invalidated, get a new one from the work list. */ |
| if (vfr->PC == NO_NEXT) |
| { |
| state *new_state = pop_jump (); |
| /* If it is null, we're done. */ |
| if (new_state == NULL) |
| break; |
| |
| vfr->PC = new_state->pc; |
| debug_print ("== State pop from pending list\n"); |
| /* Set up the current state. */ |
| copy_state (vfr->current_state, new_state, |
| vfr->current_method->max_stack, vfr->current_method->max_locals); |
| } |
| else |
| { |
| /* We only have to do this checking in the situation where |
| control flow falls through from the previous |
| instruction. Otherwise merging is done at the time we |
| push the branch. */ |
| if (vfr->states[vfr->PC] != NULL) |
| { |
| /* We've already visited this instruction. So merge |
| the states together. It is simplest, but not most |
| efficient, to just always invalidate the PC here. */ |
| merge_into (vfr->PC, vfr->current_state); |
| invalidate_pc (); |
| continue; |
| } |
| } |
| |
| /* Control can't fall off the end of the bytecode. We need to |
| check this in both cases, not just the fall-through case, |
| because we don't check to see whether a `jsr' appears at |
| the end of the bytecode until we process a `ret'. */ |
| if (vfr->PC >= vfr->current_method->code_length) |
| verify_fail ("fell off end"); |
| vfr->flags[vfr->PC] |= FLAG_INSN_SEEN; |
| |
| /* We only have to keep saved state at branch targets. If |
| we're at a branch target and the state here hasn't been set |
| yet, we set it now. You might notice that `ret' targets |
| won't necessarily have FLAG_BRANCH_TARGET set. This |
| doesn't matter, since those states will be filled in by |
| merge_into. */ |
| /* Note that other parts of the compiler assume that there is a |
| label with a type map at PC=0. */ |
| if (vfr->states[vfr->PC] == NULL |
| && (vfr->PC == 0 || (vfr->flags[vfr->PC] & FLAG_BRANCH_TARGET) != 0)) |
| add_new_state (vfr->PC, vfr->current_state); |
| |
| /* Set this before handling exceptions so that debug output is |
| sane. */ |
| vfr->start_PC = vfr->PC; |
| |
| /* Update states for all active exception handlers. Ordinarily |
| there are not many exception handlers. So we simply run |
| through them all. */ |
| for (i = 0; i < vfr->current_method->exc_count; ++i) |
| { |
| int hpc, start, end, htype; |
| vfy_get_exception (vfr->exception, i, &hpc, &start, &end, &htype); |
| if (vfr->PC >= start && vfr->PC < end) |
| { |
| type handler = make_type_from_class (vfy_throwable_type ()); |
| if (htype != 0) |
| handler = check_class_constant (htype); |
| push_exception_jump (handler, hpc); |
| } |
| } |
| |
| |
| debug_print_state (vfr->current_state, " ", vfr->PC, |
| vfr->current_method->max_stack, |
| vfr->current_method->max_locals); |
| opcode = (java_opcode) vfr->bytecode[vfr->PC++]; |
| switch (opcode) |
| { |
| case op_nop: |
| break; |
| |
| case op_aconst_null: |
| push_type (null_type); |
| break; |
| |
| case op_iconst_m1: |
| case op_iconst_0: |
| case op_iconst_1: |
| case op_iconst_2: |
| case op_iconst_3: |
| case op_iconst_4: |
| case op_iconst_5: |
| push_type (int_type); |
| break; |
| |
| case op_lconst_0: |
| case op_lconst_1: |
| push_type (long_type); |
| break; |
| |
| case op_fconst_0: |
| case op_fconst_1: |
| case op_fconst_2: |
| push_type (float_type); |
| break; |
| |
| case op_dconst_0: |
| case op_dconst_1: |
| push_type (double_type); |
| break; |
| |
| case op_bipush: |
| get_byte (); |
| push_type (int_type); |
| break; |
| |
| case op_sipush: |
| get_short (); |
| push_type (int_type); |
| break; |
| |
| case op_ldc: |
| push_type_t (check_constant (get_byte ())); |
| break; |
| case op_ldc_w: |
| push_type_t (check_constant (get_ushort ())); |
| break; |
| case op_ldc2_w: |
| push_type_t (check_wide_constant (get_ushort ())); |
| break; |
| |
| case op_iload: |
| push_type_t (get_variable (get_byte (), int_type)); |
| break; |
| case op_lload: |
| push_type_t (get_variable (get_byte (), long_type)); |
| break; |
| case op_fload: |
| push_type_t (get_variable (get_byte (), float_type)); |
| break; |
| case op_dload: |
| push_type_t (get_variable (get_byte (), double_type)); |
| break; |
| case op_aload: |
| push_type_t (get_variable (get_byte (), reference_type)); |
| break; |
| |
| case op_iload_0: |
| case op_iload_1: |
| case op_iload_2: |
| case op_iload_3: |
| push_type_t (get_variable (opcode - op_iload_0, int_type)); |
| break; |
| case op_lload_0: |
| case op_lload_1: |
| case op_lload_2: |
| case op_lload_3: |
| push_type_t (get_variable (opcode - op_lload_0, long_type)); |
| break; |
| case op_fload_0: |
| case op_fload_1: |
| case op_fload_2: |
| case op_fload_3: |
| push_type_t (get_variable (opcode - op_fload_0, float_type)); |
| break; |
| case op_dload_0: |
| case op_dload_1: |
| case op_dload_2: |
| case op_dload_3: |
| push_type_t (get_variable (opcode - op_dload_0, double_type)); |
| break; |
| case op_aload_0: |
| case op_aload_1: |
| case op_aload_2: |
| case op_aload_3: |
| push_type_t (get_variable (opcode - op_aload_0, reference_type)); |
| break; |
| case op_iaload: |
| pop_type (int_type); |
| push_type_t (require_array_type (pop_init_ref (reference_type), |
| int_type)); |
| break; |
| case op_laload: |
| pop_type (int_type); |
| push_type_t (require_array_type (pop_init_ref (reference_type), |
| long_type)); |
| break; |
| case op_faload: |
| pop_type (int_type); |
| push_type_t (require_array_type (pop_init_ref (reference_type), |
| float_type)); |
| break; |
| case op_daload: |
| pop_type (int_type); |
| push_type_t (require_array_type (pop_init_ref (reference_type), |
| double_type)); |
| break; |
| case op_aaload: |
| pop_type (int_type); |
| push_type_t (require_array_type (pop_init_ref (reference_type), |
| reference_type)); |
| break; |
| case op_baload: |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), byte_type); |
| push_type (int_type); |
| break; |
| case op_caload: |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), char_type); |
| push_type (int_type); |
| break; |
| case op_saload: |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), short_type); |
| push_type (int_type); |
| break; |
| case op_istore: |
| set_variable (get_byte (), pop_type (int_type)); |
| break; |
| case op_lstore: |
| set_variable (get_byte (), pop_type (long_type)); |
| break; |
| case op_fstore: |
| set_variable (get_byte (), pop_type (float_type)); |
| break; |
| case op_dstore: |
| set_variable (get_byte (), pop_type (double_type)); |
| break; |
| case op_astore: |
| set_variable (get_byte (), pop_ref_or_return ()); |
| break; |
| case op_istore_0: |
| case op_istore_1: |
| case op_istore_2: |
| case op_istore_3: |
| set_variable (opcode - op_istore_0, pop_type (int_type)); |
| break; |
| case op_lstore_0: |
| case op_lstore_1: |
| case op_lstore_2: |
| case op_lstore_3: |
| set_variable (opcode - op_lstore_0, pop_type (long_type)); |
| break; |
| case op_fstore_0: |
| case op_fstore_1: |
| case op_fstore_2: |
| case op_fstore_3: |
| set_variable (opcode - op_fstore_0, pop_type (float_type)); |
| break; |
| case op_dstore_0: |
| case op_dstore_1: |
| case op_dstore_2: |
| case op_dstore_3: |
| set_variable (opcode - op_dstore_0, pop_type (double_type)); |
| break; |
| case op_astore_0: |
| case op_astore_1: |
| case op_astore_2: |
| case op_astore_3: |
| set_variable (opcode - op_astore_0, pop_ref_or_return ()); |
| break; |
| case op_iastore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), int_type); |
| break; |
| case op_lastore: |
| pop_type (long_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), long_type); |
| break; |
| case op_fastore: |
| pop_type (float_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), float_type); |
| break; |
| case op_dastore: |
| pop_type (double_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), double_type); |
| break; |
| case op_aastore: |
| pop_type (reference_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), reference_type); |
| break; |
| case op_bastore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), byte_type); |
| break; |
| case op_castore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), char_type); |
| break; |
| case op_sastore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), short_type); |
| break; |
| case op_pop: |
| pop32 (); |
| break; |
| case op_pop2: |
| { |
| type t = pop_raw (); |
| if (! type_iswide (&t)) |
| pop32 (); |
| } |
| break; |
| case op_dup: |
| { |
| type t = pop32 (); |
| push_type_t (t); |
| push_type_t (t); |
| } |
| break; |
| case op_dup_x1: |
| { |
| type t1 = pop32 (); |
| type t2 = pop32 (); |
| push_type_t (t1); |
| push_type_t (t2); |
| push_type_t (t1); |
| } |
| break; |
| case op_dup_x2: |
| { |
| type t1 = pop32 (); |
| type t2 = pop_raw (); |
| if (! type_iswide (&t2)) |
| { |
| type t3 = pop32 (); |
| push_type_t (t1); |
| push_type_t (t3); |
| } |
| else |
| push_type_t (t1); |
| push_type_t (t2); |
| push_type_t (t1); |
| } |
| break; |
| case op_dup2: |
| { |
| type t = pop_raw (); |
| if (! type_iswide (&t)) |
| { |
| type t2 = pop32 (); |
| push_type_t (t2); |
| push_type_t (t); |
| push_type_t (t2); |
| } |
| else |
| push_type_t (t); |
| push_type_t (t); |
| } |
| break; |
| case op_dup2_x1: |
| { |
| type t1 = pop_raw (); |
| type t2 = pop32 (); |
| if (! type_iswide (&t1)) |
| { |
| type t3 = pop32 (); |
| push_type_t (t2); |
| push_type_t (t1); |
| push_type_t (t3); |
| } |
| else |
| push_type_t (t1); |
| push_type_t (t2); |
| push_type_t (t1); |
| } |
| break; |
| case op_dup2_x2: |
| { |
| type t1 = pop_raw (); |
| if (type_iswide (&t1)) |
| { |
| type t2 = pop_raw (); |
| if (type_iswide (&t2)) |
| { |
| push_type_t (t1); |
| push_type_t (t2); |
| } |
| else |
| { |
| type t3 = pop32 (); |
| push_type_t (t1); |
| push_type_t (t3); |
| push_type_t (t2); |
| } |
| push_type_t (t1); |
| } |
| else |
| { |
| type t2 = pop32 (); |
| type t3 = pop_raw (); |
| if (type_iswide (&t3)) |
| { |
| push_type_t (t2); |
| push_type_t (t1); |
| } |
| else |
| { |
| type t4 = pop32 (); |
| push_type_t (t2); |
| push_type_t (t1); |
| push_type_t (t4); |
| } |
| push_type_t (t3); |
| push_type_t (t2); |
| push_type_t (t1); |
| } |
| } |
| break; |
| case op_swap: |
| { |
| type t1 = pop32 (); |
| type t2 = pop32 (); |
| push_type_t (t1); |
| push_type_t (t2); |
| } |
| break; |
| case op_iadd: |
| case op_isub: |
| case op_imul: |
| case op_idiv: |
| case op_irem: |
| case op_ishl: |
| case op_ishr: |
| case op_iushr: |
| case op_iand: |
| case op_ior: |
| case op_ixor: |
| pop_type (int_type); |
| push_type_t (pop_type (int_type)); |
| break; |
| case op_ladd: |
| case op_lsub: |
| case op_lmul: |
| case op_ldiv: |
| case op_lrem: |
| case op_land: |
| case op_lor: |
| case op_lxor: |
| pop_type (long_type); |
| push_type_t (pop_type (long_type)); |
| break; |
| case op_lshl: |
| case op_lshr: |
| case op_lushr: |
| pop_type (int_type); |
| push_type_t (pop_type (long_type)); |
| break; |
| case op_fadd: |
| case op_fsub: |
| case op_fmul: |
| case op_fdiv: |
| case op_frem: |
| pop_type (float_type); |
| push_type_t (pop_type (float_type)); |
| break; |
| case op_dadd: |
| case op_dsub: |
| case op_dmul: |
| case op_ddiv: |
| case op_drem: |
| pop_type (double_type); |
| push_type_t (pop_type (double_type)); |
| break; |
| case op_ineg: |
| case op_i2b: |
| case op_i2c: |
| case op_i2s: |
| push_type_t (pop_type (int_type)); |
| break; |
| case op_lneg: |
| push_type_t (pop_type (long_type)); |
| break; |
| case op_fneg: |
| push_type_t (pop_type (float_type)); |
| break; |
| case op_dneg: |
| push_type_t (pop_type (double_type)); |
| break; |
| case op_iinc: |
| get_variable (get_byte (), int_type); |
| get_byte (); |
| break; |
| case op_i2l: |
| pop_type (int_type); |
| push_type (long_type); |
| break; |
| case op_i2f: |
| pop_type (int_type); |
| push_type (float_type); |
| break; |
| case op_i2d: |
| pop_type (int_type); |
| push_type (double_type); |
| break; |
| case op_l2i: |
| pop_type (long_type); |
| push_type (int_type); |
| break; |
| case op_l2f: |
| pop_type (long_type); |
| push_type (float_type); |
| break; |
| case op_l2d: |
| pop_type (long_type); |
| push_type (double_type); |
| break; |
| case op_f2i: |
| pop_type (float_type); |
| push_type (int_type); |
| break; |
| case op_f2l: |
| pop_type (float_type); |
| push_type (long_type); |
| break; |
| case op_f2d: |
| pop_type (float_type); |
| push_type (double_type); |
| break; |
| case op_d2i: |
| pop_type (double_type); |
| push_type (int_type); |
| break; |
| case op_d2l: |
| pop_type (double_type); |
| push_type (long_type); |
| break; |
| case op_d2f: |
| pop_type (double_type); |
| push_type (float_type); |
| break; |
| case op_lcmp: |
| pop_type (long_type); |
| pop_type (long_type); |
| push_type (int_type); |
| break; |
| case op_fcmpl: |
| case op_fcmpg: |
| pop_type (float_type); |
| pop_type (float_type); |
| push_type (int_type); |
| break; |
| case op_dcmpl: |
| case op_dcmpg: |
| pop_type (double_type); |
| pop_type (double_type); |
| push_type (int_type); |
| break; |
| case op_ifeq: |
| case op_ifne: |
| case op_iflt: |
| case op_ifge: |
| case op_ifgt: |
| case op_ifle: |
| pop_type (int_type); |
| push_jump (get_short ()); |
| break; |
| case op_if_icmpeq: |
| case op_if_icmpne: |
| case op_if_icmplt: |
| case op_if_icmpge: |
| case op_if_icmpgt: |
| case op_if_icmple: |
| pop_type (int_type); |
| pop_type (int_type); |
| push_jump (get_short ()); |
| break; |
| case op_if_acmpeq: |
| case op_if_acmpne: |
| pop_type (reference_type); |
| pop_type (reference_type); |
| push_jump (get_short ()); |
| break; |
| case op_goto: |
| push_jump (get_short ()); |
| invalidate_pc (); |
| break; |
| case op_jsr: |
| handle_jsr_insn (get_short ()); |
| break; |
| case op_ret: |
| handle_ret_insn (get_byte ()); |
| break; |
| case op_tableswitch: |
| { |
| int i; |
| jint low, high; |
| pop_type (int_type); |
| skip_padding (); |
| push_jump (get_int ()); |
| low = get_int (); |
| high = get_int (); |
| /* Already checked LOW -vs- HIGH. */ |
| for (i = low; i <= high; ++i) |
| push_jump (get_int ()); |
| invalidate_pc (); |
| } |
| break; |
| |
| case op_lookupswitch: |
| { |
| int i; |
| jint npairs, lastkey; |
| |
| pop_type (int_type); |
| skip_padding (); |
| push_jump (get_int ()); |
| npairs = get_int (); |
| /* Already checked NPAIRS >= 0. */ |
| lastkey = 0; |
| for (i = 0; i < npairs; ++i) |
| { |
| jint key = get_int (); |
| if (i > 0 && key <= lastkey) |
| verify_fail_pc ("lookupswitch pairs unsorted", vfr->start_PC); |
| lastkey = key; |
| push_jump (get_int ()); |
| } |
| invalidate_pc (); |
| } |
| break; |
| case op_ireturn: |
| check_return_type (pop_type (int_type)); |
| invalidate_pc (); |
| break; |
| case op_lreturn: |
| check_return_type (pop_type (long_type)); |
| invalidate_pc (); |
| break; |
| case op_freturn: |
| check_return_type (pop_type (float_type)); |
| invalidate_pc (); |
| break; |
| case op_dreturn: |
| check_return_type (pop_type (double_type)); |
| invalidate_pc (); |
| break; |
| case op_areturn: |
| check_return_type (pop_init_ref (reference_type)); |
| invalidate_pc (); |
| break; |
| case op_return: |
| /* We only need to check this when the return type is |
| void, because all instance initializers return void. */ |
| if (this_is_init) |
| state_check_this_initialized (vfr->current_state); |
| check_return_type (make_type (void_type)); |
| invalidate_pc (); |
| break; |
| case op_getstatic: |
| push_type_t (check_field_constant (get_ushort (), NULL, false)); |
| break; |
| case op_putstatic: |
| pop_type_t (check_field_constant (get_ushort (), NULL, false)); |
| break; |
| case op_getfield: |
| { |
| type klass; |
| type field = check_field_constant (get_ushort (), &klass, false); |
| pop_type_t (klass); |
| push_type_t (field); |
| } |
| break; |
| case op_putfield: |
| { |
| type klass; |
| type field = check_field_constant (get_ushort (), &klass, true); |
| pop_type_t (field); |
| pop_type_t (klass); |
| } |
| break; |
| |
| case op_invokevirtual: |
| case op_invokespecial: |
| case op_invokestatic: |
| case op_invokeinterface: |
| { |
| vfy_string method_name, method_signature; |
| const char *namec; |
| int i, arg_count; |
| type rt; |
| bool is_init = false; |
| |
| type class_type |
| = check_method_constant (get_ushort (), |
| opcode == op_invokeinterface, |
| &method_name, |
| &method_signature); |
| /* NARGS is only used when we're processing |
| invokeinterface. It is simplest for us to compute it |
| here and then verify it later. */ |
| int nargs = 0; |
| if (opcode == op_invokeinterface) |
| { |
| nargs = get_byte (); |
| if (get_byte () != 0) |
| verify_fail ("invokeinterface dummy byte is wrong"); |
| } |
| |
| namec = vfy_string_bytes (method_name); |
| |
| if (vfy_strings_equal (method_name, vfy_init_name())) |
| { |
| is_init = true; |
| if (opcode != op_invokespecial) |
| verify_fail ("can't invoke <init>"); |
| } |
| else if (namec[0] == '<') |
| verify_fail ("can't invoke method starting with `<'"); |
| |
| arg_count = vfy_count_arguments (method_signature); |
| { |
| /* Pop arguments and check types. */ |
| type *arg_types = (type *) vfy_alloc (arg_count * sizeof (type)); |
| |
| compute_argument_types (method_signature, arg_types); |
| for (i = arg_count - 1; i >= 0; --i) |
| { |
| /* This is only used for verifying the byte for |
| invokeinterface. */ |
| nargs -= type_depth (&arg_types[i]); |
| pop_init_ref_t (arg_types[i]); |
| } |
| |
| vfy_free (arg_types); |
| } |
| |
| if (opcode == op_invokeinterface |
| && nargs != 1) |
| verify_fail ("wrong argument count for invokeinterface"); |
| |
| if (opcode != op_invokestatic) |
| { |
| type raw; |
| type t = class_type; |
| if (is_init) |
| { |
| /* In this case the PC doesn't matter. */ |
| type_set_uninitialized (&t, UNINIT); |
| /* FIXME: check to make sure that the <init> |
| call is to the right class. |
| It must either be super or an exact class |
| match. */ |
| } |
| raw = pop_raw (); |
| if (! types_compatible (&t, &raw)) |
| verify_fail ("incompatible type on stack"); |
| |
| if (is_init) |
| state_set_initialized (vfr->current_state, |
| type_get_pc (&raw), vfr->current_method->max_locals); |
| } |
| |
| rt = compute_return_type (method_signature); |
| if (! type_isvoid (&rt)) |
| push_type_t (rt); |
| } |
| break; |
| |
| case op_new: |
| { |
| type t = check_class_constant (get_ushort ()); |
| if (type_isarray (&t) || type_isinterface (&t) |
| || type_isabstract (&t)) |
| verify_fail ("type is array, interface, or abstract"); |
| type_set_uninitialized (&t, vfr->start_PC); |
| push_type_t (t); |
| } |
| break; |
| |
| case op_newarray: |
| { |
| int atype = get_byte (); |
| type t; |
| /* We intentionally have chosen constants to make this |
| valid. */ |
| if (atype < boolean_type || atype > long_type) |
| verify_fail_pc ("type not primitive", vfr->start_PC); |
| pop_type (int_type); |
| init_type_from_class (&t, construct_primitive_array_type (atype)); |
| push_type_t (t); |
| } |
| break; |
| case op_anewarray: |
| { |
| type t; |
| pop_type (int_type); |
| t = check_class_constant (get_ushort ()); |
| push_type_t (type_to_array (&t)); |
| } |
| break; |
| case op_arraylength: |
| { |
| type t = pop_init_ref (reference_type); |
| if (! type_isarray (&t) && ! type_isnull (&t)) |
| verify_fail ("array type expected"); |
| push_type (int_type); |
| } |
| break; |
| case op_athrow: |
| pop_type_t (make_type_from_class (vfy_throwable_type ())); |
| invalidate_pc (); |
| break; |
| case op_checkcast: |
| pop_init_ref (reference_type); |
| push_type_t (check_class_constant (get_ushort ())); |
| break; |
| case op_instanceof: |
| pop_init_ref (reference_type); |
| check_class_constant (get_ushort ()); |
| push_type (int_type); |
| break; |
| case op_monitorenter: |
| pop_init_ref (reference_type); |
| break; |
| case op_monitorexit: |
| pop_init_ref (reference_type); |
| break; |
| case op_wide: |
| { |
| switch (get_byte ()) |
| { |
| case op_iload: |
| push_type_t (get_variable (get_ushort (), int_type)); |
| break; |
| case op_lload: |
| push_type_t (get_variable (get_ushort (), long_type)); |
| break; |
| case op_fload: |
| push_type_t (get_variable (get_ushort (), float_type)); |
| break; |
| case op_dload: |
| push_type_t (get_variable (get_ushort (), double_type)); |
| break; |
| case op_aload: |
| push_type_t (get_variable (get_ushort (), reference_type)); |
| break; |
| case op_istore: |
| set_variable (get_ushort (), pop_type (int_type)); |
| break; |
| case op_lstore: |
| set_variable (get_ushort (), pop_type (long_type)); |
| break; |
| case op_fstore: |
| set_variable (get_ushort (), pop_type (float_type)); |
| break; |
| case op_dstore: |
| set_variable (get_ushort (), pop_type (double_type)); |
| break; |
| case op_astore: |
| set_variable (get_ushort (), pop_init_ref (reference_type)); |
| break; |
| case op_ret: |
| handle_ret_insn (get_short ()); |
| break; |
| case op_iinc: |
| get_variable (get_ushort (), int_type); |
| get_short (); |
| break; |
| default: |
| verify_fail_pc ("unrecognized wide instruction", vfr->start_PC); |
| } |
| } |
| break; |
| case op_multianewarray: |
| { |
| int i; |
| type atype = check_class_constant (get_ushort ()); |
| int dim = get_byte (); |
| if (dim < 1) |
| verify_fail_pc ("too few dimensions to multianewarray", vfr->start_PC); |
| type_verify_dimensions (&atype, dim); |
| for (i = 0; i < dim; ++i) |
| pop_type (int_type); |
| push_type_t (atype); |
| } |
| break; |
| case op_ifnull: |
| case op_ifnonnull: |
| pop_type (reference_type); |
| push_jump (get_short ()); |
| break; |
| case op_goto_w: |
| push_jump (get_int ()); |
| invalidate_pc (); |
| break; |
| case op_jsr_w: |
| handle_jsr_insn (get_int ()); |
| break; |
| |
| default: |
| /* Unrecognized opcode. */ |
| verify_fail_pc ("unrecognized instruction in verify_instructions_0", |
| vfr->start_PC); |
| } |
| } |
| } |
| |
| /* This turns a `type' into something suitable for use by the type map |
| in the other parts of the compiler. In particular, reference types |
| are mapped to Object, primitive types are unchanged, and other |
| types are mapped using special functions declared in verify.h. */ |
| static vfy_jclass |
| collapse_type (type *t) |
| { |
| switch (t->key) |
| { |
| case void_type: |
| case boolean_type: |
| case char_type: |
| case float_type: |
| case double_type: |
| case byte_type: |
| case short_type: |
| case int_type: |
| case long_type: |
| return vfy_get_primitive_type (t->key); |
| |
| case unsuitable_type: |
| case continuation_type: |
| return vfy_unsuitable_type (); |
| |
| case return_address_type: |
| return vfy_return_address_type (); |
| |
| case null_type: |
| return vfy_null_type (); |
| |
| case reference_type: |
| case uninitialized_reference_type: |
| return vfy_object_type (); |
| } |
| |
| abort (); |
| } |
| |
| static void |
| verify_instructions (void) |
| { |
| int i; |
| |
| branch_prepass (); |
| verify_instructions_0 (); |
| |
| /* Now tell the rest of the compiler about the types we've found. */ |
| for (i = 0; i < vfr->current_method->code_length; ++i) |
| { |
| int j, slot; |
| struct state *curr; |
| |
| if ((vfr->flags[i] & FLAG_INSN_SEEN) != 0) |
| vfy_note_instruction_seen (i); |
| |
| if (! vfr->states[i]) |
| continue; |
| |
| curr = vfr->states[i]->val; |
| vfy_note_stack_depth (vfr->current_method, i, curr->stackdepth); |
| |
| /* Tell the compiler about each local variable. */ |
| for (j = 0; j < vfr->current_method->max_locals; ++j) |
| vfy_note_local_type (vfr->current_method, i, j, |
| collapse_type (&curr->locals[j])); |
| /* Tell the compiler about each stack slot. */ |
| for (slot = j = 0; j < curr->stacktop; ++j, ++slot) |
| { |
| vfy_note_stack_type (vfr->current_method, i, slot, |
| collapse_type (&curr->stack[j])); |
| if (type_iswide (&curr->stack[j])) |
| { |
| ++slot; |
| vfy_note_stack_type (vfr->current_method, i, slot, |
| vfy_unsuitable_type ()); |
| } |
| } |
| if (slot != curr->stackdepth) |
| abort (); |
| } |
| } |
| |
| static void |
| make_verifier_context (vfy_method *m) |
| { |
| vfr = (verifier_context *) vfy_alloc (sizeof (struct verifier_context)); |
| |
| vfr->current_method = m; |
| vfr->bytecode = vfy_get_bytecode (m); |
| vfr->exception = vfy_get_exceptions (m); |
| vfr->current_class = m->defining_class; |
| |
| vfr->states = NULL; |
| vfr->flags = NULL; |
| vfr->utf8_list = NULL; |
| vfr->isect_list = NULL; |
| } |
| |
| static void |
| free_verifier_context (void) |
| { |
| vfy_string_list *utf8_list; |
| ref_intersection *isect_list; |
| |
| if (vfr->flags) |
| vfy_free (vfr->flags); |
| |
| utf8_list = vfr->utf8_list; |
| while (utf8_list != NULL) |
| { |
| vfy_string_list *n = utf8_list->next; |
| vfy_free (utf8_list); |
| utf8_list = n; |
| } |
| |
| isect_list = vfr->isect_list; |
| while (isect_list != NULL) |
| { |
| ref_intersection *next = isect_list->alloc_next; |
| vfy_free (isect_list); |
| isect_list = next; |
| } |
| |
| if (vfr->states != NULL) |
| { |
| int i; |
| for (i = 0; i < vfr->current_method->code_length; ++i) |
| { |
| state_list *iter = vfr->states[i]; |
| while (iter != NULL) |
| { |
| state_list *next = iter->next; |
| free_state (iter->val); |
| |