blob: e41c509c18e26437d89ff177d8026b33e7290897 [file] [log] [blame]
/****************************************************************************
* *
* GNAT COMPILER COMPONENTS *
* *
* I N I T *
* *
* C Implementation File *
* *
* Copyright (C) 1992-2005, Free Software Foundation, Inc. *
* *
* GNAT is free software; you can redistribute it and/or modify it under *
* terms of the GNU General Public License as published by the Free Soft- *
* ware Foundation; either version 2, or (at your option) any later ver- *
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. You should have received a copy of the GNU General *
* Public License distributed with GNAT; see file COPYING. If not, write *
* to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, *
* MA 02111-1307, USA. *
* *
* As a special exception, if you link this file with other files to *
* produce an executable, this file does not by itself cause the resulting *
* executable to be covered by the GNU General Public License. This except- *
* ion does not however invalidate any other reasons why the executable *
* file might be covered by the GNU Public License. *
* *
* GNAT was originally developed by the GNAT team at New York University. *
* Extensive contributions were provided by Ada Core Technologies Inc. *
* *
****************************************************************************/
/* This unit contains initialization circuits that are system dependent. A
major part of the functionality involved involves stack overflow checking.
The GCC backend generates probe instructions to test for stack overflow.
For details on the exact approach used to generate these probes, see the
"Using and Porting GCC" manual, in particular the "Stack Checking" section
and the subsection "Specifying How Stack Checking is Done". The handlers
installed by this file are used to handle resulting signals that come
from these probes failing (i.e. touching protected pages) */
/* This file should be kept synchronized with 2sinit.ads, 2sinit.adb, and
5zinit.adb. All these files implement the required functionality for
different targets. */
/* The following include is here to meet the published VxWorks requirement
that the __vxworks header appear before any other include. */
#ifdef __vxworks
#include "vxWorks.h"
#endif
#ifdef IN_RTS
#include "tconfig.h"
#include "tsystem.h"
#include <sys/stat.h>
/* We don't have libiberty, so us malloc. */
#define xmalloc(S) malloc (S)
#else
#include "config.h"
#include "system.h"
#endif
#include "adaint.h"
#include "raise.h"
extern void __gnat_raise_program_error (const char *, int);
/* Addresses of exception data blocks for predefined exceptions. */
extern struct Exception_Data constraint_error;
extern struct Exception_Data numeric_error;
extern struct Exception_Data program_error;
extern struct Exception_Data storage_error;
extern struct Exception_Data tasking_error;
extern struct Exception_Data _abort_signal;
#define Lock_Task system__soft_links__lock_task
extern void (*Lock_Task) (void);
#define Unlock_Task system__soft_links__unlock_task
extern void (*Unlock_Task) (void);
#define Get_Machine_State_Addr \
system__soft_links__get_machine_state_addr
extern struct Machine_State *(*Get_Machine_State_Addr) (void);
#define Check_Abort_Status \
system__soft_links__check_abort_status
extern int (*Check_Abort_Status) (void);
#define Raise_From_Signal_Handler \
ada__exceptions__raise_from_signal_handler
extern void Raise_From_Signal_Handler (struct Exception_Data *, const char *);
#define Propagate_Signal_Exception \
__gnat_propagate_sig_exc
extern void Propagate_Signal_Exception (struct Machine_State *,
struct Exception_Data *,
const char *);
/* Copies of global values computed by the binder */
int __gl_main_priority = -1;
int __gl_time_slice_val = -1;
char __gl_wc_encoding = 'n';
char __gl_locking_policy = ' ';
char __gl_queuing_policy = ' ';
char __gl_task_dispatching_policy = ' ';
char *__gl_restrictions = 0;
char *__gl_interrupt_states = 0;
int __gl_num_interrupt_states = 0;
int __gl_unreserve_all_interrupts = 0;
int __gl_exception_tracebacks = 0;
int __gl_zero_cost_exceptions = 0;
int __gl_detect_blocking = 0;
/* Indication of whether synchronous signal handler has already been
installed by a previous call to adainit */
int __gnat_handler_installed = 0;
/* HAVE_GNAT_INIT_FLOAT must be set on every targets where a __gnat_init_float
is defined. If this is not set them a void implementation will be defined
at the end of this unit. */
#undef HAVE_GNAT_INIT_FLOAT
/******************************/
/* __gnat_get_interrupt_state */
/******************************/
char __gnat_get_interrupt_state (int);
/* This routine is called from the runtime as needed to determine the state
of an interrupt, as set by an Interrupt_State pragma appearing anywhere
in the current partition. The input argument is the interrupt number,
and the result is one of the following:
'n' this interrupt not set by any Interrupt_State pragma
'u' Interrupt_State pragma set state to User
'r' Interrupt_State pragma set state to Runtime
's' Interrupt_State pragma set state to System */
char
__gnat_get_interrupt_state (int intrup)
{
if (intrup >= __gl_num_interrupt_states)
return 'n';
else
return __gl_interrupt_states [intrup];
}
/**********************/
/* __gnat_set_globals */
/**********************/
/* This routine is called from the binder generated main program. It copies
the values for global quantities computed by the binder into the following
global locations. The reason that we go through this copy, rather than just
define the global locations in the binder generated file, is that they are
referenced from the runtime, which may be in a shared library, and the
binder file is not in the shared library. Global references across library
boundaries like this are not handled correctly in all systems. */
/* For detailed description of the parameters to this routine, see the
section titled Run-Time Globals in package Bindgen (bindgen.adb) */
void
__gnat_set_globals (int main_priority,
int time_slice_val,
char wc_encoding,
char locking_policy,
char queuing_policy,
char task_dispatching_policy,
char *restrictions,
char *interrupt_states,
int num_interrupt_states,
int unreserve_all_interrupts,
int exception_tracebacks,
int zero_cost_exceptions,
int detect_blocking)
{
static int already_called = 0;
/* If this procedure has been already called once, check that the
arguments in this call are consistent with the ones in the previous
calls. Otherwise, raise a Program_Error exception.
We do not check for consistency of the wide character encoding
method. This default affects only Wide_Text_IO where no explicit
coding method is given, and there is no particular reason to let
this default be affected by the source representation of a library
in any case.
We do not check either for the consistency of exception tracebacks,
because exception tracebacks are not normally set in Stand-Alone
libraries. If a library or the main program set the exception
tracebacks, then they are never reset afterwards (see below).
The value of main_priority is meaningful only when we are invoked
from the main program elaboration routine of an Ada application.
Checking the consistency of this parameter should therefore not be
done. Since it is assured that the main program elaboration will
always invoke this procedure before any library elaboration
routine, only the value of main_priority during the first call
should be taken into account and all the subsequent ones should be
ignored. Note that the case where the main program is not written
in Ada is also properly handled, since the default value will then
be used for this parameter.
For identical reasons, the consistency of time_slice_val should not
be checked. */
if (already_called)
{
if (__gl_locking_policy != locking_policy
|| __gl_queuing_policy != queuing_policy
|| __gl_task_dispatching_policy != task_dispatching_policy
|| __gl_unreserve_all_interrupts != unreserve_all_interrupts
|| __gl_zero_cost_exceptions != zero_cost_exceptions)
__gnat_raise_program_error (__FILE__, __LINE__);
/* If either a library or the main program set the exception traceback
flag, it is never reset later */
if (exception_tracebacks != 0)
__gl_exception_tracebacks = exception_tracebacks;
return;
}
already_called = 1;
__gl_main_priority = main_priority;
__gl_time_slice_val = time_slice_val;
__gl_wc_encoding = wc_encoding;
__gl_locking_policy = locking_policy;
__gl_queuing_policy = queuing_policy;
__gl_restrictions = restrictions;
__gl_interrupt_states = interrupt_states;
__gl_num_interrupt_states = num_interrupt_states;
__gl_task_dispatching_policy = task_dispatching_policy;
__gl_unreserve_all_interrupts = unreserve_all_interrupts;
__gl_exception_tracebacks = exception_tracebacks;
__gl_detect_blocking = detect_blocking;
/* ??? __gl_zero_cost_exceptions is new in 3.15 and is referenced from
a-except.adb, which is also part of the compiler sources. Since the
compiler is built with an older release of GNAT, the call generated by
the old binder to this function does not provide any value for the
corresponding argument, so the global has to be initialized in some
reasonable other way. This could be removed as soon as the next major
release is out. */
#ifdef IN_RTS
__gl_zero_cost_exceptions = zero_cost_exceptions;
#else
__gl_zero_cost_exceptions = 0;
/* We never build the compiler to run in ZCX mode currently anyway. */
#endif
}
/*********************/
/* __gnat_initialize */
/*********************/
/* __gnat_initialize is called at the start of execution of an Ada program
(the call is generated by the binder). The standard routine does nothing
at all; the intention is that this be replaced by system specific
code where initialization is required. */
/* Notes on the Zero Cost Exceptions scheme and its impact on the signal
handlers implemented below :
What we call Zero Cost Exceptions is implemented using the GCC eh
circuitry, even if the underlying implementation is setjmp/longjmp
based. In any case ...
The GCC unwinder expects to be dealing with call return addresses, since
this is the "nominal" case of what we retrieve while unwinding a regular
call chain. To evaluate if a handler applies at some point in this chain,
the propagation engine needs to determine what region the corresponding
call instruction pertains to. The return address may not be attached to the
same region as the call, so the unwinder unconditionally substracts "some"
amount to the return addresses it gets to search the region tables. The
exact amount is computed to ensure that the resulting address is inside the
call instruction, and is thus target dependant (think about delay slots for
instance).
When we raise an exception from a signal handler, e.g. to transform a
SIGSEGV into Storage_Error, things need to appear as if the signal handler
had been "called" by the instruction which triggered the signal, so that
exception handlers that apply there are considered. What the unwinder will
retrieve as the return address from the signal handler is what it will find
as the faulting instruction address in the corresponding signal context
pushed by the kernel. Leaving this address untouched may loose, because if
the triggering instruction happens to be the very first of a region, the
later adjustements performed by the unwinder would yield an address outside
that region. We need to compensate for those adjustments at some point,
which we currently do in the GCC unwinding fallback macro.
The thread at http://gcc.gnu.org/ml/gcc-patches/2004-05/msg00343.html
describes a couple of issues with our current approach. Basically: on some
targets the adjustment to apply depends on the triggering signal, which is
not easily accessible from the macro, and we actually do not tackle this as
of today. Besides, other languages, e.g. Java, deal with this by performing
the adjustment in the signal handler before the raise, so our adjustments
may break those front-ends.
To have it all right, we should either find a way to deal with the signal
variants from the macro and convert Java on all targets (ugh), or remove
our macro adjustments and update our signal handlers a-la-java way. The
latter option appears the simplest, although some targets have their share
of subtleties to account for. See for instance the syscall(SYS_sigaction)
story in libjava/include/i386-signal.h. */
/***********************************/
/* __gnat_initialize (AIX Version) */
/***********************************/
#if defined (_AIX)
#include <signal.h>
#include <sys/time.h>
/* Some versions of AIX don't define SA_NODEFER. */
#ifndef SA_NODEFER
#define SA_NODEFER 0
#endif /* SA_NODEFER */
/* Versions of AIX before 4.3 don't have nanosleep but provide
nsleep instead. */
#ifndef _AIXVERSION_430
extern int nanosleep (struct timestruc_t *, struct timestruc_t *);
int
nanosleep (struct timestruc_t *Rqtp, struct timestruc_t *Rmtp)
{
return nsleep (Rqtp, Rmtp);
}
#endif /* _AIXVERSION_430 */
static void __gnat_error_handler (int);
static void
__gnat_error_handler (int sig)
{
struct Exception_Data *exception;
const char *msg;
switch (sig)
{
case SIGSEGV:
/* FIXME: we need to detect the case of a *real* SIGSEGV */
exception = &storage_error;
msg = "stack overflow or erroneous memory access";
break;
case SIGBUS:
exception = &constraint_error;
msg = "SIGBUS";
break;
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Set up signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER | SA_RESTART;
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGABRT) != 's')
sigaction (SIGABRT, &act, NULL);
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGILL) != 's')
sigaction (SIGILL, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/***************************************/
/* __gnat_initialize (RTEMS version) */
/***************************************/
#elif defined(__rtems__)
extern void __gnat_install_handler (void);
/* For RTEMS, each bsp will provide a custom __gnat_install_handler (). */
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
__gnat_install_handler ();
}
/****************************************/
/* __gnat_initialize (Dec Unix Version) */
/****************************************/
#elif defined(__alpha__) && defined(__osf__) && ! defined(__alpha_vxworks)
/* Note: it seems that __osf__ is defined for the Alpha VXWorks case. Not
clear that this is reasonable, but in any case we have to be sure to
exclude this case in the above test. */
#include <signal.h>
#include <sys/siginfo.h>
static void __gnat_error_handler (int, siginfo_t *, struct sigcontext *);
extern char *__gnat_get_code_loc (struct sigcontext *);
extern void __gnat_enter_handler (struct sigcontext *, char *);
extern size_t __gnat_machine_state_length (void);
extern long exc_lookup_gp (char *);
extern void exc_resume (struct sigcontext *);
static void
__gnat_error_handler (int sig, siginfo_t *sip, struct sigcontext *context)
{
struct Exception_Data *exception;
static int recurse = 0;
struct sigcontext *mstate;
const char *msg;
/* If this was an explicit signal from a "kill", just resignal it. */
if (SI_FROMUSER (sip))
{
signal (sig, SIG_DFL);
kill (getpid(), sig);
}
/* Otherwise, treat it as something we handle. */
switch (sig)
{
case SIGSEGV:
/* If the problem was permissions, this is a constraint error.
Likewise if the failing address isn't maximally aligned or if
we've recursed.
??? Using a static variable here isn't task-safe, but it's
much too hard to do anything else and we're just determining
which exception to raise. */
if (sip->si_code == SEGV_ACCERR
|| (((long) sip->si_addr) & 3) != 0
|| recurse)
{
exception = &constraint_error;
msg = "SIGSEGV";
}
else
{
/* See if the page before the faulting page is accessible. Do that
by trying to access it. We'd like to simply try to access
4096 + the faulting address, but it's not guaranteed to be
the actual address, just to be on the same page. */
recurse++;
((volatile char *)
((long) sip->si_addr & - getpagesize ()))[getpagesize ()];
msg = "stack overflow (or erroneous memory access)";
exception = &storage_error;
}
break;
case SIGBUS:
exception = &program_error;
msg = "SIGBUS";
break;
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
recurse = 0;
mstate = (struct sigcontext *) (*Get_Machine_State_Addr) ();
if (mstate != 0)
*mstate = *context;
Raise_From_Signal_Handler (exception, (char *) msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Setup signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = (void (*) (int)) __gnat_error_handler;
act.sa_flags = SA_RESTART | SA_NODEFER | SA_SIGINFO;
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGABRT) != 's')
sigaction (SIGABRT, &act, NULL);
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGILL) != 's')
sigaction (SIGILL, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/* Routines called by 5amastop.adb. */
#define SC_GP 29
char *
__gnat_get_code_loc (struct sigcontext *context)
{
return (char *) context->sc_pc;
}
void
__gnat_enter_handler ( struct sigcontext *context, char *pc)
{
context->sc_pc = (long) pc;
context->sc_regs[SC_GP] = exc_lookup_gp (pc);
exc_resume (context);
}
size_t
__gnat_machine_state_length (void)
{
return sizeof (struct sigcontext);
}
/************************************/
/* __gnat_initialize (HPUX Version) */
/************************************/
#elif defined (__hpux__)
#include <signal.h>
static void __gnat_error_handler (int);
static void
__gnat_error_handler (int sig)
{
struct Exception_Data *exception;
char *msg;
switch (sig)
{
case SIGSEGV:
/* FIXME: we need to detect the case of a *real* SIGSEGV */
exception = &storage_error;
msg = "stack overflow or erroneous memory access";
break;
case SIGBUS:
exception = &constraint_error;
msg = "SIGBUS";
break;
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Set up signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! Also setup an alternate
stack region for the handler execution so that stack overflows can be
handled properly, avoiding a SEGV generation from stack usage by the
handler itself. */
static char handler_stack[SIGSTKSZ*2];
/* SIGSTKSZ appeared to be "short" for the needs in some contexts
(e.g. experiments with GCC ZCX exceptions). */
stack_t stack;
stack.ss_sp = handler_stack;
stack.ss_size = sizeof (handler_stack);
stack.ss_flags = 0;
sigaltstack (&stack, NULL);
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER | SA_RESTART | SA_ONSTACK;
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGABRT) != 's')
sigaction (SIGABRT, &act, NULL);
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGILL) != 's')
sigaction (SIGILL, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/*****************************************/
/* __gnat_initialize (GNU/Linux Version) */
/*****************************************/
#elif defined (linux) && defined (i386) && !defined (__RT__)
#include <signal.h>
#include <asm/sigcontext.h>
/* GNU/Linux, which uses glibc, does not define NULL in included
header files */
#if !defined (NULL)
#define NULL ((void *) 0)
#endif
struct Machine_State
{
unsigned long eip;
unsigned long ebx;
unsigned long esp;
unsigned long ebp;
unsigned long esi;
unsigned long edi;
};
static void __gnat_error_handler (int);
static void
__gnat_error_handler (int sig)
{
struct Exception_Data *exception;
const char *msg;
static int recurse = 0;
struct sigcontext *info
= (struct sigcontext *) (((char *) &sig) + sizeof (int));
/* The Linux kernel does not document how to get the machine state in a
signal handler, but in fact the necessary data is in a sigcontext_struct
value that is on the stack immediately above the signal number
parameter, and the above messing accesses this value on the stack. */
struct Machine_State *mstate;
switch (sig)
{
case SIGSEGV:
/* If the problem was permissions, this is a constraint error.
Likewise if the failing address isn't maximally aligned or if
we've recursed.
??? Using a static variable here isn't task-safe, but it's
much too hard to do anything else and we're just determining
which exception to raise. */
if (recurse)
{
exception = &constraint_error;
msg = "SIGSEGV";
}
else
{
/* Here we would like a discrimination test to see whether the
page before the faulting address is accessible. Unfortunately
Linux seems to have no way of giving us the faulting address.
In versions of a-init.c before 1.95, we had a test of the page
before the stack pointer using:
recurse++;
((volatile char *)
((long) info->esp_at_signal & - getpagesize ()))[getpagesize ()];
but that's wrong, since it tests the stack pointer location, and
the current stack probe code does not move the stack pointer
until all probes succeed.
For now we simply do not attempt any discrimination at all. Note
that this is quite acceptable, since a "real" SIGSEGV can only
occur as the result of an erroneous program */
msg = "stack overflow (or erroneous memory access)";
exception = &storage_error;
}
break;
case SIGBUS:
exception = &constraint_error;
msg = "SIGBUS";
break;
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
mstate = (*Get_Machine_State_Addr) ();
if (mstate)
{
mstate->eip = info->eip;
mstate->ebx = info->ebx;
mstate->esp = info->esp_at_signal;
mstate->ebp = info->ebp;
mstate->esi = info->esi;
mstate->edi = info->edi;
}
recurse = 0;
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Set up signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER | SA_RESTART;
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGABRT) != 's')
sigaction (SIGABRT, &act, NULL);
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGILL) != 's')
sigaction (SIGILL, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/******************************************/
/* __gnat_initialize (NT-mingw32 Version) */
/******************************************/
#elif defined (__MINGW32__)
#include <windows.h>
void
__gnat_install_handler (void)
{
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
/* Initialize floating-point coprocessor. This call is needed because
the MS libraries default to 64-bit precision instead of 80-bit
precision, and we require the full precision for proper operation,
given that we have set Max_Digits etc with this in mind */
__gnat_init_float ();
/* Initialize a lock for a process handle list - see a-adaint.c for the
implementation of __gnat_portable_no_block_spawn, __gnat_portable_wait */
__gnat_plist_init();
/* Install the Structured Exception handler. */
if (eh)
__gnat_install_SEH_handler (eh);
}
/***************************************/
/* __gnat_initialize (Interix Version) */
/***************************************/
#elif defined (__INTERIX)
#include <signal.h>
static void __gnat_error_handler (int);
static void
__gnat_error_handler (int sig)
{
struct Exception_Data *exception;
char *msg;
switch (sig)
{
case SIGSEGV:
exception = &storage_error;
msg = "stack overflow or erroneous memory access";
break;
case SIGBUS:
exception = &constraint_error;
msg = "SIGBUS";
break;
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Set up signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = 0;
sigemptyset (&act.sa_mask);
/* Handlers for signals besides SIGSEGV cause c974013 to hang */
/* sigaction (SIGILL, &act, NULL); */
/* sigaction (SIGABRT, &act, NULL); */
/* sigaction (SIGFPE, &act, NULL); */
/* sigaction (SIGBUS, &act, NULL); */
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
__gnat_init_float ();
}
/**************************************/
/* __gnat_initialize (LynxOS Version) */
/**************************************/
#elif defined (__Lynx__)
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
__gnat_init_float ();
}
/*********************************/
/* __gnat_install_handler (Lynx) */
/*********************************/
void
__gnat_install_handler (void)
{
__gnat_handler_installed = 1;
}
/****************************/
/* __gnat_initialize (OS/2) */
/****************************/
#elif defined (__EMX__) /* OS/2 dependent initialization */
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/*********************************/
/* __gnat_install_handler (OS/2) */
/*********************************/
void
__gnat_install_handler (void)
{
__gnat_handler_installed = 1;
}
/***********************************/
/* __gnat_initialize (SGI Version) */
/***********************************/
#elif defined (sgi)
#include <signal.h>
#include <siginfo.h>
#ifndef NULL
#define NULL 0
#endif
#define SIGADAABORT 48
#define SIGNAL_STACK_SIZE 4096
#define SIGNAL_STACK_ALIGNMENT 64
struct Machine_State
{
sigcontext_t context;
};
static void __gnat_error_handler (int, int, sigcontext_t *);
/* We are not setting the SA_SIGINFO bit in the sigaction flags when
connecting that handler, with the effects described in the sigaction
man page:
SA_SIGINFO [...]
If cleared and the signal is caught, the first argument is
also the signal number but the second argument is the signal
code identifying the cause of the signal. The third argument
points to a sigcontext_t structure containing the receiving
process's context when the signal was delivered.
*/
static void
__gnat_error_handler (int sig, int code, sigcontext_t *sc)
{
struct Machine_State *mstate;
struct Exception_Data *exception;
const char *msg;
switch (sig)
{
case SIGSEGV:
if (code == EFAULT)
{
exception = &program_error;
msg = "SIGSEGV: (Invalid virtual address)";
}
else if (code == ENXIO)
{
exception = &program_error;
msg = "SIGSEGV: (Read beyond mapped object)";
}
else if (code == ENOSPC)
{
exception = &program_error; /* ??? storage_error ??? */
msg = "SIGSEGV: (Autogrow for file failed)";
}
else if (code == EACCES || code == EEXIST)
{
/* ??? We handle stack overflows here, some of which do trigger
SIGSEGV + EEXIST on Irix 6.5 although EEXIST is not part of
the documented valid codes for SEGV in the signal(5) man
page. */
/* ??? Re-add smarts to further verify that we launched
the stack into a guard page, not an attempt to
write to .text or something */
exception = &storage_error;
msg = "SIGSEGV: (stack overflow or erroneous memory access)";
}
else
{
/* Just in case the OS guys did it to us again. Sometimes
they fail to document all of the valid codes that are
passed to signal handlers, just in case someone depends
on knowing all the codes */
exception = &program_error;
msg = "SIGSEGV: (Undocumented reason)";
}
break;
case SIGBUS:
/* Map all bus errors to Program_Error. */
exception = &program_error;
msg = "SIGBUS";
break;
case SIGFPE:
/* Map all fpe errors to Constraint_Error. */
exception = &constraint_error;
msg = "SIGFPE";
break;
case SIGADAABORT:
if ((*Check_Abort_Status) ())
{
exception = &_abort_signal;
msg = "";
}
else
return;
break;
default:
/* Everything else is a Program_Error. */
exception = &program_error;
msg = "unhandled signal";
}
mstate = (*Get_Machine_State_Addr) ();
if (mstate != 0)
memcpy ((void *) mstate, (const void *) sc, sizeof (sigcontext_t));
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Setup signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER + SA_RESTART;
sigfillset (&act.sa_mask);
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGABRT) != 's')
sigaction (SIGABRT, &act, NULL);
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGILL) != 's')
sigaction (SIGILL, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
if (__gnat_get_interrupt_state (SIGADAABORT) != 's')
sigaction (SIGADAABORT, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/*************************************************/
/* __gnat_initialize (Solaris and SunOS Version) */
/*************************************************/
#elif defined (sun) && defined (__SVR4) && !defined (__vxworks)
#include <signal.h>
#include <siginfo.h>
static void __gnat_error_handler (int, siginfo_t *);
static void
__gnat_error_handler (int sig, siginfo_t *sip)
{
struct Exception_Data *exception;
static int recurse = 0;
const char *msg;
/* If this was an explicit signal from a "kill", just resignal it. */
if (SI_FROMUSER (sip))
{
signal (sig, SIG_DFL);
kill (getpid(), sig);
}
/* Otherwise, treat it as something we handle. */
switch (sig)
{
case SIGSEGV:
/* If the problem was permissions, this is a constraint error.
Likewise if the failing address isn't maximally aligned or if
we've recursed.
??? Using a static variable here isn't task-safe, but it's
much too hard to do anything else and we're just determining
which exception to raise. */
if (sip->si_code == SEGV_ACCERR
|| (((long) sip->si_addr) & 3) != 0
|| recurse)
{
exception = &constraint_error;
msg = "SIGSEGV";
}
else
{
/* See if the page before the faulting page is accessible. Do that
by trying to access it. We'd like to simply try to access
4096 + the faulting address, but it's not guaranteed to be
the actual address, just to be on the same page. */
recurse++;
((volatile char *)
((long) sip->si_addr & - getpagesize ()))[getpagesize ()];
exception = &storage_error;
msg = "stack overflow (or erroneous memory access)";
}
break;
case SIGBUS:
exception = &program_error;
msg = "SIGBUS";
break;
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
recurse = 0;
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Set up signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO;
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGABRT) != 's')
sigaction (SIGABRT, &act, NULL);
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/***********************************/
/* __gnat_initialize (VMS Version) */
/***********************************/
#elif defined (VMS)
#ifdef __IA64
#define lib_get_curr_invo_context LIB$I64_GET_CURR_INVO_CONTEXT
#define lib_get_prev_invo_context LIB$I64_GET_PREV_INVO_CONTEXT
#define lib_get_invo_handle LIB$I64_GET_INVO_HANDLE
#else
#define lib_get_curr_invo_context LIB$GET_CURR_INVO_CONTEXT
#define lib_get_prev_invo_context LIB$GET_PREV_INVO_CONTEXT
#define lib_get_invo_handle LIB$GET_INVO_HANDLE
#endif
#if defined (IN_RTS) && !defined (__IA64)
/* The prehandler actually gets control first on a condition. It swaps the
stack pointer and calls the handler (__gnat_error_handler). */
extern long __gnat_error_prehandler (void);
extern char *__gnat_error_prehandler_stack; /* Alternate signal stack */
#endif
/* Conditions that don't have an Ada exception counterpart must raise
Non_Ada_Error. Since this is defined in s-auxdec, it should only be
referenced by user programs, not the compiler or tools. Hence the
#ifdef IN_RTS. */
#ifdef IN_RTS
#define Non_Ada_Error system__aux_dec__non_ada_error
extern struct Exception_Data Non_Ada_Error;
#define Coded_Exception system__vms_exception_table__coded_exception
extern struct Exception_Data *Coded_Exception (Exception_Code);
#define Base_Code_In system__vms_exception_table__base_code_in
extern Exception_Code Base_Code_In (Exception_Code);
#endif
/* Define macro symbols for the VMS conditions that become Ada exceptions.
Most of these are also defined in the header file ssdef.h which has not
yet been converted to be recoginized by Gnu C. Some, which couldn't be
located, are assigned names based on the DEC test suite tests which
raise them. */
#define SS$_ACCVIO 12
#define SS$_DEBUG 1132
#define SS$_INTDIV 1156
#define SS$_HPARITH 1284
#define SS$_STKOVF 1364
#define SS$_RESIGNAL 2328
#define MTH$_FLOOVEMAT 1475268 /* Some ACVC_21 CXA tests */
#define SS$_CE24VRU 3253636 /* Write to unopened file */
#define SS$_C980VTE 3246436 /* AST requests time slice */
#define CMA$_EXIT_THREAD 4227492
#define CMA$_EXCCOPLOS 4228108
#define CMA$_ALERTED 4227460
struct descriptor_s {unsigned short len, mbz; char *adr; };
long __gnat_error_handler (int *, void *);
long
__gnat_error_handler (int *sigargs, void *mechargs)
{
struct Exception_Data *exception = 0;
Exception_Code base_code;
char *msg = "";
char message[256];
long prvhnd;
struct descriptor_s msgdesc;
int msg_flag = 0x000f; /* 1 bit for each of the four message parts */
unsigned short outlen;
char curr_icb[544];
long curr_invo_handle;
long *mstate;
/* Resignaled condtions aren't effected by by pragma Import_Exception */
switch (sigargs[1])
{
case CMA$_EXIT_THREAD:
return SS$_RESIGNAL;
case SS$_DEBUG: /* Gdb attach, resignal to merge activate gdbstub. */
return SS$_RESIGNAL;
case 1409786: /* Nickerson bug #33 ??? */
return SS$_RESIGNAL;
case 1381050: /* Nickerson bug #33 ??? */
return SS$_RESIGNAL;
case 20480426: /* RDB-E-STREAM_EOF */
return SS$_RESIGNAL;
case 11829410: /* Resignalled as Use_Error for CE10VRC */
return SS$_RESIGNAL;
}
#ifdef IN_RTS
/* See if it's an imported exception. Beware that registered exceptions
are bound to their base code, with the severity bits masked off. */
base_code = Base_Code_In ((Exception_Code) sigargs [1]);
exception = Coded_Exception (base_code);
if (exception)
{
msgdesc.len = 256;
msgdesc.mbz = 0;
msgdesc.adr = message;
SYS$GETMSG (sigargs[1], &outlen, &msgdesc, msg_flag, 0);
message[outlen] = 0;
msg = message;
exception->Name_Length = 19;
/* The full name really should be get sys$getmsg returns. ??? */
exception->Full_Name = "IMPORTED_EXCEPTION";
exception->Import_Code = base_code;
}
#endif
if (exception == 0)
switch (sigargs[1])
{
case SS$_ACCVIO:
if (sigargs[3] == 0)
{
exception = &constraint_error;
msg = "access zero";
}
else
{
exception = &storage_error;
msg = "stack overflow (or erroneous memory access)";
}
break;
case SS$_STKOVF:
exception = &storage_error;
msg = "stack overflow";
break;
case SS$_INTDIV:
exception = &constraint_error;
msg = "division by zero";
break;
case SS$_HPARITH:
#ifndef IN_RTS
return SS$_RESIGNAL; /* toplev.c handles for compiler */
#else
{
exception = &constraint_error;
msg = "arithmetic error";
}
#endif
break;
case MTH$_FLOOVEMAT:
exception = &constraint_error;
msg = "floating overflow in math library";
break;
case SS$_CE24VRU:
exception = &constraint_error;
msg = "";
break;
case SS$_C980VTE:
exception = &program_error;
msg = "";
break;
default:
#ifndef IN_RTS
exception = &program_error;
#else
/* User programs expect Non_Ada_Error to be raised, reference
DEC Ada test CXCONDHAN. */
exception = &Non_Ada_Error;
#endif
msgdesc.len = 256;
msgdesc.mbz = 0;
msgdesc.adr = message;
SYS$GETMSG (sigargs[1], &outlen, &msgdesc, msg_flag, 0);
message[outlen] = 0;
msg = message;
break;
}
mstate = (long *) (*Get_Machine_State_Addr) ();
if (mstate != 0)
{
lib_get_curr_invo_context (&curr_icb);
lib_get_prev_invo_context (&curr_icb);
lib_get_prev_invo_context (&curr_icb);
curr_invo_handle = lib_get_invo_handle (&curr_icb);
*mstate = curr_invo_handle;
}
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler (void)
{
long prvhnd;
#if defined (IN_RTS) && !defined (__IA64)
char *c;
c = (char *) xmalloc (2049);
__gnat_error_prehandler_stack = &c[2048];
/* __gnat_error_prehandler is an assembly function. */
SYS$SETEXV (1, __gnat_error_prehandler, 3, &prvhnd);
#else
SYS$SETEXV (1, __gnat_error_handler, 3, &prvhnd);
#endif
__gnat_handler_installed = 1;
}
void
__gnat_initialize(void *eh ATTRIBUTE_UNUSED)
{
}
/*************************************************/
/* __gnat_initialize (FreeBSD version) */
/*************************************************/
#elif defined (__FreeBSD__)
#include <signal.h>
#include <unistd.h>
static void __gnat_error_handler (int, int, struct sigcontext *);
static void
__gnat_error_handler (int sig, int code __attribute__ ((unused)),
struct sigcontext *sc __attribute__ ((unused)))
{
struct Exception_Data *exception;
const char *msg;
switch (sig)
{
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
case SIGILL:
exception = &constraint_error;
msg = "SIGILL";
break;
case SIGSEGV:
exception = &storage_error;
msg = "stack overflow or erroneous memory access";
break;
case SIGBUS:
exception = &constraint_error;
msg = "SIGBUS";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
Raise_From_Signal_Handler (exception, msg);
}
void
__gnat_install_handler ()
{
struct sigaction act;
/* Set up signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER | SA_RESTART;
(void) sigemptyset (&act.sa_mask);
(void) sigaction (SIGILL, &act, NULL);
(void) sigaction (SIGFPE, &act, NULL);
(void) sigaction (SIGSEGV, &act, NULL);
(void) sigaction (SIGBUS, &act, NULL);
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
__gnat_install_handler ();
/* XXX - Initialize floating-point coprocessor. This call is
needed because FreeBSD defaults to 64-bit precision instead
of 80-bit precision? We require the full precision for
proper operation, given that we have set Max_Digits etc
with this in mind */
__gnat_init_float ();
}
/***************************************/
/* __gnat_initialize (VXWorks Version) */
/***************************************/
#elif defined(__vxworks)
#include <signal.h>
#include <taskLib.h>
#include <intLib.h>
#include <iv.h>
#ifdef VTHREADS
#include "private/vThreadsP.h"
#endif
extern int __gnat_inum_to_ivec (int);
static void __gnat_error_handler (int, int, struct sigcontext *);
void __gnat_map_signal (int);
#ifndef __alpha_vxworks
/* getpid is used by s-parint.adb, but is not defined by VxWorks, except
on Alpha VxWorks */
extern long getpid (void);
long
getpid (void)
{
return taskIdSelf ();
}
#endif
/* This is needed by the GNAT run time to handle Vxworks interrupts */
int
__gnat_inum_to_ivec (int num)
{
return INUM_TO_IVEC (num);
}
/* VxWorks expects the field excCnt to be zeroed when a signal is handled.
The VxWorks version of longjmp does this; gcc's builtin_longjmp does not */
void
__gnat_clear_exception_count (void)
{
#ifdef VTHREADS
WIND_TCB *currentTask = (WIND_TCB *) taskIdSelf();
currentTask->vThreads.excCnt = 0;
#endif
}
/* Exported to 5zintman.adb in order to handle different signal
to exception mappings in different VxWorks versions */
void
__gnat_map_signal (int sig)
{
struct Exception_Data *exception;
char *msg;
switch (sig)
{
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
#ifdef VTHREADS
case SIGILL:
exception = &constraint_error;
msg = "Floating point exception or SIGILL";
break;
case SIGSEGV:
exception = &storage_error;
msg = "SIGSEGV: possible stack overflow";
break;
case SIGBUS:
exception = &storage_error;
msg = "SIGBUS: possible stack overflow";
break;
#else
case SIGILL:
exception = &constraint_error;
msg = "SIGILL";
break;
case SIGSEGV:
exception = &program_error;
msg = "SIGSEGV";
break;
case SIGBUS:
exception = &program_error;
msg = "SIGBUS";
break;
#endif
default:
exception = &program_error;
msg = "unhandled signal";
}
__gnat_clear_exception_count ();
Raise_From_Signal_Handler (exception, msg);
}
static void
__gnat_error_handler (int sig, int code, struct sigcontext *sc)
{
sigset_t mask;
int result;
/* VxWorks will always mask out the signal during the signal handler and
will reenable it on a longjmp. GNAT does not generate a longjmp to
return from a signal handler so the signal will still be masked unless
we unmask it. */
sigprocmask (SIG_SETMASK, NULL, &mask);
sigdelset (&mask, sig);
sigprocmask (SIG_SETMASK, &mask, NULL);
__gnat_map_signal (sig);
}
void
__gnat_install_handler (void)
{
struct sigaction act;
/* Setup signal handler to map synchronous signals to appropriate
exceptions. Make sure that the handler isn't interrupted by another
signal that might cause a scheduling event! */
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_SIGINFO | SA_ONSTACK;
sigemptyset (&act.sa_mask);
/* For VxWorks, install all signal handlers, since pragma Interrupt_State
applies to vectored hardware interrupts, not signals */
sigaction (SIGFPE, &act, NULL);
sigaction (SIGILL, &act, NULL);
sigaction (SIGSEGV, &act, NULL);
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
#define HAVE_GNAT_INIT_FLOAT
void
__gnat_init_float (void)
{
/* Disable overflow/underflow exceptions on the PPC processor, this is needed
to get correct Ada semantics. Note that for AE653 vThreads, the HW
overflow settings are an OS configuration issue. The instructions
below have no effect */
#if defined (_ARCH_PPC) && !defined (_SOFT_FLOAT) && !defined (VTHREADS)
asm ("mtfsb0 25");
asm ("mtfsb0 26");
#endif
/* Similarily for sparc64. Achieved by masking bits in the Trap Enable Mask
field of the Floating-point Status Register (see the Sparc Architecture
Manual Version 9, p 48). */
#if defined (sparc64)
#define FSR_TEM_NVM (1 << 27) /* Invalid operand */
#define FSR_TEM_OFM (1 << 26) /* Overflow */
#define FSR_TEM_UFM (1 << 25) /* Underflow */
#define FSR_TEM_DZM (1 << 24) /* Division by Zero */
#define FSR_TEM_NXM (1 << 23) /* Inexact result */
{
unsigned int fsr;
__asm__("st %%fsr, %0" : "=m" (fsr));
fsr &= ~(FSR_TEM_OFM | FSR_TEM_UFM);
__asm__("ld %0, %%fsr" : : "m" (fsr));
}
#endif
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
__gnat_init_float ();
/* On targets where we might be using the ZCX scheme, we need to register
the frame tables.
For applications loaded as a set of "modules", the crtstuff objects
linked in (crtbegin/end) are tailored to provide this service a-la C++
constructor fashion, typically triggered by the VxWorks loader. This is
achieved by way of a special variable declaration in the crt object, the
name of which has been deduced by analyzing the output of the "munching"
step documented for C++. The de-registration is handled symetrically,
a-la C++ destructor fashion and typically triggered by the dynamic
unloader. Note that since the tables shall be registered against a
common datastructure, libgcc should be one of the modules (vs beeing
partially linked against all the others at build time) and shall be
loaded first.
For applications linked with the kernel, the scheme above would lead to
duplicated symbols because the VxWorks kernel build "munches" by default.
To prevent those conflicts, we link against crtbegin/endS objects that
don't include the special variable and directly call the appropriate
function here. We'll never unload that, so there is no de-registration to
worry about.
For whole applications loaded as a single module, we may use one scheme
or the other, except for the mixed Ada/C++ case in which the first scheme
would fail for the same reason as in the linked-with-kernel situation.
We can differentiate by looking at the __module_has_ctors value provided
by each class of crt objects. As of today, selecting the crt set with the
ctors/dtors capabilities (first scheme above) is triggered by adding
"-dynamic" to the gcc *link* command line options. Selecting the other
set of crt objects is achieved by "-static" instead.
This is a first approach, tightly synchronized with a number of GCC
configuration and crtstuff changes. We need to ensure that those changes
are there to activate this circuitry. */
#if (__GNUC__ >= 3) && (defined (_ARCH_PPC) || defined (__ppc))
{
/* The scheme described above is only useful for the actual ZCX case, and
we don't want any reference to the crt provided symbols otherwise. We
may not link with any of the crt objects in the non-ZCX case, e.g. from
documented procedures instructing the use of -nostdlib, and references
to the ctors symbols here would just remain unsatisfied.
We have no way to avoid those references in the right conditions in this
C module, because we have nothing like a IN_ZCX_RTS macro. This aspect
is then deferred to an Ada routine, which can do that based on a test
against a constant System flag value. */
extern void __gnat_vxw_setup_for_eh (void);
__gnat_vxw_setup_for_eh ();
}
#endif
}
/********************************/
/* __gnat_initialize for NetBSD */
/********************************/
#elif defined(__NetBSD__)
#include <signal.h>
#include <unistd.h>
static void
__gnat_error_handler (int sig)
{
struct Exception_Data *exception;
const char *msg;
switch(sig)
{
case SIGFPE:
exception = &constraint_error;
msg = "SIGFPE";
break;
case SIGILL:
exception = &constraint_error;
msg = "SIGILL";
break;
case SIGSEGV:
exception = &storage_error;
msg = "stack overflow or erroneous memory access";
break;
case SIGBUS:
exception = &constraint_error;
msg = "SIGBUS";
break;
default:
exception = &program_error;
msg = "unhandled signal";
}
Raise_From_Signal_Handler(exception, msg);
}
void
__gnat_install_handler(void)
{
struct sigaction act;
act.sa_handler = __gnat_error_handler;
act.sa_flags = SA_NODEFER | SA_RESTART;
sigemptyset (&act.sa_mask);
/* Do not install handlers if interrupt state is "System" */
if (__gnat_get_interrupt_state (SIGFPE) != 's')
sigaction (SIGFPE, &act, NULL);
if (__gnat_get_interrupt_state (SIGILL) != 's')
sigaction (SIGILL, &act, NULL);
if (__gnat_get_interrupt_state (SIGSEGV) != 's')
sigaction (SIGSEGV, &act, NULL);
if (__gnat_get_interrupt_state (SIGBUS) != 's')
sigaction (SIGBUS, &act, NULL);
__gnat_handler_installed = 1;
}
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
__gnat_install_handler ();
__gnat_init_float ();
}
#else
/* For all other versions of GNAT, the initialize routine and handler
installation do nothing */
/***************************************/
/* __gnat_initialize (Default Version) */
/***************************************/
void
__gnat_initialize (void *eh ATTRIBUTE_UNUSED)
{
}
/********************************************/
/* __gnat_install_handler (Default Version) */
/********************************************/
void
__gnat_install_handler (void)
{
__gnat_handler_installed = 1;
}
#endif
/*********************/
/* __gnat_init_float */
/*********************/
/* This routine is called as each process thread is created, for possible
initialization of the FP processor. This version is used under INTERIX,
WIN32 and could be used under OS/2 */
#if defined (_WIN32) || defined (__INTERIX) || defined (__EMX__) \
|| defined (__Lynx__) || defined(__NetBSD__) || defined(__FreeBSD__)
#define HAVE_GNAT_INIT_FLOAT
void
__gnat_init_float (void)
{
#if defined (__i386__) || defined (i386)
/* This is used to properly initialize the FPU on an x86 for each
process thread. */
asm ("finit");
#endif /* Defined __i386__ */
}
#endif
#ifndef HAVE_GNAT_INIT_FLOAT
/* All targets without a specific __gnat_init_float will use an empty one */
void
__gnat_init_float (void)
{
}
#endif