| /* Simple garbage collection for the GNU compiler. |
| Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| /* Generic garbage collection (GC) functions and data, not specific to |
| any particular GC implementation. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "hashtab.h" |
| #include "ggc.h" |
| #include "toplev.h" |
| #include "params.h" |
| #include "hosthooks.h" |
| #include "hosthooks-def.h" |
| |
| #ifdef HAVE_SYS_RESOURCE_H |
| # include <sys/resource.h> |
| #endif |
| |
| #ifdef HAVE_MMAP_FILE |
| # include <sys/mman.h> |
| # ifdef HAVE_MINCORE |
| /* This is on Solaris. */ |
| # include <sys/types.h> |
| # endif |
| #endif |
| |
| #ifndef MAP_FAILED |
| # define MAP_FAILED ((void *)-1) |
| #endif |
| |
| #ifdef ENABLE_VALGRIND_CHECKING |
| # ifdef HAVE_VALGRIND_MEMCHECK_H |
| # include <valgrind/memcheck.h> |
| # elif defined HAVE_MEMCHECK_H |
| # include <memcheck.h> |
| # else |
| # include <valgrind.h> |
| # endif |
| #else |
| /* Avoid #ifdef:s when we can help it. */ |
| #define VALGRIND_DISCARD(x) |
| #endif |
| |
| /* When set, ggc_collect will do collection. */ |
| bool ggc_force_collect; |
| |
| /* Statistics about the allocation. */ |
| static ggc_statistics *ggc_stats; |
| |
| struct traversal_state; |
| |
| static int ggc_htab_delete (void **, void *); |
| static hashval_t saving_htab_hash (const void *); |
| static int saving_htab_eq (const void *, const void *); |
| static int call_count (void **, void *); |
| static int call_alloc (void **, void *); |
| static int compare_ptr_data (const void *, const void *); |
| static void relocate_ptrs (void *, void *); |
| static void write_pch_globals (const struct ggc_root_tab * const *tab, |
| struct traversal_state *state); |
| static double ggc_rlimit_bound (double); |
| |
| /* Maintain global roots that are preserved during GC. */ |
| |
| /* Process a slot of an htab by deleting it if it has not been marked. */ |
| |
| static int |
| ggc_htab_delete (void **slot, void *info) |
| { |
| const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info; |
| |
| if (! (*r->marked_p) (*slot)) |
| htab_clear_slot (*r->base, slot); |
| else |
| (*r->cb) (*slot); |
| |
| return 1; |
| } |
| |
| /* Iterate through all registered roots and mark each element. */ |
| |
| void |
| ggc_mark_roots (void) |
| { |
| const struct ggc_root_tab *const *rt; |
| const struct ggc_root_tab *rti; |
| const struct ggc_cache_tab *const *ct; |
| const struct ggc_cache_tab *cti; |
| size_t i; |
| |
| for (rt = gt_ggc_deletable_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| memset (rti->base, 0, rti->stride); |
| |
| for (rt = gt_ggc_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| for (i = 0; i < rti->nelt; i++) |
| (*rti->cb)(*(void **)((char *)rti->base + rti->stride * i)); |
| |
| ggc_mark_stringpool (); |
| |
| /* Now scan all hash tables that have objects which are to be deleted if |
| they are not already marked. */ |
| for (ct = gt_ggc_cache_rtab; *ct; ct++) |
| for (cti = *ct; cti->base != NULL; cti++) |
| if (*cti->base) |
| { |
| ggc_set_mark (*cti->base); |
| htab_traverse_noresize (*cti->base, ggc_htab_delete, (void *) cti); |
| ggc_set_mark ((*cti->base)->entries); |
| } |
| } |
| |
| /* Allocate a block of memory, then clear it. */ |
| void * |
| ggc_alloc_cleared_stat (size_t size MEM_STAT_DECL) |
| { |
| void *buf = ggc_alloc_stat (size PASS_MEM_STAT); |
| memset (buf, 0, size); |
| return buf; |
| } |
| |
| /* Resize a block of memory, possibly re-allocating it. */ |
| void * |
| ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL) |
| { |
| void *r; |
| size_t old_size; |
| |
| if (x == NULL) |
| return ggc_alloc_stat (size PASS_MEM_STAT); |
| |
| old_size = ggc_get_size (x); |
| |
| if (size <= old_size) |
| { |
| /* Mark the unwanted memory as unaccessible. We also need to make |
| the "new" size accessible, since ggc_get_size returns the size of |
| the pool, not the size of the individually allocated object, the |
| size which was previously made accessible. Unfortunately, we |
| don't know that previously allocated size. Without that |
| knowledge we have to lose some initialization-tracking for the |
| old parts of the object. An alternative is to mark the whole |
| old_size as reachable, but that would lose tracking of writes |
| after the end of the object (by small offsets). Discard the |
| handle to avoid handle leak. */ |
| VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) x + size, |
| old_size - size)); |
| VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, size)); |
| return x; |
| } |
| |
| r = ggc_alloc_stat (size PASS_MEM_STAT); |
| |
| /* Since ggc_get_size returns the size of the pool, not the size of the |
| individually allocated object, we'd access parts of the old object |
| that were marked invalid with the memcpy below. We lose a bit of the |
| initialization-tracking since some of it may be uninitialized. */ |
| VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, old_size)); |
| |
| memcpy (r, x, old_size); |
| |
| /* The old object is not supposed to be used anymore. */ |
| ggc_free (x); |
| |
| return r; |
| } |
| |
| /* Like ggc_alloc_cleared, but performs a multiplication. */ |
| void * |
| ggc_calloc (size_t s1, size_t s2) |
| { |
| return ggc_alloc_cleared (s1 * s2); |
| } |
| |
| /* These are for splay_tree_new_ggc. */ |
| void * |
| ggc_splay_alloc (int sz, void *nl) |
| { |
| gcc_assert (!nl); |
| return ggc_alloc (sz); |
| } |
| |
| void |
| ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl) |
| { |
| gcc_assert (!nl); |
| } |
| |
| /* Print statistics that are independent of the collector in use. */ |
| #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ |
| ? (x) \ |
| : ((x) < 1024*1024*10 \ |
| ? (x) / 1024 \ |
| : (x) / (1024*1024)))) |
| #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) |
| |
| void |
| ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED, |
| ggc_statistics *stats) |
| { |
| /* Set the pointer so that during collection we will actually gather |
| the statistics. */ |
| ggc_stats = stats; |
| |
| /* Then do one collection to fill in the statistics. */ |
| ggc_collect (); |
| |
| /* At present, we don't really gather any interesting statistics. */ |
| |
| /* Don't gather statistics any more. */ |
| ggc_stats = NULL; |
| } |
| |
| /* Functions for saving and restoring GCable memory to disk. */ |
| |
| static htab_t saving_htab; |
| |
| struct ptr_data |
| { |
| void *obj; |
| void *note_ptr_cookie; |
| gt_note_pointers note_ptr_fn; |
| gt_handle_reorder reorder_fn; |
| size_t size; |
| void *new_addr; |
| }; |
| |
| #define POINTER_HASH(x) (hashval_t)((long)x >> 3) |
| |
| /* Register an object in the hash table. */ |
| |
| int |
| gt_pch_note_object (void *obj, void *note_ptr_cookie, |
| gt_note_pointers note_ptr_fn) |
| { |
| struct ptr_data **slot; |
| |
| if (obj == NULL || obj == (void *) 1) |
| return 0; |
| |
| slot = (struct ptr_data **) |
| htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj), |
| INSERT); |
| if (*slot != NULL) |
| { |
| gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn |
| && (*slot)->note_ptr_cookie == note_ptr_cookie); |
| return 0; |
| } |
| |
| *slot = xcalloc (sizeof (struct ptr_data), 1); |
| (*slot)->obj = obj; |
| (*slot)->note_ptr_fn = note_ptr_fn; |
| (*slot)->note_ptr_cookie = note_ptr_cookie; |
| if (note_ptr_fn == gt_pch_p_S) |
| (*slot)->size = strlen (obj) + 1; |
| else |
| (*slot)->size = ggc_get_size (obj); |
| return 1; |
| } |
| |
| /* Register an object in the hash table. */ |
| |
| void |
| gt_pch_note_reorder (void *obj, void *note_ptr_cookie, |
| gt_handle_reorder reorder_fn) |
| { |
| struct ptr_data *data; |
| |
| if (obj == NULL || obj == (void *) 1) |
| return; |
| |
| data = htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj)); |
| gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie); |
| |
| data->reorder_fn = reorder_fn; |
| } |
| |
| /* Hash and equality functions for saving_htab, callbacks for htab_create. */ |
| |
| static hashval_t |
| saving_htab_hash (const void *p) |
| { |
| return POINTER_HASH (((struct ptr_data *)p)->obj); |
| } |
| |
| static int |
| saving_htab_eq (const void *p1, const void *p2) |
| { |
| return ((struct ptr_data *)p1)->obj == p2; |
| } |
| |
| /* Handy state for the traversal functions. */ |
| |
| struct traversal_state |
| { |
| FILE *f; |
| struct ggc_pch_data *d; |
| size_t count; |
| struct ptr_data **ptrs; |
| size_t ptrs_i; |
| }; |
| |
| /* Callbacks for htab_traverse. */ |
| |
| static int |
| call_count (void **slot, void *state_p) |
| { |
| struct ptr_data *d = (struct ptr_data *)*slot; |
| struct traversal_state *state = (struct traversal_state *)state_p; |
| |
| ggc_pch_count_object (state->d, d->obj, d->size, d->note_ptr_fn == gt_pch_p_S); |
| state->count++; |
| return 1; |
| } |
| |
| static int |
| call_alloc (void **slot, void *state_p) |
| { |
| struct ptr_data *d = (struct ptr_data *)*slot; |
| struct traversal_state *state = (struct traversal_state *)state_p; |
| |
| d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size, d->note_ptr_fn == gt_pch_p_S); |
| state->ptrs[state->ptrs_i++] = d; |
| return 1; |
| } |
| |
| /* Callback for qsort. */ |
| |
| static int |
| compare_ptr_data (const void *p1_p, const void *p2_p) |
| { |
| struct ptr_data *p1 = *(struct ptr_data *const *)p1_p; |
| struct ptr_data *p2 = *(struct ptr_data *const *)p2_p; |
| return (((size_t)p1->new_addr > (size_t)p2->new_addr) |
| - ((size_t)p1->new_addr < (size_t)p2->new_addr)); |
| } |
| |
| /* Callbacks for note_ptr_fn. */ |
| |
| static void |
| relocate_ptrs (void *ptr_p, void *state_p) |
| { |
| void **ptr = (void **)ptr_p; |
| struct traversal_state *state ATTRIBUTE_UNUSED |
| = (struct traversal_state *)state_p; |
| struct ptr_data *result; |
| |
| if (*ptr == NULL || *ptr == (void *)1) |
| return; |
| |
| result = htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr)); |
| gcc_assert (result); |
| *ptr = result->new_addr; |
| } |
| |
| /* Write out, after relocation, the pointers in TAB. */ |
| static void |
| write_pch_globals (const struct ggc_root_tab * const *tab, |
| struct traversal_state *state) |
| { |
| const struct ggc_root_tab *const *rt; |
| const struct ggc_root_tab *rti; |
| size_t i; |
| |
| for (rt = tab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| for (i = 0; i < rti->nelt; i++) |
| { |
| void *ptr = *(void **)((char *)rti->base + rti->stride * i); |
| struct ptr_data *new_ptr; |
| if (ptr == NULL || ptr == (void *)1) |
| { |
| if (fwrite (&ptr, sizeof (void *), 1, state->f) |
| != 1) |
| fatal_error ("can't write PCH file: %m"); |
| } |
| else |
| { |
| new_ptr = htab_find_with_hash (saving_htab, ptr, |
| POINTER_HASH (ptr)); |
| if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f) |
| != 1) |
| fatal_error ("can't write PCH file: %m"); |
| } |
| } |
| } |
| |
| /* Hold the information we need to mmap the file back in. */ |
| |
| struct mmap_info |
| { |
| size_t offset; |
| size_t size; |
| void *preferred_base; |
| }; |
| |
| /* Write out the state of the compiler to F. */ |
| |
| void |
| gt_pch_save (FILE *f) |
| { |
| const struct ggc_root_tab *const *rt; |
| const struct ggc_root_tab *rti; |
| size_t i; |
| struct traversal_state state; |
| char *this_object = NULL; |
| size_t this_object_size = 0; |
| struct mmap_info mmi; |
| const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity(); |
| |
| gt_pch_save_stringpool (); |
| |
| saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free); |
| |
| for (rt = gt_ggc_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| for (i = 0; i < rti->nelt; i++) |
| (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i)); |
| |
| for (rt = gt_pch_cache_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| for (i = 0; i < rti->nelt; i++) |
| (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i)); |
| |
| /* Prepare the objects for writing, determine addresses and such. */ |
| state.f = f; |
| state.d = init_ggc_pch(); |
| state.count = 0; |
| htab_traverse (saving_htab, call_count, &state); |
| |
| mmi.size = ggc_pch_total_size (state.d); |
| |
| /* Try to arrange things so that no relocation is necessary, but |
| don't try very hard. On most platforms, this will always work, |
| and on the rest it's a lot of work to do better. |
| (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and |
| HOST_HOOKS_GT_PCH_USE_ADDRESS.) */ |
| mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f)); |
| |
| ggc_pch_this_base (state.d, mmi.preferred_base); |
| |
| state.ptrs = xmalloc (state.count * sizeof (*state.ptrs)); |
| state.ptrs_i = 0; |
| htab_traverse (saving_htab, call_alloc, &state); |
| qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data); |
| |
| /* Write out all the scalar variables. */ |
| for (rt = gt_pch_scalar_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| if (fwrite (rti->base, rti->stride, 1, f) != 1) |
| fatal_error ("can't write PCH file: %m"); |
| |
| /* Write out all the global pointers, after translation. */ |
| write_pch_globals (gt_ggc_rtab, &state); |
| write_pch_globals (gt_pch_cache_rtab, &state); |
| |
| ggc_pch_prepare_write (state.d, state.f); |
| |
| /* Pad the PCH file so that the mmapped area starts on an allocation |
| granularity (usually page) boundary. */ |
| { |
| long o; |
| o = ftell (state.f) + sizeof (mmi); |
| if (o == -1) |
| fatal_error ("can't get position in PCH file: %m"); |
| mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment; |
| if (mmi.offset == mmap_offset_alignment) |
| mmi.offset = 0; |
| mmi.offset += o; |
| } |
| if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1) |
| fatal_error ("can't write PCH file: %m"); |
| if (mmi.offset != 0 |
| && fseek (state.f, mmi.offset, SEEK_SET) != 0) |
| fatal_error ("can't write padding to PCH file: %m"); |
| |
| /* Actually write out the objects. */ |
| for (i = 0; i < state.count; i++) |
| { |
| if (this_object_size < state.ptrs[i]->size) |
| { |
| this_object_size = state.ptrs[i]->size; |
| this_object = xrealloc (this_object, this_object_size); |
| } |
| memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size); |
| if (state.ptrs[i]->reorder_fn != NULL) |
| state.ptrs[i]->reorder_fn (state.ptrs[i]->obj, |
| state.ptrs[i]->note_ptr_cookie, |
| relocate_ptrs, &state); |
| state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj, |
| state.ptrs[i]->note_ptr_cookie, |
| relocate_ptrs, &state); |
| ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj, |
| state.ptrs[i]->new_addr, state.ptrs[i]->size, |
| state.ptrs[i]->note_ptr_fn == gt_pch_p_S); |
| if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S) |
| memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size); |
| } |
| ggc_pch_finish (state.d, state.f); |
| gt_pch_fixup_stringpool (); |
| |
| free (state.ptrs); |
| htab_delete (saving_htab); |
| } |
| |
| /* Read the state of the compiler back in from F. */ |
| |
| void |
| gt_pch_restore (FILE *f) |
| { |
| const struct ggc_root_tab *const *rt; |
| const struct ggc_root_tab *rti; |
| size_t i; |
| struct mmap_info mmi; |
| int result; |
| |
| /* Delete any deletable objects. This makes ggc_pch_read much |
| faster, as it can be sure that no GCable objects remain other |
| than the ones just read in. */ |
| for (rt = gt_ggc_deletable_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| memset (rti->base, 0, rti->stride); |
| |
| /* Read in all the scalar variables. */ |
| for (rt = gt_pch_scalar_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| if (fread (rti->base, rti->stride, 1, f) != 1) |
| fatal_error ("can't read PCH file: %m"); |
| |
| /* Read in all the global pointers, in 6 easy loops. */ |
| for (rt = gt_ggc_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| for (i = 0; i < rti->nelt; i++) |
| if (fread ((char *)rti->base + rti->stride * i, |
| sizeof (void *), 1, f) != 1) |
| fatal_error ("can't read PCH file: %m"); |
| |
| for (rt = gt_pch_cache_rtab; *rt; rt++) |
| for (rti = *rt; rti->base != NULL; rti++) |
| for (i = 0; i < rti->nelt; i++) |
| if (fread ((char *)rti->base + rti->stride * i, |
| sizeof (void *), 1, f) != 1) |
| fatal_error ("can't read PCH file: %m"); |
| |
| if (fread (&mmi, sizeof (mmi), 1, f) != 1) |
| fatal_error ("can't read PCH file: %m"); |
| |
| result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size, |
| fileno (f), mmi.offset); |
| if (result < 0) |
| fatal_error ("had to relocate PCH"); |
| if (result == 0) |
| { |
| if (fseek (f, mmi.offset, SEEK_SET) != 0 |
| || fread (mmi.preferred_base, mmi.size, 1, f) != 1) |
| fatal_error ("can't read PCH file: %m"); |
| } |
| else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0) |
| fatal_error ("can't read PCH file: %m"); |
| |
| ggc_pch_read (f, mmi.preferred_base); |
| |
| gt_pch_restore_stringpool (); |
| } |
| |
| /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present. |
| Select no address whatsoever, and let gt_pch_save choose what it will with |
| malloc, presumably. */ |
| |
| void * |
| default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED, |
| int fd ATTRIBUTE_UNUSED) |
| { |
| return NULL; |
| } |
| |
| /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present. |
| Allocate SIZE bytes with malloc. Return 0 if the address we got is the |
| same as base, indicating that the memory has been allocated but needs to |
| be read in from the file. Return -1 if the address differs, to relocation |
| of the PCH file would be required. */ |
| |
| int |
| default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED, |
| size_t offset ATTRIBUTE_UNUSED) |
| { |
| void *addr = xmalloc (size); |
| return (addr == base) - 1; |
| } |
| |
| /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the |
| alignment required for allocating virtual memory. Usually this is the |
| same as pagesize. */ |
| |
| size_t |
| default_gt_pch_alloc_granularity (void) |
| { |
| return getpagesize(); |
| } |
| |
| #if HAVE_MMAP_FILE |
| /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present. |
| We temporarily allocate SIZE bytes, and let the kernel place the data |
| wherever it will. If it worked, that's our spot, if not we're likely |
| to be in trouble. */ |
| |
| void * |
| mmap_gt_pch_get_address (size_t size, int fd) |
| { |
| void *ret; |
| |
| ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); |
| if (ret == (void *) MAP_FAILED) |
| ret = NULL; |
| else |
| munmap (ret, size); |
| |
| return ret; |
| } |
| |
| /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present. |
| Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at |
| mapping the data at BASE, -1 if we couldn't. |
| |
| This version assumes that the kernel honors the START operand of mmap |
| even without MAP_FIXED if START through START+SIZE are not currently |
| mapped with something. */ |
| |
| int |
| mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset) |
| { |
| void *addr; |
| |
| /* We're called with size == 0 if we're not planning to load a PCH |
| file at all. This allows the hook to free any static space that |
| we might have allocated at link time. */ |
| if (size == 0) |
| return -1; |
| |
| addr = mmap (base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, |
| fd, offset); |
| |
| return addr == base ? 1 : -1; |
| } |
| #endif /* HAVE_MMAP_FILE */ |
| |
| /* Modify the bound based on rlimits. */ |
| static double |
| ggc_rlimit_bound (double limit) |
| { |
| #if defined(HAVE_GETRLIMIT) |
| struct rlimit rlim; |
| # if defined (RLIMIT_AS) |
| /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably |
| any OS which has RLIMIT_AS also has a working mmap that GCC will use. */ |
| if (getrlimit (RLIMIT_AS, &rlim) == 0 |
| && rlim.rlim_cur != (rlim_t) RLIM_INFINITY |
| && rlim.rlim_cur < limit) |
| limit = rlim.rlim_cur; |
| # elif defined (RLIMIT_DATA) |
| /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we |
| might be on an OS that has a broken mmap. (Others don't bound |
| mmap at all, apparently.) */ |
| if (getrlimit (RLIMIT_DATA, &rlim) == 0 |
| && rlim.rlim_cur != (rlim_t) RLIM_INFINITY |
| && rlim.rlim_cur < limit |
| /* Darwin has this horribly bogus default setting of |
| RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA |
| appears to be ignored. Ignore such silliness. If a limit |
| this small was actually effective for mmap, GCC wouldn't even |
| start up. */ |
| && rlim.rlim_cur >= 8 * 1024 * 1024) |
| limit = rlim.rlim_cur; |
| # endif /* RLIMIT_AS or RLIMIT_DATA */ |
| #endif /* HAVE_GETRLIMIT */ |
| |
| return limit; |
| } |
| |
| /* Heuristic to set a default for GGC_MIN_EXPAND. */ |
| int |
| ggc_min_expand_heuristic (void) |
| { |
| double min_expand = physmem_total(); |
| |
| /* Adjust for rlimits. */ |
| min_expand = ggc_rlimit_bound (min_expand); |
| |
| /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding |
| a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */ |
| min_expand /= 1024*1024*1024; |
| min_expand *= 70; |
| min_expand = MIN (min_expand, 70); |
| min_expand += 30; |
| |
| return min_expand; |
| } |
| |
| /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */ |
| int |
| ggc_min_heapsize_heuristic (void) |
| { |
| double phys_kbytes = physmem_total(); |
| double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2); |
| |
| phys_kbytes /= 1024; /* Convert to Kbytes. */ |
| limit_kbytes /= 1024; |
| |
| /* The heuristic is RAM/8, with a lower bound of 4M and an upper |
| bound of 128M (when RAM >= 1GB). */ |
| phys_kbytes /= 8; |
| |
| #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS) |
| /* Try not to overrun the RSS limit while doing garbage collection. |
| The RSS limit is only advisory, so no margin is subtracted. */ |
| { |
| struct rlimit rlim; |
| if (getrlimit (RLIMIT_RSS, &rlim) == 0 |
| && rlim.rlim_cur != (rlim_t) RLIM_INFINITY) |
| phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024); |
| } |
| # endif |
| |
| /* Don't blindly run over our data limit; do GC at least when the |
| *next* GC would be within 16Mb of the limit. If GCC does hit the |
| data limit, compilation will fail, so this tries to be |
| conservative. */ |
| limit_kbytes = MAX (0, limit_kbytes - 16 * 1024); |
| limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic()); |
| phys_kbytes = MIN (phys_kbytes, limit_kbytes); |
| |
| phys_kbytes = MAX (phys_kbytes, 4 * 1024); |
| phys_kbytes = MIN (phys_kbytes, 128 * 1024); |
| |
| return phys_kbytes; |
| } |
| |
| void |
| init_ggc_heuristics (void) |
| { |
| #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT |
| set_param_value ("ggc-min-expand", ggc_min_expand_heuristic()); |
| set_param_value ("ggc-min-heapsize", ggc_min_heapsize_heuristic()); |
| #endif |
| } |
| |
| #ifdef GATHER_STATISTICS |
| |
| /* Datastructure used to store per-call-site statistics. */ |
| struct loc_descriptor |
| { |
| const char *file; |
| int line; |
| const char *function; |
| int times; |
| size_t allocated; |
| size_t overhead; |
| size_t freed; |
| size_t collected; |
| }; |
| |
| /* Hashtable used for statistics. */ |
| static htab_t loc_hash; |
| |
| /* Hash table helpers functions. */ |
| static hashval_t |
| hash_descriptor (const void *p) |
| { |
| const struct loc_descriptor *d = p; |
| |
| return htab_hash_pointer (d->function) | d->line; |
| } |
| |
| static int |
| eq_descriptor (const void *p1, const void *p2) |
| { |
| const struct loc_descriptor *d = p1; |
| const struct loc_descriptor *d2 = p2; |
| |
| return (d->file == d2->file && d->line == d2->line |
| && d->function == d2->function); |
| } |
| |
| /* Hashtable converting address of allocated field to loc descriptor. */ |
| static htab_t ptr_hash; |
| struct ptr_hash_entry |
| { |
| void *ptr; |
| struct loc_descriptor *loc; |
| size_t size; |
| }; |
| |
| /* Hash table helpers functions. */ |
| static hashval_t |
| hash_ptr (const void *p) |
| { |
| const struct ptr_hash_entry *d = p; |
| |
| return htab_hash_pointer (d->ptr); |
| } |
| |
| static int |
| eq_ptr (const void *p1, const void *p2) |
| { |
| const struct ptr_hash_entry *p = p1; |
| |
| return (p->ptr == p2); |
| } |
| |
| /* Return descriptor for given call site, create new one if needed. */ |
| static struct loc_descriptor * |
| loc_descriptor (const char *name, int line, const char *function) |
| { |
| struct loc_descriptor loc; |
| struct loc_descriptor **slot; |
| |
| loc.file = name; |
| loc.line = line; |
| loc.function = function; |
| if (!loc_hash) |
| loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL); |
| |
| slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, 1); |
| if (*slot) |
| return *slot; |
| *slot = xcalloc (sizeof (**slot), 1); |
| (*slot)->file = name; |
| (*slot)->line = line; |
| (*slot)->function = function; |
| return *slot; |
| } |
| |
| /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */ |
| void |
| ggc_record_overhead (size_t allocated, size_t overhead, void *ptr, |
| const char *name, int line, const char *function) |
| { |
| struct loc_descriptor *loc = loc_descriptor (name, line, function); |
| struct ptr_hash_entry *p = xmalloc (sizeof (struct ptr_hash_entry)); |
| PTR *slot; |
| |
| p->ptr = ptr; |
| p->loc = loc; |
| p->size = allocated + overhead; |
| if (!ptr_hash) |
| ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL); |
| slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT); |
| gcc_assert (!*slot); |
| *slot = p; |
| |
| loc->times++; |
| loc->allocated+=allocated; |
| loc->overhead+=overhead; |
| } |
| |
| /* Helper function for prune_overhead_list. See if SLOT is still marked and |
| remove it from hashtable if it is not. */ |
| static int |
| ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED) |
| { |
| struct ptr_hash_entry *p = *slot; |
| if (!ggc_marked_p (p->ptr)) |
| { |
| p->loc->collected += p->size; |
| htab_clear_slot (ptr_hash, slot); |
| free (p); |
| } |
| return 1; |
| } |
| |
| /* After live values has been marked, walk all recorded pointers and see if |
| they are still live. */ |
| void |
| ggc_prune_overhead_list (void) |
| { |
| htab_traverse (ptr_hash, ggc_prune_ptr, NULL); |
| } |
| |
| /* Notice that the pointer has been freed. */ |
| void ggc_free_overhead (void *ptr) |
| { |
| PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), |
| NO_INSERT); |
| struct ptr_hash_entry *p = *slot; |
| p->loc->freed += p->size; |
| htab_clear_slot (ptr_hash, slot); |
| free (p); |
| } |
| |
| /* Helper for qsort; sort descriptors by amount of memory consumed. */ |
| static int |
| cmp_statistic (const void *loc1, const void *loc2) |
| { |
| struct loc_descriptor *l1 = *(struct loc_descriptor **) loc1; |
| struct loc_descriptor *l2 = *(struct loc_descriptor **) loc2; |
| return ((l1->allocated + l1->overhead - l1->freed) - |
| (l2->allocated + l2->overhead - l2->freed)); |
| } |
| |
| /* Collect array of the descriptors from hashtable. */ |
| struct loc_descriptor **loc_array; |
| static int |
| add_statistics (void **slot, void *b) |
| { |
| int *n = (int *)b; |
| loc_array[*n] = (struct loc_descriptor *) *slot; |
| (*n)++; |
| return 1; |
| } |
| |
| /* Dump per-site memory statistics. */ |
| #endif |
| void dump_ggc_loc_statistics (void) |
| { |
| #ifdef GATHER_STATISTICS |
| int nentries = 0; |
| char s[4096]; |
| size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0; |
| int i; |
| |
| ggc_force_collect = true; |
| ggc_collect (); |
| |
| loc_array = xcalloc (sizeof (*loc_array), loc_hash->n_elements); |
| fprintf (stderr, "-------------------------------------------------------\n"); |
| fprintf (stderr, "\n%-48s %10s %10s %10s %10s %10s\n", |
| "source location", "Garbage", "Freed", "Leak", "Overhead", "Times"); |
| fprintf (stderr, "-------------------------------------------------------\n"); |
| htab_traverse (loc_hash, add_statistics, &nentries); |
| qsort (loc_array, nentries, sizeof (*loc_array), cmp_statistic); |
| for (i = 0; i < nentries; i++) |
| { |
| struct loc_descriptor *d = loc_array[i]; |
| allocated += d->allocated; |
| times += d->times; |
| freed += d->freed; |
| collected += d->collected; |
| overhead += d->overhead; |
| } |
| for (i = 0; i < nentries; i++) |
| { |
| struct loc_descriptor *d = loc_array[i]; |
| if (d->allocated) |
| { |
| const char *s1 = d->file; |
| const char *s2; |
| while ((s2 = strstr (s1, "gcc/"))) |
| s1 = s2 + 4; |
| sprintf (s, "%s:%i (%s)", s1, d->line, d->function); |
| s[48] = 0; |
| fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s, |
| (long)d->collected, |
| (d->collected) * 100.0 / collected, |
| (long)d->freed, |
| (d->freed) * 100.0 / freed, |
| (long)(d->allocated + d->overhead - d->freed - d->collected), |
| (d->allocated + d->overhead - d->freed - d->collected) * 100.0 |
| / (allocated + overhead - freed - collected), |
| (long)d->overhead, |
| d->overhead * 100.0 / overhead, |
| (long)d->times); |
| } |
| } |
| fprintf (stderr, "%-48s %10ld %10ld %10ld %10ld %10ld\n", |
| "Total", (long)collected, (long)freed, |
| (long)(allocated + overhead - freed - collected), (long)overhead, |
| (long)times); |
| fprintf (stderr, "%-48s %10s %10s %10s %10s %10s\n", |
| "source location", "Garbage", "Freed", "Leak", "Overhead", "Times"); |
| fprintf (stderr, "-------------------------------------------------------\n"); |
| #endif |
| } |