| /* Convert RTL to assembler code and output it, for GNU compiler. |
| Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, |
| 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| /* This is the final pass of the compiler. |
| It looks at the rtl code for a function and outputs assembler code. |
| |
| Call `final_start_function' to output the assembler code for function entry, |
| `final' to output assembler code for some RTL code, |
| `final_end_function' to output assembler code for function exit. |
| If a function is compiled in several pieces, each piece is |
| output separately with `final'. |
| |
| Some optimizations are also done at this level. |
| Move instructions that were made unnecessary by good register allocation |
| are detected and omitted from the output. (Though most of these |
| are removed by the last jump pass.) |
| |
| Instructions to set the condition codes are omitted when it can be |
| seen that the condition codes already had the desired values. |
| |
| In some cases it is sufficient if the inherited condition codes |
| have related values, but this may require the following insn |
| (the one that tests the condition codes) to be modified. |
| |
| The code for the function prologue and epilogue are generated |
| directly in assembler by the target functions function_prologue and |
| function_epilogue. Those instructions never exist as rtl. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| |
| #include "tree.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "regs.h" |
| #include "insn-config.h" |
| #include "insn-attr.h" |
| #include "recog.h" |
| #include "conditions.h" |
| #include "flags.h" |
| #include "real.h" |
| #include "hard-reg-set.h" |
| #include "output.h" |
| #include "except.h" |
| #include "function.h" |
| #include "toplev.h" |
| #include "reload.h" |
| #include "intl.h" |
| #include "basic-block.h" |
| #include "target.h" |
| #include "debug.h" |
| #include "expr.h" |
| #include "cfglayout.h" |
| |
| /* APPLE LOCAL begin LLVM - Remove insn-attrtab.o. */ |
| #ifdef ENABLE_LLVM |
| #undef HAVE_ATTR_length |
| int insn_current_reference_address (rtx branch) { |
| return branch == 0; |
| } |
| #endif |
| /* APPLE LOCAL end LLVM - Remove insn-attrtab.o. */ |
| |
| #ifdef XCOFF_DEBUGGING_INFO |
| #include "xcoffout.h" /* Needed for external data |
| declarations for e.g. AIX 4.x. */ |
| #endif |
| |
| #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO) |
| #include "dwarf2out.h" |
| #endif |
| |
| #ifdef DBX_DEBUGGING_INFO |
| #include "dbxout.h" |
| #endif |
| |
| /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a |
| null default for it to save conditionalization later. */ |
| #ifndef CC_STATUS_INIT |
| #define CC_STATUS_INIT |
| #endif |
| |
| /* How to start an assembler comment. */ |
| #ifndef ASM_COMMENT_START |
| #define ASM_COMMENT_START ";#" |
| #endif |
| |
| /* Is the given character a logical line separator for the assembler? */ |
| #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR |
| #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';') |
| #endif |
| |
| #ifndef JUMP_TABLES_IN_TEXT_SECTION |
| #define JUMP_TABLES_IN_TEXT_SECTION 0 |
| #endif |
| |
| #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP) |
| #define HAVE_READONLY_DATA_SECTION 1 |
| #else |
| #define HAVE_READONLY_DATA_SECTION 0 |
| #endif |
| |
| /* Bitflags used by final_scan_insn. */ |
| #define SEEN_BB 1 |
| #define SEEN_NOTE 2 |
| #define SEEN_EMITTED 4 |
| |
| /* Last insn processed by final_scan_insn. */ |
| static rtx debug_insn; |
| rtx current_output_insn; |
| |
| /* Line number of last NOTE. */ |
| static int last_linenum; |
| |
| /* Highest line number in current block. */ |
| static int high_block_linenum; |
| |
| /* Likewise for function. */ |
| static int high_function_linenum; |
| |
| /* Filename of last NOTE. */ |
| static const char *last_filename; |
| |
| extern int length_unit_log; /* This is defined in insn-attrtab.c. */ |
| |
| /* Nonzero while outputting an `asm' with operands. |
| This means that inconsistencies are the user's fault, so don't abort. |
| The precise value is the insn being output, to pass to error_for_asm. */ |
| rtx this_is_asm_operands; |
| |
| /* Number of operands of this insn, for an `asm' with operands. */ |
| static unsigned int insn_noperands; |
| |
| /* Compare optimization flag. */ |
| |
| static rtx last_ignored_compare = 0; |
| |
| /* Assign a unique number to each insn that is output. |
| This can be used to generate unique local labels. */ |
| |
| static int insn_counter = 0; |
| |
| #ifdef HAVE_cc0 |
| /* This variable contains machine-dependent flags (defined in tm.h) |
| set and examined by output routines |
| that describe how to interpret the condition codes properly. */ |
| |
| CC_STATUS cc_status; |
| |
| /* During output of an insn, this contains a copy of cc_status |
| from before the insn. */ |
| |
| CC_STATUS cc_prev_status; |
| #endif |
| |
| /* Indexed by hardware reg number, is 1 if that register is ever |
| used in the current function. |
| |
| In life_analysis, or in stupid_life_analysis, this is set |
| up to record the hard regs used explicitly. Reload adds |
| in the hard regs used for holding pseudo regs. Final uses |
| it to generate the code in the function prologue and epilogue |
| to save and restore registers as needed. */ |
| |
| char regs_ever_live[FIRST_PSEUDO_REGISTER]; |
| |
| /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm. |
| Unlike regs_ever_live, elements of this array corresponding to |
| eliminable regs like the frame pointer are set if an asm sets them. */ |
| |
| char regs_asm_clobbered[FIRST_PSEUDO_REGISTER]; |
| |
| /* Nonzero means current function must be given a frame pointer. |
| Initialized in function.c to 0. Set only in reload1.c as per |
| the needs of the function. */ |
| |
| int frame_pointer_needed; |
| |
| /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */ |
| |
| static int block_depth; |
| |
| /* Nonzero if have enabled APP processing of our assembler output. */ |
| |
| static int app_on; |
| |
| /* If we are outputting an insn sequence, this contains the sequence rtx. |
| Zero otherwise. */ |
| |
| rtx final_sequence; |
| |
| #ifdef ASSEMBLER_DIALECT |
| |
| /* Number of the assembler dialect to use, starting at 0. */ |
| static int dialect_number; |
| #endif |
| |
| #ifdef HAVE_conditional_execution |
| /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */ |
| rtx current_insn_predicate; |
| #endif |
| |
| #ifdef HAVE_ATTR_length |
| static int asm_insn_count (rtx); |
| #endif |
| static void profile_function (FILE *); |
| static void profile_after_prologue (FILE *); |
| static bool notice_source_line (rtx); |
| static rtx walk_alter_subreg (rtx *); |
| static void output_asm_name (void); |
| static void output_alternate_entry_point (FILE *, rtx); |
| static tree get_mem_expr_from_op (rtx, int *); |
| static void output_asm_operand_names (rtx *, int *, int); |
| static void output_operand (rtx, int); |
| #ifdef LEAF_REGISTERS |
| static void leaf_renumber_regs (rtx); |
| #endif |
| #ifdef HAVE_cc0 |
| static int alter_cond (rtx); |
| #endif |
| #ifndef ADDR_VEC_ALIGN |
| static int final_addr_vec_align (rtx); |
| #endif |
| #ifdef HAVE_ATTR_length |
| static int align_fuzz (rtx, rtx, int, unsigned); |
| #endif |
| |
| /* Initialize data in final at the beginning of a compilation. */ |
| |
| void |
| init_final (const char *filename ATTRIBUTE_UNUSED) |
| { |
| app_on = 0; |
| final_sequence = 0; |
| |
| #ifdef ASSEMBLER_DIALECT |
| dialect_number = ASSEMBLER_DIALECT; |
| #endif |
| } |
| |
| /* Default target function prologue and epilogue assembler output. |
| |
| If not overridden for epilogue code, then the function body itself |
| contains return instructions wherever needed. */ |
| void |
| default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED, |
| HOST_WIDE_INT size ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| /* Default target hook that outputs nothing to a stream. */ |
| void |
| no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| /* Enable APP processing of subsequent output. |
| Used before the output from an `asm' statement. */ |
| |
| void |
| app_enable (void) |
| { |
| if (! app_on) |
| { |
| fputs (ASM_APP_ON, asm_out_file); |
| app_on = 1; |
| } |
| } |
| |
| /* Disable APP processing of subsequent output. |
| Called from varasm.c before most kinds of output. */ |
| |
| void |
| app_disable (void) |
| { |
| if (app_on) |
| { |
| fputs (ASM_APP_OFF, asm_out_file); |
| app_on = 0; |
| } |
| } |
| |
| /* Return the number of slots filled in the current |
| delayed branch sequence (we don't count the insn needing the |
| delay slot). Zero if not in a delayed branch sequence. */ |
| |
| #ifdef DELAY_SLOTS |
| int |
| dbr_sequence_length (void) |
| { |
| if (final_sequence != 0) |
| return XVECLEN (final_sequence, 0) - 1; |
| else |
| return 0; |
| } |
| #endif |
| |
| /* The next two pages contain routines used to compute the length of an insn |
| and to shorten branches. */ |
| |
| /* Arrays for insn lengths, and addresses. The latter is referenced by |
| `insn_current_length'. */ |
| |
| static int *insn_lengths; |
| |
| varray_type insn_addresses_; |
| |
| /* Max uid for which the above arrays are valid. */ |
| static int insn_lengths_max_uid; |
| |
| /* Address of insn being processed. Used by `insn_current_length'. */ |
| int insn_current_address; |
| |
| /* Address of insn being processed in previous iteration. */ |
| int insn_last_address; |
| |
| /* known invariant alignment of insn being processed. */ |
| int insn_current_align; |
| |
| /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)] |
| gives the next following alignment insn that increases the known |
| alignment, or NULL_RTX if there is no such insn. |
| For any alignment obtained this way, we can again index uid_align with |
| its uid to obtain the next following align that in turn increases the |
| alignment, till we reach NULL_RTX; the sequence obtained this way |
| for each insn we'll call the alignment chain of this insn in the following |
| comments. */ |
| |
| struct label_alignment |
| { |
| short alignment; |
| short max_skip; |
| }; |
| |
| static rtx *uid_align; |
| static int *uid_shuid; |
| static struct label_alignment *label_align; |
| |
| /* Indicate that branch shortening hasn't yet been done. */ |
| |
| void |
| init_insn_lengths (void) |
| { |
| if (uid_shuid) |
| { |
| free (uid_shuid); |
| uid_shuid = 0; |
| } |
| if (insn_lengths) |
| { |
| free (insn_lengths); |
| insn_lengths = 0; |
| insn_lengths_max_uid = 0; |
| } |
| #ifdef HAVE_ATTR_length |
| INSN_ADDRESSES_FREE (); |
| #endif |
| if (uid_align) |
| { |
| free (uid_align); |
| uid_align = 0; |
| } |
| } |
| |
| /* Obtain the current length of an insn. If branch shortening has been done, |
| get its actual length. Otherwise, get its maximum length. */ |
| |
| int |
| get_attr_length (rtx insn ATTRIBUTE_UNUSED) |
| { |
| #ifdef HAVE_ATTR_length |
| rtx body; |
| int i; |
| int length = 0; |
| |
| if (insn_lengths_max_uid > INSN_UID (insn)) |
| return insn_lengths[INSN_UID (insn)]; |
| else |
| switch (GET_CODE (insn)) |
| { |
| case NOTE: |
| case BARRIER: |
| case CODE_LABEL: |
| return 0; |
| |
| case CALL_INSN: |
| length = insn_default_length (insn); |
| break; |
| |
| case JUMP_INSN: |
| body = PATTERN (insn); |
| if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) |
| { |
| /* Alignment is machine-dependent and should be handled by |
| ADDR_VEC_ALIGN. */ |
| } |
| else |
| length = insn_default_length (insn); |
| break; |
| |
| case INSN: |
| body = PATTERN (insn); |
| if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER) |
| return 0; |
| |
| else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) |
| length = asm_insn_count (body) * insn_default_length (insn); |
| else if (GET_CODE (body) == SEQUENCE) |
| for (i = 0; i < XVECLEN (body, 0); i++) |
| length += get_attr_length (XVECEXP (body, 0, i)); |
| else |
| length = insn_default_length (insn); |
| break; |
| |
| default: |
| break; |
| } |
| |
| #ifdef ADJUST_INSN_LENGTH |
| ADJUST_INSN_LENGTH (insn, length); |
| #endif |
| return length; |
| #else /* not HAVE_ATTR_length */ |
| return 0; |
| #endif /* not HAVE_ATTR_length */ |
| } |
| |
| /* Code to handle alignment inside shorten_branches. */ |
| |
| /* Here is an explanation how the algorithm in align_fuzz can give |
| proper results: |
| |
| Call a sequence of instructions beginning with alignment point X |
| and continuing until the next alignment point `block X'. When `X' |
| is used in an expression, it means the alignment value of the |
| alignment point. |
| |
| Call the distance between the start of the first insn of block X, and |
| the end of the last insn of block X `IX', for the `inner size of X'. |
| This is clearly the sum of the instruction lengths. |
| |
| Likewise with the next alignment-delimited block following X, which we |
| shall call block Y. |
| |
| Call the distance between the start of the first insn of block X, and |
| the start of the first insn of block Y `OX', for the `outer size of X'. |
| |
| The estimated padding is then OX - IX. |
| |
| OX can be safely estimated as |
| |
| if (X >= Y) |
| OX = round_up(IX, Y) |
| else |
| OX = round_up(IX, X) + Y - X |
| |
| Clearly est(IX) >= real(IX), because that only depends on the |
| instruction lengths, and those being overestimated is a given. |
| |
| Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so |
| we needn't worry about that when thinking about OX. |
| |
| When X >= Y, the alignment provided by Y adds no uncertainty factor |
| for branch ranges starting before X, so we can just round what we have. |
| But when X < Y, we don't know anything about the, so to speak, |
| `middle bits', so we have to assume the worst when aligning up from an |
| address mod X to one mod Y, which is Y - X. */ |
| |
| #ifndef LABEL_ALIGN |
| #define LABEL_ALIGN(LABEL) align_labels_log |
| #endif |
| |
| #ifndef LABEL_ALIGN_MAX_SKIP |
| #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip |
| #endif |
| |
| #ifndef LOOP_ALIGN |
| #define LOOP_ALIGN(LABEL) align_loops_log |
| #endif |
| |
| #ifndef LOOP_ALIGN_MAX_SKIP |
| #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip |
| #endif |
| |
| #ifndef LABEL_ALIGN_AFTER_BARRIER |
| #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0 |
| #endif |
| |
| #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP |
| #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0 |
| #endif |
| |
| #ifndef JUMP_ALIGN |
| #define JUMP_ALIGN(LABEL) align_jumps_log |
| #endif |
| |
| #ifndef JUMP_ALIGN_MAX_SKIP |
| #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip |
| #endif |
| |
| #ifndef ADDR_VEC_ALIGN |
| static int |
| final_addr_vec_align (rtx addr_vec) |
| { |
| int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))); |
| |
| if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT) |
| align = BIGGEST_ALIGNMENT / BITS_PER_UNIT; |
| return exact_log2 (align); |
| |
| } |
| |
| #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC) |
| #endif |
| |
| #ifndef INSN_LENGTH_ALIGNMENT |
| #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log |
| #endif |
| |
| #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)]) |
| |
| static int min_labelno, max_labelno; |
| |
| #define LABEL_TO_ALIGNMENT(LABEL) \ |
| (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment) |
| |
| #define LABEL_TO_MAX_SKIP(LABEL) \ |
| (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip) |
| |
| /* For the benefit of port specific code do this also as a function. */ |
| |
| int |
| label_to_alignment (rtx label) |
| { |
| return LABEL_TO_ALIGNMENT (label); |
| } |
| |
| #ifdef HAVE_ATTR_length |
| /* The differences in addresses |
| between a branch and its target might grow or shrink depending on |
| the alignment the start insn of the range (the branch for a forward |
| branch or the label for a backward branch) starts out on; if these |
| differences are used naively, they can even oscillate infinitely. |
| We therefore want to compute a 'worst case' address difference that |
| is independent of the alignment the start insn of the range end |
| up on, and that is at least as large as the actual difference. |
| The function align_fuzz calculates the amount we have to add to the |
| naively computed difference, by traversing the part of the alignment |
| chain of the start insn of the range that is in front of the end insn |
| of the range, and considering for each alignment the maximum amount |
| that it might contribute to a size increase. |
| |
| For casesi tables, we also want to know worst case minimum amounts of |
| address difference, in case a machine description wants to introduce |
| some common offset that is added to all offsets in a table. |
| For this purpose, align_fuzz with a growth argument of 0 computes the |
| appropriate adjustment. */ |
| |
| /* Compute the maximum delta by which the difference of the addresses of |
| START and END might grow / shrink due to a different address for start |
| which changes the size of alignment insns between START and END. |
| KNOWN_ALIGN_LOG is the alignment known for START. |
| GROWTH should be ~0 if the objective is to compute potential code size |
| increase, and 0 if the objective is to compute potential shrink. |
| The return value is undefined for any other value of GROWTH. */ |
| |
| static int |
| align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth) |
| { |
| int uid = INSN_UID (start); |
| rtx align_label; |
| int known_align = 1 << known_align_log; |
| int end_shuid = INSN_SHUID (end); |
| int fuzz = 0; |
| |
| for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid]) |
| { |
| int align_addr, new_align; |
| |
| uid = INSN_UID (align_label); |
| align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid]; |
| if (uid_shuid[uid] > end_shuid) |
| break; |
| known_align_log = LABEL_TO_ALIGNMENT (align_label); |
| new_align = 1 << known_align_log; |
| if (new_align < known_align) |
| continue; |
| fuzz += (-align_addr ^ growth) & (new_align - known_align); |
| known_align = new_align; |
| } |
| return fuzz; |
| } |
| |
| /* Compute a worst-case reference address of a branch so that it |
| can be safely used in the presence of aligned labels. Since the |
| size of the branch itself is unknown, the size of the branch is |
| not included in the range. I.e. for a forward branch, the reference |
| address is the end address of the branch as known from the previous |
| branch shortening pass, minus a value to account for possible size |
| increase due to alignment. For a backward branch, it is the start |
| address of the branch as known from the current pass, plus a value |
| to account for possible size increase due to alignment. |
| NB.: Therefore, the maximum offset allowed for backward branches needs |
| to exclude the branch size. */ |
| |
| int |
| insn_current_reference_address (rtx branch) |
| { |
| rtx dest, seq; |
| int seq_uid; |
| |
| if (! INSN_ADDRESSES_SET_P ()) |
| return 0; |
| |
| seq = NEXT_INSN (PREV_INSN (branch)); |
| seq_uid = INSN_UID (seq); |
| if (!JUMP_P (branch)) |
| /* This can happen for example on the PA; the objective is to know the |
| offset to address something in front of the start of the function. |
| Thus, we can treat it like a backward branch. |
| We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than |
| any alignment we'd encounter, so we skip the call to align_fuzz. */ |
| return insn_current_address; |
| dest = JUMP_LABEL (branch); |
| |
| /* BRANCH has no proper alignment chain set, so use SEQ. |
| BRANCH also has no INSN_SHUID. */ |
| if (INSN_SHUID (seq) < INSN_SHUID (dest)) |
| { |
| /* Forward branch. */ |
| return (insn_last_address + insn_lengths[seq_uid] |
| - align_fuzz (seq, dest, length_unit_log, ~0)); |
| } |
| else |
| { |
| /* Backward branch. */ |
| return (insn_current_address |
| + align_fuzz (dest, seq, length_unit_log, ~0)); |
| } |
| } |
| #endif /* HAVE_ATTR_length */ |
| |
| void |
| compute_alignments (void) |
| { |
| int log, max_skip, max_log; |
| basic_block bb; |
| |
| if (label_align) |
| { |
| free (label_align); |
| label_align = 0; |
| } |
| |
| max_labelno = max_label_num (); |
| min_labelno = get_first_label_num (); |
| label_align = xcalloc (max_labelno - min_labelno + 1, |
| sizeof (struct label_alignment)); |
| |
| /* If not optimizing or optimizing for size, don't assign any alignments. */ |
| if (! optimize || optimize_size) |
| return; |
| |
| FOR_EACH_BB (bb) |
| { |
| rtx label = BB_HEAD (bb); |
| int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0; |
| edge e; |
| edge_iterator ei; |
| |
| if (!LABEL_P (label) |
| || probably_never_executed_bb_p (bb)) |
| continue; |
| max_log = LABEL_ALIGN (label); |
| max_skip = LABEL_ALIGN_MAX_SKIP; |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| if (e->flags & EDGE_FALLTHRU) |
| has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e); |
| else |
| branch_frequency += EDGE_FREQUENCY (e); |
| } |
| |
| /* There are two purposes to align block with no fallthru incoming edge: |
| 1) to avoid fetch stalls when branch destination is near cache boundary |
| 2) to improve cache efficiency in case the previous block is not executed |
| (so it does not need to be in the cache). |
| |
| We to catch first case, we align frequently executed blocks. |
| To catch the second, we align blocks that are executed more frequently |
| than the predecessor and the predecessor is likely to not be executed |
| when function is called. */ |
| |
| if (!has_fallthru |
| && (branch_frequency > BB_FREQ_MAX / 10 |
| || (bb->frequency > bb->prev_bb->frequency * 10 |
| && (bb->prev_bb->frequency |
| <= ENTRY_BLOCK_PTR->frequency / 2)))) |
| { |
| log = JUMP_ALIGN (label); |
| if (max_log < log) |
| { |
| max_log = log; |
| max_skip = JUMP_ALIGN_MAX_SKIP; |
| } |
| } |
| /* In case block is frequent and reached mostly by non-fallthru edge, |
| align it. It is most likely a first block of loop. */ |
| if (has_fallthru |
| && maybe_hot_bb_p (bb) |
| && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10 |
| && branch_frequency > fallthru_frequency * 2) |
| { |
| log = LOOP_ALIGN (label); |
| if (max_log < log) |
| { |
| max_log = log; |
| max_skip = LOOP_ALIGN_MAX_SKIP; |
| } |
| } |
| LABEL_TO_ALIGNMENT (label) = max_log; |
| LABEL_TO_MAX_SKIP (label) = max_skip; |
| } |
| } |
| |
| /* Make a pass over all insns and compute their actual lengths by shortening |
| any branches of variable length if possible. */ |
| |
| /* shorten_branches might be called multiple times: for example, the SH |
| port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG. |
| In order to do this, it needs proper length information, which it obtains |
| by calling shorten_branches. This cannot be collapsed with |
| shorten_branches itself into a single pass unless we also want to integrate |
| reorg.c, since the branch splitting exposes new instructions with delay |
| slots. */ |
| |
| void |
| shorten_branches (rtx first ATTRIBUTE_UNUSED) |
| { |
| rtx insn; |
| int max_uid; |
| int i; |
| int max_log; |
| int max_skip; |
| #ifdef HAVE_ATTR_length |
| #define MAX_CODE_ALIGN 16 |
| rtx seq; |
| int something_changed = 1; |
| char *varying_length; |
| rtx body; |
| int uid; |
| rtx align_tab[MAX_CODE_ALIGN]; |
| |
| #endif |
| |
| /* Compute maximum UID and allocate label_align / uid_shuid. */ |
| max_uid = get_max_uid (); |
| |
| /* Free uid_shuid before reallocating it. */ |
| free (uid_shuid); |
| |
| uid_shuid = xmalloc (max_uid * sizeof *uid_shuid); |
| |
| if (max_labelno != max_label_num ()) |
| { |
| int old = max_labelno; |
| int n_labels; |
| int n_old_labels; |
| |
| max_labelno = max_label_num (); |
| |
| n_labels = max_labelno - min_labelno + 1; |
| n_old_labels = old - min_labelno + 1; |
| |
| label_align = xrealloc (label_align, |
| n_labels * sizeof (struct label_alignment)); |
| |
| /* Range of labels grows monotonically in the function. Abort here |
| means that the initialization of array got lost. */ |
| gcc_assert (n_old_labels <= n_labels); |
| |
| memset (label_align + n_old_labels, 0, |
| (n_labels - n_old_labels) * sizeof (struct label_alignment)); |
| } |
| |
| /* Initialize label_align and set up uid_shuid to be strictly |
| monotonically rising with insn order. */ |
| /* We use max_log here to keep track of the maximum alignment we want to |
| impose on the next CODE_LABEL (or the current one if we are processing |
| the CODE_LABEL itself). */ |
| |
| max_log = 0; |
| max_skip = 0; |
| |
| for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn)) |
| { |
| int log; |
| |
| INSN_SHUID (insn) = i++; |
| if (INSN_P (insn)) |
| { |
| /* reorg might make the first insn of a loop being run once only, |
| and delete the label in front of it. Then we want to apply |
| the loop alignment to the new label created by reorg, which |
| is separated by the former loop start insn from the |
| NOTE_INSN_LOOP_BEG. */ |
| } |
| else if (LABEL_P (insn)) |
| { |
| rtx next; |
| |
| /* Merge in alignments computed by compute_alignments. */ |
| log = LABEL_TO_ALIGNMENT (insn); |
| if (max_log < log) |
| { |
| max_log = log; |
| max_skip = LABEL_TO_MAX_SKIP (insn); |
| } |
| |
| log = LABEL_ALIGN (insn); |
| if (max_log < log) |
| { |
| max_log = log; |
| max_skip = LABEL_ALIGN_MAX_SKIP; |
| } |
| next = next_nonnote_insn (insn); |
| /* ADDR_VECs only take room if read-only data goes into the text |
| section. */ |
| if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION) |
| if (next && JUMP_P (next)) |
| { |
| rtx nextbody = PATTERN (next); |
| if (GET_CODE (nextbody) == ADDR_VEC |
| || GET_CODE (nextbody) == ADDR_DIFF_VEC) |
| { |
| log = ADDR_VEC_ALIGN (next); |
| if (max_log < log) |
| { |
| max_log = log; |
| max_skip = LABEL_ALIGN_MAX_SKIP; |
| } |
| } |
| } |
| LABEL_TO_ALIGNMENT (insn) = max_log; |
| LABEL_TO_MAX_SKIP (insn) = max_skip; |
| max_log = 0; |
| max_skip = 0; |
| } |
| else if (BARRIER_P (insn)) |
| { |
| rtx label; |
| |
| for (label = insn; label && ! INSN_P (label); |
| label = NEXT_INSN (label)) |
| if (LABEL_P (label)) |
| { |
| log = LABEL_ALIGN_AFTER_BARRIER (insn); |
| if (max_log < log) |
| { |
| max_log = log; |
| max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP; |
| } |
| break; |
| } |
| } |
| } |
| #ifdef HAVE_ATTR_length |
| |
| /* Allocate the rest of the arrays. */ |
| insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths)); |
| insn_lengths_max_uid = max_uid; |
| /* Syntax errors can lead to labels being outside of the main insn stream. |
| Initialize insn_addresses, so that we get reproducible results. */ |
| INSN_ADDRESSES_ALLOC (max_uid); |
| |
| varying_length = xcalloc (max_uid, sizeof (char)); |
| |
| /* Initialize uid_align. We scan instructions |
| from end to start, and keep in align_tab[n] the last seen insn |
| that does an alignment of at least n+1, i.e. the successor |
| in the alignment chain for an insn that does / has a known |
| alignment of n. */ |
| uid_align = xcalloc (max_uid, sizeof *uid_align); |
| |
| for (i = MAX_CODE_ALIGN; --i >= 0;) |
| align_tab[i] = NULL_RTX; |
| seq = get_last_insn (); |
| for (; seq; seq = PREV_INSN (seq)) |
| { |
| int uid = INSN_UID (seq); |
| int log; |
| log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0); |
| uid_align[uid] = align_tab[0]; |
| if (log) |
| { |
| /* Found an alignment label. */ |
| uid_align[uid] = align_tab[log]; |
| for (i = log - 1; i >= 0; i--) |
| align_tab[i] = seq; |
| } |
| } |
| #ifdef CASE_VECTOR_SHORTEN_MODE |
| if (optimize) |
| { |
| /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum |
| label fields. */ |
| |
| int min_shuid = INSN_SHUID (get_insns ()) - 1; |
| int max_shuid = INSN_SHUID (get_last_insn ()) + 1; |
| int rel; |
| |
| for (insn = first; insn != 0; insn = NEXT_INSN (insn)) |
| { |
| rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat; |
| int len, i, min, max, insn_shuid; |
| int min_align; |
| addr_diff_vec_flags flags; |
| |
| if (!JUMP_P (insn) |
| || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) |
| continue; |
| pat = PATTERN (insn); |
| len = XVECLEN (pat, 1); |
| gcc_assert (len > 0); |
| min_align = MAX_CODE_ALIGN; |
| for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--) |
| { |
| rtx lab = XEXP (XVECEXP (pat, 1, i), 0); |
| int shuid = INSN_SHUID (lab); |
| if (shuid < min) |
| { |
| min = shuid; |
| min_lab = lab; |
| } |
| if (shuid > max) |
| { |
| max = shuid; |
| max_lab = lab; |
| } |
| if (min_align > LABEL_TO_ALIGNMENT (lab)) |
| min_align = LABEL_TO_ALIGNMENT (lab); |
| } |
| XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab); |
| XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab); |
| insn_shuid = INSN_SHUID (insn); |
| rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0)); |
| memset (&flags, 0, sizeof (flags)); |
| flags.min_align = min_align; |
| flags.base_after_vec = rel > insn_shuid; |
| flags.min_after_vec = min > insn_shuid; |
| flags.max_after_vec = max > insn_shuid; |
| flags.min_after_base = min > rel; |
| flags.max_after_base = max > rel; |
| ADDR_DIFF_VEC_FLAGS (pat) = flags; |
| } |
| } |
| #endif /* CASE_VECTOR_SHORTEN_MODE */ |
| |
| /* Compute initial lengths, addresses, and varying flags for each insn. */ |
| for (insn_current_address = 0, insn = first; |
| insn != 0; |
| insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn)) |
| { |
| uid = INSN_UID (insn); |
| |
| insn_lengths[uid] = 0; |
| |
| if (LABEL_P (insn)) |
| { |
| int log = LABEL_TO_ALIGNMENT (insn); |
| if (log) |
| { |
| int align = 1 << log; |
| int new_address = (insn_current_address + align - 1) & -align; |
| insn_lengths[uid] = new_address - insn_current_address; |
| } |
| } |
| |
| INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid]; |
| |
| if (NOTE_P (insn) || BARRIER_P (insn) |
| || LABEL_P (insn)) |
| continue; |
| if (INSN_DELETED_P (insn)) |
| continue; |
| |
| body = PATTERN (insn); |
| if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) |
| { |
| /* This only takes room if read-only data goes into the text |
| section. */ |
| if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION) |
| insn_lengths[uid] = (XVECLEN (body, |
| GET_CODE (body) == ADDR_DIFF_VEC) |
| * GET_MODE_SIZE (GET_MODE (body))); |
| /* Alignment is handled by ADDR_VEC_ALIGN. */ |
| } |
| else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) |
| insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn); |
| else if (GET_CODE (body) == SEQUENCE) |
| { |
| int i; |
| int const_delay_slots; |
| #ifdef DELAY_SLOTS |
| const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0)); |
| #else |
| const_delay_slots = 0; |
| #endif |
| /* Inside a delay slot sequence, we do not do any branch shortening |
| if the shortening could change the number of delay slots |
| of the branch. */ |
| for (i = 0; i < XVECLEN (body, 0); i++) |
| { |
| rtx inner_insn = XVECEXP (body, 0, i); |
| int inner_uid = INSN_UID (inner_insn); |
| int inner_length; |
| |
| if (GET_CODE (body) == ASM_INPUT |
| || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0) |
| inner_length = (asm_insn_count (PATTERN (inner_insn)) |
| * insn_default_length (inner_insn)); |
| else |
| inner_length = insn_default_length (inner_insn); |
| |
| insn_lengths[inner_uid] = inner_length; |
| if (const_delay_slots) |
| { |
| if ((varying_length[inner_uid] |
| = insn_variable_length_p (inner_insn)) != 0) |
| varying_length[uid] = 1; |
| INSN_ADDRESSES (inner_uid) = (insn_current_address |
| + insn_lengths[uid]); |
| } |
| else |
| varying_length[inner_uid] = 0; |
| insn_lengths[uid] += inner_length; |
| } |
| } |
| else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER) |
| { |
| insn_lengths[uid] = insn_default_length (insn); |
| varying_length[uid] = insn_variable_length_p (insn); |
| } |
| |
| /* If needed, do any adjustment. */ |
| #ifdef ADJUST_INSN_LENGTH |
| ADJUST_INSN_LENGTH (insn, insn_lengths[uid]); |
| if (insn_lengths[uid] < 0) |
| fatal_insn ("negative insn length", insn); |
| #endif |
| } |
| |
| /* Now loop over all the insns finding varying length insns. For each, |
| get the current insn length. If it has changed, reflect the change. |
| When nothing changes for a full pass, we are done. */ |
| |
| while (something_changed) |
| { |
| something_changed = 0; |
| insn_current_align = MAX_CODE_ALIGN - 1; |
| for (insn_current_address = 0, insn = first; |
| insn != 0; |
| insn = NEXT_INSN (insn)) |
| { |
| int new_length; |
| #ifdef ADJUST_INSN_LENGTH |
| int tmp_length; |
| #endif |
| int length_align; |
| |
| uid = INSN_UID (insn); |
| |
| if (LABEL_P (insn)) |
| { |
| int log = LABEL_TO_ALIGNMENT (insn); |
| if (log > insn_current_align) |
| { |
| int align = 1 << log; |
| int new_address= (insn_current_address + align - 1) & -align; |
| insn_lengths[uid] = new_address - insn_current_address; |
| insn_current_align = log; |
| insn_current_address = new_address; |
| } |
| else |
| insn_lengths[uid] = 0; |
| INSN_ADDRESSES (uid) = insn_current_address; |
| continue; |
| } |
| |
| length_align = INSN_LENGTH_ALIGNMENT (insn); |
| if (length_align < insn_current_align) |
| insn_current_align = length_align; |
| |
| insn_last_address = INSN_ADDRESSES (uid); |
| INSN_ADDRESSES (uid) = insn_current_address; |
| |
| #ifdef CASE_VECTOR_SHORTEN_MODE |
| if (optimize && JUMP_P (insn) |
| && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) |
| { |
| rtx body = PATTERN (insn); |
| int old_length = insn_lengths[uid]; |
| rtx rel_lab = XEXP (XEXP (body, 0), 0); |
| rtx min_lab = XEXP (XEXP (body, 2), 0); |
| rtx max_lab = XEXP (XEXP (body, 3), 0); |
| int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab)); |
| int min_addr = INSN_ADDRESSES (INSN_UID (min_lab)); |
| int max_addr = INSN_ADDRESSES (INSN_UID (max_lab)); |
| rtx prev; |
| int rel_align = 0; |
| addr_diff_vec_flags flags; |
| |
| /* Avoid automatic aggregate initialization. */ |
| flags = ADDR_DIFF_VEC_FLAGS (body); |
| |
| /* Try to find a known alignment for rel_lab. */ |
| for (prev = rel_lab; |
| prev |
| && ! insn_lengths[INSN_UID (prev)] |
| && ! (varying_length[INSN_UID (prev)] & 1); |
| prev = PREV_INSN (prev)) |
| if (varying_length[INSN_UID (prev)] & 2) |
| { |
| rel_align = LABEL_TO_ALIGNMENT (prev); |
| break; |
| } |
| |
| /* See the comment on addr_diff_vec_flags in rtl.h for the |
| meaning of the flags values. base: REL_LAB vec: INSN */ |
| /* Anything after INSN has still addresses from the last |
| pass; adjust these so that they reflect our current |
| estimate for this pass. */ |
| if (flags.base_after_vec) |
| rel_addr += insn_current_address - insn_last_address; |
| if (flags.min_after_vec) |
| min_addr += insn_current_address - insn_last_address; |
| if (flags.max_after_vec) |
| max_addr += insn_current_address - insn_last_address; |
| /* We want to know the worst case, i.e. lowest possible value |
| for the offset of MIN_LAB. If MIN_LAB is after REL_LAB, |
| its offset is positive, and we have to be wary of code shrink; |
| otherwise, it is negative, and we have to be vary of code |
| size increase. */ |
| if (flags.min_after_base) |
| { |
| /* If INSN is between REL_LAB and MIN_LAB, the size |
| changes we are about to make can change the alignment |
| within the observed offset, therefore we have to break |
| it up into two parts that are independent. */ |
| if (! flags.base_after_vec && flags.min_after_vec) |
| { |
| min_addr -= align_fuzz (rel_lab, insn, rel_align, 0); |
| min_addr -= align_fuzz (insn, min_lab, 0, 0); |
| } |
| else |
| min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0); |
| } |
| else |
| { |
| if (flags.base_after_vec && ! flags.min_after_vec) |
| { |
| min_addr -= align_fuzz (min_lab, insn, 0, ~0); |
| min_addr -= align_fuzz (insn, rel_lab, 0, ~0); |
| } |
| else |
| min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0); |
| } |
| /* Likewise, determine the highest lowest possible value |
| for the offset of MAX_LAB. */ |
| if (flags.max_after_base) |
| { |
| if (! flags.base_after_vec && flags.max_after_vec) |
| { |
| max_addr += align_fuzz (rel_lab, insn, rel_align, ~0); |
| max_addr += align_fuzz (insn, max_lab, 0, ~0); |
| } |
| else |
| max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0); |
| } |
| else |
| { |
| if (flags.base_after_vec && ! flags.max_after_vec) |
| { |
| max_addr += align_fuzz (max_lab, insn, 0, 0); |
| max_addr += align_fuzz (insn, rel_lab, 0, 0); |
| } |
| else |
| max_addr += align_fuzz (max_lab, rel_lab, 0, 0); |
| } |
| PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr, |
| max_addr - rel_addr, |
| body)); |
| if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION) |
| { |
| insn_lengths[uid] |
| = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body))); |
| insn_current_address += insn_lengths[uid]; |
| if (insn_lengths[uid] != old_length) |
| something_changed = 1; |
| } |
| |
| continue; |
| } |
| #endif /* CASE_VECTOR_SHORTEN_MODE */ |
| |
| if (! (varying_length[uid])) |
| { |
| if (NONJUMP_INSN_P (insn) |
| && GET_CODE (PATTERN (insn)) == SEQUENCE) |
| { |
| int i; |
| |
| body = PATTERN (insn); |
| for (i = 0; i < XVECLEN (body, 0); i++) |
| { |
| rtx inner_insn = XVECEXP (body, 0, i); |
| int inner_uid = INSN_UID (inner_insn); |
| |
| INSN_ADDRESSES (inner_uid) = insn_current_address; |
| |
| insn_current_address += insn_lengths[inner_uid]; |
| } |
| } |
| else |
| insn_current_address += insn_lengths[uid]; |
| |
| continue; |
| } |
| |
| if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) |
| { |
| int i; |
| |
| body = PATTERN (insn); |
| new_length = 0; |
| for (i = 0; i < XVECLEN (body, 0); i++) |
| { |
| rtx inner_insn = XVECEXP (body, 0, i); |
| int inner_uid = INSN_UID (inner_insn); |
| int inner_length; |
| |
| INSN_ADDRESSES (inner_uid) = insn_current_address; |
| |
| /* insn_current_length returns 0 for insns with a |
| non-varying length. */ |
| if (! varying_length[inner_uid]) |
| inner_length = insn_lengths[inner_uid]; |
| else |
| inner_length = insn_current_length (inner_insn); |
| |
| if (inner_length != insn_lengths[inner_uid]) |
| { |
| insn_lengths[inner_uid] = inner_length; |
| something_changed = 1; |
| } |
| insn_current_address += insn_lengths[inner_uid]; |
| new_length += inner_length; |
| } |
| } |
| else |
| { |
| new_length = insn_current_length (insn); |
| insn_current_address += new_length; |
| } |
| |
| #ifdef ADJUST_INSN_LENGTH |
| /* If needed, do any adjustment. */ |
| tmp_length = new_length; |
| ADJUST_INSN_LENGTH (insn, new_length); |
| insn_current_address += (new_length - tmp_length); |
| #endif |
| |
| if (new_length != insn_lengths[uid]) |
| { |
| insn_lengths[uid] = new_length; |
| something_changed = 1; |
| } |
| } |
| /* For a non-optimizing compile, do only a single pass. */ |
| if (!optimize) |
| break; |
| } |
| |
| free (varying_length); |
| |
| #endif /* HAVE_ATTR_length */ |
| } |
| |
| #ifdef HAVE_ATTR_length |
| /* Given the body of an INSN known to be generated by an ASM statement, return |
| the number of machine instructions likely to be generated for this insn. |
| This is used to compute its length. */ |
| |
| static int |
| asm_insn_count (rtx body) |
| { |
| const char *template; |
| int count = 1; |
| |
| if (GET_CODE (body) == ASM_INPUT) |
| template = XSTR (body, 0); |
| else |
| template = decode_asm_operands (body, NULL, NULL, NULL, NULL); |
| |
| for (; *template; template++) |
| if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n') |
| count++; |
| |
| return count; |
| } |
| #endif |
| |
| /* Output assembler code for the start of a function, |
| and initialize some of the variables in this file |
| for the new function. The label for the function and associated |
| assembler pseudo-ops have already been output in `assemble_start_function'. |
| |
| FIRST is the first insn of the rtl for the function being compiled. |
| FILE is the file to write assembler code to. |
| OPTIMIZE is nonzero if we should eliminate redundant |
| test and compare insns. */ |
| |
| void |
| final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file, |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| int optimizing ATTRIBUTE_UNUSED) |
| { |
| block_depth = 0; |
| |
| this_is_asm_operands = 0; |
| |
| last_filename = locator_file (prologue_locator); |
| last_linenum = locator_line (prologue_locator); |
| |
| high_block_linenum = high_function_linenum = last_linenum; |
| |
| /* APPLE LOCAL begin aaa */ |
| if (!flag_save_repository || !flag_pch_file) |
| (*debug_hooks->begin_prologue) (last_linenum, last_filename); |
| /* APPLE LOCAL end aaa */ |
| |
| #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO) |
| if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG) |
| dwarf2out_begin_prologue (0, NULL); |
| #endif |
| |
| #ifdef LEAF_REG_REMAP |
| if (current_function_uses_only_leaf_regs) |
| leaf_renumber_regs (first); |
| #endif |
| |
| /* The Sun386i and perhaps other machines don't work right |
| if the profiling code comes after the prologue. */ |
| #ifdef PROFILE_BEFORE_PROLOGUE |
| if (current_function_profile) |
| profile_function (file); |
| #endif /* PROFILE_BEFORE_PROLOGUE */ |
| |
| #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue) |
| if (dwarf2out_do_frame ()) |
| dwarf2out_frame_debug (NULL_RTX, false); |
| #endif |
| |
| /* If debugging, assign block numbers to all of the blocks in this |
| function. */ |
| if (write_symbols) |
| { |
| remove_unnecessary_notes (); |
| reemit_insn_block_notes (); |
| number_blocks (current_function_decl); |
| /* We never actually put out begin/end notes for the top-level |
| block in the function. But, conceptually, that block is |
| always needed. */ |
| TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1; |
| } |
| |
| /* First output the function prologue: code to set up the stack frame. */ |
| targetm.asm_out.function_prologue (file, get_frame_size ()); |
| |
| /* If the machine represents the prologue as RTL, the profiling code must |
| be emitted when NOTE_INSN_PROLOGUE_END is scanned. */ |
| #ifdef HAVE_prologue |
| if (! HAVE_prologue) |
| #endif |
| profile_after_prologue (file); |
| } |
| |
| static void |
| profile_after_prologue (FILE *file ATTRIBUTE_UNUSED) |
| { |
| #ifndef PROFILE_BEFORE_PROLOGUE |
| if (current_function_profile) |
| profile_function (file); |
| #endif /* not PROFILE_BEFORE_PROLOGUE */ |
| } |
| |
| static void |
| profile_function (FILE *file ATTRIBUTE_UNUSED) |
| { |
| #ifndef NO_PROFILE_COUNTERS |
| # define NO_PROFILE_COUNTERS 0 |
| #endif |
| #if defined(ASM_OUTPUT_REG_PUSH) |
| int sval = current_function_returns_struct; |
| rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1); |
| #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM) |
| int cxt = cfun->static_chain_decl != NULL; |
| #endif |
| #endif /* ASM_OUTPUT_REG_PUSH */ |
| |
| if (! NO_PROFILE_COUNTERS) |
| { |
| int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE); |
| data_section (); |
| ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); |
| targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no); |
| assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1); |
| } |
| |
| function_section (current_function_decl); |
| |
| #if defined(ASM_OUTPUT_REG_PUSH) |
| if (sval && svrtx != NULL_RTX && REG_P (svrtx)) |
| ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx)); |
| #endif |
| |
| #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) |
| if (cxt) |
| ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM); |
| #else |
| #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) |
| if (cxt) |
| { |
| ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM); |
| } |
| #endif |
| #endif |
| |
| FUNCTION_PROFILER (file, current_function_funcdef_no); |
| |
| #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) |
| if (cxt) |
| ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM); |
| #else |
| #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH) |
| if (cxt) |
| { |
| ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM); |
| } |
| #endif |
| #endif |
| |
| #if defined(ASM_OUTPUT_REG_PUSH) |
| if (sval && svrtx != NULL_RTX && REG_P (svrtx)) |
| ASM_OUTPUT_REG_POP (file, REGNO (svrtx)); |
| #endif |
| } |
| |
| /* Output assembler code for the end of a function. |
| For clarity, args are same as those of `final_start_function' |
| even though not all of them are needed. */ |
| |
| void |
| final_end_function (void) |
| { |
| app_disable (); |
| |
| (*debug_hooks->end_function) (high_function_linenum); |
| |
| /* Finally, output the function epilogue: |
| code to restore the stack frame and return to the caller. */ |
| targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ()); |
| |
| /* And debug output. */ |
| (*debug_hooks->end_epilogue) (last_linenum, last_filename); |
| |
| #if defined (DWARF2_UNWIND_INFO) |
| if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG |
| && dwarf2out_do_frame ()) |
| dwarf2out_end_epilogue (last_linenum, last_filename); |
| #endif |
| } |
| |
| /* Output assembler code for some insns: all or part of a function. |
| For description of args, see `final_start_function', above. |
| |
| PRESCAN is 1 if we are not really outputting, |
| just scanning as if we were outputting. |
| Prescanning deletes and rearranges insns just like ordinary output. |
| PRESCAN is -2 if we are outputting after having prescanned. |
| In this case, don't try to delete or rearrange insns |
| because that has already been done. |
| Prescanning is done only on certain machines. */ |
| |
| void |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| final (rtx first, FILE *file, int optimizing, int prescan) |
| { |
| rtx insn; |
| int max_uid = 0; |
| int seen = 0; |
| |
| last_ignored_compare = 0; |
| |
| #ifdef SDB_DEBUGGING_INFO |
| /* When producing SDB debugging info, delete troublesome line number |
| notes from inlined functions in other files as well as duplicate |
| line number notes. */ |
| if (write_symbols == SDB_DEBUG) |
| { |
| rtx last = 0; |
| for (insn = first; insn; insn = NEXT_INSN (insn)) |
| if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0) |
| { |
| if (last != 0 |
| #ifdef USE_MAPPED_LOCATION |
| && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last) |
| #else |
| && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last) |
| && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last) |
| #endif |
| ) |
| { |
| delete_insn (insn); /* Use delete_note. */ |
| continue; |
| } |
| last = insn; |
| } |
| } |
| #endif |
| |
| for (insn = first; insn; insn = NEXT_INSN (insn)) |
| { |
| if (INSN_UID (insn) > max_uid) /* Find largest UID. */ |
| max_uid = INSN_UID (insn); |
| #ifdef HAVE_cc0 |
| /* If CC tracking across branches is enabled, record the insn which |
| jumps to each branch only reached from one place. */ |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| if (optimizing && JUMP_P (insn)) |
| { |
| rtx lab = JUMP_LABEL (insn); |
| if (lab && LABEL_NUSES (lab) == 1) |
| { |
| LABEL_REFS (lab) = insn; |
| } |
| } |
| #endif |
| } |
| |
| init_recog (); |
| |
| CC_STATUS_INIT; |
| |
| /* Output the insns. */ |
| for (insn = NEXT_INSN (first); insn;) |
| { |
| #ifdef HAVE_ATTR_length |
| if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ()) |
| { |
| /* This can be triggered by bugs elsewhere in the compiler if |
| new insns are created after init_insn_lengths is called. */ |
| gcc_assert (NOTE_P (insn)); |
| insn_current_address = -1; |
| } |
| else |
| insn_current_address = INSN_ADDRESSES (INSN_UID (insn)); |
| #endif /* HAVE_ATTR_length */ |
| |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| insn = final_scan_insn (insn, file, optimizing, prescan, 0, &seen); |
| } |
| } |
| |
| const char * |
| get_insn_template (int code, rtx insn) |
| { |
| switch (insn_data[code].output_format) |
| { |
| case INSN_OUTPUT_FORMAT_SINGLE: |
| return insn_data[code].output.single; |
| case INSN_OUTPUT_FORMAT_MULTI: |
| return insn_data[code].output.multi[which_alternative]; |
| case INSN_OUTPUT_FORMAT_FUNCTION: |
| gcc_assert (insn); |
| return (*insn_data[code].output.function) (recog_data.operand, insn); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Emit the appropriate declaration for an alternate-entry-point |
| symbol represented by INSN, to FILE. INSN is a CODE_LABEL with |
| LABEL_KIND != LABEL_NORMAL. |
| |
| The case fall-through in this function is intentional. */ |
| static void |
| output_alternate_entry_point (FILE *file, rtx insn) |
| { |
| const char *name = LABEL_NAME (insn); |
| |
| switch (LABEL_KIND (insn)) |
| { |
| case LABEL_WEAK_ENTRY: |
| #ifdef ASM_WEAKEN_LABEL |
| ASM_WEAKEN_LABEL (file, name); |
| #endif |
| case LABEL_GLOBAL_ENTRY: |
| targetm.asm_out.globalize_label (file, name); |
| case LABEL_STATIC_ENTRY: |
| #ifdef ASM_OUTPUT_TYPE_DIRECTIVE |
| ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function"); |
| #endif |
| ASM_OUTPUT_LABEL (file, name); |
| break; |
| |
| case LABEL_NORMAL: |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE |
| note in the instruction chain (going forward) between the current |
| instruction, and the next 'executable' instruction. */ |
| |
| bool |
| scan_ahead_for_unlikely_executed_note (rtx insn) |
| { |
| rtx temp; |
| int bb_note_count = 0; |
| |
| for (temp = insn; temp; temp = NEXT_INSN (temp)) |
| { |
| if (NOTE_P (temp) |
| && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE) |
| return true; |
| if (NOTE_P (temp) |
| && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK) |
| { |
| bb_note_count++; |
| if (bb_note_count > 1) |
| return false; |
| } |
| if (INSN_P (temp)) |
| return false; |
| } |
| |
| return false; |
| } |
| |
| /* The final scan for one insn, INSN. |
| Args are same as in `final', except that INSN |
| is the insn being scanned. |
| Value returned is the next insn to be scanned. |
| |
| NOPEEPHOLES is the flag to disallow peephole processing (currently |
| used for within delayed branch sequence output). |
| |
| SEEN is used to track the end of the prologue, for emitting |
| debug information. We force the emission of a line note after |
| both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or |
| at the beginning of the second basic block, whichever comes |
| first. */ |
| |
| rtx |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| final_scan_insn (rtx insn, FILE *file, int optimizing ATTRIBUTE_UNUSED, |
| int prescan, int nopeepholes ATTRIBUTE_UNUSED, |
| int *seen) |
| { |
| #ifdef HAVE_cc0 |
| rtx set; |
| #endif |
| rtx next; |
| |
| insn_counter++; |
| |
| /* Ignore deleted insns. These can occur when we split insns (due to a |
| template of "#") while not optimizing. */ |
| if (INSN_DELETED_P (insn)) |
| return NEXT_INSN (insn); |
| |
| switch (GET_CODE (insn)) |
| { |
| case NOTE: |
| if (prescan > 0) |
| break; |
| |
| switch (NOTE_LINE_NUMBER (insn)) |
| { |
| case NOTE_INSN_DELETED: |
| case NOTE_INSN_LOOP_BEG: |
| case NOTE_INSN_LOOP_END: |
| case NOTE_INSN_FUNCTION_END: |
| case NOTE_INSN_REPEATED_LINE_NUMBER: |
| case NOTE_INSN_EXPECTED_VALUE: |
| break; |
| |
| case NOTE_INSN_UNLIKELY_EXECUTED_CODE: |
| |
| /* The presence of this note indicates that this basic block |
| belongs in the "cold" section of the .o file. If we are |
| not already writing to the cold section we need to change |
| to it. */ |
| |
| unlikely_text_section (); |
| break; |
| |
| case NOTE_INSN_BASIC_BLOCK: |
| |
| /* If we are performing the optimization that partitions |
| basic blocks into hot & cold sections of the .o file, |
| then at the start of each new basic block, before |
| beginning to write code for the basic block, we need to |
| check to see whether the basic block belongs in the hot |
| or cold section of the .o file, and change the section we |
| are writing to appropriately. */ |
| |
| if (flag_reorder_blocks_and_partition |
| && !scan_ahead_for_unlikely_executed_note (insn)) |
| function_section (current_function_decl); |
| |
| #ifdef TARGET_UNWIND_INFO |
| targetm.asm_out.unwind_emit (asm_out_file, insn); |
| #endif |
| |
| if (flag_debug_asm) |
| fprintf (asm_out_file, "\t%s basic block %d\n", |
| ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index); |
| |
| if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB) |
| { |
| *seen |= SEEN_EMITTED; |
| last_filename = NULL; |
| } |
| else |
| *seen |= SEEN_BB; |
| |
| break; |
| |
| case NOTE_INSN_EH_REGION_BEG: |
| ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB", |
| NOTE_EH_HANDLER (insn)); |
| break; |
| |
| case NOTE_INSN_EH_REGION_END: |
| ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE", |
| NOTE_EH_HANDLER (insn)); |
| break; |
| |
| case NOTE_INSN_PROLOGUE_END: |
| targetm.asm_out.function_end_prologue (file); |
| profile_after_prologue (file); |
| |
| if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) |
| { |
| *seen |= SEEN_EMITTED; |
| last_filename = NULL; |
| } |
| else |
| *seen |= SEEN_NOTE; |
| |
| break; |
| |
| case NOTE_INSN_EPILOGUE_BEG: |
| targetm.asm_out.function_begin_epilogue (file); |
| break; |
| |
| case NOTE_INSN_FUNCTION_BEG: |
| app_disable (); |
| (*debug_hooks->end_prologue) (last_linenum, last_filename); |
| |
| if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) |
| { |
| *seen |= SEEN_EMITTED; |
| last_filename = NULL; |
| } |
| else |
| *seen |= SEEN_NOTE; |
| |
| break; |
| |
| case NOTE_INSN_BLOCK_BEG: |
| if (debug_info_level == DINFO_LEVEL_NORMAL |
| || debug_info_level == DINFO_LEVEL_VERBOSE |
| || write_symbols == DWARF2_DEBUG |
| || write_symbols == VMS_AND_DWARF2_DEBUG |
| || write_symbols == VMS_DEBUG) |
| { |
| int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); |
| |
| app_disable (); |
| ++block_depth; |
| high_block_linenum = last_linenum; |
| |
| /* Output debugging info about the symbol-block beginning. */ |
| /* APPLE LOCAL begin aaa */ |
| if (!flag_save_repository || !flag_pch_file) |
| (*debug_hooks->begin_block) (last_linenum, n); |
| /* APPLE LOCAL end aaa */ |
| |
| /* Mark this block as output. */ |
| TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1; |
| } |
| break; |
| |
| case NOTE_INSN_BLOCK_END: |
| if (debug_info_level == DINFO_LEVEL_NORMAL |
| || debug_info_level == DINFO_LEVEL_VERBOSE |
| || write_symbols == DWARF2_DEBUG |
| || write_symbols == VMS_AND_DWARF2_DEBUG |
| || write_symbols == VMS_DEBUG) |
| { |
| int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); |
| |
| app_disable (); |
| |
| /* End of a symbol-block. */ |
| --block_depth; |
| gcc_assert (block_depth >= 0); |
| |
| /* APPLE LOCAL begin aaa */ |
| if (!flag_save_repository || !flag_pch_file) |
| (*debug_hooks->end_block) (high_block_linenum, n); |
| /* APPLE LOCAL end aaa */ |
| } |
| break; |
| |
| case NOTE_INSN_DELETED_LABEL: |
| /* Emit the label. We may have deleted the CODE_LABEL because |
| the label could be proved to be unreachable, though still |
| referenced (in the form of having its address taken. */ |
| ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn)); |
| break; |
| |
| case NOTE_INSN_VAR_LOCATION: |
| (*debug_hooks->var_location) (insn); |
| break; |
| |
| case 0: |
| break; |
| |
| default: |
| gcc_assert (NOTE_LINE_NUMBER (insn) > 0); |
| break; |
| } |
| break; |
| |
| case BARRIER: |
| #if defined (DWARF2_UNWIND_INFO) |
| if (dwarf2out_do_frame ()) |
| dwarf2out_frame_debug (insn, false); |
| #endif |
| break; |
| |
| case CODE_LABEL: |
| /* The target port might emit labels in the output function for |
| some insn, e.g. sh.c output_branchy_insn. */ |
| if (CODE_LABEL_NUMBER (insn) <= max_labelno) |
| { |
| int align = LABEL_TO_ALIGNMENT (insn); |
| #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN |
| int max_skip = LABEL_TO_MAX_SKIP (insn); |
| #endif |
| |
| if (align && NEXT_INSN (insn)) |
| { |
| #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN |
| ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip); |
| #else |
| #ifdef ASM_OUTPUT_ALIGN_WITH_NOP |
| ASM_OUTPUT_ALIGN_WITH_NOP (file, align); |
| #else |
| ASM_OUTPUT_ALIGN (file, align); |
| #endif |
| #endif |
| } |
| } |
| #ifdef HAVE_cc0 |
| CC_STATUS_INIT; |
| /* If this label is reached from only one place, set the condition |
| codes from the instruction just before the branch. */ |
| |
| /* Disabled because some insns set cc_status in the C output code |
| and NOTICE_UPDATE_CC alone can set incorrect status. */ |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| if (0 /* optimizing && LABEL_NUSES (insn) == 1*/) |
| { |
| rtx jump = LABEL_REFS (insn); |
| rtx barrier = prev_nonnote_insn (insn); |
| rtx prev; |
| /* If the LABEL_REFS field of this label has been set to point |
| at a branch, the predecessor of the branch is a regular |
| insn, and that branch is the only way to reach this label, |
| set the condition codes based on the branch and its |
| predecessor. */ |
| if (barrier && BARRIER_P (barrier) |
| && jump && JUMP_P (jump) |
| && (prev = prev_nonnote_insn (jump)) |
| && NONJUMP_INSN_P (prev)) |
| { |
| NOTICE_UPDATE_CC (PATTERN (prev), prev); |
| NOTICE_UPDATE_CC (PATTERN (jump), jump); |
| } |
| } |
| #endif |
| if (prescan > 0) |
| break; |
| |
| if (LABEL_NAME (insn)) |
| (*debug_hooks->label) (insn); |
| |
| /* If we are doing the optimization that partitions hot & cold |
| basic blocks into separate sections of the .o file, we need |
| to ensure the jump table ends up in the correct section... */ |
| |
| if (flag_reorder_blocks_and_partition |
| && targetm.have_named_sections) |
| { |
| rtx tmp_table, tmp_label; |
| if (LABEL_P (insn) |
| && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table)) |
| { |
| /* Do nothing; Do NOT change the current section. */ |
| } |
| else if (scan_ahead_for_unlikely_executed_note (insn)) |
| unlikely_text_section (); |
| else if (in_unlikely_text_section ()) |
| function_section (current_function_decl); |
| } |
| |
| if (app_on) |
| { |
| fputs (ASM_APP_OFF, file); |
| app_on = 0; |
| } |
| |
| next = next_nonnote_insn (insn); |
| if (next != 0 && JUMP_P (next)) |
| { |
| rtx nextbody = PATTERN (next); |
| |
| /* If this label is followed by a jump-table, |
| make sure we put the label in the read-only section. Also |
| possibly write the label and jump table together. */ |
| |
| if (GET_CODE (nextbody) == ADDR_VEC |
| || GET_CODE (nextbody) == ADDR_DIFF_VEC) |
| { |
| #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) |
| /* In this case, the case vector is being moved by the |
| target, so don't output the label at all. Leave that |
| to the back end macros. */ |
| #else |
| if (! JUMP_TABLES_IN_TEXT_SECTION) |
| { |
| int log_align; |
| |
| targetm.asm_out.function_rodata_section (current_function_decl); |
| |
| #ifdef ADDR_VEC_ALIGN |
| log_align = ADDR_VEC_ALIGN (next); |
| #else |
| log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT); |
| #endif |
| ASM_OUTPUT_ALIGN (file, log_align); |
| } |
| else |
| function_section (current_function_decl); |
| |
| #ifdef ASM_OUTPUT_CASE_LABEL |
| ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), |
| next); |
| #else |
| targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); |
| #endif |
| #endif |
| break; |
| } |
| } |
| if (LABEL_ALT_ENTRY_P (insn)) |
| output_alternate_entry_point (file, insn); |
| else |
| targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); |
| break; |
| |
| default: |
| { |
| rtx body = PATTERN (insn); |
| int insn_code_number; |
| const char *template; |
| |
| /* An INSN, JUMP_INSN or CALL_INSN. |
| First check for special kinds that recog doesn't recognize. */ |
| |
| if (GET_CODE (body) == USE /* These are just declarations. */ |
| || GET_CODE (body) == CLOBBER) |
| break; |
| |
| #ifdef HAVE_cc0 |
| { |
| /* If there is a REG_CC_SETTER note on this insn, it means that |
| the setting of the condition code was done in the delay slot |
| of the insn that branched here. So recover the cc status |
| from the insn that set it. */ |
| |
| rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); |
| if (note) |
| { |
| NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0)); |
| cc_prev_status = cc_status; |
| } |
| } |
| #endif |
| |
| /* Detect insns that are really jump-tables |
| and output them as such. */ |
| |
| if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) |
| { |
| #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)) |
| int vlen, idx; |
| #endif |
| |
| if (prescan > 0) |
| break; |
| |
| if (! JUMP_TABLES_IN_TEXT_SECTION) |
| targetm.asm_out.function_rodata_section (current_function_decl); |
| else |
| function_section (current_function_decl); |
| |
| if (app_on) |
| { |
| fputs (ASM_APP_OFF, file); |
| app_on = 0; |
| } |
| |
| #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) |
| if (GET_CODE (body) == ADDR_VEC) |
| { |
| #ifdef ASM_OUTPUT_ADDR_VEC |
| ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body); |
| #else |
| gcc_unreachable (); |
| #endif |
| } |
| else |
| { |
| #ifdef ASM_OUTPUT_ADDR_DIFF_VEC |
| ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body); |
| #else |
| gcc_unreachable (); |
| #endif |
| } |
| #else |
| vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC); |
| for (idx = 0; idx < vlen; idx++) |
| { |
| if (GET_CODE (body) == ADDR_VEC) |
| { |
| #ifdef ASM_OUTPUT_ADDR_VEC_ELT |
| ASM_OUTPUT_ADDR_VEC_ELT |
| (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); |
| #else |
| gcc_unreachable (); |
| #endif |
| } |
| else |
| { |
| #ifdef ASM_OUTPUT_ADDR_DIFF_ELT |
| ASM_OUTPUT_ADDR_DIFF_ELT |
| (file, |
| body, |
| CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), |
| CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0))); |
| #else |
| gcc_unreachable (); |
| #endif |
| } |
| } |
| #ifdef ASM_OUTPUT_CASE_END |
| ASM_OUTPUT_CASE_END (file, |
| CODE_LABEL_NUMBER (PREV_INSN (insn)), |
| insn); |
| #endif |
| #endif |
| |
| function_section (current_function_decl); |
| |
| break; |
| } |
| /* Output this line note if it is the first or the last line |
| note in a row. */ |
| if (notice_source_line (insn)) |
| { |
| /* APPLE LOCAL begin aaa */ |
| if (!flag_save_repository || !flag_pch_file) |
| (*debug_hooks->source_line) (last_linenum, last_filename); |
| /* APPLE LOCAL end aaa */ |
| } |
| |
| if (GET_CODE (body) == ASM_INPUT) |
| { |
| const char *string = XSTR (body, 0); |
| |
| /* There's no telling what that did to the condition codes. */ |
| CC_STATUS_INIT; |
| if (prescan > 0) |
| break; |
| |
| if (string[0]) |
| { |
| if (! app_on) |
| { |
| fputs (ASM_APP_ON, file); |
| app_on = 1; |
| } |
| fprintf (asm_out_file, "\t%s\n", string); |
| } |
| break; |
| } |
| |
| /* Detect `asm' construct with operands. */ |
| if (asm_noperands (body) >= 0) |
| { |
| unsigned int noperands = asm_noperands (body); |
| rtx *ops = alloca (noperands * sizeof (rtx)); |
| const char *string; |
| |
| /* There's no telling what that did to the condition codes. */ |
| CC_STATUS_INIT; |
| if (prescan > 0) |
| break; |
| |
| /* Get out the operand values. */ |
| string = decode_asm_operands (body, ops, NULL, NULL, NULL); |
| /* Inhibit aborts on what would otherwise be compiler bugs. */ |
| insn_noperands = noperands; |
| this_is_asm_operands = insn; |
| |
| #ifdef FINAL_PRESCAN_INSN |
| FINAL_PRESCAN_INSN (insn, ops, insn_noperands); |
| #endif |
| |
| /* Output the insn using them. */ |
| if (string[0]) |
| { |
| if (! app_on) |
| { |
| fputs (ASM_APP_ON, file); |
| app_on = 1; |
| } |
| output_asm_insn (string, ops); |
| } |
| |
| this_is_asm_operands = 0; |
| break; |
| } |
| |
| if (prescan <= 0 && app_on) |
| { |
| fputs (ASM_APP_OFF, file); |
| app_on = 0; |
| } |
| |
| if (GET_CODE (body) == SEQUENCE) |
| { |
| /* A delayed-branch sequence */ |
| int i; |
| |
| if (prescan > 0) |
| break; |
| final_sequence = body; |
| |
| /* Record the delay slots' frame information before the branch. |
| This is needed for delayed calls: see execute_cfa_program(). */ |
| #if defined (DWARF2_UNWIND_INFO) |
| if (dwarf2out_do_frame ()) |
| for (i = 1; i < XVECLEN (body, 0); i++) |
| dwarf2out_frame_debug (XVECEXP (body, 0, i), false); |
| #endif |
| |
| /* The first insn in this SEQUENCE might be a JUMP_INSN that will |
| force the restoration of a comparison that was previously |
| thought unnecessary. If that happens, cancel this sequence |
| and cause that insn to be restored. */ |
| |
| next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen); |
| if (next != XVECEXP (body, 0, 1)) |
| { |
| final_sequence = 0; |
| return next; |
| } |
| |
| for (i = 1; i < XVECLEN (body, 0); i++) |
| { |
| rtx insn = XVECEXP (body, 0, i); |
| rtx next = NEXT_INSN (insn); |
| /* We loop in case any instruction in a delay slot gets |
| split. */ |
| do |
| insn = final_scan_insn (insn, file, 0, prescan, 1, seen); |
| while (insn != next); |
| } |
| #ifdef DBR_OUTPUT_SEQEND |
| DBR_OUTPUT_SEQEND (file); |
| #endif |
| final_sequence = 0; |
| |
| /* If the insn requiring the delay slot was a CALL_INSN, the |
| insns in the delay slot are actually executed before the |
| called function. Hence we don't preserve any CC-setting |
| actions in these insns and the CC must be marked as being |
| clobbered by the function. */ |
| if (CALL_P (XVECEXP (body, 0, 0))) |
| { |
| CC_STATUS_INIT; |
| } |
| break; |
| } |
| |
| /* We have a real machine instruction as rtl. */ |
| |
| body = PATTERN (insn); |
| |
| #ifdef HAVE_cc0 |
| set = single_set (insn); |
| |
| /* Check for redundant test and compare instructions |
| (when the condition codes are already set up as desired). |
| This is done only when optimizing; if not optimizing, |
| it should be possible for the user to alter a variable |
| with the debugger in between statements |
| and the next statement should reexamine the variable |
| to compute the condition codes. */ |
| |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| if (optimizing) |
| { |
| if (set |
| && GET_CODE (SET_DEST (set)) == CC0 |
| && insn != last_ignored_compare) |
| { |
| if (GET_CODE (SET_SRC (set)) == SUBREG) |
| SET_SRC (set) = alter_subreg (&SET_SRC (set)); |
| else if (GET_CODE (SET_SRC (set)) == COMPARE) |
| { |
| if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG) |
| XEXP (SET_SRC (set), 0) |
| = alter_subreg (&XEXP (SET_SRC (set), 0)); |
| if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG) |
| XEXP (SET_SRC (set), 1) |
| = alter_subreg (&XEXP (SET_SRC (set), 1)); |
| } |
| if ((cc_status.value1 != 0 |
| && rtx_equal_p (SET_SRC (set), cc_status.value1)) |
| || (cc_status.value2 != 0 |
| && rtx_equal_p (SET_SRC (set), cc_status.value2))) |
| { |
| /* Don't delete insn if it has an addressing side-effect. */ |
| if (! FIND_REG_INC_NOTE (insn, NULL_RTX) |
| /* or if anything in it is volatile. */ |
| && ! volatile_refs_p (PATTERN (insn))) |
| { |
| /* We don't really delete the insn; just ignore it. */ |
| last_ignored_compare = insn; |
| break; |
| } |
| } |
| } |
| } |
| #endif |
| |
| #ifndef STACK_REGS |
| /* Don't bother outputting obvious no-ops, even without -O. |
| This optimization is fast and doesn't interfere with debugging. |
| Don't do this if the insn is in a delay slot, since this |
| will cause an improper number of delay insns to be written. */ |
| if (final_sequence == 0 |
| && prescan >= 0 |
| && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET |
| && REG_P (SET_SRC (body)) |
| && REG_P (SET_DEST (body)) |
| && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body))) |
| break; |
| #endif |
| |
| #ifdef HAVE_cc0 |
| /* If this is a conditional branch, maybe modify it |
| if the cc's are in a nonstandard state |
| so that it accomplishes the same thing that it would |
| do straightforwardly if the cc's were set up normally. */ |
| |
| if (cc_status.flags != 0 |
| && JUMP_P (insn) |
| && GET_CODE (body) == SET |
| && SET_DEST (body) == pc_rtx |
| && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE |
| && COMPARISON_P (XEXP (SET_SRC (body), 0)) |
| && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx |
| /* This is done during prescan; it is not done again |
| in final scan when prescan has been done. */ |
| && prescan >= 0) |
| { |
| /* This function may alter the contents of its argument |
| and clear some of the cc_status.flags bits. |
| It may also return 1 meaning condition now always true |
| or -1 meaning condition now always false |
| or 2 meaning condition nontrivial but altered. */ |
| int result = alter_cond (XEXP (SET_SRC (body), 0)); |
| /* If condition now has fixed value, replace the IF_THEN_ELSE |
| with its then-operand or its else-operand. */ |
| if (result == 1) |
| SET_SRC (body) = XEXP (SET_SRC (body), 1); |
| if (result == -1) |
| SET_SRC (body) = XEXP (SET_SRC (body), 2); |
| |
| /* The jump is now either unconditional or a no-op. |
| If it has become a no-op, don't try to output it. |
| (It would not be recognized.) */ |
| if (SET_SRC (body) == pc_rtx) |
| { |
| delete_insn (insn); |
| break; |
| } |
| else if (GET_CODE (SET_SRC (body)) == RETURN) |
| /* Replace (set (pc) (return)) with (return). */ |
| PATTERN (insn) = body = SET_SRC (body); |
| |
| /* Rerecognize the instruction if it has changed. */ |
| if (result != 0) |
| INSN_CODE (insn) = -1; |
| } |
| |
| /* Make same adjustments to instructions that examine the |
| condition codes without jumping and instructions that |
| handle conditional moves (if this machine has either one). */ |
| |
| if (cc_status.flags != 0 |
| && set != 0) |
| { |
| rtx cond_rtx, then_rtx, else_rtx; |
| |
| if (!JUMP_P (insn) |
| && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE) |
| { |
| cond_rtx = XEXP (SET_SRC (set), 0); |
| then_rtx = XEXP (SET_SRC (set), 1); |
| else_rtx = XEXP (SET_SRC (set), 2); |
| } |
| else |
| { |
| cond_rtx = SET_SRC (set); |
| then_rtx = const_true_rtx; |
| else_rtx = const0_rtx; |
| } |
| |
| switch (GET_CODE (cond_rtx)) |
| { |
| case GTU: |
| case GT: |
| case LTU: |
| case LT: |
| case GEU: |
| case GE: |
| case LEU: |
| case LE: |
| case EQ: |
| case NE: |
| { |
| int result; |
| if (XEXP (cond_rtx, 0) != cc0_rtx) |
| break; |
| result = alter_cond (cond_rtx); |
| if (result == 1) |
| validate_change (insn, &SET_SRC (set), then_rtx, 0); |
| else if (result == -1) |
| validate_change (insn, &SET_SRC (set), else_rtx, 0); |
| else if (result == 2) |
| INSN_CODE (insn) = -1; |
| if (SET_DEST (set) == SET_SRC (set)) |
| delete_insn (insn); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| #endif |
| |
| #ifdef HAVE_peephole |
| /* Do machine-specific peephole optimizations if desired. */ |
| |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| if (optimizing && !flag_no_peephole && !nopeepholes) |
| { |
| rtx next = peephole (insn); |
| /* When peepholing, if there were notes within the peephole, |
| emit them before the peephole. */ |
| if (next != 0 && next != NEXT_INSN (insn)) |
| { |
| rtx note, prev = PREV_INSN (insn); |
| |
| for (note = NEXT_INSN (insn); note != next; |
| note = NEXT_INSN (note)) |
| /* APPLE LOCAL optimization pragmas 3124235/3420242 */ |
| final_scan_insn (note, file, optimizing, prescan, nopeepholes, seen); |
| |
| /* In case this is prescan, put the notes |
| in proper position for later rescan. */ |
| note = NEXT_INSN (insn); |
| PREV_INSN (note) = prev; |
| NEXT_INSN (prev) = note; |
| NEXT_INSN (PREV_INSN (next)) = insn; |
| PREV_INSN (insn) = PREV_INSN (next); |
| NEXT_INSN (insn) = next; |
| PREV_INSN (next) = insn; |
| } |
| |
| /* PEEPHOLE might have changed this. */ |
| body = PATTERN (insn); |
| } |
| #endif |
| |
| /* Try to recognize the instruction. |
| If successful, verify that the operands satisfy the |
| constraints for the instruction. Crash if they don't, |
| since `reload' should have changed them so that they do. */ |
| |
| insn_code_number = recog_memoized (insn); |
| cleanup_subreg_operands (insn); |
| |
| /* Dump the insn in the assembly for debugging. */ |
| if (flag_dump_rtl_in_asm) |
| { |
| print_rtx_head = ASM_COMMENT_START; |
| print_rtl_single (asm_out_file, insn); |
| print_rtx_head = ""; |
| } |
| |
| if (! constrain_operands_cached (1)) |
| fatal_insn_not_found (insn); |
| |
| /* Some target machines need to prescan each insn before |
| it is output. */ |
| |
| #ifdef FINAL_PRESCAN_INSN |
| FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands); |
| #endif |
| |
| #ifdef HAVE_conditional_execution |
| if (GET_CODE (PATTERN (insn)) == COND_EXEC) |
| current_insn_predicate = COND_EXEC_TEST (PATTERN (insn)); |
| else |
| current_insn_predicate = NULL_RTX; |
| #endif |
| |
| #ifdef HAVE_cc0 |
| cc_prev_status = cc_status; |
| |
| /* Update `cc_status' for this instruction. |
| The instruction's output routine may change it further. |
| If the output routine for a jump insn needs to depend |
| on the cc status, it should look at cc_prev_status. */ |
| |
| NOTICE_UPDATE_CC (body, insn); |
| #endif |
| |
| current_output_insn = debug_insn = insn; |
| |
| #if defined (DWARF2_UNWIND_INFO) |
| if (CALL_P (insn) && dwarf2out_do_frame ()) |
| dwarf2out_frame_debug (insn, false); |
| #endif |
| |
| /* Find the proper template for this insn. */ |
| template = get_insn_template (insn_code_number, insn); |
| |
| /* If the C code returns 0, it means that it is a jump insn |
| which follows a deleted test insn, and that test insn |
| needs to be reinserted. */ |
| if (template == 0) |
| { |
| rtx prev; |
| |
| gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare); |
| |
| /* We have already processed the notes between the setter and |
| the user. Make sure we don't process them again, this is |
| particularly important if one of the notes is a block |
| scope note or an EH note. */ |
| for (prev = insn; |
| prev != last_ignored_compare; |
| prev = PREV_INSN (prev)) |
| { |
| if (NOTE_P (prev)) |
| delete_insn (prev); /* Use delete_note. */ |
| } |
| |
| return prev; |
| } |
| |
| /* If the template is the string "#", it means that this insn must |
| be split. */ |
| if (template[0] == '#' && template[1] == '\0') |
| { |
| rtx new = try_split (body, insn, 0); |
| |
| /* If we didn't split the insn, go away. */ |
| if (new == insn && PATTERN (new) == body) |
| fatal_insn ("could not split insn", insn); |
| |
| #ifdef HAVE_ATTR_length |
| /* This instruction should have been split in shorten_branches, |
| to ensure that we would have valid length info for the |
| splitees. */ |
| gcc_unreachable (); |
| #endif |
| |
| return new; |
| } |
| |
| if (prescan > 0) |
| break; |
| |
| #ifdef TARGET_UNWIND_INFO |
| /* ??? This will put the directives in the wrong place if |
| get_insn_template outputs assembly directly. However calling it |
| before get_insn_template breaks if the insns is split. */ |
| targetm.asm_out.unwind_emit (asm_out_file, insn); |
| #endif |
| |
| /* Output assembler code from the template. */ |
| output_asm_insn (template, recog_data.operand); |
| |
| /* If necessary, report the effect that the instruction has on |
| the unwind info. We've already done this for delay slots |
| and call instructions. */ |
| #if defined (DWARF2_UNWIND_INFO) |
| if (final_sequence == 0 |
| #if !defined (HAVE_prologue) |
| && !ACCUMULATE_OUTGOING_ARGS |
| #endif |
| && dwarf2out_do_frame ()) |
| dwarf2out_frame_debug (insn, true); |
| #endif |
| |
| current_output_insn = debug_insn = 0; |
| } |
| } |
| return NEXT_INSN (insn); |
| } |
| |
| /* Output debugging info to the assembler file FILE |
| based on the NOTE-insn INSN, assumed to be a line number. */ |
| |
| static bool |
| notice_source_line (rtx insn) |
| { |
| const char *filename = insn_file (insn); |
| int linenum = insn_line (insn); |
| |
| if (filename && (filename != last_filename || last_linenum != linenum)) |
| { |
| last_filename = filename; |
| last_linenum = linenum; |
| high_block_linenum = MAX (last_linenum, high_block_linenum); |
| high_function_linenum = MAX (last_linenum, high_function_linenum); |
| return true; |
| } |
| return false; |
| } |
| |
| /* For each operand in INSN, simplify (subreg (reg)) so that it refers |
| directly to the desired hard register. */ |
| |
| void |
| cleanup_subreg_operands (rtx insn) |
| { |
| int i; |
| extract_insn_cached (insn); |
| for (i = 0; i < recog_data.n_operands; i++) |
| { |
| /* The following test cannot use recog_data.operand when testing |
| for a SUBREG: the underlying object might have been changed |
| already if we are inside a match_operator expression that |
| matches the else clause. Instead we test the underlying |
| expression directly. */ |
| if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG) |
| recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]); |
| else if (GET_CODE (recog_data.operand[i]) == PLUS |
| || GET_CODE (recog_data.operand[i]) == MULT |
| || MEM_P (recog_data.operand[i])) |
| recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]); |
| } |
| |
| for (i = 0; i < recog_data.n_dups; i++) |
| { |
| if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG) |
| *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]); |
| else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS |
| || GET_CODE (*recog_data.dup_loc[i]) == MULT |
| || MEM_P (*recog_data.dup_loc[i])) |
| *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]); |
| } |
| } |
| |
| /* If X is a SUBREG, replace it with a REG or a MEM, |
| based on the thing it is a subreg of. */ |
| |
| rtx |
| alter_subreg (rtx *xp) |
| { |
| rtx x = *xp; |
| rtx y = SUBREG_REG (x); |
| |
| /* simplify_subreg does not remove subreg from volatile references. |
| We are required to. */ |
| if (MEM_P (y)) |
| { |
| int offset = SUBREG_BYTE (x); |
| |
| /* For paradoxical subregs on big-endian machines, SUBREG_BYTE |
| contains 0 instead of the proper offset. See simplify_subreg. */ |
| if (offset == 0 |
| && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x))) |
| { |
| int difference = GET_MODE_SIZE (GET_MODE (y)) |
| - GET_MODE_SIZE (GET_MODE (x)); |
| if (WORDS_BIG_ENDIAN) |
| offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD; |
| if (BYTES_BIG_ENDIAN) |
| offset += difference % UNITS_PER_WORD; |
| } |
| |
| *xp = adjust_address (y, GET_MODE (x), offset); |
| } |
| else |
| { |
| rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y), |
| SUBREG_BYTE (x)); |
| |
| if (new != 0) |
| *xp = new; |
| else if (REG_P (y)) |
| { |
| /* Simplify_subreg can't handle some REG cases, but we have to. */ |
| unsigned int regno = subreg_regno (x); |
| *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x)); |
| } |
| } |
| |
| return *xp; |
| } |
| |
| /* Do alter_subreg on all the SUBREGs contained in X. */ |
| |
| static rtx |
| walk_alter_subreg (rtx *xp) |
| { |
| rtx x = *xp; |
| switch (GET_CODE (x)) |
| { |
| case PLUS: |
| case MULT: |
| case AND: |
| XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0)); |
| XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1)); |
| break; |
| |
| case MEM: |
| case ZERO_EXTEND: |
| XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0)); |
| break; |
| |
| case SUBREG: |
| return alter_subreg (xp); |
| |
| default: |
| break; |
| } |
| |
| return *xp; |
| } |
| |
| #ifdef HAVE_cc0 |
| |
| /* Given BODY, the body of a jump instruction, alter the jump condition |
| as required by the bits that are set in cc_status.flags. |
| Not all of the bits there can be handled at this level in all cases. |
| |
| The value is normally 0. |
| 1 means that the condition has become always true. |
| -1 means that the condition has become always false. |
| 2 means that COND has been altered. */ |
| |
| static int |
| alter_cond (rtx cond) |
| { |
| int value = 0; |
| |
| if (cc_status.flags & CC_REVERSED) |
| { |
| value = 2; |
| PUT_CODE (cond, swap_condition (GET_CODE (cond))); |
| } |
| |
| if (cc_status.flags & CC_INVERTED) |
| { |
| value = 2; |
| PUT_CODE (cond, reverse_condition (GET_CODE (cond))); |
| } |
| |
| if (cc_status.flags & CC_NOT_POSITIVE) |
| switch (GET_CODE (cond)) |
| { |
| case LE: |
| case LEU: |
| case GEU: |
| /* Jump becomes unconditional. */ |
| return 1; |
| |
| case GT: |
| case GTU: |
| case LTU: |
| /* Jump becomes no-op. */ |
| return -1; |
| |
| case GE: |
| PUT_CODE (cond, EQ); |
| value = 2; |
| break; |
| |
| case LT: |
| PUT_CODE (cond, NE); |
| value = 2; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (cc_status.flags & CC_NOT_NEGATIVE) |
| switch (GET_CODE (cond)) |
| { |
| case GE: |
| case GEU: |
| /* Jump becomes unconditional. */ |
| return 1; |
| |
| case LT: |
| case LTU: |
| /* Jump becomes no-op. */ |
| return -1; |
| |
| case LE: |
| case LEU: |
| PUT_CODE (cond, EQ); |
| value = 2; |
| break; |
| |
| case GT: |
| case GTU: |
| PUT_CODE (cond, NE); |
| value = 2; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (cc_status.flags & CC_NO_OVERFLOW) |
| switch (GET_CODE (cond)) |
| { |
| case GEU: |
| /* Jump becomes unconditional. */ |
| return 1; |
| |
| case LEU: |
| PUT_CODE (cond, EQ); |
| value = 2; |
| break; |
| |
| case GTU: |
| PUT_CODE (cond, NE); |
| value = 2; |
| break; |
| |
| case LTU: |
| /* Jump becomes no-op. */ |
| return -1; |
| |
| default: |
| break; |
| } |
| |
| if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N)) |
| switch (GET_CODE (cond)) |
| { |
| default: |
| gcc_unreachable (); |
| |
| case NE: |
| PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT); |
| value = 2; |
| break; |
| |
| case EQ: |
| PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE); |
| value = 2; |
| break; |
| } |
| |
| if (cc_status.flags & CC_NOT_SIGNED) |
| /* The flags are valid if signed condition operators are converted |
| to unsigned. */ |
| switch (GET_CODE (cond)) |
| { |
| case LE: |
| PUT_CODE (cond, LEU); |
| value = 2; |
| break; |
| |
| case LT: |
| PUT_CODE (cond, LTU); |
| value = 2; |
| break; |
| |
| case GT: |
| PUT_CODE (cond, GTU); |
| value = 2; |
| break; |
| |
| case GE: |
| PUT_CODE (cond, GEU); |
| value = 2; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return value; |
| } |
| #endif |
| |
| /* Report inconsistency between the assembler template and the operands. |
| In an `asm', it's the user's fault; otherwise, the compiler's fault. */ |
| |
| void |
| output_operand_lossage (const char *cmsgid, ...) |
| { |
| char *fmt_string; |
| char *new_message; |
| const char *pfx_str; |
| va_list ap; |
| |
| va_start (ap, cmsgid); |
| |
| pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: "; |
| asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid)); |
| vasprintf (&new_message, fmt_string, ap); |
| |
| if (this_is_asm_operands) |
| error_for_asm (this_is_asm_operands, "%s", new_message); |
| else |
| internal_error ("%s", new_message); |
| |
| free (fmt_string); |
| free (new_message); |
| va_end (ap); |
| } |
| |
| /* Output of assembler code from a template, and its subroutines. */ |
| |
| /* Annotate the assembly with a comment describing the pattern and |
| alternative used. */ |
| |
| static void |
| output_asm_name (void) |
| { |
| if (debug_insn) |
| { |
| int num = INSN_CODE (debug_insn); |
| fprintf (asm_out_file, "\t%s %d\t%s", |
| ASM_COMMENT_START, INSN_UID (debug_insn), |
| insn_data[num].name); |
| if (insn_data[num].n_alternatives > 1) |
| fprintf (asm_out_file, "/%d", which_alternative + 1); |
| #ifdef HAVE_ATTR_length |
| fprintf (asm_out_file, "\t[length = %d]", |
| get_attr_length (debug_insn)); |
| #endif |
| /* Clear this so only the first assembler insn |
| of any rtl insn will get the special comment for -dp. */ |
| debug_insn = 0; |
| } |
| } |
| |
| /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it |
| or its address, return that expr . Set *PADDRESSP to 1 if the expr |
| corresponds to the address of the object and 0 if to the object. */ |
| |
| static tree |
| get_mem_expr_from_op (rtx op, int *paddressp) |
| { |
| tree expr; |
| int inner_addressp; |
| |
| *paddressp = 0; |
| |
| if (REG_P (op)) |
| return REG_EXPR (op); |
| else if (!MEM_P (op)) |
| return 0; |
| |
| if (MEM_EXPR (op) != 0) |
| return MEM_EXPR (op); |
| |
| /* Otherwise we have an address, so indicate it and look at the address. */ |
| *paddressp = 1; |
| op = XEXP (op, 0); |
| |
| /* First check if we have a decl for the address, then look at the right side |
| if it is a PLUS. Otherwise, strip off arithmetic and keep looking. |
| But don't allow the address to itself be indirect. */ |
| if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp) |
| return expr; |
| else if (GET_CODE (op) == PLUS |
| && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp))) |
| return expr; |
| |
| while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY |
| || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH) |
| op = XEXP (op, 0); |
| |
| expr = get_mem_expr_from_op (op, &inner_addressp); |
| return inner_addressp ? 0 : expr; |
| } |
| |
| /* Output operand names for assembler instructions. OPERANDS is the |
| operand vector, OPORDER is the order to write the operands, and NOPS |
| is the number of operands to write. */ |
| |
| static void |
| output_asm_operand_names (rtx *operands, int *oporder, int nops) |
| { |
| int wrote = 0; |
| int i; |
| |
| for (i = 0; i < nops; i++) |
| { |
| int addressp; |
| rtx op = operands[oporder[i]]; |
| tree expr = get_mem_expr_from_op (op, &addressp); |
| |
| fprintf (asm_out_file, "%c%s", |
| wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START); |
| wrote = 1; |
| if (expr) |
| { |
| fprintf (asm_out_file, "%s", |
| addressp ? "*" : ""); |
| print_mem_expr (asm_out_file, expr); |
| wrote = 1; |
| } |
| else if (REG_P (op) && ORIGINAL_REGNO (op) |
| && ORIGINAL_REGNO (op) != REGNO (op)) |
| fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op)); |
| } |
| } |
| |
| /* Output text from TEMPLATE to the assembler output file, |
| obeying %-directions to substitute operands taken from |
| the vector OPERANDS. |
| |
| %N (for N a digit) means print operand N in usual manner. |
| %lN means require operand N to be a CODE_LABEL or LABEL_REF |
| and print the label name with no punctuation. |
| %cN means require operand N to be a constant |
| and print the constant expression with no punctuation. |
| %aN means expect operand N to be a memory address |
| (not a memory reference!) and print a reference |
| to that address. |
| %nN means expect operand N to be a constant |
| and print a constant expression for minus the value |
| of the operand, with no other punctuation. */ |
| |
| void |
| output_asm_insn (const char *template, rtx *operands) |
| { |
| const char *p; |
| int c; |
| #ifdef ASSEMBLER_DIALECT |
| int dialect = 0; |
| #endif |
| int oporder[MAX_RECOG_OPERANDS]; |
| char opoutput[MAX_RECOG_OPERANDS]; |
| int ops = 0; |
| |
| /* An insn may return a null string template |
| in a case where no assembler code is needed. */ |
| if (*template == 0) |
| return; |
| |
| memset (opoutput, 0, sizeof opoutput); |
| p = template; |
| putc ('\t', asm_out_file); |
| |
| #ifdef ASM_OUTPUT_OPCODE |
| ASM_OUTPUT_OPCODE (asm_out_file, p); |
| #endif |
| |
| while ((c = *p++)) |
| switch (c) |
| { |
| case '\n': |
| if (flag_verbose_asm) |
| output_asm_operand_names (operands, oporder, ops); |
| if (flag_print_asm_name) |
| output_asm_name (); |
| |
| ops = 0; |
| memset (opoutput, 0, sizeof opoutput); |
| |
| putc (c, asm_out_file); |
| #ifdef ASM_OUTPUT_OPCODE |
| while ((c = *p) == '\t') |
| { |
| putc (c, asm_out_file); |
| p++; |
| } |
| ASM_OUTPUT_OPCODE (asm_out_file, p); |
| #endif |
| break; |
| |
| #ifdef ASSEMBLER_DIALECT |
| case '{': |
| { |
| int i; |
| |
| if (dialect) |
| output_operand_lossage ("nested assembly dialect alternatives"); |
| else |
| dialect = 1; |
| |
| /* If we want the first dialect, do nothing. Otherwise, skip |
| DIALECT_NUMBER of strings ending with '|'. */ |
| for (i = 0; i < dialect_number; i++) |
| { |
| while (*p && *p != '}' && *p++ != '|') |
| ; |
| if (*p == '}') |
| break; |
| if (*p == '|') |
| p++; |
| } |
| |
| if (*p == '\0') |
| output_operand_lossage ("unterminated assembly dialect alternative"); |
| } |
| break; |
| |
| case '|': |
| if (dialect) |
| { |
| /* Skip to close brace. */ |
| do |
| { |
| if (*p == '\0') |
| { |
| output_operand_lossage ("unterminated assembly dialect alternative"); |
| break; |
| } |
| } |
| while (*p++ != '}'); |
| dialect = 0; |
| } |
| else |
| putc (c, asm_out_file); |
| break; |
| |
| case '}': |
| if (! dialect) |
| putc (c, asm_out_file); |
| dialect = 0; |
| break; |
| #endif |
| |
| case '%': |
| /* %% outputs a single %. */ |
| if (*p == '%') |
| { |
| p++; |
| putc (c, asm_out_file); |
| } |
| /* %= outputs a number which is unique to each insn in the entire |
| compilation. This is useful for making local labels that are |
| referred to more than once in a given insn. */ |
| else if (*p == '=') |
| { |
| p++; |
| fprintf (asm_out_file, "%d", insn_counter); |
| } |
| /* % followed by a letter and some digits |
| outputs an operand in a special way depending on the letter. |
| Letters `acln' are implemented directly. |
| Other letters are passed to `output_operand' so that |
| the PRINT_OPERAND macro can define them. */ |
| else if (ISALPHA (*p)) |
| { |
| int letter = *p++; |
| unsigned long opnum; |
| char *endptr; |
| |
| opnum = strtoul (p, &endptr, 10); |
| |
| if (endptr == p) |
| output_operand_lossage ("operand number missing " |
| "after %%-letter"); |
| else if (this_is_asm_operands && opnum >= insn_noperands) |
| output_operand_lossage ("operand number out of range"); |
| else if (letter == 'l') |
| output_asm_label (operands[opnum]); |
| else if (letter == 'a') |
| output_address (operands[opnum]); |
| else if (letter == 'c') |
| { |
| if (CONSTANT_ADDRESS_P (operands[opnum])) |
| output_addr_const (asm_out_file, operands[opnum]); |
| else |
| output_operand (operands[opnum], 'c'); |
| } |
| else if (letter == 'n') |
| { |
| if (GET_CODE (operands[opnum]) == CONST_INT) |
| fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, |
| - INTVAL (operands[opnum])); |
| else |
| { |
| putc ('-', asm_out_file); |
| output_addr_const (asm_out_file, operands[opnum]); |
| } |
| } |
| else |
| output_operand (operands[opnum], letter); |
| |
| if (!opoutput[opnum]) |
| oporder[ops++] = opnum; |
| opoutput[opnum] = 1; |
| |
| p = endptr; |
| c = *p; |
| } |
| /* % followed by a digit outputs an operand the default way. */ |
| else if (ISDIGIT (*p)) |
| { |
| unsigned long opnum; |
| char *endptr; |
| |
| opnum = strtoul (p, &endptr, 10); |
| if (this_is_asm_operands && opnum >= insn_noperands) |
| output_operand_lossage ("operand number out of range"); |
| else |
| output_operand (operands[opnum], 0); |
| |
| if (!opoutput[opnum]) |
| oporder[ops++] = opnum; |
| opoutput[opnum] = 1; |
| |
| p = endptr; |
| c = *p; |
| } |
| /* % followed by punctuation: output something for that |
| punctuation character alone, with no operand. |
| The PRINT_OPERAND macro decides what is actually done. */ |
| #ifdef PRINT_OPERAND_PUNCT_VALID_P |
| else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p)) |
| output_operand (NULL_RTX, *p++); |
| #endif |
| else |
| output_operand_lossage ("invalid %%-code"); |
| break; |
| |
| default: |
| putc (c, asm_out_file); |
| } |
| |
| /* Write out the variable names for operands, if we know them. */ |
| if (flag_verbose_asm) |
| output_asm_operand_names (operands, oporder, ops); |
| if (flag_print_asm_name) |
| output_asm_name (); |
| |
| putc ('\n', asm_out_file); |
| } |
| |
| /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */ |
| |
| void |
| output_asm_label (rtx x) |
| { |
| char buf[256]; |
| |
| if (GET_CODE (x) == LABEL_REF) |
| x = XEXP (x, 0); |
| if (LABEL_P (x) |
| || (NOTE_P (x) |
| && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL)) |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); |
| else |
| output_operand_lossage ("'%%l' operand isn't a label"); |
| |
| assemble_name (asm_out_file, buf); |
| } |
| |
| /* Print operand X using machine-dependent assembler syntax. |
| The macro PRINT_OPERAND is defined just to control this function. |
| CODE is a non-digit that preceded the operand-number in the % spec, |
| such as 'z' if the spec was `%z3'. CODE is 0 if there was no char |
| between the % and the digits. |
| When CODE is a non-letter, X is 0. |
| |
| The meanings of the letters are machine-dependent and controlled |
| by PRINT_OPERAND. */ |
| |
| static void |
| output_operand (rtx x, int code ATTRIBUTE_UNUSED) |
| { |
| if (x && GET_CODE (x) == SUBREG) |
| x = alter_subreg (&x); |
| |
| /* If X is a pseudo-register, abort now rather than writing trash to the |
| assembler file. */ |
| gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER); |
| |
| PRINT_OPERAND (asm_out_file, x, code); |
| } |
| |
| /* Print a memory reference operand for address X |
| using machine-dependent assembler syntax. |
| The macro PRINT_OPERAND_ADDRESS exists just to control this function. */ |
| |
| void |
| output_address (rtx x) |
| { |
| walk_alter_subreg (&x); |
| PRINT_OPERAND_ADDRESS (asm_out_file, x); |
| } |
| |
| /* Print an integer constant expression in assembler syntax. |
| Addition and subtraction are the only arithmetic |
| that may appear in these expressions. */ |
| |
| void |
| output_addr_const (FILE *file, rtx x) |
| { |
| char buf[256]; |
| |
| restart: |
| switch (GET_CODE (x)) |
| { |
| case PC: |
| putc ('.', file); |
| break; |
| |
| case SYMBOL_REF: |
| if (SYMBOL_REF_DECL (x)) |
| mark_decl_referenced (SYMBOL_REF_DECL (x)); |
| #ifdef ASM_OUTPUT_SYMBOL_REF |
| ASM_OUTPUT_SYMBOL_REF (file, x); |
| #else |
| assemble_name (file, XSTR (x, 0)); |
| #endif |
| break; |
| |
| case LABEL_REF: |
| x = XEXP (x, 0); |
| /* Fall through. */ |
| case CODE_LABEL: |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); |
| #ifdef ASM_OUTPUT_LABEL_REF |
| ASM_OUTPUT_LABEL_REF (file, buf); |
| #else |
| assemble_name (file, buf); |
| #endif |
| break; |
| |
| case CONST_INT: |
| fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); |
| break; |
| |
| case CONST: |
| /* This used to output parentheses around the expression, |
| but that does not work on the 386 (either ATT or BSD assembler). */ |
| output_addr_const (file, XEXP (x, 0)); |
| break; |
| |
| case CONST_DOUBLE: |
| if (GET_MODE (x) == VOIDmode) |
| { |
| /* We can use %d if the number is one word and positive. */ |
| if (CONST_DOUBLE_HIGH (x)) |
| fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX, |
| CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x)); |
| else if (CONST_DOUBLE_LOW (x) < 0) |
| fprintf (file, HOST_WIDE_INT_PRINT_H
|