| /* Control flow graph manipulation code for GNU compiler. |
| Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003, 2004, 2005 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| /* This file contains low level functions to manipulate the CFG and |
| analyze it. All other modules should not transform the data structure |
| directly and use abstraction instead. The file is supposed to be |
| ordered bottom-up and should not contain any code dependent on a |
| particular intermediate language (RTL or trees). |
| |
| Available functionality: |
| - Initialization/deallocation |
| init_flow, clear_edges |
| - Low level basic block manipulation |
| alloc_block, expunge_block |
| - Edge manipulation |
| make_edge, make_single_succ_edge, cached_make_edge, remove_edge |
| - Low level edge redirection (without updating instruction chain) |
| redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred |
| - Dumping and debugging |
| dump_flow_info, debug_flow_info, dump_edge_info |
| - Allocation of AUX fields for basic blocks |
| alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block |
| - clear_bb_flags |
| - Consistency checking |
| verify_flow_info |
| - Dumping and debugging |
| print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "hard-reg-set.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "function.h" |
| #include "except.h" |
| #include "toplev.h" |
| #include "tm_p.h" |
| #include "alloc-pool.h" |
| #include "timevar.h" |
| #include "ggc.h" |
| |
| /* The obstack on which the flow graph components are allocated. */ |
| |
| struct bitmap_obstack reg_obstack; |
| |
| /* Number of basic blocks in the current function. */ |
| |
| int n_basic_blocks; |
| |
| /* First free basic block number. */ |
| |
| int last_basic_block; |
| |
| /* Number of edges in the current function. */ |
| |
| int n_edges; |
| |
| /* The basic block array. */ |
| |
| varray_type basic_block_info; |
| |
| /* The special entry and exit blocks. */ |
| basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR; |
| |
| /* Memory alloc pool for bb member rbi. */ |
| alloc_pool rbi_pool; |
| |
| void debug_flow_info (void); |
| static void free_edge (edge); |
| |
| /* Indicate the presence of the profile. */ |
| enum profile_status profile_status; |
| |
| /* Called once at initialization time. */ |
| |
| void |
| init_flow (void) |
| { |
| n_edges = 0; |
| |
| ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR)); |
| ENTRY_BLOCK_PTR->index = ENTRY_BLOCK; |
| EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR)); |
| EXIT_BLOCK_PTR->index = EXIT_BLOCK; |
| ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR; |
| EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR; |
| } |
| |
| /* Helper function for remove_edge and clear_edges. Frees edge structure |
| without actually unlinking it from the pred/succ lists. */ |
| |
| static void |
| free_edge (edge e ATTRIBUTE_UNUSED) |
| { |
| n_edges--; |
| ggc_free (e); |
| } |
| |
| /* Free the memory associated with the edge structures. */ |
| |
| void |
| clear_edges (void) |
| { |
| basic_block bb; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_BB (bb) |
| { |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| free_edge (e); |
| VEC_truncate (edge, bb->succs, 0); |
| VEC_truncate (edge, bb->preds, 0); |
| } |
| |
| FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) |
| free_edge (e); |
| VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0); |
| VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0); |
| |
| gcc_assert (!n_edges); |
| } |
| |
| /* Allocate memory for basic_block. */ |
| |
| basic_block |
| alloc_block (void) |
| { |
| basic_block bb; |
| bb = ggc_alloc_cleared (sizeof (*bb)); |
| return bb; |
| } |
| |
| /* Create memory pool for rbi_pool. */ |
| |
| void |
| alloc_rbi_pool (void) |
| { |
| rbi_pool = create_alloc_pool ("rbi pool", |
| sizeof (struct reorder_block_def), |
| n_basic_blocks + 2); |
| } |
| |
| /* Free rbi_pool. */ |
| |
| void |
| free_rbi_pool (void) |
| { |
| free_alloc_pool (rbi_pool); |
| } |
| |
| /* Initialize rbi (the structure containing data used by basic block |
| duplication and reordering) for the given basic block. */ |
| |
| void |
| initialize_bb_rbi (basic_block bb) |
| { |
| gcc_assert (!bb->rbi); |
| bb->rbi = pool_alloc (rbi_pool); |
| memset (bb->rbi, 0, sizeof (struct reorder_block_def)); |
| } |
| |
| /* Link block B to chain after AFTER. */ |
| void |
| link_block (basic_block b, basic_block after) |
| { |
| b->next_bb = after->next_bb; |
| b->prev_bb = after; |
| after->next_bb = b; |
| b->next_bb->prev_bb = b; |
| } |
| |
| /* Unlink block B from chain. */ |
| void |
| unlink_block (basic_block b) |
| { |
| b->next_bb->prev_bb = b->prev_bb; |
| b->prev_bb->next_bb = b->next_bb; |
| b->prev_bb = NULL; |
| b->next_bb = NULL; |
| } |
| |
| /* Sequentially order blocks and compact the arrays. */ |
| void |
| compact_blocks (void) |
| { |
| int i; |
| basic_block bb; |
| |
| i = 0; |
| FOR_EACH_BB (bb) |
| { |
| BASIC_BLOCK (i) = bb; |
| bb->index = i; |
| i++; |
| } |
| |
| gcc_assert (i == n_basic_blocks); |
| |
| for (; i < last_basic_block; i++) |
| BASIC_BLOCK (i) = NULL; |
| |
| last_basic_block = n_basic_blocks; |
| } |
| |
| /* Remove block B from the basic block array. */ |
| |
| void |
| expunge_block (basic_block b) |
| { |
| unlink_block (b); |
| BASIC_BLOCK (b->index) = NULL; |
| n_basic_blocks--; |
| /* We should be able to ggc_free here, but we are not. |
| The dead SSA_NAMES are left pointing to dead statements that are pointing |
| to dead basic blocks making garbage collector to die. |
| We should be able to release all dead SSA_NAMES and at the same time we should |
| clear out BB pointer of dead statements consistently. */ |
| } |
| |
| /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly |
| created edge. Use this only if you are sure that this edge can't |
| possibly already exist. */ |
| |
| edge |
| unchecked_make_edge (basic_block src, basic_block dst, int flags) |
| { |
| edge e; |
| e = ggc_alloc_cleared (sizeof (*e)); |
| n_edges++; |
| |
| VEC_safe_push (edge, src->succs, e); |
| VEC_safe_push (edge, dst->preds, e); |
| |
| e->src = src; |
| e->dest = dst; |
| e->flags = flags; |
| e->dest_idx = EDGE_COUNT (dst->preds) - 1; |
| |
| execute_on_growing_pred (e); |
| |
| return e; |
| } |
| |
| /* Create an edge connecting SRC and DST with FLAGS optionally using |
| edge cache CACHE. Return the new edge, NULL if already exist. */ |
| |
| edge |
| cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags) |
| { |
| if (edge_cache == NULL |
| || src == ENTRY_BLOCK_PTR |
| || dst == EXIT_BLOCK_PTR) |
| return make_edge (src, dst, flags); |
| |
| /* Does the requested edge already exist? */ |
| if (! TEST_BIT (edge_cache[src->index], dst->index)) |
| { |
| /* The edge does not exist. Create one and update the |
| cache. */ |
| SET_BIT (edge_cache[src->index], dst->index); |
| return unchecked_make_edge (src, dst, flags); |
| } |
| |
| /* At this point, we know that the requested edge exists. Adjust |
| flags if necessary. */ |
| if (flags) |
| { |
| edge e = find_edge (src, dst); |
| e->flags |= flags; |
| } |
| |
| return NULL; |
| } |
| |
| /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly |
| created edge or NULL if already exist. */ |
| |
| edge |
| make_edge (basic_block src, basic_block dest, int flags) |
| { |
| edge e = find_edge (src, dest); |
| |
| /* Make sure we don't add duplicate edges. */ |
| if (e) |
| { |
| e->flags |= flags; |
| return NULL; |
| } |
| |
| return unchecked_make_edge (src, dest, flags); |
| } |
| |
| /* Create an edge connecting SRC to DEST and set probability by knowing |
| that it is the single edge leaving SRC. */ |
| |
| edge |
| make_single_succ_edge (basic_block src, basic_block dest, int flags) |
| { |
| edge e = make_edge (src, dest, flags); |
| |
| e->probability = REG_BR_PROB_BASE; |
| e->count = src->count; |
| return e; |
| } |
| |
| /* This function will remove an edge from the flow graph. */ |
| |
| void |
| remove_edge (edge e) |
| { |
| edge tmp; |
| basic_block src, dest; |
| unsigned int dest_idx; |
| bool found = false; |
| edge_iterator ei; |
| |
| execute_on_shrinking_pred (e); |
| |
| src = e->src; |
| dest = e->dest; |
| dest_idx = e->dest_idx; |
| |
| for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); ) |
| { |
| if (tmp == e) |
| { |
| VEC_unordered_remove (edge, src->succs, ei.index); |
| found = true; |
| break; |
| } |
| else |
| ei_next (&ei); |
| } |
| |
| gcc_assert (found); |
| |
| VEC_unordered_remove (edge, dest->preds, dest_idx); |
| |
| /* If we removed an edge in the middle of the edge vector, we need |
| to update dest_idx of the edge that moved into the "hole". */ |
| if (dest_idx < EDGE_COUNT (dest->preds)) |
| EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx; |
| |
| free_edge (e); |
| } |
| |
| /* Redirect an edge's successor from one block to another. */ |
| |
| void |
| redirect_edge_succ (edge e, basic_block new_succ) |
| { |
| basic_block dest = e->dest; |
| unsigned int dest_idx = e->dest_idx; |
| |
| execute_on_shrinking_pred (e); |
| |
| VEC_unordered_remove (edge, dest->preds, dest_idx); |
| |
| /* If we removed an edge in the middle of the edge vector, we need |
| to update dest_idx of the edge that moved into the "hole". */ |
| if (dest_idx < EDGE_COUNT (dest->preds)) |
| EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx; |
| |
| /* Reconnect the edge to the new successor block. */ |
| VEC_safe_push (edge, new_succ->preds, e); |
| e->dest = new_succ; |
| e->dest_idx = EDGE_COUNT (new_succ->preds) - 1; |
| execute_on_growing_pred (e); |
| } |
| |
| /* Like previous but avoid possible duplicate edge. */ |
| |
| edge |
| redirect_edge_succ_nodup (edge e, basic_block new_succ) |
| { |
| edge s; |
| |
| s = find_edge (e->src, new_succ); |
| if (s && s != e) |
| { |
| s->flags |= e->flags; |
| s->probability += e->probability; |
| if (s->probability > REG_BR_PROB_BASE) |
| s->probability = REG_BR_PROB_BASE; |
| s->count += e->count; |
| remove_edge (e); |
| e = s; |
| } |
| else |
| redirect_edge_succ (e, new_succ); |
| |
| return e; |
| } |
| |
| /* Redirect an edge's predecessor from one block to another. */ |
| |
| void |
| redirect_edge_pred (edge e, basic_block new_pred) |
| { |
| edge tmp; |
| edge_iterator ei; |
| bool found = false; |
| |
| /* Disconnect the edge from the old predecessor block. */ |
| for (ei = ei_start (e->src->succs); (tmp = ei_safe_edge (ei)); ) |
| { |
| if (tmp == e) |
| { |
| VEC_unordered_remove (edge, e->src->succs, ei.index); |
| found = true; |
| break; |
| } |
| else |
| ei_next (&ei); |
| } |
| |
| gcc_assert (found); |
| |
| /* Reconnect the edge to the new predecessor block. */ |
| VEC_safe_push (edge, new_pred->succs, e); |
| e->src = new_pred; |
| } |
| |
| /* Clear all basic block flags, with the exception of partitioning. */ |
| void |
| clear_bb_flags (void) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| bb->flags = BB_PARTITION (bb); |
| } |
| |
| /* Check the consistency of profile information. We can't do that |
| in verify_flow_info, as the counts may get invalid for incompletely |
| solved graphs, later eliminating of conditionals or roundoff errors. |
| It is still practical to have them reported for debugging of simple |
| testcases. */ |
| void |
| check_bb_profile (basic_block bb, FILE * file) |
| { |
| edge e; |
| int sum = 0; |
| gcov_type lsum; |
| edge_iterator ei; |
| |
| if (profile_status == PROFILE_ABSENT) |
| return; |
| |
| if (bb != EXIT_BLOCK_PTR) |
| { |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| sum += e->probability; |
| if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100) |
| fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n", |
| sum * 100.0 / REG_BR_PROB_BASE); |
| lsum = 0; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| lsum += e->count; |
| if (EDGE_COUNT (bb->succs) |
| && (lsum - bb->count > 100 || lsum - bb->count < -100)) |
| fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n", |
| (int) lsum, (int) bb->count); |
| } |
| if (bb != ENTRY_BLOCK_PTR) |
| { |
| sum = 0; |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| sum += EDGE_FREQUENCY (e); |
| if (abs (sum - bb->frequency) > 100) |
| fprintf (file, |
| "Invalid sum of incoming frequencies %i, should be %i\n", |
| sum, bb->frequency); |
| lsum = 0; |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| lsum += e->count; |
| if (lsum - bb->count > 100 || lsum - bb->count < -100) |
| fprintf (file, "Invalid sum of incoming counts %i, should be %i\n", |
| (int) lsum, (int) bb->count); |
| } |
| } |
| |
| void |
| dump_flow_info (FILE *file) |
| { |
| int i; |
| basic_block bb; |
| |
| /* There are no pseudo registers after reload. Don't dump them. */ |
| if (reg_n_info && !reload_completed) |
| { |
| int max_regno = max_reg_num (); |
| fprintf (file, "%d registers.\n", max_regno); |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (REG_N_REFS (i)) |
| { |
| enum reg_class class, altclass; |
| |
| fprintf (file, "\nRegister %d used %d times across %d insns", |
| i, REG_N_REFS (i), REG_LIVE_LENGTH (i)); |
| if (REG_BASIC_BLOCK (i) >= 0) |
| fprintf (file, " in block %d", REG_BASIC_BLOCK (i)); |
| if (REG_N_SETS (i)) |
| fprintf (file, "; set %d time%s", REG_N_SETS (i), |
| (REG_N_SETS (i) == 1) ? "" : "s"); |
| if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i])) |
| fprintf (file, "; user var"); |
| if (REG_N_DEATHS (i) != 1) |
| fprintf (file, "; dies in %d places", REG_N_DEATHS (i)); |
| if (REG_N_CALLS_CROSSED (i) == 1) |
| fprintf (file, "; crosses 1 call"); |
| else if (REG_N_CALLS_CROSSED (i)) |
| fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i)); |
| if (regno_reg_rtx[i] != NULL |
| && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD) |
| fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i)); |
| |
| class = reg_preferred_class (i); |
| altclass = reg_alternate_class (i); |
| if (class != GENERAL_REGS || altclass != ALL_REGS) |
| { |
| if (altclass == ALL_REGS || class == ALL_REGS) |
| fprintf (file, "; pref %s", reg_class_names[(int) class]); |
| else if (altclass == NO_REGS) |
| fprintf (file, "; %s or none", reg_class_names[(int) class]); |
| else |
| fprintf (file, "; pref %s, else %s", |
| reg_class_names[(int) class], |
| reg_class_names[(int) altclass]); |
| } |
| |
| if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i])) |
| fprintf (file, "; pointer"); |
| fprintf (file, ".\n"); |
| } |
| } |
| |
| fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges); |
| FOR_EACH_BB (bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| fprintf (file, "\nBasic block %d ", bb->index); |
| fprintf (file, "prev %d, next %d, ", |
| bb->prev_bb->index, bb->next_bb->index); |
| fprintf (file, "loop_depth %d, count ", bb->loop_depth); |
| fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count); |
| fprintf (file, ", freq %i", bb->frequency); |
| if (maybe_hot_bb_p (bb)) |
| fprintf (file, ", maybe hot"); |
| if (probably_never_executed_bb_p (bb)) |
| fprintf (file, ", probably never executed"); |
| fprintf (file, ".\n"); |
| |
| fprintf (file, "Predecessors: "); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| dump_edge_info (file, e, 0); |
| |
| fprintf (file, "\nSuccessors: "); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| dump_edge_info (file, e, 1); |
| |
| if (bb->global_live_at_start) |
| { |
| fprintf (file, "\nRegisters live at start:"); |
| dump_regset (bb->global_live_at_start, file); |
| } |
| |
| if (bb->global_live_at_end) |
| { |
| fprintf (file, "\nRegisters live at end:"); |
| dump_regset (bb->global_live_at_end, file); |
| } |
| |
| putc ('\n', file); |
| check_bb_profile (bb, file); |
| } |
| |
| putc ('\n', file); |
| } |
| |
| void |
| debug_flow_info (void) |
| { |
| dump_flow_info (stderr); |
| } |
| |
| void |
| dump_edge_info (FILE *file, edge e, int do_succ) |
| { |
| basic_block side = (do_succ ? e->dest : e->src); |
| |
| if (side == ENTRY_BLOCK_PTR) |
| fputs (" ENTRY", file); |
| else if (side == EXIT_BLOCK_PTR) |
| fputs (" EXIT", file); |
| else |
| fprintf (file, " %d", side->index); |
| |
| if (e->probability) |
| fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE); |
| |
| if (e->count) |
| { |
| fprintf (file, " count:"); |
| fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count); |
| } |
| |
| if (e->flags) |
| { |
| static const char * const bitnames[] = { |
| "fallthru", "ab", "abcall", "eh", "fake", "dfs_back", |
| "can_fallthru", "irreducible", "sibcall", "loop_exit", |
| "true", "false", "exec" |
| }; |
| int comma = 0; |
| int i, flags = e->flags; |
| |
| fputs (" (", file); |
| for (i = 0; flags; i++) |
| if (flags & (1 << i)) |
| { |
| flags &= ~(1 << i); |
| |
| if (comma) |
| fputc (',', file); |
| if (i < (int) ARRAY_SIZE (bitnames)) |
| fputs (bitnames[i], file); |
| else |
| fprintf (file, "%d", i); |
| comma = 1; |
| } |
| |
| fputc (')', file); |
| } |
| } |
| |
| /* Simple routines to easily allocate AUX fields of basic blocks. */ |
| |
| static struct obstack block_aux_obstack; |
| static void *first_block_aux_obj = 0; |
| static struct obstack edge_aux_obstack; |
| static void *first_edge_aux_obj = 0; |
| |
| /* Allocate a memory block of SIZE as BB->aux. The obstack must |
| be first initialized by alloc_aux_for_blocks. */ |
| |
| inline void |
| alloc_aux_for_block (basic_block bb, int size) |
| { |
| /* Verify that aux field is clear. */ |
| gcc_assert (!bb->aux && first_block_aux_obj); |
| bb->aux = obstack_alloc (&block_aux_obstack, size); |
| memset (bb->aux, 0, size); |
| } |
| |
| /* Initialize the block_aux_obstack and if SIZE is nonzero, call |
| alloc_aux_for_block for each basic block. */ |
| |
| void |
| alloc_aux_for_blocks (int size) |
| { |
| static int initialized; |
| |
| if (!initialized) |
| { |
| gcc_obstack_init (&block_aux_obstack); |
| initialized = 1; |
| } |
| else |
| /* Check whether AUX data are still allocated. */ |
| gcc_assert (!first_block_aux_obj); |
| |
| first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0); |
| if (size) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| alloc_aux_for_block (bb, size); |
| } |
| } |
| |
| /* Clear AUX pointers of all blocks. */ |
| |
| void |
| clear_aux_for_blocks (void) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| bb->aux = NULL; |
| } |
| |
| /* Free data allocated in block_aux_obstack and clear AUX pointers |
| of all blocks. */ |
| |
| void |
| free_aux_for_blocks (void) |
| { |
| gcc_assert (first_block_aux_obj); |
| obstack_free (&block_aux_obstack, first_block_aux_obj); |
| first_block_aux_obj = NULL; |
| |
| clear_aux_for_blocks (); |
| } |
| |
| /* Allocate a memory edge of SIZE as BB->aux. The obstack must |
| be first initialized by alloc_aux_for_edges. */ |
| |
| inline void |
| alloc_aux_for_edge (edge e, int size) |
| { |
| /* Verify that aux field is clear. */ |
| gcc_assert (!e->aux && first_edge_aux_obj); |
| e->aux = obstack_alloc (&edge_aux_obstack, size); |
| memset (e->aux, 0, size); |
| } |
| |
| /* Initialize the edge_aux_obstack and if SIZE is nonzero, call |
| alloc_aux_for_edge for each basic edge. */ |
| |
| void |
| alloc_aux_for_edges (int size) |
| { |
| static int initialized; |
| |
| if (!initialized) |
| { |
| gcc_obstack_init (&edge_aux_obstack); |
| initialized = 1; |
| } |
| else |
| /* Check whether AUX data are still allocated. */ |
| gcc_assert (!first_edge_aux_obj); |
| |
| first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0); |
| if (size) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| alloc_aux_for_edge (e, size); |
| } |
| } |
| } |
| |
| /* Clear AUX pointers of all edges. */ |
| |
| void |
| clear_aux_for_edges (void) |
| { |
| basic_block bb; |
| edge e; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) |
| { |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| e->aux = NULL; |
| } |
| } |
| |
| /* Free data allocated in edge_aux_obstack and clear AUX pointers |
| of all edges. */ |
| |
| void |
| free_aux_for_edges (void) |
| { |
| gcc_assert (first_edge_aux_obj); |
| obstack_free (&edge_aux_obstack, first_edge_aux_obj); |
| first_edge_aux_obj = NULL; |
| |
| clear_aux_for_edges (); |
| } |
| |
| void |
| debug_bb (basic_block bb) |
| { |
| dump_bb (bb, stderr, 0); |
| } |
| |
| basic_block |
| debug_bb_n (int n) |
| { |
| basic_block bb = BASIC_BLOCK (n); |
| dump_bb (bb, stderr, 0); |
| return bb; |
| } |
| |
| /* Dumps cfg related information about basic block BB to FILE. */ |
| |
| static void |
| dump_cfg_bb_info (FILE *file, basic_block bb) |
| { |
| unsigned i; |
| edge_iterator ei; |
| bool first = true; |
| static const char * const bb_bitnames[] = |
| { |
| "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock" |
| }; |
| const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *); |
| edge e; |
| |
| fprintf (file, "Basic block %d", bb->index); |
| for (i = 0; i < n_bitnames; i++) |
| if (bb->flags & (1 << i)) |
| { |
| if (first) |
| fprintf (file, " ("); |
| else |
| fprintf (file, ", "); |
| first = false; |
| fprintf (file, bb_bitnames[i]); |
| } |
| if (!first) |
| fprintf (file, ")"); |
| fprintf (file, "\n"); |
| |
| fprintf (file, "Predecessors: "); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| dump_edge_info (file, e, 0); |
| |
| fprintf (file, "\nSuccessors: "); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| dump_edge_info (file, e, 1); |
| fprintf (file, "\n\n"); |
| } |
| |
| /* Dumps a brief description of cfg to FILE. */ |
| |
| void |
| brief_dump_cfg (FILE *file) |
| { |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| { |
| dump_cfg_bb_info (file, bb); |
| } |
| } |
| |
| /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to |
| leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be |
| redirected to destination of TAKEN_EDGE. |
| |
| This function may leave the profile inconsistent in the case TAKEN_EDGE |
| frequency or count is believed to be lower than FREQUENCY or COUNT |
| respectively. */ |
| void |
| update_bb_profile_for_threading (basic_block bb, int edge_frequency, |
| gcov_type count, edge taken_edge) |
| { |
| edge c; |
| int prob; |
| edge_iterator ei; |
| |
| bb->count -= count; |
| if (bb->count < 0) |
| bb->count = 0; |
| |
| /* Compute the probability of TAKEN_EDGE being reached via threaded edge. |
| Watch for overflows. */ |
| if (bb->frequency) |
| prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency; |
| else |
| prob = 0; |
| if (prob > taken_edge->probability) |
| { |
| if (dump_file) |
| fprintf (dump_file, "Jump threading proved probability of edge " |
| "%i->%i too small (it is %i, should be %i).\n", |
| taken_edge->src->index, taken_edge->dest->index, |
| taken_edge->probability, prob); |
| prob = taken_edge->probability; |
| } |
| |
| /* Now rescale the probabilities. */ |
| taken_edge->probability -= prob; |
| prob = REG_BR_PROB_BASE - prob; |
| bb->frequency -= edge_frequency; |
| if (bb->frequency < 0) |
| bb->frequency = 0; |
| if (prob <= 0) |
| { |
| if (dump_file) |
| fprintf (dump_file, "Edge frequencies of bb %i has been reset, " |
| "frequency of block should end up being 0, it is %i\n", |
| bb->index, bb->frequency); |
| EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE; |
| ei = ei_start (bb->succs); |
| ei_next (&ei); |
| for (; (c = ei_safe_edge (ei)); ei_next (&ei)) |
| c->probability = 0; |
| } |
| else if (prob != REG_BR_PROB_BASE) |
| { |
| int scale = REG_BR_PROB_BASE / prob; |
| |
| FOR_EACH_EDGE (c, ei, bb->succs) |
| c->probability *= scale; |
| } |
| |
| if (bb != taken_edge->src) |
| abort (); |
| taken_edge->count -= count; |
| if (taken_edge->count < 0) |
| taken_edge->count = 0; |
| } |