blob: 58d04febfd1f3b9b700b3a39e6a7bc34362f7288 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.HASHED_SETS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the contents of the part following the private keyword. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- This unit has originally being developed by Matthew J Heaney. --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
with Ada.Containers.Hash_Tables.Generic_Operations;
pragma Elaborate_All (Ada.Containers.Hash_Tables.Generic_Operations);
with Ada.Containers.Hash_Tables.Generic_Keys;
pragma Elaborate_All (Ada.Containers.Hash_Tables.Generic_Keys);
with System; use type System.Address;
with Ada.Containers.Prime_Numbers;
with Ada.Finalization; use Ada.Finalization;
package body Ada.Containers.Hashed_Sets is
type Node_Type is
limited record
Element : Element_Type;
Next : Node_Access;
end record;
function Hash_Node
(Node : Node_Access) return Hash_Type;
pragma Inline (Hash_Node);
function Hash_Node
(Node : Node_Access) return Hash_Type is
begin
return Hash (Node.Element);
end Hash_Node;
function Next
(Node : Node_Access) return Node_Access;
pragma Inline (Next);
function Next
(Node : Node_Access) return Node_Access is
begin
return Node.Next;
end Next;
procedure Set_Next
(Node : Node_Access;
Next : Node_Access);
pragma Inline (Set_Next);
procedure Set_Next
(Node : Node_Access;
Next : Node_Access) is
begin
Node.Next := Next;
end Set_Next;
function Equivalent_Keys
(Key : Element_Type;
Node : Node_Access) return Boolean;
pragma Inline (Equivalent_Keys);
function Equivalent_Keys
(Key : Element_Type;
Node : Node_Access) return Boolean is
begin
return Equivalent_Keys (Key, Node.Element);
end Equivalent_Keys;
function Copy_Node
(Source : Node_Access) return Node_Access;
pragma Inline (Copy_Node);
function Copy_Node
(Source : Node_Access) return Node_Access is
Target : constant Node_Access :=
new Node_Type'(Element => Source.Element,
Next => null);
begin
return Target;
end Copy_Node;
procedure Free is
new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
package HT_Ops is
new Hash_Tables.Generic_Operations
(HT_Types => HT_Types,
Hash_Table_Type => Set,
Null_Node => null,
Hash_Node => Hash_Node,
Next => Next,
Set_Next => Set_Next,
Copy_Node => Copy_Node,
Free => Free);
package Element_Keys is
new Hash_Tables.Generic_Keys
(HT_Types => HT_Types,
HT_Type => Set,
Null_Node => null,
Next => Next,
Set_Next => Set_Next,
Key_Type => Element_Type,
Hash => Hash,
Equivalent_Keys => Equivalent_Keys);
procedure Adjust (Container : in out Set) renames HT_Ops.Adjust;
procedure Finalize (Container : in out Set) renames HT_Ops.Finalize;
function Find_Equal_Key
(R_Set : Set;
L_Node : Node_Access) return Boolean;
function Find_Equal_Key
(R_Set : Set;
L_Node : Node_Access) return Boolean is
R_Index : constant Hash_Type :=
Element_Keys.Index (R_Set, L_Node.Element);
R_Node : Node_Access := R_Set.Buckets (R_Index);
begin
loop
if R_Node = null then
return False;
end if;
if L_Node.Element = R_Node.Element then
-- pragma Assert (Is_Equal_Key (L_Node.Element, R_Node.Element));
return True;
end if;
R_Node := Next (R_Node);
end loop;
end Find_Equal_Key;
function Is_Equal is
new HT_Ops.Generic_Equal (Find_Equal_Key);
function "=" (Left, Right : Set) return Boolean renames Is_Equal;
function Length (Container : Set) return Count_Type is
begin
return Container.Length;
end Length;
function Is_Empty (Container : Set) return Boolean is
begin
return Container.Length = 0;
end Is_Empty;
procedure Clear (Container : in out Set) renames HT_Ops.Clear;
function Element (Position : Cursor) return Element_Type is
begin
return Position.Node.Element;
end Element;
procedure Query_Element
(Position : in Cursor;
Process : not null access procedure (Element : in Element_Type)) is
begin
Process (Position.Node.Element);
end Query_Element;
-- TODO:
-- procedure Replace_Element (Container : in out Set;
-- Position : in Node_Access;
-- By : in Element_Type) is
-- Node : Node_Access := Position;
-- begin
-- if Equivalent_Keys (Node.Element, By) then
-- begin
-- Node.Element := By;
-- exception
-- when others =>
-- HT_Ops.Delete_Node_Sans_Free (Container, Node);
-- Free (Node);
-- raise;
-- end;
-- return;
-- end if;
-- HT_Ops.Delete_Node_Sans_Free (Container, Node);
-- begin
-- Node.Element := By;
-- exception
-- when others =>
-- Free (Node);
-- raise;
-- end;
-- declare
-- function New_Node (Next : Node_Access) return Node_Access;
-- pragma Inline (New_Node);
-- function New_Node (Next : Node_Access) return Node_Access is
-- begin
-- Node.Next := Next;
-- return Node;
-- end New_Node;
-- procedure Insert is
-- new Element_Keys.Generic_Conditional_Insert (New_Node);
-- Result : Node_Access;
-- Success : Boolean;
-- begin
-- Insert
-- (HT => Container,
-- Key => Node.Element,
-- Node => Result,
-- Success => Success);
-- if not Success then
-- Free (Node);
-- raise Program_Error;
-- end if;
-- pragma Assert (Result = Node);
-- end;
-- end Replace_Element;
-- procedure Replace_Element (Container : in out Set;
-- Position : in Cursor;
-- By : in Element_Type) is
-- begin
-- if Position.Container = null then
-- raise Constraint_Error;
-- end if;
-- if Position.Container /= Set_Access'(Container'Unchecked_Access) then
-- raise Program_Error;
-- end if;
-- Replace_Element (Container, Position.Node, By);
-- end Replace_Element;
procedure Move (Target : in out Set;
Source : in out Set) renames HT_Ops.Move;
procedure Insert (Container : in out Set;
New_Item : in Element_Type;
Position : out Cursor;
Inserted : out Boolean) is
function New_Node (Next : Node_Access) return Node_Access;
pragma Inline (New_Node);
function New_Node (Next : Node_Access) return Node_Access is
Node : constant Node_Access := new Node_Type'(New_Item, Next);
begin
return Node;
end New_Node;
procedure Insert is
new Element_Keys.Generic_Conditional_Insert (New_Node);
begin
HT_Ops.Ensure_Capacity (Container, Container.Length + 1);
Insert (Container, New_Item, Position.Node, Inserted);
Position.Container := Container'Unchecked_Access;
end Insert;
procedure Insert (Container : in out Set;
New_Item : in Element_Type) is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, New_Item, Position, Inserted);
if not Inserted then
raise Constraint_Error;
end if;
end Insert;
procedure Replace (Container : in out Set;
New_Item : in Element_Type) is
X : Node_Access := Element_Keys.Find (Container, New_Item);
begin
if X = null then
raise Constraint_Error;
end if;
X.Element := New_Item;
end Replace;
procedure Include (Container : in out Set;
New_Item : in Element_Type) is
Position : Cursor;
Inserted : Boolean;
begin
Insert (Container, New_Item, Position, Inserted);
if not Inserted then
Position.Node.Element := New_Item;
end if;
end Include;
procedure Delete (Container : in out Set;
Item : in Element_Type) is
X : Node_Access;
begin
Element_Keys.Delete_Key_Sans_Free (Container, Item, X);
if X = null then
raise Constraint_Error;
end if;
Free (X);
end Delete;
procedure Exclude (Container : in out Set;
Item : in Element_Type) is
X : Node_Access;
begin
Element_Keys.Delete_Key_Sans_Free (Container, Item, X);
Free (X);
end Exclude;
procedure Delete (Container : in out Set;
Position : in out Cursor) is
begin
if Position = No_Element then
return;
end if;
if Position.Container /= Set_Access'(Container'Unchecked_Access) then
raise Program_Error;
end if;
HT_Ops.Delete_Node_Sans_Free (Container, Position.Node);
Free (Position.Node);
Position.Container := null;
end Delete;
procedure Union (Target : in out Set;
Source : in Set) is
procedure Process (Src_Node : in Node_Access);
procedure Process (Src_Node : in Node_Access) is
function New_Node (Next : Node_Access) return Node_Access;
pragma Inline (New_Node);
function New_Node (Next : Node_Access) return Node_Access is
Node : constant Node_Access :=
new Node_Type'(Src_Node.Element, Next);
begin
return Node;
end New_Node;
procedure Insert is
new Element_Keys.Generic_Conditional_Insert (New_Node);
Tgt_Node : Node_Access;
Success : Boolean;
begin
Insert (Target, Src_Node.Element, Tgt_Node, Success);
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
if Target'Address = Source'Address then
return;
end if;
HT_Ops.Ensure_Capacity (Target, Target.Length + Source.Length);
Iterate (Source);
end Union;
function Union (Left, Right : Set) return Set is
Buckets : HT_Types.Buckets_Access;
Length : Count_Type;
begin
if Left'Address = Right'Address then
return Left;
end if;
if Right.Length = 0 then
return Left;
end if;
if Left.Length = 0 then
return Right;
end if;
declare
Size : constant Hash_Type :=
Prime_Numbers.To_Prime (Left.Length + Right.Length);
begin
Buckets := new Buckets_Type (0 .. Size - 1);
end;
declare
procedure Process (L_Node : Node_Access);
procedure Process (L_Node : Node_Access) is
I : constant Hash_Type :=
Hash (L_Node.Element) mod Buckets'Length;
begin
Buckets (I) := new Node_Type'(L_Node.Element, Buckets (I));
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Left);
exception
when others =>
HT_Ops.Free_Hash_Table (Buckets);
raise;
end;
Length := Left.Length;
declare
procedure Process (Src_Node : Node_Access);
procedure Process (Src_Node : Node_Access) is
I : constant Hash_Type :=
Hash (Src_Node.Element) mod Buckets'Length;
Tgt_Node : Node_Access := Buckets (I);
begin
while Tgt_Node /= null loop
if Equivalent_Keys (Src_Node.Element, Tgt_Node.Element) then
return;
end if;
Tgt_Node := Next (Tgt_Node);
end loop;
Buckets (I) := new Node_Type'(Src_Node.Element, Buckets (I));
Length := Length + 1;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Right);
exception
when others =>
HT_Ops.Free_Hash_Table (Buckets);
raise;
end;
return (Controlled with Buckets, Length);
end Union;
function Is_In
(HT : Set;
Key : Node_Access) return Boolean;
pragma Inline (Is_In);
function Is_In
(HT : Set;
Key : Node_Access) return Boolean is
begin
return Element_Keys.Find (HT, Key.Element) /= null;
end Is_In;
procedure Intersection (Target : in out Set;
Source : in Set) is
Tgt_Node : Node_Access;
begin
if Target'Address = Source'Address then
return;
end if;
if Source.Length = 0 then
Clear (Target);
return;
end if;
-- TODO: optimize this to use an explicit
-- loop instead of an active iterator
-- (similar to how a passive iterator is
-- implemented).
--
-- Another possibility is to test which
-- set is smaller, and iterate over the
-- smaller set.
Tgt_Node := HT_Ops.First (Target);
while Tgt_Node /= null loop
if Is_In (Source, Tgt_Node) then
Tgt_Node := HT_Ops.Next (Target, Tgt_Node);
else
declare
X : Node_Access := Tgt_Node;
begin
Tgt_Node := HT_Ops.Next (Target, Tgt_Node);
HT_Ops.Delete_Node_Sans_Free (Target, X);
Free (X);
end;
end if;
end loop;
end Intersection;
function Intersection (Left, Right : Set) return Set is
Buckets : HT_Types.Buckets_Access;
Length : Count_Type;
begin
if Left'Address = Right'Address then
return Left;
end if;
Length := Count_Type'Min (Left.Length, Right.Length);
if Length = 0 then
return Empty_Set;
end if;
declare
Size : constant Hash_Type := Prime_Numbers.To_Prime (Length);
begin
Buckets := new Buckets_Type (0 .. Size - 1);
end;
Length := 0;
declare
procedure Process (L_Node : Node_Access);
procedure Process (L_Node : Node_Access) is
begin
if Is_In (Right, L_Node) then
declare
I : constant Hash_Type :=
Hash (L_Node.Element) mod Buckets'Length;
begin
Buckets (I) := new Node_Type'(L_Node.Element, Buckets (I));
end;
Length := Length + 1;
end if;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Left);
exception
when others =>
HT_Ops.Free_Hash_Table (Buckets);
raise;
end;
return (Controlled with Buckets, Length);
end Intersection;
procedure Difference (Target : in out Set;
Source : in Set) is
Tgt_Node : Node_Access;
begin
if Target'Address = Source'Address then
Clear (Target);
return;
end if;
if Source.Length = 0 then
return;
end if;
-- TODO: As I noted above, this can be
-- written in terms of a loop instead as
-- active-iterator style, sort of like a
-- passive iterator.
Tgt_Node := HT_Ops.First (Target);
while Tgt_Node /= null loop
if Is_In (Source, Tgt_Node) then
declare
X : Node_Access := Tgt_Node;
begin
Tgt_Node := HT_Ops.Next (Target, Tgt_Node);
HT_Ops.Delete_Node_Sans_Free (Target, X);
Free (X);
end;
else
Tgt_Node := HT_Ops.Next (Target, Tgt_Node);
end if;
end loop;
end Difference;
function Difference (Left, Right : Set) return Set is
Buckets : HT_Types.Buckets_Access;
Length : Count_Type;
begin
if Left'Address = Right'Address then
return Empty_Set;
end if;
if Left.Length = 0 then
return Empty_Set;
end if;
if Right.Length = 0 then
return Left;
end if;
declare
Size : constant Hash_Type := Prime_Numbers.To_Prime (Left.Length);
begin
Buckets := new Buckets_Type (0 .. Size - 1);
end;
Length := 0;
declare
procedure Process (L_Node : Node_Access);
procedure Process (L_Node : Node_Access) is
begin
if not Is_In (Right, L_Node) then
declare
I : constant Hash_Type :=
Hash (L_Node.Element) mod Buckets'Length;
begin
Buckets (I) := new Node_Type'(L_Node.Element, Buckets (I));
end;
Length := Length + 1;
end if;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Left);
exception
when others =>
HT_Ops.Free_Hash_Table (Buckets);
raise;
end;
return (Controlled with Buckets, Length);
end Difference;
procedure Symmetric_Difference (Target : in out Set;
Source : in Set) is
begin
if Target'Address = Source'Address then
Clear (Target);
return;
end if;
HT_Ops.Ensure_Capacity (Target, Target.Length + Source.Length);
if Target.Length = 0 then
declare
procedure Process (Src_Node : Node_Access);
procedure Process (Src_Node : Node_Access) is
E : Element_Type renames Src_Node.Element;
B : Buckets_Type renames Target.Buckets.all;
I : constant Hash_Type := Hash (E) mod B'Length;
N : Count_Type renames Target.Length;
begin
B (I) := new Node_Type'(E, B (I));
N := N + 1;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Source);
end;
else
declare
procedure Process (Src_Node : Node_Access);
procedure Process (Src_Node : Node_Access) is
E : Element_Type renames Src_Node.Element;
B : Buckets_Type renames Target.Buckets.all;
I : constant Hash_Type := Hash (E) mod B'Length;
N : Count_Type renames Target.Length;
begin
if B (I) = null then
B (I) := new Node_Type'(E, null);
N := N + 1;
elsif Equivalent_Keys (E, B (I).Element) then
declare
X : Node_Access := B (I);
begin
B (I) := B (I).Next;
N := N - 1;
Free (X);
end;
else
declare
Prev : Node_Access := B (I);
Curr : Node_Access := Prev.Next;
begin
while Curr /= null loop
if Equivalent_Keys (E, Curr.Element) then
Prev.Next := Curr.Next;
N := N - 1;
Free (Curr);
return;
end if;
Prev := Curr;
Curr := Prev.Next;
end loop;
B (I) := new Node_Type'(E, B (I));
N := N + 1;
end;
end if;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Source);
end;
end if;
end Symmetric_Difference;
function Symmetric_Difference (Left, Right : Set) return Set is
Buckets : HT_Types.Buckets_Access;
Length : Count_Type;
begin
if Left'Address = Right'Address then
return Empty_Set;
end if;
if Right.Length = 0 then
return Left;
end if;
if Left.Length = 0 then
return Right;
end if;
declare
Size : constant Hash_Type :=
Prime_Numbers.To_Prime (Left.Length + Right.Length);
begin
Buckets := new Buckets_Type (0 .. Size - 1);
end;
Length := 0;
declare
procedure Process (L_Node : Node_Access);
procedure Process (L_Node : Node_Access) is
begin
if not Is_In (Right, L_Node) then
declare
E : Element_Type renames L_Node.Element;
I : constant Hash_Type := Hash (E) mod Buckets'Length;
begin
Buckets (I) := new Node_Type'(E, Buckets (I));
Length := Length + 1;
end;
end if;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Left);
exception
when others =>
HT_Ops.Free_Hash_Table (Buckets);
raise;
end;
declare
procedure Process (R_Node : Node_Access);
procedure Process (R_Node : Node_Access) is
begin
if not Is_In (Left, R_Node) then
declare
E : Element_Type renames R_Node.Element;
I : constant Hash_Type := Hash (E) mod Buckets'Length;
begin
Buckets (I) := new Node_Type'(E, Buckets (I));
Length := Length + 1;
end;
end if;
end Process;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process);
begin
Iterate (Right);
exception
when others =>
HT_Ops.Free_Hash_Table (Buckets);
raise;
end;
return (Controlled with Buckets, Length);
end Symmetric_Difference;
function Is_Subset (Subset : Set;
Of_Set : Set) return Boolean is
Subset_Node : Node_Access;
begin
if Subset'Address = Of_Set'Address then
return True;
end if;
if Subset.Length > Of_Set.Length then
return False;
end if;
-- TODO: rewrite this to loop in the
-- style of a passive iterator.
Subset_Node := HT_Ops.First (Subset);
while Subset_Node /= null loop
if not Is_In (Of_Set, Subset_Node) then
return False;
end if;
Subset_Node := HT_Ops.Next (Subset, Subset_Node);
end loop;
return True;
end Is_Subset;
function Overlap (Left, Right : Set) return Boolean is
Left_Node : Node_Access;
begin
if Right.Length = 0 then
return False;
end if;
if Left'Address = Right'Address then
return True;
end if;
Left_Node := HT_Ops.First (Left);
while Left_Node /= null loop
if Is_In (Right, Left_Node) then
return True;
end if;
Left_Node := HT_Ops.Next (Left, Left_Node);
end loop;
return False;
end Overlap;
function Find (Container : Set;
Item : Element_Type) return Cursor is
Node : constant Node_Access := Element_Keys.Find (Container, Item);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Find;
function Contains (Container : Set;
Item : Element_Type) return Boolean is
begin
return Find (Container, Item) /= No_Element;
end Contains;
function First (Container : Set) return Cursor is
Node : constant Node_Access := HT_Ops.First (Container);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end First;
-- function First_Element (Container : Set) return Element_Type is
-- Node : constant Node_Access := HT_Ops.First (Container);
-- begin
-- return Node.Element;
-- end First_Element;
function Next (Position : Cursor) return Cursor is
begin
if Position.Container = null
or else Position.Node = null
then
return No_Element;
end if;
declare
S : Set renames Position.Container.all;
Node : constant Node_Access := HT_Ops.Next (S, Position.Node);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Position.Container, Node);
end;
end Next;
procedure Next (Position : in out Cursor) is
begin
Position := Next (Position);
end Next;
function Has_Element (Position : Cursor) return Boolean is
begin
if Position.Container = null then
return False;
end if;
if Position.Node = null then
return False;
end if;
return True;
end Has_Element;
function Equivalent_Keys (Left, Right : Cursor)
return Boolean is
begin
return Equivalent_Keys (Left.Node.Element, Right.Node.Element);
end Equivalent_Keys;
function Equivalent_Keys (Left : Cursor;
Right : Element_Type)
return Boolean is
begin
return Equivalent_Keys (Left.Node.Element, Right);
end Equivalent_Keys;
function Equivalent_Keys (Left : Element_Type;
Right : Cursor)
return Boolean is
begin
return Equivalent_Keys (Left, Right.Node.Element);
end Equivalent_Keys;
procedure Iterate
(Container : in Set;
Process : not null access procedure (Position : in Cursor)) is
procedure Process_Node (Node : in Node_Access);
pragma Inline (Process_Node);
procedure Process_Node (Node : in Node_Access) is
begin
Process (Cursor'(Container'Unchecked_Access, Node));
end Process_Node;
procedure Iterate is
new HT_Ops.Generic_Iteration (Process_Node);
begin
Iterate (Container);
end Iterate;
function Capacity (Container : Set) return Count_Type
renames HT_Ops.Capacity;
procedure Reserve_Capacity
(Container : in out Set;
Capacity : in Count_Type)
renames HT_Ops.Ensure_Capacity;
procedure Write_Node
(Stream : access Root_Stream_Type'Class;
Node : in Node_Access);
pragma Inline (Write_Node);
procedure Write_Node
(Stream : access Root_Stream_Type'Class;
Node : in Node_Access) is
begin
Element_Type'Write (Stream, Node.Element);
end Write_Node;
procedure Write_Nodes is
new HT_Ops.Generic_Write (Write_Node);
procedure Write
(Stream : access Root_Stream_Type'Class;
Container : in Set) renames Write_Nodes;
function Read_Node (Stream : access Root_Stream_Type'Class)
return Node_Access;
pragma Inline (Read_Node);
function Read_Node (Stream : access Root_Stream_Type'Class)
return Node_Access is
Node : Node_Access := new Node_Type;
begin
Element_Type'Read (Stream, Node.Element);
return Node;
exception
when others =>
Free (Node);
raise;
end Read_Node;
procedure Read_Nodes is
new HT_Ops.Generic_Read (Read_Node);
procedure Read
(Stream : access Root_Stream_Type'Class;
Container : out Set) renames Read_Nodes;
package body Generic_Keys is
function Equivalent_Keys (Left : Cursor;
Right : Key_Type)
return Boolean is
begin
return Equivalent_Keys (Right, Left.Node.Element);
end Equivalent_Keys;
function Equivalent_Keys (Left : Key_Type;
Right : Cursor)
return Boolean is
begin
return Equivalent_Keys (Left, Right.Node.Element);
end Equivalent_Keys;
function Equivalent_Keys
(Key : Key_Type;
Node : Node_Access) return Boolean;
pragma Inline (Equivalent_Keys);
function Equivalent_Keys
(Key : Key_Type;
Node : Node_Access) return Boolean is
begin
return Equivalent_Keys (Key, Node.Element);
end Equivalent_Keys;
package Key_Keys is
new Hash_Tables.Generic_Keys
(HT_Types => HT_Types,
HT_Type => Set,
Null_Node => null,
Next => Next,
Set_Next => Set_Next,
Key_Type => Key_Type,
Hash => Hash,
Equivalent_Keys => Equivalent_Keys);
function Find (Container : Set;
Key : Key_Type)
return Cursor is
Node : constant Node_Access :=
Key_Keys.Find (Container, Key);
begin
if Node = null then
return No_Element;
end if;
return Cursor'(Container'Unchecked_Access, Node);
end Find;
function Contains (Container : Set;
Key : Key_Type) return Boolean is
begin
return Find (Container, Key) /= No_Element;
end Contains;
function Element (Container : Set;
Key : Key_Type)
return Element_Type is
Node : constant Node_Access := Key_Keys.Find (Container, Key);
begin
return Node.Element;
end Element;
function Key (Position : Cursor) return Key_Type is
begin
return Key (Position.Node.Element);
end Key;
-- TODO:
-- procedure Replace (Container : in out Set;
-- Key : in Key_Type;
-- New_Item : in Element_Type) is
-- Node : constant Node_Access :=
-- Key_Keys.Find (Container, Key);
-- begin
-- if Node = null then
-- raise Constraint_Error;
-- end if;
-- Replace_Element (Container, Node, New_Item);
-- end Replace;
procedure Delete (Container : in out Set;
Key : in Key_Type) is
X : Node_Access;
begin
Key_Keys.Delete_Key_Sans_Free (Container, Key, X);
if X = null then
raise Constraint_Error;
end if;
Free (X);
end Delete;
procedure Exclude (Container : in out Set;
Key : in Key_Type) is
X : Node_Access;
begin
Key_Keys.Delete_Key_Sans_Free (Container, Key, X);
Free (X);
end Exclude;
procedure Checked_Update_Element
(Container : in out Set;
Position : in Cursor;
Process : not null access
procedure (Element : in out Element_Type)) is
begin
if Position.Container = null then
raise Constraint_Error;
end if;
if Position.Container /= Set_Access'(Container'Unchecked_Access) then
raise Program_Error;
end if;
declare
Old_Key : Key_Type renames Key (Position.Node.Element);
begin
Process (Position.Node.Element);
if Equivalent_Keys (Old_Key, Position.Node.Element) then
return;
end if;
end;
declare
function New_Node (Next : Node_Access) return Node_Access;
pragma Inline (New_Node);
function New_Node (Next : Node_Access) return Node_Access is
begin
Position.Node.Next := Next;
return Position.Node;
end New_Node;
procedure Insert is
new Key_Keys.Generic_Conditional_Insert (New_Node);
Result : Node_Access;
Success : Boolean;
begin
HT_Ops.Delete_Node_Sans_Free (Container, Position.Node);
Insert
(HT => Container,
Key => Key (Position.Node.Element),
Node => Result,
Success => Success);
if not Success then
declare
X : Node_Access := Position.Node;
begin
Free (X);
end;
raise Program_Error;
end if;
pragma Assert (Result = Position.Node);
end;
end Checked_Update_Element;
end Generic_Keys;
end Ada.Containers.Hashed_Sets;