blob: 20712960bf955b9d60a574bc1bd9b63882db5de6 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.ORDERED_MULTISETS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with Ada.Containers.Red_Black_Trees.Generic_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
with Ada.Containers.Red_Black_Trees.Generic_Keys;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
with System; use type System.Address;
package body Ada.Containers.Ordered_Multisets is
use Red_Black_Trees;
type Node_Type is limited record
Parent : Node_Access;
Left : Node_Access;
Right : Node_Access;
Color : Red_Black_Trees.Color_Type := Red;
Element : Element_Type;
end record;
-----------------------------
-- Node Access Subprograms --
-----------------------------
-- These subprograms provide a functional interface to access fields
-- of a node, and a procedural interface for modifying these values.
function Color (Node : Node_Access) return Color_Type;
pragma Inline (Color);
function Left (Node : Node_Access) return Node_Access;
pragma Inline (Left);
function Parent (Node : Node_Access) return Node_Access;
pragma Inline (Parent);
function Right (Node : Node_Access) return Node_Access;
pragma Inline (Right);
procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
pragma Inline (Set_Parent);
procedure Set_Left (Node : Node_Access; Left : Node_Access);
pragma Inline (Set_Left);
procedure Set_Right (Node : Node_Access; Right : Node_Access);
pragma Inline (Set_Right);
procedure Set_Color (Node : Node_Access; Color : Color_Type);
pragma Inline (Set_Color);
-----------------------
-- Local Subprograms --
-----------------------
function Copy_Node (Source : Node_Access) return Node_Access;
pragma Inline (Copy_Node);
function Copy_Tree (Source_Root : Node_Access) return Node_Access;
procedure Delete_Tree (X : in out Node_Access);
procedure Insert_With_Hint
(Dst_Tree : in out Tree_Type;
Dst_Hint : Node_Access;
Src_Node : Node_Access;
Dst_Node : out Node_Access);
function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
pragma Inline (Is_Equal_Node_Node);
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Greater_Element_Node);
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Less_Element_Node);
function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
pragma Inline (Is_Less_Node_Node);
--------------------------
-- Local Instantiations --
--------------------------
package Tree_Operations is
new Red_Black_Trees.Generic_Operations
(Tree_Types => Tree_Types,
Null_Node => Node_Access'(null));
use Tree_Operations;
procedure Free is
new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
function Is_Equal is
new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
package Element_Keys is
new Red_Black_Trees.Generic_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Element_Type,
Is_Less_Key_Node => Is_Less_Element_Node,
Is_Greater_Key_Node => Is_Greater_Element_Node);
package Set_Ops is
new Generic_Set_Operations
(Tree_Operations => Tree_Operations,
Insert_With_Hint => Insert_With_Hint,
Copy_Tree => Copy_Tree,
Delete_Tree => Delete_Tree,
Is_Less => Is_Less_Node_Node,
Free => Free);
---------
-- "<" --
---------
function "<" (Left, Right : Cursor) return Boolean is
begin
return Left.Node.Element < Right.Node.Element;
end "<";
function "<" (Left : Cursor; Right : Element_Type)
return Boolean is
begin
return Left.Node.Element < Right;
end "<";
function "<" (Left : Element_Type; Right : Cursor)
return Boolean is
begin
return Left < Right.Node.Element;
end "<";
---------
-- "=" --
---------
function "=" (Left, Right : Set) return Boolean is
begin
if Left'Address = Right'Address then
return True;
end if;
return Is_Equal (Left.Tree, Right.Tree);
end "=";
---------
-- ">" --
---------
function ">" (Left, Right : Cursor) return Boolean is
begin
-- L > R same as R < L
return Right.Node.Element < Left.Node.Element;
end ">";
function ">" (Left : Cursor; Right : Element_Type)
return Boolean is
begin
return Right < Left.Node.Element;
end ">";
function ">" (Left : Element_Type; Right : Cursor)
return Boolean is
begin
return Right.Node.Element < Left;
end ">";
------------
-- Adjust --
------------
procedure Adjust (Container : in out Set) is
Tree : Tree_Type renames Container.Tree;
N : constant Count_Type := Tree.Length;
X : constant Node_Access := Tree.Root;
begin
if N = 0 then
pragma Assert (X = null);
return;
end if;
Tree := (Length => 0, others => null);
Tree.Root := Copy_Tree (X);
Tree.First := Min (Tree.Root);
Tree.Last := Max (Tree.Root);
Tree.Length := N;
end Adjust;
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Item : Element_Type) return Cursor is
Node : constant Node_Access :=
Element_Keys.Ceiling (Container.Tree, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Ceiling;
-----------
-- Clear --
-----------
procedure Clear (Container : in out Set) is
Tree : Tree_Type renames Container.Tree;
Root : Node_Access := Tree.Root;
begin
Tree := (Length => 0, others => null);
Delete_Tree (Root);
end Clear;
-----------
-- Color --
-----------
function Color (Node : Node_Access) return Color_Type is
begin
return Node.Color;
end Color;
--------------
-- Contains --
--------------
function Contains (Container : Set; Item : Element_Type) return Boolean is
begin
return Find (Container, Item) /= No_Element;
end Contains;
---------------
-- Copy_Node --
---------------
function Copy_Node (Source : Node_Access) return Node_Access is
Target : constant Node_Access :=
new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Source.Color,
Element => Source.Element);
begin
return Target;
end Copy_Node;
---------------
-- Copy_Tree --
---------------
function Copy_Tree (Source_Root : Node_Access) return Node_Access is
Target_Root : Node_Access := Copy_Node (Source_Root);
P, X : Node_Access;
begin
if Source_Root.Right /= null then
Target_Root.Right := Copy_Tree (Source_Root.Right);
Target_Root.Right.Parent := Target_Root;
end if;
P := Target_Root;
X := Source_Root.Left;
while X /= null loop
declare
Y : Node_Access := Copy_Node (X);
begin
P.Left := Y;
Y.Parent := P;
if X.Right /= null then
Y.Right := Copy_Tree (X.Right);
Y.Right.Parent := Y;
end if;
P := Y;
X := X.Left;
end;
end loop;
return Target_Root;
exception
when others =>
Delete_Tree (Target_Root);
raise;
end Copy_Tree;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Item : Element_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
X : Node_Access;
begin
if Node = Done then
raise Constraint_Error;
end if;
loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
exit when Node = Done;
end loop;
end Delete;
procedure Delete (Container : in out Set; Position : in out Cursor) is
begin
if Position = No_Element then
return;
end if;
if Position.Container /= Set_Access'(Container'Unchecked_Access) then
raise Program_Error;
end if;
Delete_Node_Sans_Free (Container.Tree, Position.Node);
Free (Position.Node);
Position.Container := null;
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out Set) is
Tree : Tree_Type renames Container.Tree;
X : Node_Access := Tree.First;
begin
if X = null then
return;
end if;
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out Set) is
Tree : Tree_Type renames Container.Tree;
X : Node_Access := Tree.Last;
begin
if X = null then
return;
end if;
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end Delete_Last;
-----------------
-- Delete_Tree --
-----------------
procedure Delete_Tree (X : in out Node_Access) is
Y : Node_Access;
begin
while X /= null loop
Y := X.Right;
Delete_Tree (Y);
Y := X.Left;
Free (X);
X := Y;
end loop;
end Delete_Tree;
----------------
-- Difference --
----------------
procedure Difference (Target : in out Set; Source : Set) is
begin
if Target'Address = Source'Address then
Clear (Target);
return;
end if;
Set_Ops.Difference (Target.Tree, Source.Tree);
end Difference;
function Difference (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Empty_Set;
end if;
declare
Tree : constant Tree_Type :=
Set_Ops.Difference (Left.Tree, Right.Tree);
begin
return (Controlled with Tree);
end;
end Difference;
-------------
-- Element --
-------------
function Element (Position : Cursor) return Element_Type is
begin
return Position.Node.Element;
end Element;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Item : Element_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Element_Keys.Ceiling (Tree, Item);
Done : constant Node_Access := Element_Keys.Upper_Bound (Tree, Item);
X : Node_Access;
begin
while Node /= Done loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end loop;
end Exclude;
----------
-- Find --
----------
function Find (Container : Set; Item : Element_Type) return Cursor is
Node : constant Node_Access :=
Element_Keys.Find (Container.Tree, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Find;
-----------
-- First --
-----------
function First (Container : Set) return Cursor is
begin
if Container.Tree.First = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Container.Tree.First);
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : Set) return Element_Type is
begin
return Container.Tree.First.Element;
end First_Element;
-----------
-- Floor --
-----------
function Floor (Container : Set; Item : Element_Type) return Cursor is
Node : constant Node_Access :=
Element_Keys.Floor (Container.Tree, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Floor;
------------------
-- Generic_Keys --
------------------
package body Generic_Keys is
-----------------------
-- Local Subprograms --
-----------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Greater_Key_Node);
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean;
pragma Inline (Is_Less_Key_Node);
--------------------------
-- Local_Instantiations --
--------------------------
package Key_Keys is
new Red_Black_Trees.Generic_Keys
(Tree_Operations => Tree_Operations,
Key_Type => Key_Type,
Is_Less_Key_Node => Is_Less_Key_Node,
Is_Greater_Key_Node => Is_Greater_Key_Node);
---------
-- "<" --
---------
function "<" (Left : Key_Type; Right : Cursor) return Boolean is
begin
return Left < Right.Node.Element;
end "<";
function "<" (Left : Cursor; Right : Key_Type) return Boolean is
begin
return Right > Left.Node.Element;
end "<";
---------
-- ">" --
---------
function ">" (Left : Cursor; Right : Key_Type) return Boolean is
begin
return Right < Left.Node.Element;
end ">";
function ">" (Left : Key_Type; Right : Cursor) return Boolean is
begin
return Left > Right.Node.Element;
end ">";
-------------
-- Ceiling --
-------------
function Ceiling (Container : Set; Key : Key_Type) return Cursor is
Node : constant Node_Access :=
Key_Keys.Ceiling (Container.Tree, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Ceiling;
----------------------------
-- Checked_Update_Element --
----------------------------
procedure Checked_Update_Element
(Container : in out Set;
Position : Cursor;
Process : not null access procedure (Element : in out Element_Type))
is
begin
if Position.Container = null then
raise Constraint_Error;
end if;
if Position.Container /= Set_Access'(Container'Unchecked_Access) then
raise Program_Error;
end if;
declare
Old_Key : Key_Type renames Key (Position.Node.Element);
begin
Process (Position.Node.Element);
if Old_Key < Position.Node.Element
or else Old_Key > Position.Node.Element
then
null;
else
return;
end if;
end;
Delete_Node_Sans_Free (Container.Tree, Position.Node);
Do_Insert : declare
Result : Node_Access;
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Key_Keys.Generic_Insert_Post (New_Node);
procedure Insert is
new Key_Keys.Generic_Unconditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
begin
return Position.Node;
end New_Node;
-- Start of processing for Do_Insert
begin
Insert
(Tree => Container.Tree,
Key => Key (Position.Node.Element),
Node => Result);
pragma Assert (Result = Position.Node);
end Do_Insert;
end Checked_Update_Element;
--------------
-- Contains --
--------------
function Contains (Container : Set; Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
------------
-- Delete --
------------
procedure Delete (Container : in out Set; Key : Key_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
X : Node_Access;
begin
if Node = Done then
raise Constraint_Error;
end if;
loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
exit when Node = Done;
end loop;
end Delete;
-------------
-- Element --
-------------
function Element (Container : Set; Key : Key_Type) return Element_Type is
Node : constant Node_Access :=
Key_Keys.Find (Container.Tree, Key);
begin
return Node.Element;
end Element;
-------------
-- Exclude --
-------------
procedure Exclude (Container : in out Set; Key : Key_Type) is
Tree : Tree_Type renames Container.Tree;
Node : Node_Access := Key_Keys.Ceiling (Tree, Key);
Done : constant Node_Access := Key_Keys.Upper_Bound (Tree, Key);
X : Node_Access;
begin
while Node /= Done loop
X := Node;
Node := Tree_Operations.Next (Node);
Tree_Operations.Delete_Node_Sans_Free (Tree, X);
Free (X);
end loop;
end Exclude;
----------
-- Find --
----------
function Find (Container : Set; Key : Key_Type) return Cursor is
Node : constant Node_Access :=
Key_Keys.Find (Container.Tree, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Find;
-----------
-- Floor --
-----------
function Floor (Container : Set; Key : Key_Type) return Cursor is
Node : constant Node_Access :=
Key_Keys.Floor (Container.Tree, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Floor;
-------------------------
-- Is_Greater_Key_Node --
-------------------------
function Is_Greater_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean is
begin
return Left > Right.Element;
end Is_Greater_Key_Node;
----------------------
-- Is_Less_Key_Node --
----------------------
function Is_Less_Key_Node
(Left : Key_Type;
Right : Node_Access) return Boolean is
begin
return Left < Right.Element;
end Is_Less_Key_Node;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : Set;
Key : Key_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Key_Keys.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
-- Start of processing for Iterate
begin
Local_Iterate (Container.Tree, Key);
end Iterate;
---------
-- Key --
---------
function Key (Position : Cursor) return Key_Type is
begin
return Key (Position.Node.Element);
end Key;
-------------
-- Replace --
-------------
-- In post-madision api:???
-- procedure Replace
-- (Container : in out Set;
-- Key : Key_Type;
-- New_Item : Element_Type)
-- is
-- Node : Node_Access := Key_Keys.Find (Container.Tree, Key);
-- begin
-- if Node = null then
-- raise Constraint_Error;
-- end if;
-- Replace_Node (Container, Node, New_Item);
-- end Replace;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : Set;
Key : Key_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Key_Keys.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (Container.Tree, Key);
end Reverse_Iterate;
end Generic_Keys;
-----------------
-- Has_Element --
-----------------
function Has_Element (Position : Cursor) return Boolean is
begin
return Position /= No_Element;
end Has_Element;
------------
-- Insert --
------------
procedure Insert (Container : in out Set; New_Item : Element_Type) is
Position : Cursor;
begin
Insert (Container, New_Item, Position);
end Insert;
procedure Insert
(Container : in out Set;
New_Item : Element_Type;
Position : out Cursor)
is
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Unconditional_Insert_Sans_Hint is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
Node : constant Node_Access :=
new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Red,
Element => New_Item);
begin
return Node;
end New_Node;
-- Start of processing for Insert
begin
Unconditional_Insert_Sans_Hint
(Container.Tree,
New_Item,
Position.Node);
Position.Container := Container'Unchecked_Access;
end Insert;
----------------------
-- Insert_With_Hint --
----------------------
procedure Insert_With_Hint
(Dst_Tree : in out Tree_Type;
Dst_Hint : Node_Access;
Src_Node : Node_Access;
Dst_Node : out Node_Access)
is
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Insert_Post is
new Element_Keys.Generic_Insert_Post (New_Node);
procedure Insert_Sans_Hint is
new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
procedure Local_Insert_With_Hint is
new Element_Keys.Generic_Unconditional_Insert_With_Hint
(Insert_Post,
Insert_Sans_Hint);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
Node : constant Node_Access :=
new Node_Type'(Parent => null,
Left => null,
Right => null,
Color => Red,
Element => Src_Node.Element);
begin
return Node;
end New_Node;
-- Start of processing for Insert_With_Hint
begin
Local_Insert_With_Hint
(Dst_Tree,
Dst_Hint,
Src_Node.Element,
Dst_Node);
end Insert_With_Hint;
------------------
-- Intersection --
------------------
procedure Intersection (Target : in out Set; Source : Set) is
begin
if Target'Address = Source'Address then
return;
end if;
Set_Ops.Intersection (Target.Tree, Source.Tree);
end Intersection;
function Intersection (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Left;
end if;
declare
Tree : constant Tree_Type :=
Set_Ops.Intersection (Left.Tree, Right.Tree);
begin
return (Controlled with Tree);
end;
end Intersection;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : Set) return Boolean is
begin
return Container.Tree.Length = 0;
end Is_Empty;
------------------------
-- Is_Equal_Node_Node --
------------------------
function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
begin
return L.Element = R.Element;
end Is_Equal_Node_Node;
-----------------------------
-- Is_Greater_Element_Node --
-----------------------------
function Is_Greater_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean
is
begin
-- e > node same as node < e
return Right.Element < Left;
end Is_Greater_Element_Node;
--------------------------
-- Is_Less_Element_Node --
--------------------------
function Is_Less_Element_Node
(Left : Element_Type;
Right : Node_Access) return Boolean
is
begin
return Left < Right.Element;
end Is_Less_Element_Node;
-----------------------
-- Is_Less_Node_Node --
-----------------------
function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
begin
return L.Element < R.Element;
end Is_Less_Node_Node;
---------------
-- Is_Subset --
---------------
function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
begin
if Subset'Address = Of_Set'Address then
return True;
end if;
return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
end Is_Subset;
-------------
-- Iterate --
-------------
procedure Iterate
(Container : Set;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Tree_Operations.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
-- Start of processing for Iterate
begin
Local_Iterate (Container.Tree);
end Iterate;
procedure Iterate
(Container : Set;
Item : Element_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Iterate is
new Element_Keys.Generic_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
-- Start of processing for Iterate
begin
Local_Iterate (Container.Tree, Item);
end Iterate;
----------
-- Last --
----------
function Last (Container : Set) return Cursor is
begin
if Container.Tree.Last = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Container.Tree.Last);
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : Set) return Element_Type is
begin
return Container.Tree.Last.Element;
end Last_Element;
----------
-- Left --
----------
function Left (Node : Node_Access) return Node_Access is
begin
return Node.Left;
end Left;
------------
-- Length --
------------
function Length (Container : Set) return Count_Type is
begin
return Container.Tree.Length;
end Length;
----------
-- Move --
----------
procedure Move (Target : in out Set; Source : in out Set) is
begin
if Target'Address = Source'Address then
return;
end if;
Move (Target => Target.Tree, Source => Source.Tree);
end Move;
----------
-- Next --
----------
procedure Next (Position : in out Cursor)
is
begin
Position := Next (Position);
end Next;
function Next (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
declare
Node : constant Node_Access :=
Tree_Operations.Next (Position.Node);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Position.Container, Node);
end;
end Next;
-------------
-- Overlap --
-------------
function Overlap (Left, Right : Set) return Boolean is
begin
if Left'Address = Right'Address then
return Left.Tree.Length /= 0;
end if;
return Set_Ops.Overlap (Left.Tree, Right.Tree);
end Overlap;
------------
-- Parent --
------------
function Parent (Node : Node_Access) return Node_Access is
begin
return Node.Parent;
end Parent;
--------------
-- Previous --
--------------
procedure Previous (Position : in out Cursor)
is
begin
Position := Previous (Position);
end Previous;
function Previous (Position : Cursor) return Cursor is
begin
if Position = No_Element then
return No_Element;
end if;
declare
Node : constant Node_Access :=
Tree_Operations.Previous (Position.Node);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Position.Container, Node);
end;
end Previous;
-------------------
-- Query_Element --
-------------------
procedure Query_Element
(Position : Cursor;
Process : not null access procedure (Element : Element_Type))
is
begin
Process (Position.Node.Element);
end Query_Element;
----------
-- Read --
----------
procedure Read
(Stream : access Root_Stream_Type'Class;
Container : out Set)
is
N : Count_Type'Base;
function New_Node return Node_Access;
pragma Inline (New_Node);
procedure Local_Read is new Tree_Operations.Generic_Read (New_Node);
--------------
-- New_Node --
--------------
function New_Node return Node_Access is
Node : Node_Access := new Node_Type;
begin
begin
Element_Type'Read (Stream, Node.Element);
exception
when others =>
Free (Node);
raise;
end;
return Node;
end New_Node;
-- Start of processing for Read
begin
Clear (Container);
Count_Type'Base'Read (Stream, N);
pragma Assert (N >= 0);
Local_Read (Container.Tree, N);
end Read;
-------------
-- Replace --
-------------
-- NOTE: from post-madison api ???
-- procedure Replace
-- (Container : in out Set;
-- Position : Cursor;
-- By : Element_Type)
-- is
-- begin
-- if Position.Container = null then
-- raise Constraint_Error;
-- end if;
-- if Position.Container /= Set_Access'(Container'Unchecked_Access) then
-- raise Program_Error;
-- end if;
-- Replace_Node (Container, Position.Node, By);
-- end Replace;
------------------
-- Replace_Node --
------------------
-- NOTE: from post-madison api ???
-- procedure Replace_Node
-- (Container : in out Set;
-- Position : Node_Access;
-- By : Element_Type)
-- is
-- Tree : Tree_Type renames Container.Tree;
-- Node : Node_Access := Position;
-- begin
-- if By < Node.Element
-- or else Node.Element < By
-- then
-- null;
-- else
-- begin
-- Node.Element := By;
-- exception
-- when others =>
-- Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
-- Free (Node);
-- raise;
-- end;
-- return;
-- end if;
-- Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
-- begin
-- Node.Element := By;
-- exception
-- when others =>
-- Free (Node);
-- raise;
-- end;
--
-- Do_Insert : declare
-- Result : Node_Access;
-- Success : Boolean;
-- function New_Node return Node_Access;
-- pragma Inline (New_Node);
-- procedure Insert_Post is
-- new Element_Keys.Generic_Insert_Post (New_Node);
--
-- procedure Insert is
-- new Element_Keys.Generic_Conditional_Insert (Insert_Post);
-- --------------
-- -- New_Node --
-- --------------
-- function New_Node return Node_Access is
-- begin
-- return Node;
-- end New_Node;
-- -- Start of processing for Do_Insert
-- begin
-- Insert
-- (Tree => Tree,
-- Key => Node.Element,
-- Node => Result,
-- Success => Success);
--
-- if not Success then
-- Free (Node);
-- raise Program_Error;
-- end if;
--
-- pragma Assert (Result = Node);
-- end Do_Insert;
-- end Replace_Node;
---------------------
-- Reverse_Iterate --
---------------------
procedure Reverse_Iterate
(Container : Set;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (Container.Tree);
end Reverse_Iterate;
procedure Reverse_Iterate
(Container : Set;
Item : Element_Type;
Process : not null access procedure (Position : Cursor))
is
procedure Process_Node (Node : Node_Access);
pragma Inline (Process_Node);
procedure Local_Reverse_Iterate is
new Element_Keys.Generic_Reverse_Iteration (Process_Node);
------------------
-- Process_Node --
------------------
procedure Process_Node (Node : Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
-- Start of processing for Reverse_Iterate
begin
Local_Reverse_Iterate (Container.Tree, Item);
end Reverse_Iterate;
-----------
-- Right --
-----------
function Right (Node : Node_Access) return Node_Access is
begin
return Node.Right;
end Right;
---------------
-- Set_Color --
---------------
procedure Set_Color (Node : Node_Access; Color : Color_Type) is
begin
Node.Color := Color;
end Set_Color;
--------------
-- Set_Left --
--------------
procedure Set_Left (Node : Node_Access; Left : Node_Access) is
begin
Node.Left := Left;
end Set_Left;
----------------
-- Set_Parent --
----------------
procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
begin
Node.Parent := Parent;
end Set_Parent;
---------------
-- Set_Right --
---------------
procedure Set_Right (Node : Node_Access; Right : Node_Access) is
begin
Node.Right := Right;
end Set_Right;
--------------------------
-- Symmetric_Difference --
--------------------------
procedure Symmetric_Difference (Target : in out Set; Source : Set) is
begin
if Target'Address = Source'Address then
Clear (Target);
return;
end if;
Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
end Symmetric_Difference;
function Symmetric_Difference (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Empty_Set;
end if;
declare
Tree : constant Tree_Type :=
Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
begin
return (Controlled with Tree);
end;
end Symmetric_Difference;
-----------
-- Union --
-----------
procedure Union (Target : in out Set; Source : Set) is
begin
if Target'Address = Source'Address then
return;
end if;
Set_Ops.Union (Target.Tree, Source.Tree);
end Union;
function Union (Left, Right : Set) return Set is
begin
if Left'Address = Right'Address then
return Left;
end if;
declare
Tree : constant Tree_Type :=
Set_Ops.Union (Left.Tree, Right.Tree);
begin
return (Controlled with Tree);
end;
end Union;
-----------
-- Write --
-----------
procedure Write
(Stream : access Root_Stream_Type'Class;
Container : Set)
is
procedure Process (Node : Node_Access);
pragma Inline (Process);
procedure Iterate is
new Tree_Operations.Generic_Iteration (Process);
-------------
-- Process --
-------------
procedure Process (Node : Node_Access) is
begin
Element_Type'Write (Stream, Node.Element);
end Process;
-- Start of processing for Write
begin
Count_Type'Base'Write (Stream, Container.Tree.Length);
Iterate (Container.Tree);
end Write;
end Ada.Containers.Ordered_Multisets;