| /* Print values for GDB, the GNU debugger. |
| |
| Copyright (C) 1986, 1988-2012 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "gdb_string.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "value.h" |
| #include "gdbcore.h" |
| #include "gdbcmd.h" |
| #include "target.h" |
| #include "language.h" |
| #include "annotate.h" |
| #include "valprint.h" |
| #include "floatformat.h" |
| #include "doublest.h" |
| #include "exceptions.h" |
| #include "dfp.h" |
| #include "python/python.h" |
| #include "ada-lang.h" |
| #include "gdb_obstack.h" |
| #include "charset.h" |
| #include <ctype.h> |
| |
| #include <errno.h> |
| |
| /* Prototypes for local functions */ |
| |
| static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
| int len, int *errnoptr); |
| |
| static void show_print (char *, int); |
| |
| static void set_print (char *, int); |
| |
| static void set_radix (char *, int); |
| |
| static void show_radix (char *, int); |
| |
| static void set_input_radix (char *, int, struct cmd_list_element *); |
| |
| static void set_input_radix_1 (int, unsigned); |
| |
| static void set_output_radix (char *, int, struct cmd_list_element *); |
| |
| static void set_output_radix_1 (int, unsigned); |
| |
| void _initialize_valprint (void); |
| |
| #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ |
| |
| struct value_print_options user_print_options = |
| { |
| Val_pretty_default, /* pretty */ |
| 0, /* prettyprint_arrays */ |
| 0, /* prettyprint_structs */ |
| 0, /* vtblprint */ |
| 1, /* unionprint */ |
| 1, /* addressprint */ |
| 0, /* objectprint */ |
| PRINT_MAX_DEFAULT, /* print_max */ |
| 10, /* repeat_count_threshold */ |
| 0, /* output_format */ |
| 0, /* format */ |
| 0, /* stop_print_at_null */ |
| 0, /* inspect_it */ |
| 0, /* print_array_indexes */ |
| 0, /* deref_ref */ |
| 1, /* static_field_print */ |
| 1, /* pascal_static_field_print */ |
| 0, /* raw */ |
| 0, /* summary */ |
| 1 /* symbol_print */ |
| }; |
| |
| /* Initialize *OPTS to be a copy of the user print options. */ |
| void |
| get_user_print_options (struct value_print_options *opts) |
| { |
| *opts = user_print_options; |
| } |
| |
| /* Initialize *OPTS to be a copy of the user print options, but with |
| pretty-printing disabled. */ |
| void |
| get_raw_print_options (struct value_print_options *opts) |
| { |
| *opts = user_print_options; |
| opts->pretty = Val_no_prettyprint; |
| } |
| |
| /* Initialize *OPTS to be a copy of the user print options, but using |
| FORMAT as the formatting option. */ |
| void |
| get_formatted_print_options (struct value_print_options *opts, |
| char format) |
| { |
| *opts = user_print_options; |
| opts->format = format; |
| } |
| |
| static void |
| show_print_max (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Limit on string chars or array " |
| "elements to print is %s.\n"), |
| value); |
| } |
| |
| |
| /* Default input and output radixes, and output format letter. */ |
| |
| unsigned input_radix = 10; |
| static void |
| show_input_radix (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Default input radix for entering numbers is %s.\n"), |
| value); |
| } |
| |
| unsigned output_radix = 10; |
| static void |
| show_output_radix (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Default output radix for printing of values is %s.\n"), |
| value); |
| } |
| |
| /* By default we print arrays without printing the index of each element in |
| the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */ |
| |
| static void |
| show_print_array_indexes (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value); |
| } |
| |
| /* Print repeat counts if there are more than this many repetitions of an |
| element in an array. Referenced by the low level language dependent |
| print routines. */ |
| |
| static void |
| show_repeat_count_threshold (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"), |
| value); |
| } |
| |
| /* If nonzero, stops printing of char arrays at first null. */ |
| |
| static void |
| show_stop_print_at_null (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of char arrays to stop " |
| "at first null char is %s.\n"), |
| value); |
| } |
| |
| /* Controls pretty printing of structures. */ |
| |
| static void |
| show_prettyprint_structs (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value); |
| } |
| |
| /* Controls pretty printing of arrays. */ |
| |
| static void |
| show_prettyprint_arrays (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value); |
| } |
| |
| /* If nonzero, causes unions inside structures or other unions to be |
| printed. */ |
| |
| static void |
| show_unionprint (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of unions interior to structures is %s.\n"), |
| value); |
| } |
| |
| /* If nonzero, causes machine addresses to be printed in certain contexts. */ |
| |
| static void |
| show_addressprint (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("Printing of addresses is %s.\n"), value); |
| } |
| |
| static void |
| show_symbol_print (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Printing of symbols when printing pointers is %s.\n"), |
| value); |
| } |
| |
| |
| |
| /* A helper function for val_print. When printing in "summary" mode, |
| we want to print scalar arguments, but not aggregate arguments. |
| This function distinguishes between the two. */ |
| |
| static int |
| scalar_type_p (struct type *type) |
| { |
| CHECK_TYPEDEF (type); |
| while (TYPE_CODE (type) == TYPE_CODE_REF) |
| { |
| type = TYPE_TARGET_TYPE (type); |
| CHECK_TYPEDEF (type); |
| } |
| switch (TYPE_CODE (type)) |
| { |
| case TYPE_CODE_ARRAY: |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_SET: |
| case TYPE_CODE_STRING: |
| case TYPE_CODE_BITSTRING: |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| /* See its definition in value.h. */ |
| |
| int |
| valprint_check_validity (struct ui_file *stream, |
| struct type *type, |
| int embedded_offset, |
| const struct value *val) |
| { |
| CHECK_TYPEDEF (type); |
| |
| if (TYPE_CODE (type) != TYPE_CODE_UNION |
| && TYPE_CODE (type) != TYPE_CODE_STRUCT |
| && TYPE_CODE (type) != TYPE_CODE_ARRAY) |
| { |
| if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
| { |
| val_print_optimized_out (stream); |
| return 0; |
| } |
| |
| if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
| { |
| fputs_filtered (_("<synthetic pointer>"), stream); |
| return 0; |
| } |
| |
| if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) |
| { |
| val_print_unavailable (stream); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| void |
| val_print_optimized_out (struct ui_file *stream) |
| { |
| fprintf_filtered (stream, _("<optimized out>")); |
| } |
| |
| void |
| val_print_unavailable (struct ui_file *stream) |
| { |
| fprintf_filtered (stream, _("<unavailable>")); |
| } |
| |
| void |
| val_print_invalid_address (struct ui_file *stream) |
| { |
| fprintf_filtered (stream, _("<invalid address>")); |
| } |
| |
| /* A generic val_print that is suitable for use by language |
| implementations of the la_val_print method. This function can |
| handle most type codes, though not all, notably exception |
| TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by |
| the caller. |
| |
| Most arguments are as to val_print. |
| |
| The additional DECORATIONS argument can be used to customize the |
| output in some small, language-specific ways. */ |
| |
| void |
| generic_val_print (struct type *type, const gdb_byte *valaddr, |
| int embedded_offset, CORE_ADDR address, |
| struct ui_file *stream, int recurse, |
| const struct value *original_value, |
| const struct value_print_options *options, |
| const struct generic_val_print_decorations *decorations) |
| { |
| struct gdbarch *gdbarch = get_type_arch (type); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| unsigned int i = 0; /* Number of characters printed. */ |
| unsigned len; |
| struct type *elttype, *unresolved_elttype; |
| struct type *unresolved_type = type; |
| LONGEST val; |
| CORE_ADDR addr; |
| |
| CHECK_TYPEDEF (type); |
| switch (TYPE_CODE (type)) |
| { |
| case TYPE_CODE_ARRAY: |
| unresolved_elttype = TYPE_TARGET_TYPE (type); |
| elttype = check_typedef (unresolved_elttype); |
| if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0) |
| { |
| LONGEST low_bound, high_bound; |
| |
| if (!get_array_bounds (type, &low_bound, &high_bound)) |
| error (_("Could not determine the array high bound")); |
| |
| if (options->prettyprint_arrays) |
| { |
| print_spaces_filtered (2 + 2 * recurse, stream); |
| } |
| |
| fprintf_filtered (stream, "{"); |
| val_print_array_elements (type, valaddr, embedded_offset, |
| address, stream, |
| recurse, original_value, options, 0); |
| fprintf_filtered (stream, "}"); |
| break; |
| } |
| /* Array of unspecified length: treat like pointer to first |
| elt. */ |
| addr = address + embedded_offset; |
| goto print_unpacked_pointer; |
| |
| case TYPE_CODE_MEMBERPTR: |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| break; |
| |
| case TYPE_CODE_PTR: |
| if (options->format && options->format != 's') |
| { |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| break; |
| } |
| unresolved_elttype = TYPE_TARGET_TYPE (type); |
| elttype = check_typedef (unresolved_elttype); |
| { |
| addr = unpack_pointer (type, valaddr + embedded_offset); |
| print_unpacked_pointer: |
| |
| if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) |
| { |
| /* Try to print what function it points to. */ |
| print_function_pointer_address (options, gdbarch, addr, stream); |
| return; |
| } |
| |
| if (options->symbol_print) |
| print_address_demangle (options, gdbarch, addr, stream, demangle); |
| else if (options->addressprint) |
| fputs_filtered (paddress (gdbarch, addr), stream); |
| } |
| break; |
| |
| case TYPE_CODE_REF: |
| elttype = check_typedef (TYPE_TARGET_TYPE (type)); |
| if (options->addressprint) |
| { |
| CORE_ADDR addr |
| = extract_typed_address (valaddr + embedded_offset, type); |
| |
| fprintf_filtered (stream, "@"); |
| fputs_filtered (paddress (gdbarch, addr), stream); |
| if (options->deref_ref) |
| fputs_filtered (": ", stream); |
| } |
| /* De-reference the reference. */ |
| if (options->deref_ref) |
| { |
| if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF) |
| { |
| struct value *deref_val; |
| |
| deref_val = coerce_ref_if_computed (original_value); |
| if (deref_val != NULL) |
| { |
| /* More complicated computed references are not supported. */ |
| gdb_assert (embedded_offset == 0); |
| } |
| else |
| deref_val = value_at (TYPE_TARGET_TYPE (type), |
| unpack_pointer (type, |
| (valaddr |
| + embedded_offset))); |
| |
| common_val_print (deref_val, stream, recurse, options, |
| current_language); |
| } |
| else |
| fputs_filtered ("???", stream); |
| } |
| break; |
| |
| case TYPE_CODE_ENUM: |
| if (options->format) |
| { |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| break; |
| } |
| len = TYPE_NFIELDS (type); |
| val = unpack_long (type, valaddr + embedded_offset); |
| for (i = 0; i < len; i++) |
| { |
| QUIT; |
| if (val == TYPE_FIELD_ENUMVAL (type, i)) |
| { |
| break; |
| } |
| } |
| if (i < len) |
| { |
| fputs_filtered (TYPE_FIELD_NAME (type, i), stream); |
| } |
| else if (TYPE_FLAG_ENUM (type)) |
| { |
| int first = 1; |
| |
| /* We have a "flag" enum, so we try to decompose it into |
| pieces as appropriate. A flag enum has disjoint |
| constants by definition. */ |
| fputs_filtered ("(", stream); |
| for (i = 0; i < len; ++i) |
| { |
| QUIT; |
| |
| if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0) |
| { |
| if (!first) |
| fputs_filtered (" | ", stream); |
| first = 0; |
| |
| val &= ~TYPE_FIELD_ENUMVAL (type, i); |
| fputs_filtered (TYPE_FIELD_NAME (type, i), stream); |
| } |
| } |
| |
| if (first || val != 0) |
| { |
| if (!first) |
| fputs_filtered (" | ", stream); |
| fputs_filtered ("unknown: ", stream); |
| print_longest (stream, 'd', 0, val); |
| } |
| |
| fputs_filtered (")", stream); |
| } |
| else |
| print_longest (stream, 'd', 0, val); |
| break; |
| |
| case TYPE_CODE_FLAGS: |
| if (options->format) |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| else |
| val_print_type_code_flags (type, valaddr + embedded_offset, |
| stream); |
| break; |
| |
| case TYPE_CODE_FUNC: |
| case TYPE_CODE_METHOD: |
| if (options->format) |
| { |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| break; |
| } |
| /* FIXME, we should consider, at least for ANSI C language, |
| eliminating the distinction made between FUNCs and POINTERs |
| to FUNCs. */ |
| fprintf_filtered (stream, "{"); |
| type_print (type, "", stream, -1); |
| fprintf_filtered (stream, "} "); |
| /* Try to print what function it points to, and its address. */ |
| print_address_demangle (options, gdbarch, address, stream, demangle); |
| break; |
| |
| case TYPE_CODE_BOOL: |
| if (options->format || options->output_format) |
| { |
| struct value_print_options opts = *options; |
| opts.format = (options->format ? options->format |
| : options->output_format); |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, &opts, 0, stream); |
| } |
| else |
| { |
| val = unpack_long (type, valaddr + embedded_offset); |
| if (val == 0) |
| fputs_filtered (decorations->false_name, stream); |
| else if (val == 1) |
| fputs_filtered (decorations->true_name, stream); |
| else |
| print_longest (stream, 'd', 0, val); |
| } |
| break; |
| |
| case TYPE_CODE_RANGE: |
| /* FIXME: create_range_type does not set the unsigned bit in a |
| range type (I think it probably should copy it from the |
| target type), so we won't print values which are too large to |
| fit in a signed integer correctly. */ |
| /* FIXME: Doesn't handle ranges of enums correctly. (Can't just |
| print with the target type, though, because the size of our |
| type and the target type might differ). */ |
| |
| /* FALLTHROUGH */ |
| |
| case TYPE_CODE_INT: |
| if (options->format || options->output_format) |
| { |
| struct value_print_options opts = *options; |
| |
| opts.format = (options->format ? options->format |
| : options->output_format); |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, &opts, 0, stream); |
| } |
| else |
| val_print_type_code_int (type, valaddr + embedded_offset, stream); |
| break; |
| |
| case TYPE_CODE_CHAR: |
| if (options->format || options->output_format) |
| { |
| struct value_print_options opts = *options; |
| |
| opts.format = (options->format ? options->format |
| : options->output_format); |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, &opts, 0, stream); |
| } |
| else |
| { |
| val = unpack_long (type, valaddr + embedded_offset); |
| if (TYPE_UNSIGNED (type)) |
| fprintf_filtered (stream, "%u", (unsigned int) val); |
| else |
| fprintf_filtered (stream, "%d", (int) val); |
| fputs_filtered (" ", stream); |
| LA_PRINT_CHAR (val, unresolved_type, stream); |
| } |
| break; |
| |
| case TYPE_CODE_FLT: |
| if (options->format) |
| { |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| } |
| else |
| { |
| print_floating (valaddr + embedded_offset, type, stream); |
| } |
| break; |
| |
| case TYPE_CODE_DECFLOAT: |
| if (options->format) |
| val_print_scalar_formatted (type, valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| else |
| print_decimal_floating (valaddr + embedded_offset, |
| type, stream); |
| break; |
| |
| case TYPE_CODE_VOID: |
| fputs_filtered (decorations->void_name, stream); |
| break; |
| |
| case TYPE_CODE_ERROR: |
| fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type)); |
| break; |
| |
| case TYPE_CODE_UNDEF: |
| /* This happens (without TYPE_FLAG_STUB set) on systems which |
| don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a |
| "struct foo *bar" and no complete type for struct foo in that |
| file. */ |
| fprintf_filtered (stream, _("<incomplete type>")); |
| break; |
| |
| case TYPE_CODE_COMPLEX: |
| fprintf_filtered (stream, "%s", decorations->complex_prefix); |
| if (options->format) |
| val_print_scalar_formatted (TYPE_TARGET_TYPE (type), |
| valaddr, embedded_offset, |
| original_value, options, 0, stream); |
| else |
| print_floating (valaddr + embedded_offset, |
| TYPE_TARGET_TYPE (type), |
| stream); |
| fprintf_filtered (stream, "%s", decorations->complex_infix); |
| if (options->format) |
| val_print_scalar_formatted (TYPE_TARGET_TYPE (type), |
| valaddr, |
| embedded_offset |
| + TYPE_LENGTH (TYPE_TARGET_TYPE (type)), |
| original_value, |
| options, 0, stream); |
| else |
| print_floating (valaddr + embedded_offset |
| + TYPE_LENGTH (TYPE_TARGET_TYPE (type)), |
| TYPE_TARGET_TYPE (type), |
| stream); |
| fprintf_filtered (stream, "%s", decorations->complex_suffix); |
| break; |
| |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_METHODPTR: |
| default: |
| error (_("Unhandled type code %d in symbol table."), |
| TYPE_CODE (type)); |
| } |
| gdb_flush (stream); |
| } |
| |
| /* Print using the given LANGUAGE the data of type TYPE located at |
| VALADDR + EMBEDDED_OFFSET (within GDB), which came from the |
| inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream |
| STREAM according to OPTIONS. VAL is the whole object that came |
| from ADDRESS. VALADDR must point to the head of VAL's contents |
| buffer. |
| |
| The language printers will pass down an adjusted EMBEDDED_OFFSET to |
| further helper subroutines as subfields of TYPE are printed. In |
| such cases, VALADDR is passed down unadjusted, as well as VAL, so |
| that VAL can be queried for metadata about the contents data being |
| printed, using EMBEDDED_OFFSET as an offset into VAL's contents |
| buffer. For example: "has this field been optimized out", or "I'm |
| printing an object while inspecting a traceframe; has this |
| particular piece of data been collected?". |
| |
| RECURSE indicates the amount of indentation to supply before |
| continuation lines; this amount is roughly twice the value of |
| RECURSE. */ |
| |
| void |
| val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset, |
| CORE_ADDR address, struct ui_file *stream, int recurse, |
| const struct value *val, |
| const struct value_print_options *options, |
| const struct language_defn *language) |
| { |
| volatile struct gdb_exception except; |
| int ret = 0; |
| struct value_print_options local_opts = *options; |
| struct type *real_type = check_typedef (type); |
| |
| if (local_opts.pretty == Val_pretty_default) |
| local_opts.pretty = (local_opts.prettyprint_structs |
| ? Val_prettyprint : Val_no_prettyprint); |
| |
| QUIT; |
| |
| /* Ensure that the type is complete and not just a stub. If the type is |
| only a stub and we can't find and substitute its complete type, then |
| print appropriate string and return. */ |
| |
| if (TYPE_STUB (real_type)) |
| { |
| fprintf_filtered (stream, _("<incomplete type>")); |
| gdb_flush (stream); |
| return; |
| } |
| |
| if (!valprint_check_validity (stream, real_type, embedded_offset, val)) |
| return; |
| |
| if (!options->raw) |
| { |
| ret = apply_val_pretty_printer (type, valaddr, embedded_offset, |
| address, stream, recurse, |
| val, options, language); |
| if (ret) |
| return; |
| } |
| |
| /* Handle summary mode. If the value is a scalar, print it; |
| otherwise, print an ellipsis. */ |
| if (options->summary && !scalar_type_p (type)) |
| { |
| fprintf_filtered (stream, "..."); |
| return; |
| } |
| |
| TRY_CATCH (except, RETURN_MASK_ERROR) |
| { |
| language->la_val_print (type, valaddr, embedded_offset, address, |
| stream, recurse, val, |
| &local_opts); |
| } |
| if (except.reason < 0) |
| fprintf_filtered (stream, _("<error reading variable>")); |
| } |
| |
| /* Check whether the value VAL is printable. Return 1 if it is; |
| return 0 and print an appropriate error message to STREAM according to |
| OPTIONS if it is not. */ |
| |
| static int |
| value_check_printable (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| if (val == 0) |
| { |
| fprintf_filtered (stream, _("<address of value unknown>")); |
| return 0; |
| } |
| |
| if (value_entirely_optimized_out (val)) |
| { |
| if (options->summary && !scalar_type_p (value_type (val))) |
| fprintf_filtered (stream, "..."); |
| else |
| val_print_optimized_out (stream); |
| return 0; |
| } |
| |
| if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION) |
| { |
| fprintf_filtered (stream, _("<internal function %s>"), |
| value_internal_function_name (val)); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Print using the given LANGUAGE the value VAL onto stream STREAM according |
| to OPTIONS. |
| |
| This is a preferable interface to val_print, above, because it uses |
| GDB's value mechanism. */ |
| |
| void |
| common_val_print (struct value *val, struct ui_file *stream, int recurse, |
| const struct value_print_options *options, |
| const struct language_defn *language) |
| { |
| if (!value_check_printable (val, stream, options)) |
| return; |
| |
| if (language->la_language == language_ada) |
| /* The value might have a dynamic type, which would cause trouble |
| below when trying to extract the value contents (since the value |
| size is determined from the type size which is unknown). So |
| get a fixed representation of our value. */ |
| val = ada_to_fixed_value (val); |
| |
| val_print (value_type (val), value_contents_for_printing (val), |
| value_embedded_offset (val), value_address (val), |
| stream, recurse, |
| val, options, language); |
| } |
| |
| /* Print on stream STREAM the value VAL according to OPTIONS. The value |
| is printed using the current_language syntax. */ |
| |
| void |
| value_print (struct value *val, struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| if (!value_check_printable (val, stream, options)) |
| return; |
| |
| if (!options->raw) |
| { |
| int r = apply_val_pretty_printer (value_type (val), |
| value_contents_for_printing (val), |
| value_embedded_offset (val), |
| value_address (val), |
| stream, 0, |
| val, options, current_language); |
| |
| if (r) |
| return; |
| } |
| |
| LA_VALUE_PRINT (val, stream, options); |
| } |
| |
| /* Called by various <lang>_val_print routines to print |
| TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the |
| value. STREAM is where to print the value. */ |
| |
| void |
| val_print_type_code_int (struct type *type, const gdb_byte *valaddr, |
| struct ui_file *stream) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
| |
| if (TYPE_LENGTH (type) > sizeof (LONGEST)) |
| { |
| LONGEST val; |
| |
| if (TYPE_UNSIGNED (type) |
| && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type), |
| byte_order, &val)) |
| { |
| print_longest (stream, 'u', 0, val); |
| } |
| else |
| { |
| /* Signed, or we couldn't turn an unsigned value into a |
| LONGEST. For signed values, one could assume two's |
| complement (a reasonable assumption, I think) and do |
| better than this. */ |
| print_hex_chars (stream, (unsigned char *) valaddr, |
| TYPE_LENGTH (type), byte_order); |
| } |
| } |
| else |
| { |
| print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, |
| unpack_long (type, valaddr)); |
| } |
| } |
| |
| void |
| val_print_type_code_flags (struct type *type, const gdb_byte *valaddr, |
| struct ui_file *stream) |
| { |
| ULONGEST val = unpack_long (type, valaddr); |
| int bitpos, nfields = TYPE_NFIELDS (type); |
| |
| fputs_filtered ("[ ", stream); |
| for (bitpos = 0; bitpos < nfields; bitpos++) |
| { |
| if (TYPE_FIELD_BITPOS (type, bitpos) != -1 |
| && (val & ((ULONGEST)1 << bitpos))) |
| { |
| if (TYPE_FIELD_NAME (type, bitpos)) |
| fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos)); |
| else |
| fprintf_filtered (stream, "#%d ", bitpos); |
| } |
| } |
| fputs_filtered ("]", stream); |
| } |
| |
| /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, |
| according to OPTIONS and SIZE on STREAM. Format i is not supported |
| at this level. |
| |
| This is how the elements of an array or structure are printed |
| with a format. */ |
| |
| void |
| val_print_scalar_formatted (struct type *type, |
| const gdb_byte *valaddr, int embedded_offset, |
| const struct value *val, |
| const struct value_print_options *options, |
| int size, |
| struct ui_file *stream) |
| { |
| gdb_assert (val != NULL); |
| gdb_assert (valaddr == value_contents_for_printing_const (val)); |
| |
| /* If we get here with a string format, try again without it. Go |
| all the way back to the language printers, which may call us |
| again. */ |
| if (options->format == 's') |
| { |
| struct value_print_options opts = *options; |
| opts.format = 0; |
| opts.deref_ref = 0; |
| val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts, |
| current_language); |
| return; |
| } |
| |
| /* A scalar object that does not have all bits available can't be |
| printed, because all bits contribute to its representation. */ |
| if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset, |
| TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
| val_print_optimized_out (stream); |
| else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) |
| val_print_unavailable (stream); |
| else |
| print_scalar_formatted (valaddr + embedded_offset, type, |
| options, size, stream); |
| } |
| |
| /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. |
| The raison d'etre of this function is to consolidate printing of |
| LONG_LONG's into this one function. The format chars b,h,w,g are |
| from print_scalar_formatted(). Numbers are printed using C |
| format. |
| |
| USE_C_FORMAT means to use C format in all cases. Without it, |
| 'o' and 'x' format do not include the standard C radix prefix |
| (leading 0 or 0x). |
| |
| Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL |
| and was intended to request formating according to the current |
| language and would be used for most integers that GDB prints. The |
| exceptional cases were things like protocols where the format of |
| the integer is a protocol thing, not a user-visible thing). The |
| parameter remains to preserve the information of what things might |
| be printed with language-specific format, should we ever resurrect |
| that capability. */ |
| |
| void |
| print_longest (struct ui_file *stream, int format, int use_c_format, |
| LONGEST val_long) |
| { |
| const char *val; |
| |
| switch (format) |
| { |
| case 'd': |
| val = int_string (val_long, 10, 1, 0, 1); break; |
| case 'u': |
| val = int_string (val_long, 10, 0, 0, 1); break; |
| case 'x': |
| val = int_string (val_long, 16, 0, 0, use_c_format); break; |
| case 'b': |
| val = int_string (val_long, 16, 0, 2, 1); break; |
| case 'h': |
| val = int_string (val_long, 16, 0, 4, 1); break; |
| case 'w': |
| val = int_string (val_long, 16, 0, 8, 1); break; |
| case 'g': |
| val = int_string (val_long, 16, 0, 16, 1); break; |
| break; |
| case 'o': |
| val = int_string (val_long, 8, 0, 0, use_c_format); break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("failed internal consistency check")); |
| } |
| fputs_filtered (val, stream); |
| } |
| |
| /* This used to be a macro, but I don't think it is called often enough |
| to merit such treatment. */ |
| /* Convert a LONGEST to an int. This is used in contexts (e.g. number of |
| arguments to a function, number in a value history, register number, etc.) |
| where the value must not be larger than can fit in an int. */ |
| |
| int |
| longest_to_int (LONGEST arg) |
| { |
| /* Let the compiler do the work. */ |
| int rtnval = (int) arg; |
| |
| /* Check for overflows or underflows. */ |
| if (sizeof (LONGEST) > sizeof (int)) |
| { |
| if (rtnval != arg) |
| { |
| error (_("Value out of range.")); |
| } |
| } |
| return (rtnval); |
| } |
| |
| /* Print a floating point value of type TYPE (not always a |
| TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */ |
| |
| void |
| print_floating (const gdb_byte *valaddr, struct type *type, |
| struct ui_file *stream) |
| { |
| DOUBLEST doub; |
| int inv; |
| const struct floatformat *fmt = NULL; |
| unsigned len = TYPE_LENGTH (type); |
| enum float_kind kind; |
| |
| /* If it is a floating-point, check for obvious problems. */ |
| if (TYPE_CODE (type) == TYPE_CODE_FLT) |
| fmt = floatformat_from_type (type); |
| if (fmt != NULL) |
| { |
| kind = floatformat_classify (fmt, valaddr); |
| if (kind == float_nan) |
| { |
| if (floatformat_is_negative (fmt, valaddr)) |
| fprintf_filtered (stream, "-"); |
| fprintf_filtered (stream, "nan("); |
| fputs_filtered ("0x", stream); |
| fputs_filtered (floatformat_mantissa (fmt, valaddr), stream); |
| fprintf_filtered (stream, ")"); |
| return; |
| } |
| else if (kind == float_infinite) |
| { |
| if (floatformat_is_negative (fmt, valaddr)) |
| fputs_filtered ("-", stream); |
| fputs_filtered ("inf", stream); |
| return; |
| } |
| } |
| |
| /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating() |
| isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double |
| needs to be used as that takes care of any necessary type |
| conversions. Such conversions are of course direct to DOUBLEST |
| and disregard any possible target floating point limitations. |
| For instance, a u64 would be converted and displayed exactly on a |
| host with 80 bit DOUBLEST but with loss of information on a host |
| with 64 bit DOUBLEST. */ |
| |
| doub = unpack_double (type, valaddr, &inv); |
| if (inv) |
| { |
| fprintf_filtered (stream, "<invalid float value>"); |
| return; |
| } |
| |
| /* FIXME: kettenis/2001-01-20: The following code makes too much |
| assumptions about the host and target floating point format. */ |
| |
| /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may |
| not necessarily be a TYPE_CODE_FLT, the below ignores that and |
| instead uses the type's length to determine the precision of the |
| floating-point value being printed. */ |
| |
| if (len < sizeof (double)) |
| fprintf_filtered (stream, "%.9g", (double) doub); |
| else if (len == sizeof (double)) |
| fprintf_filtered (stream, "%.17g", (double) doub); |
| else |
| #ifdef PRINTF_HAS_LONG_DOUBLE |
| fprintf_filtered (stream, "%.35Lg", doub); |
| #else |
| /* This at least wins with values that are representable as |
| doubles. */ |
| fprintf_filtered (stream, "%.17g", (double) doub); |
| #endif |
| } |
| |
| void |
| print_decimal_floating (const gdb_byte *valaddr, struct type *type, |
| struct ui_file *stream) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
| char decstr[MAX_DECIMAL_STRING]; |
| unsigned len = TYPE_LENGTH (type); |
| |
| decimal_to_string (valaddr, len, byte_order, decstr); |
| fputs_filtered (decstr, stream); |
| return; |
| } |
| |
| void |
| print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order) |
| { |
| |
| #define BITS_IN_BYTES 8 |
| |
| const gdb_byte *p; |
| unsigned int i; |
| int b; |
| |
| /* Declared "int" so it will be signed. |
| This ensures that right shift will shift in zeros. */ |
| |
| const int mask = 0x080; |
| |
| /* FIXME: We should be not printing leading zeroes in most cases. */ |
| |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| for (p = valaddr; |
| p < valaddr + len; |
| p++) |
| { |
| /* Every byte has 8 binary characters; peel off |
| and print from the MSB end. */ |
| |
| for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) |
| { |
| if (*p & (mask >> i)) |
| b = 1; |
| else |
| b = 0; |
| |
| fprintf_filtered (stream, "%1d", b); |
| } |
| } |
| } |
| else |
| { |
| for (p = valaddr + len - 1; |
| p >= valaddr; |
| p--) |
| { |
| for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) |
| { |
| if (*p & (mask >> i)) |
| b = 1; |
| else |
| b = 0; |
| |
| fprintf_filtered (stream, "%1d", b); |
| } |
| } |
| } |
| } |
| |
| /* VALADDR points to an integer of LEN bytes. |
| Print it in octal on stream or format it in buf. */ |
| |
| void |
| print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order) |
| { |
| const gdb_byte *p; |
| unsigned char octa1, octa2, octa3, carry; |
| int cycle; |
| |
| /* FIXME: We should be not printing leading zeroes in most cases. */ |
| |
| |
| /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track |
| * the extra bits, which cycle every three bytes: |
| * |
| * Byte side: 0 1 2 3 |
| * | | | | |
| * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 | |
| * |
| * Octal side: 0 1 carry 3 4 carry ... |
| * |
| * Cycle number: 0 1 2 |
| * |
| * But of course we are printing from the high side, so we have to |
| * figure out where in the cycle we are so that we end up with no |
| * left over bits at the end. |
| */ |
| #define BITS_IN_OCTAL 3 |
| #define HIGH_ZERO 0340 |
| #define LOW_ZERO 0016 |
| #define CARRY_ZERO 0003 |
| #define HIGH_ONE 0200 |
| #define MID_ONE 0160 |
| #define LOW_ONE 0016 |
| #define CARRY_ONE 0001 |
| #define HIGH_TWO 0300 |
| #define MID_TWO 0070 |
| #define LOW_TWO 0007 |
| |
| /* For 32 we start in cycle 2, with two bits and one bit carry; |
| for 64 in cycle in cycle 1, with one bit and a two bit carry. */ |
| |
| cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL; |
| carry = 0; |
| |
| fputs_filtered ("0", stream); |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| for (p = valaddr; |
| p < valaddr + len; |
| p++) |
| { |
| switch (cycle) |
| { |
| case 0: |
| /* No carry in, carry out two bits. */ |
| |
| octa1 = (HIGH_ZERO & *p) >> 5; |
| octa2 = (LOW_ZERO & *p) >> 2; |
| carry = (CARRY_ZERO & *p); |
| fprintf_filtered (stream, "%o", octa1); |
| fprintf_filtered (stream, "%o", octa2); |
| break; |
| |
| case 1: |
| /* Carry in two bits, carry out one bit. */ |
| |
| octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); |
| octa2 = (MID_ONE & *p) >> 4; |
| octa3 = (LOW_ONE & *p) >> 1; |
| carry = (CARRY_ONE & *p); |
| fprintf_filtered (stream, "%o", octa1); |
| fprintf_filtered (stream, "%o", octa2); |
| fprintf_filtered (stream, "%o", octa3); |
| break; |
| |
| case 2: |
| /* Carry in one bit, no carry out. */ |
| |
| octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); |
| octa2 = (MID_TWO & *p) >> 3; |
| octa3 = (LOW_TWO & *p); |
| carry = 0; |
| fprintf_filtered (stream, "%o", octa1); |
| fprintf_filtered (stream, "%o", octa2); |
| fprintf_filtered (stream, "%o", octa3); |
| break; |
| |
| default: |
| error (_("Internal error in octal conversion;")); |
| } |
| |
| cycle++; |
| cycle = cycle % BITS_IN_OCTAL; |
| } |
| } |
| else |
| { |
| for (p = valaddr + len - 1; |
| p >= valaddr; |
| p--) |
| { |
| switch (cycle) |
| { |
| case 0: |
| /* Carry out, no carry in */ |
| |
| octa1 = (HIGH_ZERO & *p) >> 5; |
| octa2 = (LOW_ZERO & *p) >> 2; |
| carry = (CARRY_ZERO & *p); |
| fprintf_filtered (stream, "%o", octa1); |
| fprintf_filtered (stream, "%o", octa2); |
| break; |
| |
| case 1: |
| /* Carry in, carry out */ |
| |
| octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); |
| octa2 = (MID_ONE & *p) >> 4; |
| octa3 = (LOW_ONE & *p) >> 1; |
| carry = (CARRY_ONE & *p); |
| fprintf_filtered (stream, "%o", octa1); |
| fprintf_filtered (stream, "%o", octa2); |
| fprintf_filtered (stream, "%o", octa3); |
| break; |
| |
| case 2: |
| /* Carry in, no carry out */ |
| |
| octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); |
| octa2 = (MID_TWO & *p) >> 3; |
| octa3 = (LOW_TWO & *p); |
| carry = 0; |
| fprintf_filtered (stream, "%o", octa1); |
| fprintf_filtered (stream, "%o", octa2); |
| fprintf_filtered (stream, "%o", octa3); |
| break; |
| |
| default: |
| error (_("Internal error in octal conversion;")); |
| } |
| |
| cycle++; |
| cycle = cycle % BITS_IN_OCTAL; |
| } |
| } |
| |
| } |
| |
| /* VALADDR points to an integer of LEN bytes. |
| Print it in decimal on stream or format it in buf. */ |
| |
| void |
| print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order) |
| { |
| #define TEN 10 |
| #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */ |
| #define CARRY_LEFT( x ) ((x) % TEN) |
| #define SHIFT( x ) ((x) << 4) |
| #define LOW_NIBBLE( x ) ( (x) & 0x00F) |
| #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4) |
| |
| const gdb_byte *p; |
| unsigned char *digits; |
| int carry; |
| int decimal_len; |
| int i, j, decimal_digits; |
| int dummy; |
| int flip; |
| |
| /* Base-ten number is less than twice as many digits |
| as the base 16 number, which is 2 digits per byte. */ |
| |
| decimal_len = len * 2 * 2; |
| digits = xmalloc (decimal_len); |
| |
| for (i = 0; i < decimal_len; i++) |
| { |
| digits[i] = 0; |
| } |
| |
| /* Ok, we have an unknown number of bytes of data to be printed in |
| * decimal. |
| * |
| * Given a hex number (in nibbles) as XYZ, we start by taking X and |
| * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply |
| * the nibbles by 16, add Y and re-decimalize. Repeat with Z. |
| * |
| * The trick is that "digits" holds a base-10 number, but sometimes |
| * the individual digits are > 10. |
| * |
| * Outer loop is per nibble (hex digit) of input, from MSD end to |
| * LSD end. |
| */ |
| decimal_digits = 0; /* Number of decimal digits so far */ |
| p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1; |
| flip = 0; |
| while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr)) |
| { |
| /* |
| * Multiply current base-ten number by 16 in place. |
| * Each digit was between 0 and 9, now is between |
| * 0 and 144. |
| */ |
| for (j = 0; j < decimal_digits; j++) |
| { |
| digits[j] = SHIFT (digits[j]); |
| } |
| |
| /* Take the next nibble off the input and add it to what |
| * we've got in the LSB position. Bottom 'digit' is now |
| * between 0 and 159. |
| * |
| * "flip" is used to run this loop twice for each byte. |
| */ |
| if (flip == 0) |
| { |
| /* Take top nibble. */ |
| |
| digits[0] += HIGH_NIBBLE (*p); |
| flip = 1; |
| } |
| else |
| { |
| /* Take low nibble and bump our pointer "p". */ |
| |
| digits[0] += LOW_NIBBLE (*p); |
| if (byte_order == BFD_ENDIAN_BIG) |
| p++; |
| else |
| p--; |
| flip = 0; |
| } |
| |
| /* Re-decimalize. We have to do this often enough |
| * that we don't overflow, but once per nibble is |
| * overkill. Easier this way, though. Note that the |
| * carry is often larger than 10 (e.g. max initial |
| * carry out of lowest nibble is 15, could bubble all |
| * the way up greater than 10). So we have to do |
| * the carrying beyond the last current digit. |
| */ |
| carry = 0; |
| for (j = 0; j < decimal_len - 1; j++) |
| { |
| digits[j] += carry; |
| |
| /* "/" won't handle an unsigned char with |
| * a value that if signed would be negative. |
| * So extend to longword int via "dummy". |
| */ |
| dummy = digits[j]; |
| carry = CARRY_OUT (dummy); |
| digits[j] = CARRY_LEFT (dummy); |
| |
| if (j >= decimal_digits && carry == 0) |
| { |
| /* |
| * All higher digits are 0 and we |
| * no longer have a carry. |
| * |
| * Note: "j" is 0-based, "decimal_digits" is |
| * 1-based. |
| */ |
| decimal_digits = j + 1; |
| break; |
| } |
| } |
| } |
| |
| /* Ok, now "digits" is the decimal representation, with |
| the "decimal_digits" actual digits. Print! */ |
| |
| for (i = decimal_digits - 1; i >= 0; i--) |
| { |
| fprintf_filtered (stream, "%1d", digits[i]); |
| } |
| xfree (digits); |
| } |
| |
| /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ |
| |
| void |
| print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order) |
| { |
| const gdb_byte *p; |
| |
| /* FIXME: We should be not printing leading zeroes in most cases. */ |
| |
| fputs_filtered ("0x", stream); |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| for (p = valaddr; |
| p < valaddr + len; |
| p++) |
| { |
| fprintf_filtered (stream, "%02x", *p); |
| } |
| } |
| else |
| { |
| for (p = valaddr + len - 1; |
| p >= valaddr; |
| p--) |
| { |
| fprintf_filtered (stream, "%02x", *p); |
| } |
| } |
| } |
| |
| /* VALADDR points to a char integer of LEN bytes. |
| Print it out in appropriate language form on stream. |
| Omit any leading zero chars. */ |
| |
| void |
| print_char_chars (struct ui_file *stream, struct type *type, |
| const gdb_byte *valaddr, |
| unsigned len, enum bfd_endian byte_order) |
| { |
| const gdb_byte *p; |
| |
| if (byte_order == BFD_ENDIAN_BIG) |
| { |
| p = valaddr; |
| while (p < valaddr + len - 1 && *p == 0) |
| ++p; |
| |
| while (p < valaddr + len) |
| { |
| LA_EMIT_CHAR (*p, type, stream, '\''); |
| ++p; |
| } |
| } |
| else |
| { |
| p = valaddr + len - 1; |
| while (p > valaddr && *p == 0) |
| --p; |
| |
| while (p >= valaddr) |
| { |
| LA_EMIT_CHAR (*p, type, stream, '\''); |
| --p; |
| } |
| } |
| } |
| |
| /* Print function pointer with inferior address ADDRESS onto stdio |
| stream STREAM. */ |
| |
| void |
| print_function_pointer_address (const struct value_print_options *options, |
| struct gdbarch *gdbarch, |
| CORE_ADDR address, |
| struct ui_file *stream) |
| { |
| CORE_ADDR func_addr |
| = gdbarch_convert_from_func_ptr_addr (gdbarch, address, |
| ¤t_target); |
| |
| /* If the function pointer is represented by a description, print |
| the address of the description. */ |
| if (options->addressprint && func_addr != address) |
| { |
| fputs_filtered ("@", stream); |
| fputs_filtered (paddress (gdbarch, address), stream); |
| fputs_filtered (": ", stream); |
| } |
| print_address_demangle (options, gdbarch, func_addr, stream, demangle); |
| } |
| |
| |
| /* Print on STREAM using the given OPTIONS the index for the element |
| at INDEX of an array whose index type is INDEX_TYPE. */ |
| |
| void |
| maybe_print_array_index (struct type *index_type, LONGEST index, |
| struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| struct value *index_value; |
| |
| if (!options->print_array_indexes) |
| return; |
| |
| index_value = value_from_longest (index_type, index); |
| |
| LA_PRINT_ARRAY_INDEX (index_value, stream, options); |
| } |
| |
| /* Called by various <lang>_val_print routines to print elements of an |
| array in the form "<elem1>, <elem2>, <elem3>, ...". |
| |
| (FIXME?) Assumes array element separator is a comma, which is correct |
| for all languages currently handled. |
| (FIXME?) Some languages have a notation for repeated array elements, |
| perhaps we should try to use that notation when appropriate. */ |
| |
| void |
| val_print_array_elements (struct type *type, |
| const gdb_byte *valaddr, int embedded_offset, |
| CORE_ADDR address, struct ui_file *stream, |
| int recurse, |
| const struct value *val, |
| const struct value_print_options *options, |
| unsigned int i) |
| { |
| unsigned int things_printed = 0; |
| unsigned len; |
| struct type *elttype, *index_type; |
| unsigned eltlen; |
| /* Position of the array element we are examining to see |
| whether it is repeated. */ |
| unsigned int rep1; |
| /* Number of repetitions we have detected so far. */ |
| unsigned int reps; |
| LONGEST low_bound, high_bound; |
| |
| elttype = TYPE_TARGET_TYPE (type); |
| eltlen = TYPE_LENGTH (check_typedef (elttype)); |
| index_type = TYPE_INDEX_TYPE (type); |
| |
| if (get_array_bounds (type, &low_bound, &high_bound)) |
| { |
| /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1. |
| But we have to be a little extra careful, because some languages |
| such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for |
| empty arrays. In that situation, the array length is just zero, |
| not negative! */ |
| if (low_bound > high_bound) |
| len = 0; |
| else |
| len = high_bound - low_bound + 1; |
| } |
| else |
| { |
| warning (_("unable to get bounds of array, assuming null array")); |
| low_bound = 0; |
| len = 0; |
| } |
| |
| annotate_array_section_begin (i, elttype); |
| |
| for (; i < len && things_printed < options->print_max; i++) |
| { |
| if (i != 0) |
| { |
| if (options->prettyprint_arrays) |
| { |
| fprintf_filtered (stream, ",\n"); |
| print_spaces_filtered (2 + 2 * recurse, stream); |
| } |
| else |
| { |
| fprintf_filtered (stream, ", "); |
| } |
| } |
| wrap_here (n_spaces (2 + 2 * recurse)); |
| maybe_print_array_index (index_type, i + low_bound, |
| stream, options); |
| |
| rep1 = i + 1; |
| reps = 1; |
| /* Only check for reps if repeat_count_threshold is not set to |
| UINT_MAX (unlimited). */ |
| if (options->repeat_count_threshold < UINT_MAX) |
| { |
| while (rep1 < len |
| && value_available_contents_eq (val, |
| embedded_offset + i * eltlen, |
| val, |
| (embedded_offset |
| + rep1 * eltlen), |
| eltlen)) |
| { |
| ++reps; |
| ++rep1; |
| } |
| } |
| |
| if (reps > options->repeat_count_threshold) |
| { |
| val_print (elttype, valaddr, embedded_offset + i * eltlen, |
| address, stream, recurse + 1, val, options, |
| current_language); |
| annotate_elt_rep (reps); |
| fprintf_filtered (stream, " <repeats %u times>", reps); |
| annotate_elt_rep_end (); |
| |
| i = rep1 - 1; |
| things_printed += options->repeat_count_threshold; |
| } |
| else |
| { |
| val_print (elttype, valaddr, embedded_offset + i * eltlen, |
| address, |
| stream, recurse + 1, val, options, current_language); |
| annotate_elt (); |
| things_printed++; |
| } |
| } |
| annotate_array_section_end (); |
| if (i < len) |
| { |
| fprintf_filtered (stream, "..."); |
| } |
| } |
| |
| /* Read LEN bytes of target memory at address MEMADDR, placing the |
| results in GDB's memory at MYADDR. Returns a count of the bytes |
| actually read, and optionally an errno value in the location |
| pointed to by ERRNOPTR if ERRNOPTR is non-null. */ |
| |
| /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this |
| function be eliminated. */ |
| |
| static int |
| partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
| int len, int *errnoptr) |
| { |
| int nread; /* Number of bytes actually read. */ |
| int errcode; /* Error from last read. */ |
| |
| /* First try a complete read. */ |
| errcode = target_read_memory (memaddr, myaddr, len); |
| if (errcode == 0) |
| { |
| /* Got it all. */ |
| nread = len; |
| } |
| else |
| { |
| /* Loop, reading one byte at a time until we get as much as we can. */ |
| for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--) |
| { |
| errcode = target_read_memory (memaddr++, myaddr++, 1); |
| } |
| /* If an error, the last read was unsuccessful, so adjust count. */ |
| if (errcode != 0) |
| { |
| nread--; |
| } |
| } |
| if (errnoptr != NULL) |
| { |
| *errnoptr = errcode; |
| } |
| return (nread); |
| } |
| |
| /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes |
| each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly |
| allocated buffer containing the string, which the caller is responsible to |
| free, and BYTES_READ will be set to the number of bytes read. Returns 0 on |
| success, or errno on failure. |
| |
| If LEN > 0, reads exactly LEN characters (including eventual NULs in |
| the middle or end of the string). If LEN is -1, stops at the first |
| null character (not necessarily the first null byte) up to a maximum |
| of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many |
| characters as possible from the string. |
| |
| Unless an exception is thrown, BUFFER will always be allocated, even on |
| failure. In this case, some characters might have been read before the |
| failure happened. Check BYTES_READ to recognize this situation. |
| |
| Note: There was a FIXME asking to make this code use target_read_string, |
| but this function is more general (can read past null characters, up to |
| given LEN). Besides, it is used much more often than target_read_string |
| so it is more tested. Perhaps callers of target_read_string should use |
| this function instead? */ |
| |
| int |
| read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit, |
| enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read) |
| { |
| int found_nul; /* Non-zero if we found the nul char. */ |
| int errcode; /* Errno returned from bad reads. */ |
| unsigned int nfetch; /* Chars to fetch / chars fetched. */ |
| unsigned int chunksize; /* Size of each fetch, in chars. */ |
| gdb_byte *bufptr; /* Pointer to next available byte in |
| buffer. */ |
| gdb_byte *limit; /* First location past end of fetch buffer. */ |
| struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ |
| |
| /* Decide how large of chunks to try to read in one operation. This |
| is also pretty simple. If LEN >= zero, then we want fetchlimit chars, |
| so we might as well read them all in one operation. If LEN is -1, we |
| are looking for a NUL terminator to end the fetching, so we might as |
| well read in blocks that are large enough to be efficient, but not so |
| large as to be slow if fetchlimit happens to be large. So we choose the |
| minimum of 8 and fetchlimit. We used to use 200 instead of 8 but |
| 200 is way too big for remote debugging over a serial line. */ |
| |
| chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit); |
| |
| /* Loop until we either have all the characters, or we encounter |
| some error, such as bumping into the end of the address space. */ |
| |
| found_nul = 0; |
| *buffer = NULL; |
| |
| old_chain = make_cleanup (free_current_contents, buffer); |
| |
| if (len > 0) |
| { |
| *buffer = (gdb_byte *) xmalloc (len * width); |
| bufptr = *buffer; |
| |
| nfetch = partial_memory_read (addr, bufptr, len * width, &errcode) |
| / width; |
| addr += nfetch * width; |
| bufptr += nfetch * width; |
| } |
| else if (len == -1) |
| { |
| unsigned long bufsize = 0; |
| |
| do |
| { |
| QUIT; |
| nfetch = min (chunksize, fetchlimit - bufsize); |
| |
| if (*buffer == NULL) |
| *buffer = (gdb_byte *) xmalloc (nfetch * width); |
| else |
| *buffer = (gdb_byte *) xrealloc (*buffer, |
| (nfetch + bufsize) * width); |
| |
| bufptr = *buffer + bufsize * width; |
| bufsize += nfetch; |
| |
| /* Read as much as we can. */ |
| nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode) |
| / width; |
| |
| /* Scan this chunk for the null character that terminates the string |
| to print. If found, we don't need to fetch any more. Note |
| that bufptr is explicitly left pointing at the next character |
| after the null character, or at the next character after the end |
| of the buffer. */ |
| |
| limit = bufptr + nfetch * width; |
| while (bufptr < limit) |
| { |
| unsigned long c; |
| |
| c = extract_unsigned_integer (bufptr, width, byte_order); |
| addr += width; |
| bufptr += width; |
| if (c == 0) |
| { |
| /* We don't care about any error which happened after |
| the NUL terminator. */ |
| errcode = 0; |
| found_nul = 1; |
| break; |
| } |
| } |
| } |
| while (errcode == 0 /* no error */ |
| && bufptr - *buffer < fetchlimit * width /* no overrun */ |
| && !found_nul); /* haven't found NUL yet */ |
| } |
| else |
| { /* Length of string is really 0! */ |
| /* We always allocate *buffer. */ |
| *buffer = bufptr = xmalloc (1); |
| errcode = 0; |
| } |
| |
| /* bufptr and addr now point immediately beyond the last byte which we |
| consider part of the string (including a '\0' which ends the string). */ |
| *bytes_read = bufptr - *buffer; |
| |
| QUIT; |
| |
| discard_cleanups (old_chain); |
| |
| return errcode; |
| } |
| |
| /* Return true if print_wchar can display W without resorting to a |
| numeric escape, false otherwise. */ |
| |
| static int |
| wchar_printable (gdb_wchar_t w) |
| { |
| return (gdb_iswprint (w) |
| || w == LCST ('\a') || w == LCST ('\b') |
| || w == LCST ('\f') || w == LCST ('\n') |
| || w == LCST ('\r') || w == LCST ('\t') |
| || w == LCST ('\v')); |
| } |
| |
| /* A helper function that converts the contents of STRING to wide |
| characters and then appends them to OUTPUT. */ |
| |
| static void |
| append_string_as_wide (const char *string, |
| struct obstack *output) |
| { |
| for (; *string; ++string) |
| { |
| gdb_wchar_t w = gdb_btowc (*string); |
| obstack_grow (output, &w, sizeof (gdb_wchar_t)); |
| } |
| } |
| |
| /* Print a wide character W to OUTPUT. ORIG is a pointer to the |
| original (target) bytes representing the character, ORIG_LEN is the |
| number of valid bytes. WIDTH is the number of bytes in a base |
| characters of the type. OUTPUT is an obstack to which wide |
| characters are emitted. QUOTER is a (narrow) character indicating |
| the style of quotes surrounding the character to be printed. |
| NEED_ESCAPE is an in/out flag which is used to track numeric |
| escapes across calls. */ |
| |
| static void |
| print_wchar (gdb_wint_t w, const gdb_byte *orig, |
| int orig_len, int width, |
| enum bfd_endian byte_order, |
| struct obstack *output, |
| int quoter, int *need_escapep) |
| { |
| int need_escape = *need_escapep; |
| |
| *need_escapep = 0; |
| if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w) |
| && w != LCST ('8') |
| && w != LCST ('9')))) |
| { |
| gdb_wchar_t wchar = w; |
| |
| if (w == gdb_btowc (quoter) || w == LCST ('\\')) |
| obstack_grow_wstr (output, LCST ("\\")); |
| obstack_grow (output, &wchar, sizeof (gdb_wchar_t)); |
| } |
| else |
| { |
| switch (w) |
| { |
| case LCST ('\a'): |
| obstack_grow_wstr (output, LCST ("\\a")); |
| break; |
| case LCST ('\b'): |
| obstack_grow_wstr (output, LCST ("\\b")); |
| break; |
| case LCST ('\f'): |
| obstack_grow_wstr (output, LCST ("\\f")); |
| break; |
| case LCST ('\n'): |
| obstack_grow_wstr (output, LCST ("\\n")); |
| break; |
| case LCST ('\r'): |
| obstack_grow_wstr (output, LCST ("\\r")); |
| break; |
| case LCST ('\t'): |
| obstack_grow_wstr (output, LCST ("\\t")); |
| break; |
| case LCST ('\v'): |
| obstack_grow_wstr (output, LCST ("\\v")); |
| break; |
| default: |
| { |
| int i; |
| |
| for (i = 0; i + width <= orig_len; i += width) |
| { |
| char octal[30]; |
| ULONGEST value; |
| |
| value = extract_unsigned_integer (&orig[i], width, |
| byte_order); |
| /* If the value fits in 3 octal digits, print it that |
| way. Otherwise, print it as a hex escape. */ |
| if (value <= 0777) |
| sprintf (octal, "\\%.3o", (int) (value & 0777)); |
| else |
| sprintf (octal, "\\x%lx", (long) value); |
| append_string_as_wide (octal, output); |
| } |
| /* If we somehow have extra bytes, print them now. */ |
| while (i < orig_len) |
| { |
| char octal[5]; |
| |
| sprintf (octal, "\\%.3o", orig[i] & 0xff); |
| append_string_as_wide (octal, output); |
| ++i; |
| } |
| |
| *need_escapep = 1; |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Print the character C on STREAM as part of the contents of a |
| literal string whose delimiter is QUOTER. ENCODING names the |
| encoding of C. */ |
| |
| void |
| generic_emit_char (int c, struct type *type, struct ui_file *stream, |
| int quoter, const char *encoding) |
| { |
| enum bfd_endian byte_order |
| = gdbarch_byte_order (get_type_arch (type)); |
| struct obstack wchar_buf, output; |
| struct cleanup *cleanups; |
| gdb_byte *buf; |
| struct wchar_iterator *iter; |
| int need_escape = 0; |
| |
| buf = alloca (TYPE_LENGTH (type)); |
| pack_long (buf, type, c); |
| |
| iter = make_wchar_iterator (buf, TYPE_LENGTH (type), |
| encoding, TYPE_LENGTH (type)); |
| cleanups = make_cleanup_wchar_iterator (iter); |
| |
| /* This holds the printable form of the wchar_t data. */ |
| obstack_init (&wchar_buf); |
| make_cleanup_obstack_free (&wchar_buf); |
| |
| while (1) |
| { |
| int num_chars; |
| gdb_wchar_t *chars; |
| const gdb_byte *buf; |
| size_t buflen; |
| int print_escape = 1; |
| enum wchar_iterate_result result; |
| |
| num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen); |
| if (num_chars < 0) |
| break; |
| if (num_chars > 0) |
| { |
| /* If all characters are printable, print them. Otherwise, |
| we're going to have to print an escape sequence. We |
| check all characters because we want to print the target |
| bytes in the escape sequence, and we don't know character |
| boundaries there. */ |
| int i; |
| |
| print_escape = 0; |
| for (i = 0; i < num_chars; ++i) |
| if (!wchar_printable (chars[i])) |
| { |
| print_escape = 1; |
| break; |
| } |
| |
| if (!print_escape) |
| { |
| for (i = 0; i < num_chars; ++i) |
| print_wchar (chars[i], buf, buflen, |
| TYPE_LENGTH (type), byte_order, |
| &wchar_buf, quoter, &need_escape); |
| } |
| } |
| |
| /* This handles the NUM_CHARS == 0 case as well. */ |
| if (print_escape) |
| print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type), |
| byte_order, &wchar_buf, quoter, &need_escape); |
| } |
| |
| /* The output in the host encoding. */ |
| obstack_init (&output); |
| make_cleanup_obstack_free (&output); |
| |
| convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), |
| obstack_base (&wchar_buf), |
| obstack_object_size (&wchar_buf), |
| 1, &output, translit_char); |
| obstack_1grow (&output, '\0'); |
| |
| fputs_filtered (obstack_base (&output), stream); |
| |
| do_cleanups (cleanups); |
| } |
| |
| /* Print the character string STRING, printing at most LENGTH |
| characters. LENGTH is -1 if the string is nul terminated. TYPE is |
| the type of each character. OPTIONS holds the printing options; |
| printing stops early if the number hits print_max; repeat counts |
| are printed as appropriate. Print ellipses at the end if we had to |
| stop before printing LENGTH characters, or if FORCE_ELLIPSES. |
| QUOTE_CHAR is the character to print at each end of the string. If |
| C_STYLE_TERMINATOR is true, and the last character is 0, then it is |
| omitted. */ |
| |
| void |
| generic_printstr (struct ui_file *stream, struct type *type, |
| const gdb_byte *string, unsigned int length, |
| const char *encoding, int force_ellipses, |
| int quote_char, int c_style_terminator, |
| const struct value_print_options *options) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
| unsigned int i; |
| unsigned int things_printed = 0; |
| int in_quotes = 0; |
| int need_comma = 0; |
| int width = TYPE_LENGTH (type); |
| struct obstack wchar_buf, output; |
| struct cleanup *cleanup; |
| struct wchar_iterator *iter; |
| int finished = 0; |
| int need_escape = 0; |
| gdb_wchar_t wide_quote_char = gdb_btowc (quote_char); |
| |
| if (length == -1) |
| { |
| unsigned long current_char = 1; |
| |
| for (i = 0; current_char; ++i) |
| { |
| QUIT; |
| current_char = extract_unsigned_integer (string + i * width, |
| width, byte_order); |
| } |
| length = i; |
| } |
| |
| /* If the string was not truncated due to `set print elements', and |
| the last byte of it is a null, we don't print that, in |
| traditional C style. */ |
| if (c_style_terminator |
| && !force_ellipses |
| && length > 0 |
| && (extract_unsigned_integer (string + (length - 1) * width, |
| width, byte_order) == 0)) |
| length--; |
| |
| if (length == 0) |
| { |
| fputs_filtered ("\"\"", stream); |
| return; |
| } |
| |
| /* Arrange to iterate over the characters, in wchar_t form. */ |
| iter = make_wchar_iterator (string, length * width, encoding, width); |
| cleanup = make_cleanup_wchar_iterator (iter); |
| |
| /* WCHAR_BUF is the obstack we use to represent the string in |
| wchar_t form. */ |
| obstack_init (&wchar_buf); |
| make_cleanup_obstack_free (&wchar_buf); |
| |
| while (!finished && things_printed < options->print_max) |
| { |
| int num_chars; |
| enum wchar_iterate_result result; |
| gdb_wchar_t *chars; |
| const gdb_byte *buf; |
| size_t buflen; |
| |
| QUIT; |
| |
| if (need_comma) |
| { |
| obstack_grow_wstr (&wchar_buf, LCST (", ")); |
| need_comma = 0; |
| } |
| |
| num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen); |
| /* We only look at repetitions when we were able to convert a |
| single character in isolation. This makes the code simpler |
| and probably does the sensible thing in the majority of |
| cases. */ |
| while (num_chars == 1 && things_printed < options->print_max) |
| { |
| /* Count the number of repetitions. */ |
| unsigned int reps = 0; |
| gdb_wchar_t current_char = chars[0]; |
| const gdb_byte *orig_buf = buf; |
| int orig_len = buflen; |
| |
| if (need_comma) |
| { |
| obstack_grow_wstr (&wchar_buf, LCST (", ")); |
| need_comma = 0; |
| } |
| |
| while (num_chars == 1 && current_char == chars[0]) |
| { |
| num_chars = wchar_iterate (iter, &result, &chars, |
| &buf, &buflen); |
| ++reps; |
| } |
| |
| /* Emit CURRENT_CHAR according to the repetition count and |
| options. */ |
| if (reps > options->repeat_count_threshold) |
| { |
| if (in_quotes) |
| { |
| if (options->inspect_it) |
| obstack_grow_wstr (&wchar_buf, LCST ("\\")); |
| obstack_grow (&wchar_buf, &wide_quote_char, |
| sizeof (gdb_wchar_t)); |
| obstack_grow_wstr (&wchar_buf, LCST (", ")); |
| in_quotes = 0; |
| } |
| obstack_grow_wstr (&wchar_buf, LCST ("'")); |
| need_escape = 0; |
| print_wchar (current_char, orig_buf, orig_len, width, |
| byte_order, &wchar_buf, '\'', &need_escape); |
| obstack_grow_wstr (&wchar_buf, LCST ("'")); |
| { |
| /* Painful gyrations. */ |
| int j; |
| char *s = xstrprintf (_(" <repeats %u times>"), reps); |
| |
| for (j = 0; s[j]; ++j) |
| { |
| gdb_wchar_t w = gdb_btowc (s[j]); |
| obstack_grow (&wchar_buf, &w, sizeof (gdb_wchar_t)); |
| } |
| xfree (s); |
| } |
| things_printed += options->repeat_count_threshold; |
| need_comma = 1; |
| } |
| else |
| { |
| /* Saw the character one or more times, but fewer than |
| the repetition threshold. */ |
| if (!in_quotes) |
| { |
| if (options->inspect_it) |
| obstack_grow_wstr (&wchar_buf, LCST ("\\")); |
| obstack_grow (&wchar_buf, &wide_quote_char, |
| sizeof (gdb_wchar_t)); |
| in_quotes = 1; |
| need_escape = 0; |
| } |
| |
| while (reps-- > 0) |
| { |
| print_wchar (current_char, orig_buf, |
| orig_len, width, |
| byte_order, &wchar_buf, |
| quote_char, &need_escape); |
| ++things_printed; |
| } |
| } |
| } |
| |
| /* NUM_CHARS and the other outputs from wchar_iterate are valid |
| here regardless of which branch was taken above. */ |
| if (num_chars < 0) |
| { |
| /* Hit EOF. */ |
| finished = 1; |
| break; |
| } |
| |
| switch (result) |
| { |
| case wchar_iterate_invalid: |
| if (!in_quotes) |
| { |
| if (options->inspect_it) |
| obstack_grow_wstr (&wchar_buf, LCST ("\\")); |
| obstack_grow (&wchar_buf, &wide_quote_char, |
| sizeof (gdb_wchar_t)); |
| in_quotes = 1; |
| } |
| need_escape = 0; |
| print_wchar (gdb_WEOF, buf, buflen, width, byte_order, |
| &wchar_buf, quote_char, &need_escape); |
| break; |
| |
| case wchar_iterate_incomplete: |
| if (in_quotes) |
| { |
| if (options->inspect_it) |
| obstack_grow_wstr (&wchar_buf, LCST ("\\")); |
| obstack_grow (&wchar_buf, &wide_quote_char, |
| sizeof (gdb_wchar_t)); |
| obstack_grow_wstr (&wchar_buf, LCST (",")); |
| in_quotes = 0; |
| } |
| obstack_grow_wstr (&wchar_buf, |
| LCST (" <incomplete sequence ")); |
| print_wchar (gdb_WEOF, buf, buflen, width, |
| byte_order, &wchar_buf, |
| 0, &need_escape); |
| obstack_grow_wstr (&wchar_buf, LCST (">")); |
| finished = 1; |
| break; |
| } |
| } |
| |
| /* Terminate the quotes if necessary. */ |
| if (in_quotes) |
| { |
| if (options->inspect_it) |
| obstack_grow_wstr (&wchar_buf, LCST ("\\")); |
| obstack_grow (&wchar_buf, &wide_quote_char, |
| sizeof (gdb_wchar_t)); |
| } |
| |
| if (force_ellipses || !finished) |
| obstack_grow_wstr (&wchar_buf, LCST ("...")); |
| |
| /* OUTPUT is where we collect `char's for printing. */ |
| obstack_init (&output); |
| make_cleanup_obstack_free (&output); |
| |
| convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), |
| obstack_base (&wchar_buf), |
| obstack_object_size (&wchar_buf), |
| 1, &output, translit_char); |
| obstack_1grow (&output, '\0'); |
| |
| fputs_filtered (obstack_base (&output), stream); |
| |
| do_cleanups (cleanup); |
| } |
| |
| /* Print a string from the inferior, starting at ADDR and printing up to LEN |
| characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing |
| stops at the first null byte, otherwise printing proceeds (including null |
| bytes) until either print_max or LEN characters have been printed, |
| whichever is smaller. ENCODING is the name of the string's |
| encoding. It can be NULL, in which case the target encoding is |
| assumed. */ |
| |
| int |
| val_print_string (struct type *elttype, const char *encoding, |
| CORE_ADDR addr, int len, |
| struct ui_file *stream, |
| const struct value_print_options *options) |
| { |
| int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ |
| int errcode; /* Errno returned from bad reads. */ |
| int found_nul; /* Non-zero if we found the nul char. */ |
| unsigned int fetchlimit; /* Maximum number of chars to print. */ |
| int bytes_read; |
| gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */ |
| struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ |
| struct gdbarch *gdbarch = get_type_arch (elttype); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int width = TYPE_LENGTH (elttype); |
| |
| /* First we need to figure out the limit on the number of characters we are |
| going to attempt to fetch and print. This is actually pretty simple. If |
| LEN >= zero, then the limit is the minimum of LEN and print_max. If |
| LEN is -1, then the limit is print_max. This is true regardless of |
| whether print_max is zero, UINT_MAX (unlimited), or something in between, |
| because finding the null byte (or available memory) is what actually |
| limits the fetch. */ |
| |
| fetchlimit = (len == -1 ? options->print_max : min (len, |
| options->print_max)); |
| |
| errcode = read_string (addr, len, width, fetchlimit, byte_order, |
| &buffer, &bytes_read); |
| old_chain = make_cleanup (xfree, buffer); |
| |
| addr += bytes_read; |
| |
| /* We now have either successfully filled the buffer to fetchlimit, |
| or terminated early due to an error or finding a null char when |
| LEN is -1. */ |
| |
| /* Determine found_nul by looking at the last character read. */ |
| found_nul = extract_unsigned_integer (buffer + bytes_read - width, width, |
| byte_order) == 0; |
| if (len == -1 && !found_nul) |
| { |
| gdb_byte *peekbuf; |
| |
| /* We didn't find a NUL terminator we were looking for. Attempt |
| to peek at the next character. If not successful, or it is not |
| a null byte, then force ellipsis to be printed. */ |
| |
| peekbuf = (gdb_byte *) alloca (width); |
| |
| if (target_read_memory (addr, peekbuf, width) == 0 |
| && extract_unsigned_integer (peekbuf, width, byte_order) != 0) |
| force_ellipsis = 1; |
| } |
| else if ((len >= 0 && errcode != 0) || (len > bytes_read / width)) |
| { |
| /* Getting an error when we have a requested length, or fetching less |
| than the number of characters actually requested, always make us |
| print ellipsis. */ |
| force_ellipsis = 1; |
| } |
| |
| /* If we get an error before fetching anything, don't print a string. |
| But if we fetch something and then get an error, print the string |
| and then the error message. */ |
| if (errcode == 0 || bytes_read > 0) |
| { |
| LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, |
| encoding, force_ellipsis, options); |
| } |
| |
| if (errcode != 0) |
| { |
| if (errcode == EIO) |
| { |
| fprintf_filtered (stream, "<Address "); |
| fputs_filtered (paddress (gdbarch, addr), stream); |
| fprintf_filtered (stream, " out of bounds>"); |
| } |
| else |
| { |
| fprintf_filtered (stream, "<Error reading address "); |
| fputs_filtered (paddress (gdbarch, addr), stream); |
| fprintf_filtered (stream, ": %s>", safe_strerror (errcode)); |
| } |
| } |
| |
| gdb_flush (stream); |
| do_cleanups (old_chain); |
| |
| return (bytes_read / width); |
| } |
| |
| |
| /* The 'set input-radix' command writes to this auxiliary variable. |
| If the requested radix is valid, INPUT_RADIX is updated; otherwise, |
| it is left unchanged. */ |
| |
| static unsigned input_radix_1 = 10; |
| |
| /* Validate an input or output radix setting, and make sure the user |
| knows what they really did here. Radix setting is confusing, e.g. |
| setting the input radix to "10" never changes it! */ |
| |
| static void |
| set_input_radix (char *args, int from_tty, struct cmd_list_element *c) |
| { |
| set_input_radix_1 (from_tty, input_radix_1); |
| } |
| |
| static void |
| set_input_radix_1 (int from_tty, unsigned radix) |
| { |
| /* We don't currently disallow any input radix except 0 or 1, which don't |
| make any mathematical sense. In theory, we can deal with any input |
| radix greater than 1, even if we don't have unique digits for every |
| value from 0 to radix-1, but in practice we lose on large radix values. |
| We should either fix the lossage or restrict the radix range more. |
| (FIXME). */ |
| |
| if (radix < 2) |
| { |
| input_radix_1 = input_radix; |
| error (_("Nonsense input radix ``decimal %u''; input radix unchanged."), |
| radix); |
| } |
| input_radix_1 = input_radix = radix; |
| if (from_tty) |
| { |
| printf_filtered (_("Input radix now set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| radix, radix, radix); |
| } |
| } |
| |
| /* The 'set output-radix' command writes to this auxiliary variable. |
| If the requested radix is valid, OUTPUT_RADIX is updated, |
| otherwise, it is left unchanged. */ |
| |
| static unsigned output_radix_1 = 10; |
| |
| static void |
| set_output_radix (char *args, int from_tty, struct cmd_list_element *c) |
| { |
| set_output_radix_1 (from_tty, output_radix_1); |
| } |
| |
| static void |
| set_output_radix_1 (int from_tty, unsigned radix) |
| { |
| /* Validate the radix and disallow ones that we aren't prepared to |
| handle correctly, leaving the radix unchanged. */ |
| switch (radix) |
| { |
| case 16: |
| user_print_options.output_format = 'x'; /* hex */ |
| break; |
| case 10: |
| user_print_options.output_format = 0; /* decimal */ |
| break; |
| case 8: |
| user_print_options.output_format = 'o'; /* octal */ |
| break; |
| default: |
| output_radix_1 = output_radix; |
| error (_("Unsupported output radix ``decimal %u''; " |
| "output radix unchanged."), |
| radix); |
| } |
| output_radix_1 = output_radix = radix; |
| if (from_tty) |
| { |
| printf_filtered (_("Output radix now set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| radix, radix, radix); |
| } |
| } |
| |
| /* Set both the input and output radix at once. Try to set the output radix |
| first, since it has the most restrictive range. An radix that is valid as |
| an output radix is also valid as an input radix. |
| |
| It may be useful to have an unusual input radix. If the user wishes to |
| set an input radix that is not valid as an output radix, he needs to use |
| the 'set input-radix' command. */ |
| |
| static void |
| set_radix (char *arg, int from_tty) |
| { |
| unsigned radix; |
| |
| radix = (arg == NULL) ? 10 : parse_and_eval_long (arg); |
| set_output_radix_1 (0, radix); |
| set_input_radix_1 (0, radix); |
| if (from_tty) |
| { |
| printf_filtered (_("Input and output radices now set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| radix, radix, radix); |
| } |
| } |
| |
| /* Show both the input and output radices. */ |
| |
| static void |
| show_radix (char *arg, int from_tty) |
| { |
| if (from_tty) |
| { |
| if (input_radix == output_radix) |
| { |
| printf_filtered (_("Input and output radices set to " |
| "decimal %u, hex %x, octal %o.\n"), |
| input_radix, input_radix, input_radix); |
| } |
| else |
| { |
| printf_filtered (_("Input radix set to decimal " |
| "%u, hex %x, octal %o.\n"), |
| input_radix, input_radix, input_radix); |
| printf_filtered (_("Output radix set to decimal " |
| "%u, hex %x, octal %o.\n"), |
| output_radix, output_radix, output_radix); |
| } |
| } |
| } |
| |
| |
| static void |
| set_print (char *arg, int from_tty) |
| { |
| printf_unfiltered ( |
| "\"set print\" must be followed by the name of a print subcommand.\n"); |
| help_list (setprintlist, "set print ", -1, gdb_stdout); |
| } |
| |
| static void |
| show_print (char *args, int from_tty) |
| { |
| cmd_show_list (showprintlist, from_tty, ""); |
| } |
| |
| void |
| _initialize_valprint (void) |
| { |
| add_prefix_cmd ("print", no_class, set_print, |
| _("Generic command for setting how things print."), |
| &setprintlist, "set print ", 0, &setlist); |
| add_alias_cmd ("p", "print", no_class, 1, &setlist); |
| /* Prefer set print to set prompt. */ |
| add_alias_cmd ("pr", "print", no_class, 1, &setlist); |
| |
| add_prefix_cmd ("print", no_class, show_print, |
| _("Generic command for showing print settings."), |
| &showprintlist, "show print ", 0, &showlist); |
| add_alias_cmd ("p", "print", no_class, 1, &showlist); |
| add_alias_cmd ("pr", "print", no_class, 1, &showlist); |
| |
| add_setshow_uinteger_cmd ("elements", no_class, |
| &user_print_options.print_max, _("\ |
| Set limit on string chars or array elements to print."), _("\ |
| Show limit on string chars or array elements to print."), _("\ |
| \"set print elements 0\" causes there to be no limit."), |
| NULL, |
| show_print_max, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_boolean_cmd ("null-stop", no_class, |
| &user_print_options.stop_print_at_null, _("\ |
| Set printing of char arrays to stop at first null char."), _("\ |
| Show printing of char arrays to stop at first null char."), NULL, |
| NULL, |
| show_stop_print_at_null, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_uinteger_cmd ("repeats", no_class, |
| &user_print_options.repeat_count_threshold, _("\ |
| Set threshold for repeated print elements."), _("\ |
| Show threshold for repeated print elements."), _("\ |
| \"set print repeats 0\" causes all elements to be individually printed."), |
| NULL, |
| show_repeat_count_threshold, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_boolean_cmd ("pretty", class_support, |
| &user_print_options.prettyprint_structs, _("\ |
| Set prettyprinting of structures."), _("\ |
| Show prettyprinting of structures."), NULL, |
| NULL, |
| show_prettyprint_structs, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_boolean_cmd ("union", class_support, |
| &user_print_options.unionprint, _("\ |
| Set printing of unions interior to structures."), _("\ |
| Show printing of unions interior to structures."), NULL, |
| NULL, |
| show_unionprint, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_boolean_cmd ("array", class_support, |
| &user_print_options.prettyprint_arrays, _("\ |
| Set prettyprinting of arrays."), _("\ |
| Show prettyprinting of arrays."), NULL, |
| NULL, |
| show_prettyprint_arrays, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_boolean_cmd ("address", class_support, |
| &user_print_options.addressprint, _("\ |
| Set printing of addresses."), _("\ |
| Show printing of addresses."), NULL, |
| NULL, |
| show_addressprint, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_boolean_cmd ("symbol", class_support, |
| &user_print_options.symbol_print, _("\ |
| Set printing of symbol names when printing pointers."), _("\ |
| Show printing of symbol names when printing pointers."), |
| NULL, NULL, |
| show_symbol_print, |
| &setprintlist, &showprintlist); |
| |
| add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1, |
| _("\ |
| Set default input radix for entering numbers."), _("\ |
| Show default input radix for entering numbers."), NULL, |
| set_input_radix, |
| show_input_radix, |
| &setlist, &showlist); |
| |
| add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1, |
| _("\ |
| Set default output radix for printing of values."), _("\ |
| Show default output radix for printing of values."), NULL, |
| set_output_radix, |
| show_output_radix, |
| &setlist, &showlist); |
| |
| /* The "set radix" and "show radix" commands are special in that |
| they are like normal set and show commands but allow two normally |
| independent variables to be either set or shown with a single |
| command. So the usual deprecated_add_set_cmd() and [deleted] |
| add_show_from_set() commands aren't really appropriate. */ |
| /* FIXME: i18n: With the new add_setshow_integer command, that is no |
| longer true - show can display anything. */ |
| add_cmd ("radix", class_support, set_radix, _("\ |
| Set default input and output number radices.\n\ |
| Use 'set input-radix' or 'set output-radix' to independently set each.\n\ |
| Without an argument, sets both radices back to the default value of 10."), |
| &setlist); |
| add_cmd ("radix", class_support, show_radix, _("\ |
| Show the default input and output number radices.\n\ |
| Use 'show input-radix' or 'show output-radix' to independently show each."), |
| &showlist); |
| |
| add_setshow_boolean_cmd ("array-indexes", class_support, |
| &user_print_options.print_array_indexes, _("\ |
| Set printing of array indexes."), _("\ |
| Show printing of array indexes"), NULL, NULL, show_print_array_indexes, |
| &setprintlist, &showprintlist); |
| } |