blob: 78580ac55587ad719811790419d2b65452b828ba [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is an Irix (old athread library) version of this package
-- This package contains all the GNULL primitives that interface directly
-- with the underlying OS.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with Interfaces.C;
-- used for int
-- size_t
with System.Tasking.Debug;
-- used for Known_Tasks
with System.Task_Info;
with System.Interrupt_Management;
-- used for Keep_Unmasked
-- Abort_Task_Interrupt
-- Interrupt_ID
with System.Parameters;
-- used for Size_Type
with System.Tasking;
-- used for Ada_Task_Control_Block
-- Task_Id
with System.Program_Info;
-- used for Default_Task_Stack
-- Default_Time_Slice
-- Stack_Guard_Pages
-- Pthread_Sched_Signal
-- Pthread_Arena_Size
with System.Soft_Links;
-- used for Defer/Undefer_Abort
-- Note that we do not use System.Tasking.Initialization directly since
-- this is a higher level package that we shouldn't depend on. For example
-- when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Stages.
with System.OS_Primitives;
-- used for Delay_Modes
with System.Storage_Elements;
-- used for To_Address
with Unchecked_Conversion;
with Unchecked_Deallocation;
package body System.Task_Primitives.Operations is
use System.Tasking.Debug;
use System.Tasking;
use Interfaces.C;
use System.OS_Interface;
use System.Parameters;
use System.OS_Primitives;
package SSL renames System.Soft_Links;
-----------------
-- Local Data --
-----------------
-- The followings are logically constants, but need to be initialized
-- at run time.
Single_RTS_Lock : aliased RTS_Lock;
-- This is a lock to allow only one thread of control in the RTS at
-- a time; it is used to execute in mutual exclusion from all other tasks.
-- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
Environment_Task_Id : Task_Id;
-- A variable to hold Task_Id for the environment task.
Locking_Policy : Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
Clock_Address : constant System.Address :=
System.Storage_Elements.To_Address (16#200F90#);
RT_Clock_Id : clockid_t;
for RT_Clock_Id'Address use Clock_Address;
-----------------------
-- Local Subprograms --
-----------------------
procedure Initialize_Athread_Library;
function To_Task_Id is new Unchecked_Conversion (System.Address, Task_Id);
function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
-----------------
-- Stack_Guard --
-----------------
-- The underlying thread system sets a guard page at the
-- bottom of a thread stack, so nothing is needed.
-- ??? Check the comment above
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
pragma Unreferenced (T);
pragma Unreferenced (On);
begin
null;
end Stack_Guard;
--------------------
-- Get_Thread_Id --
--------------------
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
----------
-- Self --
----------
function Self return Task_Id is
begin
return To_Task_Id (pthread_get_current_ada_tcb);
end Self;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are
-- initialized in Initialize_TCB and the Storage_Error is
-- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
-- used in RTS is initialized before any status change of RTS.
-- Therefore rasing Storage_Error in the following routines
-- should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : access Lock)
is
Attributes : aliased pthread_mutexattr_t;
Result : Interfaces.C.int;
begin
Result := pthread_mutexattr_init (Attributes'Access);
if Result = FUNC_ERR then
raise Storage_Error;
end if;
if Locking_Policy = 'C' then
Result := pthread_mutexattr_setqueueorder
(Attributes'Access, MUTEX_PRIORITY_CEILING);
pragma Assert (Result /= FUNC_ERR);
Result := pthread_mutexattr_setceilingprio
(Attributes'Access, Interfaces.C.int (Prio));
pragma Assert (Result /= FUNC_ERR);
end if;
Result := pthread_mutex_init (L, Attributes'Access);
if Result = FUNC_ERR then
Result := pthread_mutexattr_destroy (Attributes'Access);
raise Storage_Error;
end if;
Result := pthread_mutexattr_destroy (Attributes'Access);
end Initialize_Lock;
procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
pragma Unreferenced (Level);
Attributes : aliased pthread_mutexattr_t;
Result : Interfaces.C.int;
begin
Result := pthread_mutexattr_init (Attributes'Access);
if Result = FUNC_ERR then
raise Storage_Error;
end if;
if Locking_Policy = 'C' then
Result := pthread_mutexattr_setqueueorder
(Attributes'Access, MUTEX_PRIORITY_CEILING);
pragma Assert (Result /= FUNC_ERR);
Result := pthread_mutexattr_setceilingprio
(Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
pragma Assert (Result /= FUNC_ERR);
end if;
Result := pthread_mutex_init (L, Attributes'Access);
if Result = FUNC_ERR then
Result := pthread_mutexattr_destroy (Attributes'Access);
raise Storage_Error;
end if;
Result := pthread_mutexattr_destroy (Attributes'Access);
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : access Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_destroy (L);
pragma Assert (Result = 0);
end Finalize_Lock;
procedure Finalize_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_destroy (L);
pragma Assert (Result = 0);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_lock (L);
Ceiling_Violation := Result = FUNC_ERR and then errno = EINVAL;
pragma Assert (Result /= FUNC_ERR);
end Write_Lock;
procedure Write_Lock
(L : access RTS_Lock; Global_Lock : Boolean := False)
is
Result : Interfaces.C.int;
begin
if not Single_Lock or else Global_Lock then
Result := pthread_mutex_lock (L);
pragma Assert (Result = 0);
end if;
end Write_Lock;
procedure Write_Lock (T : Task_Id) is
Result : Interfaces.C.int;
begin
if not Single_Lock then
Result := pthread_mutex_lock (T.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : access Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_unlock (L);
pragma Assert (Result = 0);
end Unlock;
procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
Result : Interfaces.C.int;
begin
if not Single_Lock or else Global_Lock then
Result := pthread_mutex_unlock (L);
pragma Assert (Result = 0);
end if;
end Unlock;
procedure Unlock (T : Task_Id) is
Result : Interfaces.C.int;
begin
if not Single_Lock then
Result := pthread_mutex_unlock (T.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
end Unlock;
-----------
-- Sleep --
-----------
procedure Sleep
(Self_ID : ST.Task_Id;
Reason : System.Tasking.Task_States)
is
pragma Unreferenced (Reason);
Result : Interfaces.C.int;
begin
if Single_Lock then
Result := pthread_cond_wait
(Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
else
Result := pthread_cond_wait
(Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
end if;
-- EINTR is not considered a failure.
pragma Assert (Result = 0 or else Result = EINTR);
end Sleep;
-----------------
-- Timed_Sleep --
-----------------
procedure Timed_Sleep
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
pragma Unreferenced (Reason);
Check_Time : constant Duration := Monotonic_Clock;
Abs_Time : Duration;
Request : aliased struct_timeval;
Result : Interfaces.C.int;
begin
Timedout := True;
Yielded := False;
if Mode = Relative then
Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
else
Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
end if;
if Abs_Time > Check_Time then
Request := To_Timeval (Abs_Time);
loop
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
or else Self_ID.Pending_Priority_Change;
if Single_Lock then
Result := pthread_cond_timedwait
(Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
Request'Access);
else
Result := pthread_cond_timedwait
(Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
Request'Access);
end if;
exit when Abs_Time <= Monotonic_Clock;
if Result = 0 or Result = EINTR then
-- somebody may have called Wakeup for us
Timedout := False;
exit;
end if;
pragma Assert (Result = ETIMEDOUT
or else (Result = -1 and then errno = EAGAIN));
end loop;
end if;
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
procedure Timed_Delay
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes)
is
Check_Time : constant Duration := Monotonic_Clock;
Abs_Time : Duration;
Request : aliased struct_timeval;
Result : Interfaces.C.int;
begin
-- Only the little window between deferring abort and
-- locking Self_ID is the reason we need to
-- check for pending abort and priority change below!
SSL.Abort_Defer.all;
if Single_Lock then
Lock_RTS;
end if;
Write_Lock (Self_ID);
if Mode = Relative then
Abs_Time := Time + Check_Time;
else
Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
end if;
if Abs_Time > Check_Time then
Request := To_Timeval (Abs_Time);
Self_ID.Common.State := Delay_Sleep;
loop
if Self_ID.Pending_Priority_Change then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
if Single_Lock then
Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
Single_RTS_Lock'Access, Request'Access);
else
Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L'Access, Request'Access);
end if;
exit when Abs_Time <= Monotonic_Clock;
pragma Assert (Result = 0 or else
Result = ETIMEDOUT or else
(Result = -1 and then errno = EAGAIN) or else
Result = EINTR);
end loop;
Self_ID.Common.State := Runnable;
end if;
Unlock (Self_ID);
if Single_Lock then
Unlock_RTS;
end if;
pthread_yield;
SSL.Abort_Undefer.all;
end Timed_Delay;
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
type timeval is record
tv_sec : Integer;
tv_usec : Integer;
end record;
pragma Convention (C, timeval);
tv : aliased timeval;
procedure gettimeofday (tp : access timeval);
pragma Import (C, gettimeofday, "gettimeofday", "gettimeofday");
begin
gettimeofday (tv'Access);
return Duration (tv.tv_sec) + Duration (tv.tv_usec) / 1_000_000.0;
end Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
begin
return 10#1.0#E-6;
end RT_Resolution;
------------
-- Wakeup --
------------
procedure Wakeup
(T : ST.Task_Id;
Reason : System.Tasking.Task_States)
is
pragma Unreferenced (Reason);
Result : Interfaces.C.int;
begin
Result := pthread_cond_signal (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
end Wakeup;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
begin
if Do_Yield then
pthread_yield;
end if;
end Yield;
------------------
-- Set_Priority --
------------------
procedure Set_Priority
(T : Task_Id;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
pragma Unreferenced (Loss_Of_Inheritance);
Result : Interfaces.C.int;
begin
T.Common.Current_Priority := Prio;
Result := pthread_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
pragma Assert (Result /= FUNC_ERR);
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_Id) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_Id) is
Result : Interfaces.C.int;
begin
Self_ID.Common.LL.Thread := pthread_self;
Self_ID.Common.LL.LWP := sproc_self;
Result :=
pthread_set_ada_tcb (Self_ID.Common.LL.Thread, To_Address (Self_ID));
pragma Assert (Result = 0);
Lock_RTS;
for J in Known_Tasks'Range loop
if Known_Tasks (J) = null then
Known_Tasks (J) := Self_ID;
Self_ID.Known_Tasks_Index := J;
exit;
end if;
end loop;
Unlock_RTS;
end Enter_Task;
--------------
-- New_ATCB --
--------------
function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
begin
return new Ada_Task_Control_Block (Entry_Num);
end New_ATCB;
-------------------
-- Is_Valid_Task --
-------------------
function Is_Valid_Task return Boolean is
begin
return False;
end Is_Valid_Task;
-----------------------------
-- Register_Foreign_Thread --
-----------------------------
function Register_Foreign_Thread return Task_Id is
begin
return null;
end Register_Foreign_Thread;
--------------------
-- Initialize_TCB --
--------------------
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
Result : Interfaces.C.int;
Cond_Attr : aliased pthread_condattr_t;
begin
if not Single_Lock then
Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
end if;
Result := pthread_condattr_init (Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = 0 then
Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
end if;
if Result = 0 then
Succeeded := True;
else
if not Single_Lock then
Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
Succeeded := False;
end if;
Result := pthread_condattr_destroy (Cond_Attr'Access);
pragma Assert (Result = 0);
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_Id;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Attributes : aliased pthread_attr_t;
Adjusted_Stack_Size : Interfaces.C.size_t;
Result : Interfaces.C.int;
function Thread_Body_Access is new
Unchecked_Conversion (System.Address, start_addr);
function To_Resource_T is new Unchecked_Conversion
(System.Task_Info.Resource_Vector_T, System.OS_Interface.resource_t);
use System.Task_Info;
begin
if Stack_Size = Unspecified_Size then
Adjusted_Stack_Size :=
Interfaces.C.size_t (System.Program_Info.Default_Task_Stack);
elsif Stack_Size < Minimum_Stack_Size then
Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size);
else
Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
end if;
Result := pthread_attr_init (Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Succeeded := False;
return;
end if;
Result := pthread_attr_setdetachstate (Attributes'Access, 1);
pragma Assert (Result = 0);
Result := pthread_attr_setstacksize
(Attributes'Access, Adjusted_Stack_Size);
pragma Assert (Result = 0);
if T.Common.Task_Info /= null then
Result := pthread_attr_setresources
(Attributes'Access,
To_Resource_T (T.Common.Task_Info.Thread_Resources));
pragma Assert (Result /= FUNC_ERR);
if T.Common.Task_Info.Thread_Timeslice /= 0.0 then
declare
use System.OS_Interface;
Tv : aliased struct_timeval := To_Timeval
(T.Common.Task_Info.Thread_Timeslice);
begin
Result := pthread_attr_set_tslice
(Attributes'Access, Tv'Access);
end;
end if;
if T.Common.Task_Info.Bound_To_Sproc then
Result := pthread_attr_set_boundtosproc
(Attributes'Access, PTHREAD_BOUND);
Result := pthread_attr_set_bsproc
(Attributes'Access, T.Common.Task_Info.Sproc);
end if;
end if;
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we
-- do not need to manipulate caller's signal mask at this point.
-- All tasks in RTS will have All_Tasks_Mask initially.
Result := pthread_create
(T.Common.LL.Thread'Access,
Attributes'Access,
Thread_Body_Access (Wrapper),
To_Address (T));
pragma Assert (Result = 0 or else Result = EAGAIN);
Succeeded := Result = 0;
Set_Priority (T, Priority);
Result := pthread_attr_destroy (Attributes'Access);
pragma Assert (Result /= FUNC_ERR);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_Id) is
procedure Free is new
Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
Result : Interfaces.C.int;
Tmp : Task_Id := T;
begin
if not Single_Lock then
Result := pthread_mutex_destroy (T.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
Result := pthread_cond_destroy (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
Free (Tmp);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
procedure Exit_Task is
Result : Interfaces.C.int;
begin
Result := pthread_set_ada_tcb (pthread_self, System.Null_Address);
pragma Assert (Result = 0);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_Id) is
Result : Interfaces.C.int;
begin
Result :=
pthread_kill (T.Common.LL.Thread,
Interfaces.C.int
(System.Interrupt_Management.Abort_Task_Interrupt));
pragma Assert (Result = 0);
end Abort_Task;
----------------
-- Check_Exit --
----------------
-- Dummy version
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_Id is
begin
return Environment_Task_Id;
end Environment_Task;
--------------
-- Lock_RTS --
--------------
procedure Lock_RTS is
begin
Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
end Lock_RTS;
----------------
-- Unlock_RTS --
----------------
procedure Unlock_RTS is
begin
Unlock (Single_RTS_Lock'Access, Global_Lock => True);
end Unlock_RTS;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Thread_Self then
return pthread_suspend (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Thread_Self then
return pthread_resume (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Resume_Task;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : Task_Id) is
begin
Environment_Task_Id := Environment_Task;
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
-- Initialize the lock used to synchronize chain of all ATCBs.
Enter_Task (Environment_Task);
Set_Priority (Environment_Task,
Environment_Task.Common.Current_Priority);
end Initialize;
--------------------------------
-- Initialize_Athread_Library --
--------------------------------
procedure Initialize_Athread_Library is
Result : Interfaces.C.int;
Init : aliased pthread_init_struct;
package PINF renames System.Program_Info;
package C renames Interfaces.C;
begin
Init.conf_initsize := C.int (PINF.Pthread_Arena_Size);
Init.max_sproc_count := C.int (PINF.Max_Sproc_Count);
Init.sproc_stack_size := C.size_t (PINF.Sproc_Stack_Size);
Init.os_default_priority := C.int (PINF.Os_Default_Priority);
Init.os_sched_signal := C.int (PINF.Pthread_Sched_Signal);
Init.guard_pages := C.int (PINF.Stack_Guard_Pages);
Init.init_sproc_count := C.int (PINF.Initial_Sproc_Count);
Result := pthread_exec_begin (Init'Access);
pragma Assert (Result /= FUNC_ERR);
if Result = FUNC_ERR then
raise Storage_Error; -- Insufficient resources
end if;
end Initialize_Athread_Library;
-- Package initialization
begin
Initialize_Athread_Library;
end System.Task_Primitives.Operations;