blob: 70c8f35278c6a92fdae74e27949a255f60da281f [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_KEYS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
package body Ada.Containers.Red_Black_Trees.Generic_Keys is
package Ops renames Tree_Operations;
-------------
-- Ceiling --
-------------
-- AKA Lower_Bound
function Ceiling (Tree : Tree_Type; Key : Key_Type) return Node_Access is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= Ops.Null_Node loop
if Is_Greater_Key_Node (Key, X) then
X := Ops.Right (X);
else
Y := X;
X := Ops.Left (X);
end if;
end loop;
return Y;
end Ceiling;
----------
-- Find --
----------
function Find (Tree : Tree_Type; Key : Key_Type) return Node_Access is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= Ops.Null_Node loop
if Is_Greater_Key_Node (Key, X) then
X := Ops.Right (X);
else
Y := X;
X := Ops.Left (X);
end if;
end loop;
if Y = Ops.Null_Node then
return Ops.Null_Node;
end if;
if Is_Less_Key_Node (Key, Y) then
return Ops.Null_Node;
end if;
return Y;
end Find;
-----------
-- Floor --
-----------
function Floor (Tree : Tree_Type; Key : Key_Type) return Node_Access is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= Ops.Null_Node loop
if Is_Less_Key_Node (Key, X) then
X := Ops.Left (X);
else
Y := X;
X := Ops.Right (X);
end if;
end loop;
return Y;
end Floor;
--------------------------------
-- Generic_Conditional_Insert --
--------------------------------
procedure Generic_Conditional_Insert
(Tree : in out Tree_Type;
Key : Key_Type;
Node : out Node_Access;
Success : out Boolean)
is
Y : Node_Access := Ops.Null_Node;
X : Node_Access := Tree.Root;
begin
Success := True;
while X /= Ops.Null_Node loop
Y := X;
Success := Is_Less_Key_Node (Key, X);
if Success then
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
Node := Y;
if Success then
if Node = Tree.First then
Insert_Post (Tree, X, Y, Key, Node);
return;
end if;
Node := Ops.Previous (Node);
end if;
if Is_Greater_Key_Node (Key, Node) then
Insert_Post (Tree, X, Y, Key, Node);
Success := True;
return;
end if;
Success := False;
end Generic_Conditional_Insert;
------------------------------------------
-- Generic_Conditional_Insert_With_Hint --
------------------------------------------
procedure Generic_Conditional_Insert_With_Hint
(Tree : in out Tree_Type;
Position : Node_Access;
Key : Key_Type;
Node : out Node_Access;
Success : out Boolean)
is
begin
if Position = Ops.Null_Node then -- largest
if Tree.Length > 0
and then Is_Greater_Key_Node (Key, Tree.Last)
then
Insert_Post (Tree, Ops.Null_Node, Tree.Last, Key, Node);
Success := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Success);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
if Is_Less_Key_Node (Key, Position) then
if Position = Tree.First then
Insert_Post (Tree, Position, Position, Key, Node);
Success := True;
return;
end if;
declare
Before : constant Node_Access := Ops.Previous (Position);
begin
if Is_Greater_Key_Node (Key, Before) then
if Ops.Right (Before) = Ops.Null_Node then
Insert_Post (Tree, Ops.Null_Node, Before, Key, Node);
else
Insert_Post (Tree, Position, Position, Key, Node);
end if;
Success := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Success);
end if;
end;
return;
end if;
if Is_Greater_Key_Node (Key, Position) then
if Position = Tree.Last then
Insert_Post (Tree, Ops.Null_Node, Tree.Last, Key, Node);
Success := True;
return;
end if;
declare
After : constant Node_Access := Ops.Next (Position);
begin
if Is_Less_Key_Node (Key, After) then
if Ops.Right (Position) = Ops.Null_Node then
Insert_Post (Tree, Ops.Null_Node, Position, Key, Node);
else
Insert_Post (Tree, After, After, Key, Node);
end if;
Success := True;
else
Conditional_Insert_Sans_Hint (Tree, Key, Node, Success);
end if;
end;
return;
end if;
Node := Position;
Success := False;
end Generic_Conditional_Insert_With_Hint;
-------------------------
-- Generic_Insert_Post --
-------------------------
procedure Generic_Insert_Post
(Tree : in out Tree_Type;
X, Y : Node_Access;
Key : Key_Type;
Z : out Node_Access)
is
subtype Length_Subtype is Count_Type range 0 .. Count_Type'Last - 1;
New_Length : constant Count_Type := Length_Subtype'(Tree.Length) + 1;
begin
if Y = Ops.Null_Node
or else X /= Ops.Null_Node
or else Is_Less_Key_Node (Key, Y)
then
pragma Assert (Y = Ops.Null_Node
or else Ops.Left (Y) = Ops.Null_Node);
-- Delay allocation as long as we can, in order to defend
-- against exceptions propagated by relational operators.
Z := New_Node;
pragma Assert (Z /= Ops.Null_Node);
pragma Assert (Ops.Color (Z) = Red);
if Y = Ops.Null_Node then
pragma Assert (Tree.Length = 0);
pragma Assert (Tree.Root = Ops.Null_Node);
pragma Assert (Tree.First = Ops.Null_Node);
pragma Assert (Tree.Last = Ops.Null_Node);
Tree.Root := Z;
Tree.First := Z;
Tree.Last := Z;
else
Ops.Set_Left (Y, Z);
if Y = Tree.First then
Tree.First := Z;
end if;
end if;
else
pragma Assert (Ops.Right (Y) = Ops.Null_Node);
-- Delay allocation as long as we can, in order to defend
-- against exceptions propagated by relational operators.
Z := New_Node;
pragma Assert (Z /= Ops.Null_Node);
pragma Assert (Ops.Color (Z) = Red);
Ops.Set_Right (Y, Z);
if Y = Tree.Last then
Tree.Last := Z;
end if;
end if;
Ops.Set_Parent (Z, Y);
Ops.Rebalance_For_Insert (Tree, Z);
Tree.Length := New_Length;
end Generic_Insert_Post;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration
(Tree : Tree_Type;
Key : Key_Type)
is
procedure Iterate (Node : Node_Access);
-------------
-- Iterate --
-------------
procedure Iterate (Node : Node_Access) is
N : Node_Access := Node;
begin
while N /= Ops.Null_Node loop
if Is_Less_Key_Node (Key, N) then
N := Ops.Left (N);
elsif Is_Greater_Key_Node (Key, N) then
N := Ops.Right (N);
else
Iterate (Ops.Left (N));
Process (N);
N := Ops.Right (N);
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration
(Tree : Tree_Type;
Key : Key_Type)
is
procedure Iterate (Node : Node_Access);
-------------
-- Iterate --
-------------
procedure Iterate (Node : Node_Access) is
N : Node_Access := Node;
begin
while N /= Ops.Null_Node loop
if Is_Less_Key_Node (Key, N) then
N := Ops.Left (N);
elsif Is_Greater_Key_Node (Key, N) then
N := Ops.Right (N);
else
Iterate (Ops.Right (N));
Process (N);
N := Ops.Left (N);
end if;
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
----------------------------------
-- Generic_Unconditional_Insert --
----------------------------------
procedure Generic_Unconditional_Insert
(Tree : in out Tree_Type;
Key : Key_Type;
Node : out Node_Access)
is
Y : Node_Access := Ops.Null_Node;
X : Node_Access := Tree.Root;
begin
while X /= Ops.Null_Node loop
Y := X;
if Is_Less_Key_Node (Key, X) then
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
Insert_Post (Tree, X, Y, Key, Node);
end Generic_Unconditional_Insert;
--------------------------------------------
-- Generic_Unconditional_Insert_With_Hint --
--------------------------------------------
procedure Generic_Unconditional_Insert_With_Hint
(Tree : in out Tree_Type;
Hint : Node_Access;
Key : Key_Type;
Node : out Node_Access)
is
-- TODO: verify this algorithm. It was (quickly) adapted it from the
-- same algorithm for conditional_with_hint. It may be that the test
-- Key > Hint should be something like a Key >= Hint, to handle the
-- case when Hint is The Last Item of A (Contiguous) sequence of
-- Equivalent Items. (The Key < Hint Test is probably OK. It is not
-- clear that you can use Key <= Hint, since new items are always
-- inserted last in the sequence of equivalent items.) ???
begin
if Hint = Ops.Null_Node then -- largest
if Tree.Length > 0
and then Is_Greater_Key_Node (Key, Tree.Last)
then
Insert_Post (Tree, Ops.Null_Node, Tree.Last, Key, Node);
else
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end if;
return;
end if;
pragma Assert (Tree.Length > 0);
if Is_Less_Key_Node (Key, Hint) then
if Hint = Tree.First then
Insert_Post (Tree, Hint, Hint, Key, Node);
return;
end if;
declare
Before : constant Node_Access := Ops.Previous (Hint);
begin
if Is_Greater_Key_Node (Key, Before) then
if Ops.Right (Before) = Ops.Null_Node then
Insert_Post (Tree, Ops.Null_Node, Before, Key, Node);
else
Insert_Post (Tree, Hint, Hint, Key, Node);
end if;
else
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end if;
end;
return;
end if;
if Is_Greater_Key_Node (Key, Hint) then
if Hint = Tree.Last then
Insert_Post (Tree, Ops.Null_Node, Tree.Last, Key, Node);
return;
end if;
declare
After : constant Node_Access := Ops.Next (Hint);
begin
if Is_Less_Key_Node (Key, After) then
if Ops.Right (Hint) = Ops.Null_Node then
Insert_Post (Tree, Ops.Null_Node, Hint, Key, Node);
else
Insert_Post (Tree, After, After, Key, Node);
end if;
else
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end if;
end;
return;
end if;
Unconditional_Insert_Sans_Hint (Tree, Key, Node);
end Generic_Unconditional_Insert_With_Hint;
-----------------
-- Upper_Bound --
-----------------
function Upper_Bound
(Tree : Tree_Type;
Key : Key_Type) return Node_Access
is
Y : Node_Access;
X : Node_Access := Tree.Root;
begin
while X /= Ops.Null_Node loop
if Is_Less_Key_Node (Key, X) then
Y := X;
X := Ops.Left (X);
else
X := Ops.Right (X);
end if;
end loop;
return Y;
end Upper_Bound;
end Ada.Containers.Red_Black_Trees.Generic_Keys;