| /* Perform non-arithmetic operations on values, for GDB. |
| |
| Copyright (C) 1986-2012 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "value.h" |
| #include "frame.h" |
| #include "inferior.h" |
| #include "gdbcore.h" |
| #include "target.h" |
| #include "demangle.h" |
| #include "language.h" |
| #include "gdbcmd.h" |
| #include "regcache.h" |
| #include "cp-abi.h" |
| #include "block.h" |
| #include "infcall.h" |
| #include "dictionary.h" |
| #include "cp-support.h" |
| #include "dfp.h" |
| #include "user-regs.h" |
| #include "tracepoint.h" |
| #include <errno.h> |
| #include "gdb_string.h" |
| #include "gdb_assert.h" |
| #include "cp-support.h" |
| #include "observer.h" |
| #include "objfiles.h" |
| #include "symtab.h" |
| #include "exceptions.h" |
| |
| extern int overload_debug; |
| /* Local functions. */ |
| |
| static int typecmp (int staticp, int varargs, int nargs, |
| struct field t1[], struct value *t2[]); |
| |
| static struct value *search_struct_field (const char *, struct value *, |
| int, struct type *, int); |
| |
| static struct value *search_struct_method (const char *, struct value **, |
| struct value **, |
| int, int *, struct type *); |
| |
| static int find_oload_champ_namespace (struct value **, int, |
| const char *, const char *, |
| struct symbol ***, |
| struct badness_vector **, |
| const int no_adl); |
| |
| static |
| int find_oload_champ_namespace_loop (struct value **, int, |
| const char *, const char *, |
| int, struct symbol ***, |
| struct badness_vector **, int *, |
| const int no_adl); |
| |
| static int find_oload_champ (struct value **, int, int, int, |
| struct fn_field *, struct symbol **, |
| struct badness_vector **); |
| |
| static int oload_method_static (int, struct fn_field *, int); |
| |
| enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; |
| |
| static enum |
| oload_classification classify_oload_match (struct badness_vector *, |
| int, int); |
| |
| static struct value *value_struct_elt_for_reference (struct type *, |
| int, struct type *, |
| char *, |
| struct type *, |
| int, enum noside); |
| |
| static struct value *value_namespace_elt (const struct type *, |
| char *, int , enum noside); |
| |
| static struct value *value_maybe_namespace_elt (const struct type *, |
| char *, int, |
| enum noside); |
| |
| static CORE_ADDR allocate_space_in_inferior (int); |
| |
| static struct value *cast_into_complex (struct type *, struct value *); |
| |
| static struct fn_field *find_method_list (struct value **, const char *, |
| int, struct type *, int *, |
| struct type **, int *); |
| |
| void _initialize_valops (void); |
| |
| #if 0 |
| /* Flag for whether we want to abandon failed expression evals by |
| default. */ |
| |
| static int auto_abandon = 0; |
| #endif |
| |
| int overload_resolution = 0; |
| static void |
| show_overload_resolution (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, |
| const char *value) |
| { |
| fprintf_filtered (file, _("Overload resolution in evaluating " |
| "C++ functions is %s.\n"), |
| value); |
| } |
| |
| /* Find the address of function name NAME in the inferior. If OBJF_P |
| is non-NULL, *OBJF_P will be set to the OBJFILE where the function |
| is defined. */ |
| |
| struct value * |
| find_function_in_inferior (const char *name, struct objfile **objf_p) |
| { |
| struct symbol *sym; |
| |
| sym = lookup_symbol (name, 0, VAR_DOMAIN, 0); |
| if (sym != NULL) |
| { |
| if (SYMBOL_CLASS (sym) != LOC_BLOCK) |
| { |
| error (_("\"%s\" exists in this program but is not a function."), |
| name); |
| } |
| |
| if (objf_p) |
| *objf_p = SYMBOL_SYMTAB (sym)->objfile; |
| |
| return value_of_variable (sym, NULL); |
| } |
| else |
| { |
| struct minimal_symbol *msymbol = |
| lookup_minimal_symbol (name, NULL, NULL); |
| |
| if (msymbol != NULL) |
| { |
| struct objfile *objfile = msymbol_objfile (msymbol); |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| struct type *type; |
| CORE_ADDR maddr; |
| type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); |
| type = lookup_function_type (type); |
| type = lookup_pointer_type (type); |
| maddr = SYMBOL_VALUE_ADDRESS (msymbol); |
| |
| if (objf_p) |
| *objf_p = objfile; |
| |
| return value_from_pointer (type, maddr); |
| } |
| else |
| { |
| if (!target_has_execution) |
| error (_("evaluation of this expression " |
| "requires the target program to be active")); |
| else |
| error (_("evaluation of this expression requires the " |
| "program to have a function \"%s\"."), |
| name); |
| } |
| } |
| } |
| |
| /* Allocate NBYTES of space in the inferior using the inferior's |
| malloc and return a value that is a pointer to the allocated |
| space. */ |
| |
| struct value * |
| value_allocate_space_in_inferior (int len) |
| { |
| struct objfile *objf; |
| struct value *val = find_function_in_inferior ("malloc", &objf); |
| struct gdbarch *gdbarch = get_objfile_arch (objf); |
| struct value *blocklen; |
| |
| blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); |
| val = call_function_by_hand (val, 1, &blocklen); |
| if (value_logical_not (val)) |
| { |
| if (!target_has_execution) |
| error (_("No memory available to program now: " |
| "you need to start the target first")); |
| else |
| error (_("No memory available to program: call to malloc failed")); |
| } |
| return val; |
| } |
| |
| static CORE_ADDR |
| allocate_space_in_inferior (int len) |
| { |
| return value_as_long (value_allocate_space_in_inferior (len)); |
| } |
| |
| /* Cast struct value VAL to type TYPE and return as a value. |
| Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION |
| for this to work. Typedef to one of the codes is permitted. |
| Returns NULL if the cast is neither an upcast nor a downcast. */ |
| |
| static struct value * |
| value_cast_structs (struct type *type, struct value *v2) |
| { |
| struct type *t1; |
| struct type *t2; |
| struct value *v; |
| |
| gdb_assert (type != NULL && v2 != NULL); |
| |
| t1 = check_typedef (type); |
| t2 = check_typedef (value_type (v2)); |
| |
| /* Check preconditions. */ |
| gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT |
| || TYPE_CODE (t1) == TYPE_CODE_UNION) |
| && !!"Precondition is that type is of STRUCT or UNION kind."); |
| gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT |
| || TYPE_CODE (t2) == TYPE_CODE_UNION) |
| && !!"Precondition is that value is of STRUCT or UNION kind"); |
| |
| if (TYPE_NAME (t1) != NULL |
| && TYPE_NAME (t2) != NULL |
| && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2))) |
| return NULL; |
| |
| /* Upcasting: look in the type of the source to see if it contains the |
| type of the target as a superclass. If so, we'll need to |
| offset the pointer rather than just change its type. */ |
| if (TYPE_NAME (t1) != NULL) |
| { |
| v = search_struct_field (type_name_no_tag (t1), |
| v2, 0, t2, 1); |
| if (v) |
| return v; |
| } |
| |
| /* Downcasting: look in the type of the target to see if it contains the |
| type of the source as a superclass. If so, we'll need to |
| offset the pointer rather than just change its type. */ |
| if (TYPE_NAME (t2) != NULL) |
| { |
| /* Try downcasting using the run-time type of the value. */ |
| int full, top, using_enc; |
| struct type *real_type; |
| |
| real_type = value_rtti_type (v2, &full, &top, &using_enc); |
| if (real_type) |
| { |
| v = value_full_object (v2, real_type, full, top, using_enc); |
| v = value_at_lazy (real_type, value_address (v)); |
| |
| /* We might be trying to cast to the outermost enclosing |
| type, in which case search_struct_field won't work. */ |
| if (TYPE_NAME (real_type) != NULL |
| && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1))) |
| return v; |
| |
| v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1); |
| if (v) |
| return v; |
| } |
| |
| /* Try downcasting using information from the destination type |
| T2. This wouldn't work properly for classes with virtual |
| bases, but those were handled above. */ |
| v = search_struct_field (type_name_no_tag (t2), |
| value_zero (t1, not_lval), 0, t1, 1); |
| if (v) |
| { |
| /* Downcasting is possible (t1 is superclass of v2). */ |
| CORE_ADDR addr2 = value_address (v2); |
| |
| addr2 -= value_address (v) + value_embedded_offset (v); |
| return value_at (type, addr2); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* Cast one pointer or reference type to another. Both TYPE and |
| the type of ARG2 should be pointer types, or else both should be |
| reference types. If SUBCLASS_CHECK is non-zero, this will force a |
| check to see whether TYPE is a superclass of ARG2's type. If |
| SUBCLASS_CHECK is zero, then the subclass check is done only when |
| ARG2 is itself non-zero. Returns the new pointer or reference. */ |
| |
| struct value * |
| value_cast_pointers (struct type *type, struct value *arg2, |
| int subclass_check) |
| { |
| struct type *type1 = check_typedef (type); |
| struct type *type2 = check_typedef (value_type (arg2)); |
| struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
| struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
| |
| if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
| && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
| && (subclass_check || !value_logical_not (arg2))) |
| { |
| struct value *v2; |
| |
| if (TYPE_CODE (type2) == TYPE_CODE_REF) |
| v2 = coerce_ref (arg2); |
| else |
| v2 = value_ind (arg2); |
| gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) |
| == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); |
| v2 = value_cast_structs (t1, v2); |
| /* At this point we have what we can have, un-dereference if needed. */ |
| if (v2) |
| { |
| struct value *v = value_addr (v2); |
| |
| deprecated_set_value_type (v, type); |
| return v; |
| } |
| } |
| |
| /* No superclass found, just change the pointer type. */ |
| arg2 = value_copy (arg2); |
| deprecated_set_value_type (arg2, type); |
| set_value_enclosing_type (arg2, type); |
| set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
| return arg2; |
| } |
| |
| /* Cast value ARG2 to type TYPE and return as a value. |
| More general than a C cast: accepts any two types of the same length, |
| and if ARG2 is an lvalue it can be cast into anything at all. */ |
| /* In C++, casts may change pointer or object representations. */ |
| |
| struct value * |
| value_cast (struct type *type, struct value *arg2) |
| { |
| enum type_code code1; |
| enum type_code code2; |
| int scalar; |
| struct type *type2; |
| |
| int convert_to_boolean = 0; |
| |
| if (value_type (arg2) == type) |
| return arg2; |
| |
| code1 = TYPE_CODE (check_typedef (type)); |
| |
| /* Check if we are casting struct reference to struct reference. */ |
| if (code1 == TYPE_CODE_REF) |
| { |
| /* We dereference type; then we recurse and finally |
| we generate value of the given reference. Nothing wrong with |
| that. */ |
| struct type *t1 = check_typedef (type); |
| struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1)); |
| struct value *val = value_cast (dereftype, arg2); |
| |
| return value_ref (val); |
| } |
| |
| code2 = TYPE_CODE (check_typedef (value_type (arg2))); |
| |
| if (code2 == TYPE_CODE_REF) |
| /* We deref the value and then do the cast. */ |
| return value_cast (type, coerce_ref (arg2)); |
| |
| CHECK_TYPEDEF (type); |
| code1 = TYPE_CODE (type); |
| arg2 = coerce_ref (arg2); |
| type2 = check_typedef (value_type (arg2)); |
| |
| /* You can't cast to a reference type. See value_cast_pointers |
| instead. */ |
| gdb_assert (code1 != TYPE_CODE_REF); |
| |
| /* A cast to an undetermined-length array_type, such as |
| (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, |
| where N is sizeof(OBJECT)/sizeof(TYPE). */ |
| if (code1 == TYPE_CODE_ARRAY) |
| { |
| struct type *element_type = TYPE_TARGET_TYPE (type); |
| unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); |
| |
| if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
| { |
| struct type *range_type = TYPE_INDEX_TYPE (type); |
| int val_length = TYPE_LENGTH (type2); |
| LONGEST low_bound, high_bound, new_length; |
| |
| if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
| low_bound = 0, high_bound = 0; |
| new_length = val_length / element_length; |
| if (val_length % element_length != 0) |
| warning (_("array element type size does not " |
| "divide object size in cast")); |
| /* FIXME-type-allocation: need a way to free this type when |
| we are done with it. */ |
| range_type = create_range_type ((struct type *) NULL, |
| TYPE_TARGET_TYPE (range_type), |
| low_bound, |
| new_length + low_bound - 1); |
| deprecated_set_value_type (arg2, |
| create_array_type ((struct type *) NULL, |
| element_type, |
| range_type)); |
| return arg2; |
| } |
| } |
| |
| if (current_language->c_style_arrays |
| && TYPE_CODE (type2) == TYPE_CODE_ARRAY |
| && !TYPE_VECTOR (type2)) |
| arg2 = value_coerce_array (arg2); |
| |
| if (TYPE_CODE (type2) == TYPE_CODE_FUNC) |
| arg2 = value_coerce_function (arg2); |
| |
| type2 = check_typedef (value_type (arg2)); |
| code2 = TYPE_CODE (type2); |
| |
| if (code1 == TYPE_CODE_COMPLEX) |
| return cast_into_complex (type, arg2); |
| if (code1 == TYPE_CODE_BOOL) |
| { |
| code1 = TYPE_CODE_INT; |
| convert_to_boolean = 1; |
| } |
| if (code1 == TYPE_CODE_CHAR) |
| code1 = TYPE_CODE_INT; |
| if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) |
| code2 = TYPE_CODE_INT; |
| |
| scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT |
| || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM |
| || code2 == TYPE_CODE_RANGE); |
| |
| if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) |
| && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) |
| && TYPE_NAME (type) != 0) |
| { |
| struct value *v = value_cast_structs (type, arg2); |
| |
| if (v) |
| return v; |
| } |
| |
| if (code1 == TYPE_CODE_FLT && scalar) |
| return value_from_double (type, value_as_double (arg2)); |
| else if (code1 == TYPE_CODE_DECFLOAT && scalar) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
| int dec_len = TYPE_LENGTH (type); |
| gdb_byte dec[16]; |
| |
| if (code2 == TYPE_CODE_FLT) |
| decimal_from_floating (arg2, dec, dec_len, byte_order); |
| else if (code2 == TYPE_CODE_DECFLOAT) |
| decimal_convert (value_contents (arg2), TYPE_LENGTH (type2), |
| byte_order, dec, dec_len, byte_order); |
| else |
| /* The only option left is an integral type. */ |
| decimal_from_integral (arg2, dec, dec_len, byte_order); |
| |
| return value_from_decfloat (type, dec); |
| } |
| else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM |
| || code1 == TYPE_CODE_RANGE) |
| && (scalar || code2 == TYPE_CODE_PTR |
| || code2 == TYPE_CODE_MEMBERPTR)) |
| { |
| LONGEST longest; |
| |
| /* When we cast pointers to integers, we mustn't use |
| gdbarch_pointer_to_address to find the address the pointer |
| represents, as value_as_long would. GDB should evaluate |
| expressions just as the compiler would --- and the compiler |
| sees a cast as a simple reinterpretation of the pointer's |
| bits. */ |
| if (code2 == TYPE_CODE_PTR) |
| longest = extract_unsigned_integer |
| (value_contents (arg2), TYPE_LENGTH (type2), |
| gdbarch_byte_order (get_type_arch (type2))); |
| else |
| longest = value_as_long (arg2); |
| return value_from_longest (type, convert_to_boolean ? |
| (LONGEST) (longest ? 1 : 0) : longest); |
| } |
| else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT |
| || code2 == TYPE_CODE_ENUM |
| || code2 == TYPE_CODE_RANGE)) |
| { |
| /* TYPE_LENGTH (type) is the length of a pointer, but we really |
| want the length of an address! -- we are really dealing with |
| addresses (i.e., gdb representations) not pointers (i.e., |
| target representations) here. |
| |
| This allows things like "print *(int *)0x01000234" to work |
| without printing a misleading message -- which would |
| otherwise occur when dealing with a target having two byte |
| pointers and four byte addresses. */ |
| |
| int addr_bit = gdbarch_addr_bit (get_type_arch (type2)); |
| LONGEST longest = value_as_long (arg2); |
| |
| if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT) |
| { |
| if (longest >= ((LONGEST) 1 << addr_bit) |
| || longest <= -((LONGEST) 1 << addr_bit)) |
| warning (_("value truncated")); |
| } |
| return value_from_longest (type, longest); |
| } |
| else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT |
| && value_as_long (arg2) == 0) |
| { |
| struct value *result = allocate_value (type); |
| |
| cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0); |
| return result; |
| } |
| else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT |
| && value_as_long (arg2) == 0) |
| { |
| /* The Itanium C++ ABI represents NULL pointers to members as |
| minus one, instead of biasing the normal case. */ |
| return value_from_longest (type, -1); |
| } |
| else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar) |
| { |
| /* Widen the scalar to a vector. */ |
| struct type *eltype; |
| struct value *val; |
| LONGEST low_bound, high_bound; |
| int i; |
| |
| if (!get_array_bounds (type, &low_bound, &high_bound)) |
| error (_("Could not determine the vector bounds")); |
| |
| eltype = check_typedef (TYPE_TARGET_TYPE (type)); |
| arg2 = value_cast (eltype, arg2); |
| val = allocate_value (type); |
| |
| for (i = 0; i < high_bound - low_bound + 1; i++) |
| { |
| /* Duplicate the contents of arg2 into the destination vector. */ |
| memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), |
| value_contents_all (arg2), TYPE_LENGTH (eltype)); |
| } |
| return val; |
| } |
| else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) |
| { |
| if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) |
| return value_cast_pointers (type, arg2, 0); |
| |
| arg2 = value_copy (arg2); |
| deprecated_set_value_type (arg2, type); |
| set_value_enclosing_type (arg2, type); |
| set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */ |
| return arg2; |
| } |
| else if (VALUE_LVAL (arg2) == lval_memory) |
| return value_at_lazy (type, value_address (arg2)); |
| else if (code1 == TYPE_CODE_VOID) |
| { |
| return value_zero (type, not_lval); |
| } |
| else |
| { |
| error (_("Invalid cast.")); |
| return 0; |
| } |
| } |
| |
| /* The C++ reinterpret_cast operator. */ |
| |
| struct value * |
| value_reinterpret_cast (struct type *type, struct value *arg) |
| { |
| struct value *result; |
| struct type *real_type = check_typedef (type); |
| struct type *arg_type, *dest_type; |
| int is_ref = 0; |
| enum type_code dest_code, arg_code; |
| |
| /* Do reference, function, and array conversion. */ |
| arg = coerce_array (arg); |
| |
| /* Attempt to preserve the type the user asked for. */ |
| dest_type = type; |
| |
| /* If we are casting to a reference type, transform |
| reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */ |
| if (TYPE_CODE (real_type) == TYPE_CODE_REF) |
| { |
| is_ref = 1; |
| arg = value_addr (arg); |
| dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type)); |
| real_type = lookup_pointer_type (real_type); |
| } |
| |
| arg_type = value_type (arg); |
| |
| dest_code = TYPE_CODE (real_type); |
| arg_code = TYPE_CODE (arg_type); |
| |
| /* We can convert pointer types, or any pointer type to int, or int |
| type to pointer. */ |
| if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) |
| || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) |
| || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) |
| || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) |
| || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) |
| || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) |
| || (dest_code == arg_code |
| && (dest_code == TYPE_CODE_PTR |
| || dest_code == TYPE_CODE_METHODPTR |
| || dest_code == TYPE_CODE_MEMBERPTR))) |
| result = value_cast (dest_type, arg); |
| else |
| error (_("Invalid reinterpret_cast")); |
| |
| if (is_ref) |
| result = value_cast (type, value_ref (value_ind (result))); |
| |
| return result; |
| } |
| |
| /* A helper for value_dynamic_cast. This implements the first of two |
| runtime checks: we iterate over all the base classes of the value's |
| class which are equal to the desired class; if only one of these |
| holds the value, then it is the answer. */ |
| |
| static int |
| dynamic_cast_check_1 (struct type *desired_type, |
| const gdb_byte *valaddr, |
| int embedded_offset, |
| CORE_ADDR address, |
| struct value *val, |
| struct type *search_type, |
| CORE_ADDR arg_addr, |
| struct type *arg_type, |
| struct value **result) |
| { |
| int i, result_count = 0; |
| |
| for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) |
| { |
| int offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
| address, val); |
| |
| if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
| { |
| if (address + embedded_offset + offset >= arg_addr |
| && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type)) |
| { |
| ++result_count; |
| if (!*result) |
| *result = value_at_lazy (TYPE_BASECLASS (search_type, i), |
| address + embedded_offset + offset); |
| } |
| } |
| else |
| result_count += dynamic_cast_check_1 (desired_type, |
| valaddr, |
| embedded_offset + offset, |
| address, val, |
| TYPE_BASECLASS (search_type, i), |
| arg_addr, |
| arg_type, |
| result); |
| } |
| |
| return result_count; |
| } |
| |
| /* A helper for value_dynamic_cast. This implements the second of two |
| runtime checks: we look for a unique public sibling class of the |
| argument's declared class. */ |
| |
| static int |
| dynamic_cast_check_2 (struct type *desired_type, |
| const gdb_byte *valaddr, |
| int embedded_offset, |
| CORE_ADDR address, |
| struct value *val, |
| struct type *search_type, |
| struct value **result) |
| { |
| int i, result_count = 0; |
| |
| for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) |
| { |
| int offset; |
| |
| if (! BASETYPE_VIA_PUBLIC (search_type, i)) |
| continue; |
| |
| offset = baseclass_offset (search_type, i, valaddr, embedded_offset, |
| address, val); |
| if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) |
| { |
| ++result_count; |
| if (*result == NULL) |
| *result = value_at_lazy (TYPE_BASECLASS (search_type, i), |
| address + embedded_offset + offset); |
| } |
| else |
| result_count += dynamic_cast_check_2 (desired_type, |
| valaddr, |
| embedded_offset + offset, |
| address, val, |
| TYPE_BASECLASS (search_type, i), |
| result); |
| } |
| |
| return result_count; |
| } |
| |
| /* The C++ dynamic_cast operator. */ |
| |
| struct value * |
| value_dynamic_cast (struct type *type, struct value *arg) |
| { |
| int full, top, using_enc; |
| struct type *resolved_type = check_typedef (type); |
| struct type *arg_type = check_typedef (value_type (arg)); |
| struct type *class_type, *rtti_type; |
| struct value *result, *tem, *original_arg = arg; |
| CORE_ADDR addr; |
| int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF; |
| |
| if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR |
| && TYPE_CODE (resolved_type) != TYPE_CODE_REF) |
| error (_("Argument to dynamic_cast must be a pointer or reference type")); |
| if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID |
| && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS) |
| error (_("Argument to dynamic_cast must be pointer to class or `void *'")); |
| |
| class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type)); |
| if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) |
| { |
| if (TYPE_CODE (arg_type) != TYPE_CODE_PTR |
| && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT |
| && value_as_long (arg) == 0)) |
| error (_("Argument to dynamic_cast does not have pointer type")); |
| if (TYPE_CODE (arg_type) == TYPE_CODE_PTR) |
| { |
| arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); |
| if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) |
| error (_("Argument to dynamic_cast does " |
| "not have pointer to class type")); |
| } |
| |
| /* Handle NULL pointers. */ |
| if (value_as_long (arg) == 0) |
| return value_zero (type, not_lval); |
| |
| arg = value_ind (arg); |
| } |
| else |
| { |
| if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS) |
| error (_("Argument to dynamic_cast does not have class type")); |
| } |
| |
| /* If the classes are the same, just return the argument. */ |
| if (class_types_same_p (class_type, arg_type)) |
| return value_cast (type, arg); |
| |
| /* If the target type is a unique base class of the argument's |
| declared type, just cast it. */ |
| if (is_ancestor (class_type, arg_type)) |
| { |
| if (is_unique_ancestor (class_type, arg)) |
| return value_cast (type, original_arg); |
| error (_("Ambiguous dynamic_cast")); |
| } |
| |
| rtti_type = value_rtti_type (arg, &full, &top, &using_enc); |
| if (! rtti_type) |
| error (_("Couldn't determine value's most derived type for dynamic_cast")); |
| |
| /* Compute the most derived object's address. */ |
| addr = value_address (arg); |
| if (full) |
| { |
| /* Done. */ |
| } |
| else if (using_enc) |
| addr += top; |
| else |
| addr += top + value_embedded_offset (arg); |
| |
| /* dynamic_cast<void *> means to return a pointer to the |
| most-derived object. */ |
| if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR |
| && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID) |
| return value_at_lazy (type, addr); |
| |
| tem = value_at (type, addr); |
| |
| /* The first dynamic check specified in 5.2.7. */ |
| if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type))) |
| { |
| if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type))) |
| return tem; |
| result = NULL; |
| if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type), |
| value_contents_for_printing (tem), |
| value_embedded_offset (tem), |
| value_address (tem), tem, |
| rtti_type, addr, |
| arg_type, |
| &result) == 1) |
| return value_cast (type, |
| is_ref ? value_ref (result) : value_addr (result)); |
| } |
| |
| /* The second dynamic check specified in 5.2.7. */ |
| result = NULL; |
| if (is_public_ancestor (arg_type, rtti_type) |
| && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type), |
| value_contents_for_printing (tem), |
| value_embedded_offset (tem), |
| value_address (tem), tem, |
| rtti_type, &result) == 1) |
| return value_cast (type, |
| is_ref ? value_ref (result) : value_addr (result)); |
| |
| if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR) |
| return value_zero (type, not_lval); |
| |
| error (_("dynamic_cast failed")); |
| } |
| |
| /* Create a value of type TYPE that is zero, and return it. */ |
| |
| struct value * |
| value_zero (struct type *type, enum lval_type lv) |
| { |
| struct value *val = allocate_value (type); |
| |
| VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv); |
| return val; |
| } |
| |
| /* Create a not_lval value of numeric type TYPE that is one, and return it. */ |
| |
| struct value * |
| value_one (struct type *type) |
| { |
| struct type *type1 = check_typedef (type); |
| struct value *val; |
| |
| if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
| gdb_byte v[16]; |
| |
| decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1"); |
| val = value_from_decfloat (type, v); |
| } |
| else if (TYPE_CODE (type1) == TYPE_CODE_FLT) |
| { |
| val = value_from_double (type, (DOUBLEST) 1); |
| } |
| else if (is_integral_type (type1)) |
| { |
| val = value_from_longest (type, (LONGEST) 1); |
| } |
| else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1)) |
| { |
| struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1)); |
| int i; |
| LONGEST low_bound, high_bound; |
| struct value *tmp; |
| |
| if (!get_array_bounds (type1, &low_bound, &high_bound)) |
| error (_("Could not determine the vector bounds")); |
| |
| val = allocate_value (type); |
| for (i = 0; i < high_bound - low_bound + 1; i++) |
| { |
| tmp = value_one (eltype); |
| memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), |
| value_contents_all (tmp), TYPE_LENGTH (eltype)); |
| } |
| } |
| else |
| { |
| error (_("Not a numeric type.")); |
| } |
| |
| /* value_one result is never used for assignments to. */ |
| gdb_assert (VALUE_LVAL (val) == not_lval); |
| |
| return val; |
| } |
| |
| /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */ |
| |
| static struct value * |
| get_value_at (struct type *type, CORE_ADDR addr, int lazy) |
| { |
| struct value *val; |
| |
| if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) |
| error (_("Attempt to dereference a generic pointer.")); |
| |
| val = value_from_contents_and_address (type, NULL, addr); |
| |
| if (!lazy) |
| value_fetch_lazy (val); |
| |
| return val; |
| } |
| |
| /* Return a value with type TYPE located at ADDR. |
| |
| Call value_at only if the data needs to be fetched immediately; |
| if we can be 'lazy' and defer the fetch, perhaps indefinately, call |
| value_at_lazy instead. value_at_lazy simply records the address of |
| the data and sets the lazy-evaluation-required flag. The lazy flag |
| is tested in the value_contents macro, which is used if and when |
| the contents are actually required. |
| |
| Note: value_at does *NOT* handle embedded offsets; perform such |
| adjustments before or after calling it. */ |
| |
| struct value * |
| value_at (struct type *type, CORE_ADDR addr) |
| { |
| return get_value_at (type, addr, 0); |
| } |
| |
| /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ |
| |
| struct value * |
| value_at_lazy (struct type *type, CORE_ADDR addr) |
| { |
| return get_value_at (type, addr, 1); |
| } |
| |
| /* Called only from the value_contents and value_contents_all() |
| macros, if the current data for a variable needs to be loaded into |
| value_contents(VAL). Fetches the data from the user's process, and |
| clears the lazy flag to indicate that the data in the buffer is |
| valid. |
| |
| If the value is zero-length, we avoid calling read_memory, which |
| would abort. We mark the value as fetched anyway -- all 0 bytes of |
| it. |
| |
| This function returns a value because it is used in the |
| value_contents macro as part of an expression, where a void would |
| not work. The value is ignored. */ |
| |
| int |
| value_fetch_lazy (struct value *val) |
| { |
| gdb_assert (value_lazy (val)); |
| allocate_value_contents (val); |
| if (value_bitsize (val)) |
| { |
| /* To read a lazy bitfield, read the entire enclosing value. This |
| prevents reading the same block of (possibly volatile) memory once |
| per bitfield. It would be even better to read only the containing |
| word, but we have no way to record that just specific bits of a |
| value have been fetched. */ |
| struct type *type = check_typedef (value_type (val)); |
| enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
| struct value *parent = value_parent (val); |
| LONGEST offset = value_offset (val); |
| LONGEST num; |
| int length = TYPE_LENGTH (type); |
| |
| if (!value_bits_valid (val, |
| TARGET_CHAR_BIT * offset + value_bitpos (val), |
| value_bitsize (val))) |
| error (_("value has been optimized out")); |
| |
| if (!unpack_value_bits_as_long (value_type (val), |
| value_contents_for_printing (parent), |
| offset, |
| value_bitpos (val), |
| value_bitsize (val), parent, &num)) |
| mark_value_bytes_unavailable (val, |
| value_embedded_offset (val), |
| length); |
| else |
| store_signed_integer (value_contents_raw (val), length, |
| byte_order, num); |
| } |
| else if (VALUE_LVAL (val) == lval_memory) |
| { |
| CORE_ADDR addr = value_address (val); |
| int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val))); |
| |
| if (length) |
| read_value_memory (val, 0, value_stack (val), |
| addr, value_contents_all_raw (val), length); |
| } |
| else if (VALUE_LVAL (val) == lval_register) |
| { |
| struct frame_info *frame; |
| int regnum; |
| struct type *type = check_typedef (value_type (val)); |
| struct value *new_val = val, *mark = value_mark (); |
| |
| /* Offsets are not supported here; lazy register values must |
| refer to the entire register. */ |
| gdb_assert (value_offset (val) == 0); |
| |
| while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) |
| { |
| frame = frame_find_by_id (VALUE_FRAME_ID (new_val)); |
| regnum = VALUE_REGNUM (new_val); |
| |
| gdb_assert (frame != NULL); |
| |
| /* Convertible register routines are used for multi-register |
| values and for interpretation in different types |
| (e.g. float or int from a double register). Lazy |
| register values should have the register's natural type, |
| so they do not apply. */ |
| gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), |
| regnum, type)); |
| |
| new_val = get_frame_register_value (frame, regnum); |
| } |
| |
| /* If it's still lazy (for instance, a saved register on the |
| stack), fetch it. */ |
| if (value_lazy (new_val)) |
| value_fetch_lazy (new_val); |
| |
| /* If the register was not saved, mark it optimized out. */ |
| if (value_optimized_out (new_val)) |
| set_value_optimized_out (val, 1); |
| else |
| { |
| set_value_lazy (val, 0); |
| value_contents_copy (val, value_embedded_offset (val), |
| new_val, value_embedded_offset (new_val), |
| TYPE_LENGTH (type)); |
| } |
| |
| if (frame_debug) |
| { |
| struct gdbarch *gdbarch; |
| frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
| regnum = VALUE_REGNUM (val); |
| gdbarch = get_frame_arch (frame); |
| |
| fprintf_unfiltered (gdb_stdlog, |
| "{ value_fetch_lazy " |
| "(frame=%d,regnum=%d(%s),...) ", |
| frame_relative_level (frame), regnum, |
| user_reg_map_regnum_to_name (gdbarch, regnum)); |
| |
| fprintf_unfiltered (gdb_stdlog, "->"); |
| if (value_optimized_out (new_val)) |
| fprintf_unfiltered (gdb_stdlog, " optimized out"); |
| else |
| { |
| int i; |
| const gdb_byte *buf = value_contents (new_val); |
| |
| if (VALUE_LVAL (new_val) == lval_register) |
| fprintf_unfiltered (gdb_stdlog, " register=%d", |
| VALUE_REGNUM (new_val)); |
| else if (VALUE_LVAL (new_val) == lval_memory) |
| fprintf_unfiltered (gdb_stdlog, " address=%s", |
| paddress (gdbarch, |
| value_address (new_val))); |
| else |
| fprintf_unfiltered (gdb_stdlog, " computed"); |
| |
| fprintf_unfiltered (gdb_stdlog, " bytes="); |
| fprintf_unfiltered (gdb_stdlog, "["); |
| for (i = 0; i < register_size (gdbarch, regnum); i++) |
| fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); |
| fprintf_unfiltered (gdb_stdlog, "]"); |
| } |
| |
| fprintf_unfiltered (gdb_stdlog, " }\n"); |
| } |
| |
| /* Dispose of the intermediate values. This prevents |
| watchpoints from trying to watch the saved frame pointer. */ |
| value_free_to_mark (mark); |
| } |
| else if (VALUE_LVAL (val) == lval_computed |
| && value_computed_funcs (val)->read != NULL) |
| value_computed_funcs (val)->read (val); |
| else if (value_optimized_out (val)) |
| /* Keep it optimized out. */; |
| else |
| internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); |
| |
| set_value_lazy (val, 0); |
| return 0; |
| } |
| |
| void |
| read_value_memory (struct value *val, int embedded_offset, |
| int stack, CORE_ADDR memaddr, |
| gdb_byte *buffer, size_t length) |
| { |
| if (length) |
| { |
| VEC(mem_range_s) *available_memory; |
| |
| if (get_traceframe_number () < 0 |
| || !traceframe_available_memory (&available_memory, memaddr, length)) |
| { |
| if (stack) |
| read_stack (memaddr, buffer, length); |
| else |
| read_memory (memaddr, buffer, length); |
| } |
| else |
| { |
| struct target_section_table *table; |
| struct cleanup *old_chain; |
| CORE_ADDR unavail; |
| mem_range_s *r; |
| int i; |
| |
| /* Fallback to reading from read-only sections. */ |
| table = target_get_section_table (&exec_ops); |
| available_memory = |
| section_table_available_memory (available_memory, |
| memaddr, length, |
| table->sections, |
| table->sections_end); |
| |
| old_chain = make_cleanup (VEC_cleanup(mem_range_s), |
| &available_memory); |
| |
| normalize_mem_ranges (available_memory); |
| |
| /* Mark which bytes are unavailable, and read those which |
| are available. */ |
| |
| unavail = memaddr; |
| |
| for (i = 0; |
| VEC_iterate (mem_range_s, available_memory, i, r); |
| i++) |
| { |
| if (mem_ranges_overlap (r->start, r->length, |
| memaddr, length)) |
| { |
| CORE_ADDR lo1, hi1, lo2, hi2; |
| CORE_ADDR start, end; |
| |
| /* Get the intersection window. */ |
| lo1 = memaddr; |
| hi1 = memaddr + length; |
| lo2 = r->start; |
| hi2 = r->start + r->length; |
| start = max (lo1, lo2); |
| end = min (hi1, hi2); |
| |
| gdb_assert (end - memaddr <= length); |
| |
| if (start > unavail) |
| mark_value_bytes_unavailable (val, |
| (embedded_offset |
| + unavail - memaddr), |
| start - unavail); |
| unavail = end; |
| |
| read_memory (start, buffer + start - memaddr, end - start); |
| } |
| } |
| |
| if (unavail != memaddr + length) |
| mark_value_bytes_unavailable (val, |
| embedded_offset + unavail - memaddr, |
| (memaddr + length) - unavail); |
| |
| do_cleanups (old_chain); |
| } |
| } |
| } |
| |
| /* Store the contents of FROMVAL into the location of TOVAL. |
| Return a new value with the location of TOVAL and contents of FROMVAL. */ |
| |
| struct value * |
| value_assign (struct value *toval, struct value *fromval) |
| { |
| struct type *type; |
| struct value *val; |
| struct frame_id old_frame; |
| |
| if (!deprecated_value_modifiable (toval)) |
| error (_("Left operand of assignment is not a modifiable lvalue.")); |
| |
| toval = coerce_ref (toval); |
| |
| type = value_type (toval); |
| if (VALUE_LVAL (toval) != lval_internalvar) |
| fromval = value_cast (type, fromval); |
| else |
| { |
| /* Coerce arrays and functions to pointers, except for arrays |
| which only live in GDB's storage. */ |
| if (!value_must_coerce_to_target (fromval)) |
| fromval = coerce_array (fromval); |
| } |
| |
| CHECK_TYPEDEF (type); |
| |
| /* Since modifying a register can trash the frame chain, and |
| modifying memory can trash the frame cache, we save the old frame |
| and then restore the new frame afterwards. */ |
| old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); |
| |
| switch (VALUE_LVAL (toval)) |
| { |
| case lval_internalvar: |
| set_internalvar (VALUE_INTERNALVAR (toval), fromval); |
| return value_of_internalvar (get_type_arch (type), |
| VALUE_INTERNALVAR (toval)); |
| |
| case lval_internalvar_component: |
| set_internalvar_component (VALUE_INTERNALVAR (toval), |
| value_offset (toval), |
| value_bitpos (toval), |
| value_bitsize (toval), |
| fromval); |
| break; |
| |
| case lval_memory: |
| { |
| const gdb_byte *dest_buffer; |
| CORE_ADDR changed_addr; |
| int changed_len; |
| gdb_byte buffer[sizeof (LONGEST)]; |
| |
| if (value_bitsize (toval)) |
| { |
| struct value *parent = value_parent (toval); |
| |
| changed_addr = value_address (parent) + value_offset (toval); |
| changed_len = (value_bitpos (toval) |
| + value_bitsize (toval) |
| + HOST_CHAR_BIT - 1) |
| / HOST_CHAR_BIT; |
| |
| /* If we can read-modify-write exactly the size of the |
| containing type (e.g. short or int) then do so. This |
| is safer for volatile bitfields mapped to hardware |
| registers. */ |
| if (changed_len < TYPE_LENGTH (type) |
| && TYPE_LENGTH (type) <= (int) sizeof (LONGEST) |
| && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0) |
| changed_len = TYPE_LENGTH (type); |
| |
| if (changed_len > (int) sizeof (LONGEST)) |
| error (_("Can't handle bitfields which " |
| "don't fit in a %d bit word."), |
| (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
| |
| read_memory (changed_addr, buffer, changed_len); |
| modify_field (type, buffer, value_as_long (fromval), |
| value_bitpos (toval), value_bitsize (toval)); |
| dest_buffer = buffer; |
| } |
| else |
| { |
| changed_addr = value_address (toval); |
| changed_len = TYPE_LENGTH (type); |
| dest_buffer = value_contents (fromval); |
| } |
| |
| write_memory_with_notification (changed_addr, dest_buffer, changed_len); |
| } |
| break; |
| |
| case lval_register: |
| { |
| struct frame_info *frame; |
| struct gdbarch *gdbarch; |
| int value_reg; |
| |
| /* Figure out which frame this is in currently. */ |
| frame = frame_find_by_id (VALUE_FRAME_ID (toval)); |
| value_reg = VALUE_REGNUM (toval); |
| |
| if (!frame) |
| error (_("Value being assigned to is no longer active.")); |
| |
| gdbarch = get_frame_arch (frame); |
| if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type)) |
| { |
| /* If TOVAL is a special machine register requiring |
| conversion of program values to a special raw |
| format. */ |
| gdbarch_value_to_register (gdbarch, frame, |
| VALUE_REGNUM (toval), type, |
| value_contents (fromval)); |
| } |
| else |
| { |
| if (value_bitsize (toval)) |
| { |
| struct value *parent = value_parent (toval); |
| int offset = value_offset (parent) + value_offset (toval); |
| int changed_len; |
| gdb_byte buffer[sizeof (LONGEST)]; |
| int optim, unavail; |
| |
| changed_len = (value_bitpos (toval) |
| + value_bitsize (toval) |
| + HOST_CHAR_BIT - 1) |
| / HOST_CHAR_BIT; |
| |
| if (changed_len > (int) sizeof (LONGEST)) |
| error (_("Can't handle bitfields which " |
| "don't fit in a %d bit word."), |
| (int) sizeof (LONGEST) * HOST_CHAR_BIT); |
| |
| if (!get_frame_register_bytes (frame, value_reg, offset, |
| changed_len, buffer, |
| &optim, &unavail)) |
| { |
| if (optim) |
| error (_("value has been optimized out")); |
| if (unavail) |
| throw_error (NOT_AVAILABLE_ERROR, |
| _("value is not available")); |
| } |
| |
| modify_field (type, buffer, value_as_long (fromval), |
| value_bitpos (toval), value_bitsize (toval)); |
| |
| put_frame_register_bytes (frame, value_reg, offset, |
| changed_len, buffer); |
| } |
| else |
| { |
| put_frame_register_bytes (frame, value_reg, |
| value_offset (toval), |
| TYPE_LENGTH (type), |
| value_contents (fromval)); |
| } |
| } |
| |
| if (deprecated_register_changed_hook) |
| deprecated_register_changed_hook (-1); |
| observer_notify_target_changed (¤t_target); |
| break; |
| } |
| |
| case lval_computed: |
| { |
| const struct lval_funcs *funcs = value_computed_funcs (toval); |
| |
| if (funcs->write != NULL) |
| { |
| funcs->write (toval, fromval); |
| break; |
| } |
| } |
| /* Fall through. */ |
| |
| default: |
| error (_("Left operand of assignment is not an lvalue.")); |
| } |
| |
| /* Assigning to the stack pointer, frame pointer, and other |
| (architecture and calling convention specific) registers may |
| cause the frame cache to be out of date. Assigning to memory |
| also can. We just do this on all assignments to registers or |
| memory, for simplicity's sake; I doubt the slowdown matters. */ |
| switch (VALUE_LVAL (toval)) |
| { |
| case lval_memory: |
| case lval_register: |
| case lval_computed: |
| |
| reinit_frame_cache (); |
| |
| /* Having destroyed the frame cache, restore the selected |
| frame. */ |
| |
| /* FIXME: cagney/2002-11-02: There has to be a better way of |
| doing this. Instead of constantly saving/restoring the |
| frame. Why not create a get_selected_frame() function that, |
| having saved the selected frame's ID can automatically |
| re-find the previously selected frame automatically. */ |
| |
| { |
| struct frame_info *fi = frame_find_by_id (old_frame); |
| |
| if (fi != NULL) |
| select_frame (fi); |
| } |
| |
| break; |
| default: |
| break; |
| } |
| |
| /* If the field does not entirely fill a LONGEST, then zero the sign |
| bits. If the field is signed, and is negative, then sign |
| extend. */ |
| if ((value_bitsize (toval) > 0) |
| && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST))) |
| { |
| LONGEST fieldval = value_as_long (fromval); |
| LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1; |
| |
| fieldval &= valmask; |
| if (!TYPE_UNSIGNED (type) |
| && (fieldval & (valmask ^ (valmask >> 1)))) |
| fieldval |= ~valmask; |
| |
| fromval = value_from_longest (type, fieldval); |
| } |
| |
| /* The return value is a copy of TOVAL so it shares its location |
| information, but its contents are updated from FROMVAL. This |
| implies the returned value is not lazy, even if TOVAL was. */ |
| val = value_copy (toval); |
| set_value_lazy (val, 0); |
| memcpy (value_contents_raw (val), value_contents (fromval), |
| TYPE_LENGTH (type)); |
| |
| /* We copy over the enclosing type and pointed-to offset from FROMVAL |
| in the case of pointer types. For object types, the enclosing type |
| and embedded offset must *not* be copied: the target object refered |
| to by TOVAL retains its original dynamic type after assignment. */ |
| if (TYPE_CODE (type) == TYPE_CODE_PTR) |
| { |
| set_value_enclosing_type (val, value_enclosing_type (fromval)); |
| set_value_pointed_to_offset (val, value_pointed_to_offset (fromval)); |
| } |
| |
| return val; |
| } |
| |
| /* Extend a value VAL to COUNT repetitions of its type. */ |
| |
| struct value * |
| value_repeat (struct value *arg1, int count) |
| { |
| struct value *val; |
| |
| if (VALUE_LVAL (arg1) != lval_memory) |
| error (_("Only values in memory can be extended with '@'.")); |
| if (count < 1) |
| error (_("Invalid number %d of repetitions."), count); |
| |
| val = allocate_repeat_value (value_enclosing_type (arg1), count); |
| |
| VALUE_LVAL (val) = lval_memory; |
| set_value_address (val, value_address (arg1)); |
| |
| read_value_memory (val, 0, value_stack (val), value_address (val), |
| value_contents_all_raw (val), |
| TYPE_LENGTH (value_enclosing_type (val))); |
| |
| return val; |
| } |
| |
| struct value * |
| value_of_variable (struct symbol *var, const struct block *b) |
| { |
| struct frame_info *frame; |
| |
| if (!symbol_read_needs_frame (var)) |
| frame = NULL; |
| else if (!b) |
| frame = get_selected_frame (_("No frame selected.")); |
| else |
| { |
| frame = block_innermost_frame (b); |
| if (!frame) |
| { |
| if (BLOCK_FUNCTION (b) && !block_inlined_p (b) |
| && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))) |
| error (_("No frame is currently executing in block %s."), |
| SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b))); |
| else |
| error (_("No frame is currently executing in specified block")); |
| } |
| } |
| |
| return read_var_value (var, frame); |
| } |
| |
| struct value * |
| address_of_variable (struct symbol *var, struct block *b) |
| { |
| struct type *type = SYMBOL_TYPE (var); |
| struct value *val; |
| |
| /* Evaluate it first; if the result is a memory address, we're fine. |
| Lazy evaluation pays off here. */ |
| |
| val = value_of_variable (var, b); |
| |
| if ((VALUE_LVAL (val) == lval_memory && value_lazy (val)) |
| || TYPE_CODE (type) == TYPE_CODE_FUNC) |
| { |
| CORE_ADDR addr = value_address (val); |
| |
| return value_from_pointer (lookup_pointer_type (type), addr); |
| } |
| |
| /* Not a memory address; check what the problem was. */ |
| switch (VALUE_LVAL (val)) |
| { |
| case lval_register: |
| { |
| struct frame_info *frame; |
| const char *regname; |
| |
| frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
| gdb_assert (frame); |
| |
| regname = gdbarch_register_name (get_frame_arch (frame), |
| VALUE_REGNUM (val)); |
| gdb_assert (regname && *regname); |
| |
| error (_("Address requested for identifier " |
| "\"%s\" which is in register $%s"), |
| SYMBOL_PRINT_NAME (var), regname); |
| break; |
| } |
| |
| default: |
| error (_("Can't take address of \"%s\" which isn't an lvalue."), |
| SYMBOL_PRINT_NAME (var)); |
| break; |
| } |
| |
| return val; |
| } |
| |
| /* Return one if VAL does not live in target memory, but should in order |
| to operate on it. Otherwise return zero. */ |
| |
| int |
| value_must_coerce_to_target (struct value *val) |
| { |
| struct type *valtype; |
| |
| /* The only lval kinds which do not live in target memory. */ |
| if (VALUE_LVAL (val) != not_lval |
| && VALUE_LVAL (val) != lval_internalvar) |
| return 0; |
| |
| valtype = check_typedef (value_type (val)); |
| |
| switch (TYPE_CODE (valtype)) |
| { |
| case TYPE_CODE_ARRAY: |
| return TYPE_VECTOR (valtype) ? 0 : 1; |
| case TYPE_CODE_STRING: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Make sure that VAL lives in target memory if it's supposed to. For |
| instance, strings are constructed as character arrays in GDB's |
| storage, and this function copies them to the target. */ |
| |
| struct value * |
| value_coerce_to_target (struct value *val) |
| { |
| LONGEST length; |
| CORE_ADDR addr; |
| |
| if (!value_must_coerce_to_target (val)) |
| return val; |
| |
| length = TYPE_LENGTH (check_typedef (value_type (val))); |
| addr = allocate_space_in_inferior (length); |
| write_memory (addr, value_contents (val), length); |
| return value_at_lazy (value_type (val), addr); |
| } |
| |
| /* Given a value which is an array, return a value which is a pointer |
| to its first element, regardless of whether or not the array has a |
| nonzero lower bound. |
| |
| FIXME: A previous comment here indicated that this routine should |
| be substracting the array's lower bound. It's not clear to me that |
| this is correct. Given an array subscripting operation, it would |
| certainly work to do the adjustment here, essentially computing: |
| |
| (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) |
| |
| However I believe a more appropriate and logical place to account |
| for the lower bound is to do so in value_subscript, essentially |
| computing: |
| |
| (&array[0] + ((index - lowerbound) * sizeof array[0])) |
| |
| As further evidence consider what would happen with operations |
| other than array subscripting, where the caller would get back a |
| value that had an address somewhere before the actual first element |
| of the array, and the information about the lower bound would be |
| lost because of the coercion to pointer type. */ |
| |
| struct value * |
| value_coerce_array (struct value *arg1) |
| { |
| struct type *type = check_typedef (value_type (arg1)); |
| |
| /* If the user tries to do something requiring a pointer with an |
| array that has not yet been pushed to the target, then this would |
| be a good time to do so. */ |
| arg1 = value_coerce_to_target (arg1); |
| |
| if (VALUE_LVAL (arg1) != lval_memory) |
| error (_("Attempt to take address of value not located in memory.")); |
| |
| return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
| value_address (arg1)); |
| } |
| |
| /* Given a value which is a function, return a value which is a pointer |
| to it. */ |
| |
| struct value * |
| value_coerce_function (struct value *arg1) |
| { |
| struct value *retval; |
| |
| if (VALUE_LVAL (arg1) != lval_memory) |
| error (_("Attempt to take address of value not located in memory.")); |
| |
| retval = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
| value_address (arg1)); |
| return retval; |
| } |
| |
| /* Return a pointer value for the object for which ARG1 is the |
| contents. */ |
| |
| struct value * |
| value_addr (struct value *arg1) |
| { |
| struct value *arg2; |
| struct type *type = check_typedef (value_type (arg1)); |
| |
| if (TYPE_CODE (type) == TYPE_CODE_REF) |
| { |
| /* Copy the value, but change the type from (T&) to (T*). We |
| keep the same location information, which is efficient, and |
| allows &(&X) to get the location containing the reference. */ |
| arg2 = value_copy (arg1); |
| deprecated_set_value_type (arg2, |
| lookup_pointer_type (TYPE_TARGET_TYPE (type))); |
| return arg2; |
| } |
| if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
| return value_coerce_function (arg1); |
| |
| /* If this is an array that has not yet been pushed to the target, |
| then this would be a good time to force it to memory. */ |
| arg1 = value_coerce_to_target (arg1); |
| |
| if (VALUE_LVAL (arg1) != lval_memory) |
| error (_("Attempt to take address of value not located in memory.")); |
| |
| /* Get target memory address. */ |
| arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)), |
| (value_address (arg1) |
| + value_embedded_offset (arg1))); |
| |
| /* This may be a pointer to a base subobject; so remember the |
| full derived object's type ... */ |
| set_value_enclosing_type (arg2, |
| lookup_pointer_type (value_enclosing_type (arg1))); |
| /* ... and also the relative position of the subobject in the full |
| object. */ |
| set_value_pointed_to_offset (arg2, value_embedded_offset (arg1)); |
| return arg2; |
| } |
| |
| /* Return a reference value for the object for which ARG1 is the |
| contents. */ |
| |
| struct value * |
| value_ref (struct value *arg1) |
| { |
| struct value *arg2; |
| struct type *type = check_typedef (value_type (arg1)); |
| |
| if (TYPE_CODE (type) == TYPE_CODE_REF) |
| return arg1; |
| |
| arg2 = value_addr (arg1); |
| deprecated_set_value_type (arg2, lookup_reference_type (type)); |
| return arg2; |
| } |
| |
| /* Given a value of a pointer type, apply the C unary * operator to |
| it. */ |
| |
| struct value * |
| value_ind (struct value *arg1) |
| { |
| struct type *base_type; |
| struct value *arg2; |
| |
| arg1 = coerce_array (arg1); |
| |
| base_type = check_typedef (value_type (arg1)); |
| |
| if (VALUE_LVAL (arg1) == lval_computed) |
| { |
| const struct lval_funcs *funcs = value_computed_funcs (arg1); |
| |
| if (funcs->indirect) |
| { |
| struct value *result = funcs->indirect (arg1); |
| |
| if (result) |
| return result; |
| } |
| } |
| |
| if (TYPE_CODE (base_type) == TYPE_CODE_PTR) |
| { |
| struct type *enc_type; |
| |
| /* We may be pointing to something embedded in a larger object. |
| Get the real type of the enclosing object. */ |
| enc_type = check_typedef (value_enclosing_type (arg1)); |
| enc_type = TYPE_TARGET_TYPE (enc_type); |
| |
| if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC |
| || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD) |
| /* For functions, go through find_function_addr, which knows |
| how to handle function descriptors. */ |
| arg2 = value_at_lazy (enc_type, |
| find_function_addr (arg1, NULL)); |
| else |
| /* Retrieve the enclosing object pointed to. */ |
| arg2 = value_at_lazy (enc_type, |
| (value_as_address (arg1) |
| - value_pointed_to_offset (arg1))); |
| |
| return readjust_indirect_value_type (arg2, enc_type, base_type, arg1); |
| } |
| |
| error (_("Attempt to take contents of a non-pointer value.")); |
| return 0; /* For lint -- never reached. */ |
| } |
| |
| /* Create a value for an array by allocating space in GDB, copying the |
| data into that space, and then setting up an array value. |
| |
| The array bounds are set from LOWBOUND and HIGHBOUND, and the array |
| is populated from the values passed in ELEMVEC. |
| |
| The element type of the array is inherited from the type of the |
| first element, and all elements must have the same size (though we |
| don't currently enforce any restriction on their types). */ |
| |
| struct value * |
| value_array (int lowbound, int highbound, struct value **elemvec) |
| { |
| int nelem; |
| int idx; |
| unsigned int typelength; |
| struct value *val; |
| struct type *arraytype; |
| |
| /* Validate that the bounds are reasonable and that each of the |
| elements have the same size. */ |
| |
| nelem = highbound - lowbound + 1; |
| if (nelem <= 0) |
| { |
| error (_("bad array bounds (%d, %d)"), lowbound, highbound); |
| } |
| typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0])); |
| for (idx = 1; idx < nelem; idx++) |
| { |
| if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength) |
| { |
| error (_("array elements must all be the same size")); |
| } |
| } |
| |
| arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]), |
| lowbound, highbound); |
| |
| if (!current_language->c_style_arrays) |
| { |
| val = allocate_value (arraytype); |
| for (idx = 0; idx < nelem; idx++) |
| value_contents_copy (val, idx * typelength, elemvec[idx], 0, |
| typelength); |
| return val; |
| } |
| |
| /* Allocate space to store the array, and then initialize it by |
| copying in each element. */ |
| |
| val = allocate_value (arraytype); |
| for (idx = 0; idx < nelem; idx++) |
| value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength); |
| return val; |
| } |
| |
| struct value * |
| value_cstring (char *ptr, int len, struct type *char_type) |
| { |
| struct value *val; |
| int lowbound = current_language->string_lower_bound; |
| int highbound = len / TYPE_LENGTH (char_type); |
| struct type *stringtype |
| = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); |
| |
| val = allocate_value (stringtype); |
| memcpy (value_contents_raw (val), ptr, len); |
| return val; |
| } |
| |
| /* Create a value for a string constant by allocating space in the |
| inferior, copying the data into that space, and returning the |
| address with type TYPE_CODE_STRING. PTR points to the string |
| constant data; LEN is number of characters. |
| |
| Note that string types are like array of char types with a lower |
| bound of zero and an upper bound of LEN - 1. Also note that the |
| string may contain embedded null bytes. */ |
| |
| struct value * |
| value_string (char *ptr, int len, struct type *char_type) |
| { |
| struct value *val; |
| int lowbound = current_language->string_lower_bound; |
| int highbound = len / TYPE_LENGTH (char_type); |
| struct type *stringtype |
| = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); |
| |
| val = allocate_value (stringtype); |
| memcpy (value_contents_raw (val), ptr, len); |
| return val; |
| } |
| |
| struct value * |
| value_bitstring (char *ptr, int len, struct type *index_type) |
| { |
| struct value *val; |
| struct type *domain_type |
| = create_range_type (NULL, index_type, 0, len - 1); |
| struct type *type = create_set_type (NULL, domain_type); |
| |
| TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
| val = allocate_value (type); |
| memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type)); |
| return val; |
| } |
| |
| /* See if we can pass arguments in T2 to a function which takes |
| arguments of types T1. T1 is a list of NARGS arguments, and T2 is |
| a NULL-terminated vector. If some arguments need coercion of some |
| sort, then the coerced values are written into T2. Return value is |
| 0 if the arguments could be matched, or the position at which they |
| differ if not. |
| |
| STATICP is nonzero if the T1 argument list came from a static |
| member function. T2 will still include the ``this'' pointer, but |
| it will be skipped. |
| |
| For non-static member functions, we ignore the first argument, |
| which is the type of the instance variable. This is because we |
| want to handle calls with objects from derived classes. This is |
| not entirely correct: we should actually check to make sure that a |
| requested operation is type secure, shouldn't we? FIXME. */ |
| |
| static int |
| typecmp (int staticp, int varargs, int nargs, |
| struct field t1[], struct value *t2[]) |
| { |
| int i; |
| |
| if (t2 == 0) |
| internal_error (__FILE__, __LINE__, |
| _("typecmp: no argument list")); |
| |
| /* Skip ``this'' argument if applicable. T2 will always include |
| THIS. */ |
| if (staticp) |
| t2 ++; |
| |
| for (i = 0; |
| (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID; |
| i++) |
| { |
| struct type *tt1, *tt2; |
| |
| if (!t2[i]) |
| return i + 1; |
| |
| tt1 = check_typedef (t1[i].type); |
| tt2 = check_typedef (value_type (t2[i])); |
| |
| if (TYPE_CODE (tt1) == TYPE_CODE_REF |
| /* We should be doing hairy argument matching, as below. */ |
| && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) |
| == TYPE_CODE (tt2))) |
| { |
| if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) |
| t2[i] = value_coerce_array (t2[i]); |
| else |
| t2[i] = value_ref (t2[i]); |
| continue; |
| } |
| |
| /* djb - 20000715 - Until the new type structure is in the |
| place, and we can attempt things like implicit conversions, |
| we need to do this so you can take something like a map<const |
| char *>, and properly access map["hello"], because the |
| argument to [] will be a reference to a pointer to a char, |
| and the argument will be a pointer to a char. */ |
| while (TYPE_CODE(tt1) == TYPE_CODE_REF |
| || TYPE_CODE (tt1) == TYPE_CODE_PTR) |
| { |
| tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) ); |
| } |
| while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY |
| || TYPE_CODE(tt2) == TYPE_CODE_PTR |
| || TYPE_CODE(tt2) == TYPE_CODE_REF) |
| { |
| tt2 = check_typedef (TYPE_TARGET_TYPE(tt2)); |
| } |
| if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
| continue; |
| /* Array to pointer is a `trivial conversion' according to the |
| ARM. */ |
| |
| /* We should be doing much hairier argument matching (see |
| section 13.2 of the ARM), but as a quick kludge, just check |
| for the same type code. */ |
| if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i]))) |
| return i + 1; |
| } |
| if (varargs || t2[i] == NULL) |
| return 0; |
| return i + 1; |
| } |
| |
| /* Helper class for do_search_struct_field that updates *RESULT_PTR |
| and *LAST_BOFFSET, and possibly throws an exception if the field |
| search has yielded ambiguous results. */ |
| |
| static void |
| update_search_result (struct value **result_ptr, struct value *v, |
| int *last_boffset, int boffset, |
| const char *name, struct type *type) |
| { |
| if (v != NULL) |
| { |
| if (*result_ptr != NULL |
| /* The result is not ambiguous if all the classes that are |
| found occupy the same space. */ |
| && *last_boffset != boffset) |
| error (_("base class '%s' is ambiguous in type '%s'"), |
| name, TYPE_SAFE_NAME (type)); |
| *result_ptr = v; |
| *last_boffset = boffset; |
| } |
| } |
| |
| /* A helper for search_struct_field. This does all the work; most |
| arguments are as passed to search_struct_field. The result is |
| stored in *RESULT_PTR, which must be initialized to NULL. |
| OUTERMOST_TYPE is the type of the initial type passed to |
| search_struct_field; this is used for error reporting when the |
| lookup is ambiguous. */ |
| |
| static void |
| do_search_struct_field (const char *name, struct value *arg1, int offset, |
| struct type *type, int looking_for_baseclass, |
| struct value **result_ptr, |
| int *last_boffset, |
| struct type *outermost_type) |
| { |
| int i; |
| int nbases; |
| |
| CHECK_TYPEDEF (type); |
| nbases = TYPE_N_BASECLASSES (type); |
| |
| if (!looking_for_baseclass) |
| for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
| { |
| const char *t_field_name = TYPE_FIELD_NAME (type, i); |
| |
| if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
| { |
| struct value *v; |
| |
| if (field_is_static (&TYPE_FIELD (type, i))) |
| { |
| v = value_static_field (type, i); |
| if (v == 0) |
| error (_("field %s is nonexistent or " |
| "has been optimized out"), |
| name); |
| } |
| else |
| v = value_primitive_field (arg1, offset, i, type); |
| *result_ptr = v; |
| return; |
| } |
| |
| if (t_field_name |
| && (t_field_name[0] == '\0' |
| || (TYPE_CODE (type) == TYPE_CODE_UNION |
| && (strcmp_iw (t_field_name, "else") == 0)))) |
| { |
| struct type *field_type = TYPE_FIELD_TYPE (type, i); |
| |
| if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
| || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) |
| { |
| /* Look for a match through the fields of an anonymous |
| union, or anonymous struct. C++ provides anonymous |
| unions. |
| |
| In the GNU Chill (now deleted from GDB) |
| implementation of variant record types, each |
| <alternative field> has an (anonymous) union type, |
| each member of the union represents a <variant |
| alternative>. Each <variant alternative> is |
| represented as a struct, with a member for each |
| <variant field>. */ |
| |
| struct value *v = NULL; |
| int new_offset = offset; |
| |
| /* This is pretty gross. In G++, the offset in an |
| anonymous union is relative to the beginning of the |
| enclosing struct. In the GNU Chill (now deleted |
| from GDB) implementation of variant records, the |
| bitpos is zero in an anonymous union field, so we |
| have to add the offset of the union here. */ |
| if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT |
| || (TYPE_NFIELDS (field_type) > 0 |
| && TYPE_FIELD_BITPOS (field_type, 0) == 0)) |
| new_offset += TYPE_FIELD_BITPOS (type, i) / 8; |
| |
| do_search_struct_field (name, arg1, new_offset, |
| field_type, |
| looking_for_baseclass, &v, |
| last_boffset, |
| outermost_type); |
| if (v) |
| { |
| *result_ptr = v; |
| return; |
| } |
| } |
| } |
| } |
| |
| for (i = 0; i < nbases; i++) |
| { |
| struct value *v = NULL; |
| struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); |
| /* If we are looking for baseclasses, this is what we get when |
| we hit them. But it could happen that the base part's member |
| name is not yet filled in. */ |
| int found_baseclass = (looking_for_baseclass |
| && TYPE_BASECLASS_NAME (type, i) != NULL |
| && (strcmp_iw (name, |
| TYPE_BASECLASS_NAME (type, |
| i)) == 0)); |
| int boffset = value_embedded_offset (arg1) + offset; |
| |
| if (BASETYPE_VIA_VIRTUAL (type, i)) |
| { |
| struct value *v2; |
| |
| boffset = baseclass_offset (type, i, |
| value_contents_for_printing (arg1), |
| value_embedded_offset (arg1) + offset, |
| value_address (arg1), |
| arg1); |
| |
| /* The virtual base class pointer might have been clobbered |
| by the user program. Make sure that it still points to a |
| valid memory location. */ |
| |
| boffset += value_embedded_offset (arg1) + offset; |
| if (boffset < 0 |
| || boffset >= TYPE_LENGTH (value_enclosing_type (arg1))) |
| { |
| CORE_ADDR base_addr; |
| |
| v2 = allocate_value (basetype); |
| base_addr = value_address (arg1) + boffset; |
| if (target_read_memory (base_addr, |
| value_contents_raw (v2), |
| TYPE_LENGTH (basetype)) != 0) |
| error (_("virtual baseclass botch")); |
| VALUE_LVAL (v2) = lval_memory; |
| set_value_address (v2, base_addr); |
| } |
| else |
| { |
| v2 = value_copy (arg1); |
| deprecated_set_value_type (v2, basetype); |
| set_value_embedded_offset (v2, boffset); |
| } |
| |
| if (found_baseclass) |
| v = v2; |
| else |
| { |
| do_search_struct_field (name, v2, 0, |
| TYPE_BASECLASS (type, i), |
| looking_for_baseclass, |
| result_ptr, last_boffset, |
| outermost_type); |
| } |
| } |
| else if (found_baseclass) |
| v = value_primitive_field (arg1, offset, i, type); |
| else |
| { |
| do_search_struct_field (name, arg1, |
| offset + TYPE_BASECLASS_BITPOS (type, |
| i) / 8, |
| basetype, looking_for_baseclass, |
| result_ptr, last_boffset, |
| outermost_type); |
| } |
| |
| update_search_result (result_ptr, v, last_boffset, |
| boffset, name, outermost_type); |
| } |
| } |
| |
| /* Helper function used by value_struct_elt to recurse through |
| baseclasses. Look for a field NAME in ARG1. Adjust the address of |
| ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
| TYPE. If found, return value, else return NULL. |
| |
| If LOOKING_FOR_BASECLASS, then instead of looking for struct |
| fields, look for a baseclass named NAME. */ |
| |
| static struct value * |
| search_struct_field (const char *name, struct value *arg1, int offset, |
| struct type *type, int looking_for_baseclass) |
| { |
| struct value *result = NULL; |
| int boffset = 0; |
| |
| do_search_struct_field (name, arg1, offset, type, looking_for_baseclass, |
| &result, &boffset, type); |
| return result; |
| } |
| |
| /* Helper function used by value_struct_elt to recurse through |
| baseclasses. Look for a field NAME in ARG1. Adjust the address of |
| ARG1 by OFFSET bytes, and search in it assuming it has (class) type |
| TYPE. |
| |
| If found, return value, else if name matched and args not return |
| (value) -1, else return NULL. */ |
| |
| static struct value * |
| search_struct_method (const char *name, struct value **arg1p, |
| struct value **args, int offset, |
| int *static_memfuncp, struct type *type) |
| { |
| int i; |
| struct value *v; |
| int name_matched = 0; |
| char dem_opname[64]; |
| |
| CHECK_TYPEDEF (type); |
| for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
| { |
| const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
| |
| /* FIXME! May need to check for ARM demangling here. */ |
| if (strncmp (t_field_name, "__", 2) == 0 || |
| strncmp (t_field_name, "op", 2) == 0 || |
| strncmp (t_field_name, "type", 4) == 0) |
| { |
| if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
| t_field_name = dem_opname; |
| else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) |
| t_field_name = dem_opname; |
| } |
| if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
| { |
| int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; |
| struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); |
| |
| name_matched = 1; |
| check_stub_method_group (type, i); |
| if (j > 0 && args == 0) |
| error (_("cannot resolve overloaded method " |
| "`%s': no arguments supplied"), name); |
| else if (j == 0 && args == 0) |
| { |
| v = value_fn_field (arg1p, f, j, type, offset); |
| if (v != NULL) |
| return v; |
| } |
| else |
| while (j >= 0) |
| { |
| if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), |
| TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)), |
| TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)), |
| TYPE_FN_FIELD_ARGS (f, j), args)) |
| { |
| if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) |
| return value_virtual_fn_field (arg1p, f, j, |
| type, offset); |
| if (TYPE_FN_FIELD_STATIC_P (f, j) |
| && static_memfuncp) |
| *static_memfuncp = 1; |
| v = value_fn_field (arg1p, f, j, type, offset); |
| if (v != NULL) |
| return v; |
| } |
| j--; |
| } |
| } |
| } |
| |
| for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
| { |
| int base_offset; |
| int skip = 0; |
| int this_offset; |
| |
| if (BASETYPE_VIA_VIRTUAL (type, i)) |
| { |
| struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
| struct value *base_val; |
| const gdb_byte *base_valaddr; |
| |
| /* The virtual base class pointer might have been |
| clobbered by the user program. Make sure that it |
| still points to a valid memory location. */ |
| |
| if (offset < 0 || offset >= TYPE_LENGTH (type)) |
| { |
| gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass)); |
| CORE_ADDR address = value_address (*arg1p); |
| |
| if (target_read_memory (address + offset, |
| tmp, TYPE_LENGTH (baseclass)) != 0) |
| error (_("virtual baseclass botch")); |
| |
| base_val = value_from_contents_and_address (baseclass, |
| tmp, |
| address + offset); |
| base_valaddr = value_contents_for_printing (base_val); |
| this_offset = 0; |
| } |
| else |
| { |
| base_val = *arg1p; |
| base_valaddr = value_contents_for_printing (*arg1p); |
| this_offset = offset; |
| } |
| |
| base_offset = baseclass_offset (type, i, base_valaddr, |
| this_offset, value_address (base_val), |
| base_val); |
| } |
| else |
| { |
| base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; |
| } |
| v = search_struct_method (name, arg1p, args, base_offset + offset, |
| static_memfuncp, TYPE_BASECLASS (type, i)); |
| if (v == (struct value *) - 1) |
| { |
| name_matched = 1; |
| } |
| else if (v) |
| { |
| /* FIXME-bothner: Why is this commented out? Why is it here? */ |
| /* *arg1p = arg1_tmp; */ |
| return v; |
| } |
| } |
| if (name_matched) |
| return (struct value *) - 1; |
| else |
| return NULL; |
| } |
| |
| /* Given *ARGP, a value of type (pointer to a)* structure/union, |
| extract the component named NAME from the ultimate target |
| structure/union and return it as a value with its appropriate type. |
| ERR is used in the error message if *ARGP's type is wrong. |
| |
| C++: ARGS is a list of argument types to aid in the selection of |
| an appropriate method. Also, handle derived types. |
| |
| STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location |
| where the truthvalue of whether the function that was resolved was |
| a static member function or not is stored. |
| |
| ERR is an error message to be printed in case the field is not |
| found. */ |
| |
| struct value * |
| value_struct_elt (struct value **argp, struct value **args, |
| const char *name, int *static_memfuncp, const char *err) |
| { |
| struct type *t; |
| struct value *v; |
| |
| *argp = coerce_array (*argp); |
| |
| t = check_typedef (value_type (*argp)); |
| |
| /* Follow pointers until we get to a non-pointer. */ |
| |
| while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
| { |
| *argp = value_ind (*argp); |
| /* Don't coerce fn pointer to fn and then back again! */ |
| if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
| *argp = coerce_array (*argp); |
| t = check_typedef (value_type (*argp)); |
| } |
| |
| if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
| && TYPE_CODE (t) != TYPE_CODE_UNION) |
| error (_("Attempt to extract a component of a value that is not a %s."), |
| err); |
| |
| /* Assume it's not, unless we see that it is. */ |
| if (static_memfuncp) |
| *static_memfuncp = 0; |
| |
| if (!args) |
| { |
| /* if there are no arguments ...do this... */ |
| |
| /* Try as a field first, because if we succeed, there is less |
| work to be done. */ |
| v = search_struct_field (name, *argp, 0, t, 0); |
| if (v) |
| return v; |
| |
| /* C++: If it was not found as a data field, then try to |
| return it as a pointer to a method. */ |
| v = search_struct_method (name, argp, args, 0, |
| static_memfuncp, t); |
| |
| if (v == (struct value *) - 1) |
| error (_("Cannot take address of method %s."), name); |
| else if (v == 0) |
| { |
| if (TYPE_NFN_FIELDS (t)) |
| error (_("There is no member or method named %s."), name); |
| else |
| error (_("There is no member named %s."), name); |
| } |
| return v; |
| } |
| |
| v = search_struct_method (name, argp, args, 0, |
| static_memfuncp, t); |
| |
| if (v == (struct value *) - 1) |
| { |
| error (_("One of the arguments you tried to pass to %s could not " |
| "be converted to what the function wants."), name); |
| } |
| else if (v == 0) |
| { |
| /* See if user tried to invoke data as function. If so, hand it |
| back. If it's not callable (i.e., a pointer to function), |
| gdb should give an error. */ |
| v = search_struct_field (name, *argp, 0, t, 0); |
| /* If we found an ordinary field, then it is not a method call. |
| So, treat it as if it were a static member function. */ |
| if (v && static_memfuncp) |
| *static_memfuncp = 1; |
| } |
| |
| if (!v) |
| throw_error (NOT_FOUND_ERROR, |
| _("Structure has no component named %s."), name); |
| return v; |
| } |
| |
| /* Search through the methods of an object (and its bases) to find a |
| specified method. Return the pointer to the fn_field list of |
| overloaded instances. |
| |
| Helper function for value_find_oload_list. |
| ARGP is a pointer to a pointer to a value (the object). |
| METHOD is a string containing the method name. |
| OFFSET is the offset within the value. |
| TYPE is the assumed type of the object. |
| NUM_FNS is the number of overloaded instances. |
| BASETYPE is set to the actual type of the subobject where the |
| method is found. |
| BOFFSET is the offset of the base subobject where the method is found. */ |
| |
| static struct fn_field * |
| find_method_list (struct value **argp, const char *method, |
| int offset, struct type *type, int *num_fns, |
| struct type **basetype, int *boffset) |
| { |
| int i; |
| struct fn_field *f; |
| CHECK_TYPEDEF (type); |
| |
| *num_fns = 0; |
| |
| /* First check in object itself. */ |
| for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) |
| { |
| /* pai: FIXME What about operators and type conversions? */ |
| const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
| |
| if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) |
| { |
| int len = TYPE_FN_FIELDLIST_LENGTH (type, i); |
| struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); |
| |
| *num_fns = len; |
| *basetype = type; |
| *boffset = offset; |
| |
| /* Resolve any stub methods. */ |
| check_stub_method_group (type, i); |
| |
| return f; |
| } |
| } |
| |
| /* Not found in object, check in base subobjects. */ |
| for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
| { |
| int base_offset; |
| |
| if (BASETYPE_VIA_VIRTUAL (type, i)) |
| { |
| base_offset = baseclass_offset (type, i, |
| value_contents_for_printing (*argp), |
| value_offset (*argp) + offset, |
| value_address (*argp), *argp); |
| } |
| else /* Non-virtual base, simply use bit position from debug |
| info. */ |
| { |
| base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; |
| } |
| f = find_method_list (argp, method, base_offset + offset, |
| TYPE_BASECLASS (type, i), num_fns, |
| basetype, boffset); |
| if (f) |
| return f; |
| } |
| return NULL; |
| } |
| |
| /* Return the list of overloaded methods of a specified name. |
| |
| ARGP is a pointer to a pointer to a value (the object). |
| METHOD is the method name. |
| OFFSET is the offset within the value contents. |
| NUM_FNS is the number of overloaded instances. |
| BASETYPE is set to the type of the base subobject that defines the |
| method. |
| BOFFSET is the offset of the base subobject which defines the method. */ |
| |
| static struct fn_field * |
| value_find_oload_method_list (struct value **argp, const char *method, |
| int offset, int *num_fns, |
| struct type **basetype, int *boffset) |
| { |
| struct type *t; |
| |
| t = check_typedef (value_type (*argp)); |
| |
| /* Code snarfed from value_struct_elt. */ |
| while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
| { |
| *argp = value_ind (*argp); |
| /* Don't coerce fn pointer to fn and then back again! */ |
| if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC) |
| *argp = coerce_array (*argp); |
| t = check_typedef (value_type (*argp)); |
| } |
| |
| if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
| && TYPE_CODE (t) != TYPE_CODE_UNION) |
| error (_("Attempt to extract a component of a " |
| "value that is not a struct or union")); |
| |
| return find_method_list (argp, method, 0, t, num_fns, |
| basetype, boffset); |
| } |
| |
| /* Given an array of arguments (ARGS) (which includes an |
| entry for "this" in the case of C++ methods), the number of |
| arguments NARGS, the NAME of a function whether it's a method or |
| not (METHOD), and the degree of laxness (LAX) in conforming to |
| overload resolution rules in ANSI C++, find the best function that |
| matches on the argument types according to the overload resolution |
| rules. |
| |
| METHOD can be one of three values: |
| NON_METHOD for non-member functions. |
| METHOD: for member functions. |
| BOTH: used for overload resolution of operators where the |
| candidates are expected to be either member or non member |
| functions. In this case the first argument ARGTYPES |
| (representing 'this') is expected to be a reference to the |
| target object, and will be dereferenced when attempting the |
| non-member search. |
| |
| In the case of class methods, the parameter OBJ is an object value |
| in which to search for overloaded methods. |
| |
| In the case of non-method functions, the parameter FSYM is a symbol |
| corresponding to one of the overloaded functions. |
| |
| Return value is an integer: 0 -> good match, 10 -> debugger applied |
| non-standard coercions, 100 -> incompatible. |
| |
| If a method is being searched for, VALP will hold the value. |
| If a non-method is being searched for, SYMP will hold the symbol |
| for it. |
| |
| If a method is being searched for, and it is a static method, |
| then STATICP will point to a non-zero value. |
| |
| If NO_ADL argument dependent lookup is disabled. This is used to prevent |
| ADL overload candidates when performing overload resolution for a fully |
| qualified name. |
| |
| Note: This function does *not* check the value of |
| overload_resolution. Caller must check it to see whether overload |
| resolution is permitted. */ |
| |
| int |
| find_overload_match (struct value **args, int nargs, |
| const char *name, enum oload_search_type method, |
| int lax, struct value **objp, struct symbol *fsym, |
| struct value **valp, struct symbol **symp, |
| int *staticp, const int no_adl) |
| { |
| struct value *obj = (objp ? *objp : NULL); |
| struct type *obj_type = obj ? value_type (obj) : NULL; |
| /* Index of best overloaded function. */ |
| int func_oload_champ = -1; |
| int method_oload_champ = -1; |
| |
| /* The measure for the current best match. */ |
| struct badness_vector *method_badness = NULL; |
| struct badness_vector *func_badness = NULL; |
| |
| struct value *temp = obj; |
| /* For methods, the list of overloaded methods. */ |
| struct fn_field *fns_ptr = NULL; |
| /* For non-methods, the list of overloaded function symbols. */ |
| struct symbol **oload_syms = NULL; |
| /* Number of overloaded instances being considered. */ |
| int num_fns = 0; |
| struct type *basetype = NULL; |
| int boffset; |
| |
| struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL); |
| |
| const char *obj_type_name = NULL; |
| const char *func_name = NULL; |
| enum oload_classification match_quality; |
| enum oload_classification method_match_quality = INCOMPATIBLE; |
| enum oload_classification func_match_quality = INCOMPATIBLE; |
| |
| /* Get the list of overloaded methods or functions. */ |
| if (method == METHOD || method == BOTH) |
| { |
| gdb_assert (obj); |
| |
| /* OBJ may be a pointer value rather than the object itself. */ |
| obj = coerce_ref (obj); |
| while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR) |
| obj = coerce_ref (value_ind (obj)); |
| obj_type_name = TYPE_NAME (value_type (obj)); |
| |
| /* First check whether this is a data member, e.g. a pointer to |
| a function. */ |
| if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT) |
| { |
| *valp = search_struct_field (name, obj, 0, |
| check_typedef (value_type (obj)), 0); |
| if (*valp) |
| { |
| *staticp = 1; |
| do_cleanups (all_cleanups); |
| return 0; |
| } |
| } |
| |
| /* Retrieve the list of methods with the name NAME. */ |
| fns_ptr = value_find_oload_method_list (&temp, name, |
| 0, &num_fns, |
| &basetype, &boffset); |
| /* If this is a method only search, and no methods were found |
| the search has faild. */ |
| if (method == METHOD && (!fns_ptr || !num_fns)) |
| error (_("Couldn't find method %s%s%s"), |
| obj_type_name, |
| (obj_type_name && *obj_type_name) ? "::" : "", |
| name); |
| /* If we are dealing with stub method types, they should have |
| been resolved by find_method_list via |
| value_find_oload_method_list above. */ |
| if (fns_ptr) |
| { |
| gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL); |
| method_oload_champ = find_oload_champ (args, nargs, method, |
| num_fns, fns_ptr, |
| oload_syms, &method_badness); |
| |
| method_match_quality = |
| classify_oload_match (method_badness, nargs, |
| oload_method_static (method, fns_ptr, |
| method_oload_champ)); |
| |
| make_cleanup (xfree, method_badness); |
| } |
| |
| } |
| |
| if (method == NON_METHOD || method == BOTH) |
| { |
| const char *qualified_name = NULL; |
| |
| /* If the overload match is being search for both as a method |
| and non member function, the first argument must now be |
| dereferenced. */ |
| if (method == BOTH) |
| args[0] = value_ind (args[0]); |
| |
| if (fsym) |
| { |
| qualified_name = SYMBOL_NATURAL_NAME (fsym); |
| |
| /* If we have a function with a C++ name, try to extract just |
| the function part. Do not try this for non-functions (e.g. |
| function pointers). */ |
| if (qualified_name |
| && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) |
| == TYPE_CODE_FUNC) |
| { |
| char *temp; |
| |
| temp = cp_func_name (qualified_name); |
| |
| /* If cp_func_name did not remove anything, the name of the |
| symbol did not include scope or argument types - it was |
| probably a C-style function. */ |
| if (temp) |
| { |
| make_cleanup (xfree, temp); |
| if (strcmp (temp, qualified_name) == 0) |
| func_name = NULL; |
| else |
| func_name = temp; |
| } |
| } |
| } |
| else |
| { |
| func_name = name; |
| qualified_name = name; |
| } |
| |
| /* If there was no C++ name, this must be a C-style function or |
| not a function at all. Just return the same symbol. Do the |
| same if cp_func_name fails for some reason. */ |
| if (func_name == NULL) |
| { |
| *symp = fsym; |
| do_cleanups (all_cleanups); |
| return 0; |
| } |
| |
| func_oload_champ = find_oload_champ_namespace (args, nargs, |
| func_name, |
| qualified_name, |
| &oload_syms, |
| &func_badness, |
| no_adl); |
| |
| if (func_oload_champ >= 0) |
| func_match_quality = classify_oload_match (func_badness, nargs, 0); |
| |
| make_cleanup (xfree, oload_syms); |
| make_cleanup (xfree, func_badness); |
| } |
| |
| /* Did we find a match ? */ |
| if (method_oload_champ == -1 && func_oload_champ == -1) |
| throw_error (NOT_FOUND_ERROR, |
| _("No symbol \"%s\" in current context."), |
| name); |
| |
| /* If we have found both a method match and a function |
| match, find out which one is better, and calculate match |
| quality. */ |
| if (method_oload_champ >= 0 && func_oload_champ >= 0) |
| { |
| switch (compare_badness (func_badness, method_badness)) |
| { |
| case 0: /* Top two contenders are equally good. */ |
| /* FIXME: GDB does not support the general ambiguous case. |
| All candidates should be collected and presented the |
| user. */ |
| error (_("Ambiguous overload resolution")); |
| break; |
| case 1: /* Incomparable top contenders. */ |
| /* This is an error incompatible candidates |
| should not have been proposed. */ |
| error (_("Internal error: incompatible " |
| "overload candidates proposed")); |
| break; |
| case 2: /* Function champion. */ |
| method_oload_champ = -1; |
| match_quality = func_match_quality; |
| break; |
| case 3: /* Method champion. */ |
| func_oload_champ = -1; |
| match_quality = method_match_quality; |
| break; |
| default: |
| error (_("Internal error: unexpected overload comparison result")); |
| break; |
| } |
| } |
| else |
| { |
| /* We have either a method match or a function match. */ |
| if (method_oload_champ >= 0) |
| match_quality = method_match_quality; |
| else |
| match_quality = func_match_quality; |
| } |
| |
| if (match_quality == INCOMPATIBLE) |
| { |
| if (method == METHOD) |
| error (_("Cannot resolve method %s%s%s to any overloaded instance"), |
| obj_type_name, |
| (obj_type_name && *obj_type_name) ? "::" : "", |
| name); |
| else |
| error (_("Cannot resolve function %s to any overloaded instance"), |
| func_name); |
| } |
| else if (match_quality == NON_STANDARD) |
| { |
| if (method == METHOD) |
| warning (_("Using non-standard conversion to match " |
| "method %s%s%s to supplied arguments"), |
| obj_type_name, |
| (obj_type_name && *obj_type_name) ? "::" : "", |
| name); |
| else |
| warning (_("Using non-standard conversion to match " |
| "function %s to supplied arguments"), |
| func_name); |
| } |
| |
| if (staticp != NULL) |
| *staticp = oload_method_static (method, fns_ptr, method_oload_champ); |
| |
| if (method_oload_champ >= 0) |
| { |
| if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)) |
| *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ, |
| basetype, boffset); |
| else |
| *valp = value_fn_field (&temp, fns_ptr, method_oload_champ, |
| basetype, boffset); |
| } |
| else |
| *symp = oload_syms[func_oload_champ]; |
| |
| if (objp) |
| { |
| struct type *temp_type = check_typedef (value_type (temp)); |
| struct type *objtype = check_typedef (obj_type); |
| |
| if (TYPE_CODE (temp_type) != TYPE_CODE_PTR |
| && (TYPE_CODE (objtype) == TYPE_CODE_PTR |
| || TYPE_CODE (objtype) == TYPE_CODE_REF)) |
| { |
| temp = value_addr (temp); |
| } |
| *objp = temp; |
| } |
| |
| do_cleanups (all_cleanups); |
| |
| switch (match_quality) |
| { |
| case INCOMPATIBLE: |
| return 100; |
| case NON_STANDARD: |
| return 10; |
| default: /* STANDARD */ |
| return 0; |
| } |
| } |
| |
| /* Find the best overload match, searching for FUNC_NAME in namespaces |
| contained in QUALIFIED_NAME until it either finds a good match or |
| runs out of namespaces. It stores the overloaded functions in |
| *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The |
| calling function is responsible for freeing *OLOAD_SYMS and |
| *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not |
| performned. */ |
| |
| static int |
| find_oload_champ_namespace (struct value **args, int nargs, |
| const char *func_name, |
| const char *qualified_name, |
| struct symbol ***oload_syms, |
| struct badness_vector **oload_champ_bv, |
| const int no_adl) |
| { |
| int oload_champ; |
| |
| find_oload_champ_namespace_loop (args, nargs, |
| func_name, |
| qualified_name, 0, |
| oload_syms, oload_champ_bv, |
| &oload_champ, |
| no_adl); |
| |
| return oload_champ; |
| } |
| |
| /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is |
| how deep we've looked for namespaces, and the champ is stored in |
| OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0 |
| if it isn't. Other arguments are the same as in |
| find_oload_champ_namespace |
| |
| It is the caller's responsibility to free *OLOAD_SYMS and |
| *OLOAD_CHAMP_BV. */ |
| |
| static int |
| find_oload_champ_namespace_loop (struct value **args, int nargs, |
| const char *func_name, |
| const char *qualified_name, |
| int namespace_len, |
| struct symbol ***oload_syms, |
| struct badness_vector **oload_champ_bv, |
| int *oload_champ, |
| const int no_adl) |
| { |
| int next_namespace_len = namespace_len; |
| int searched_deeper = 0; |
| int num_fns = 0; |
| struct cleanup *old_cleanups; |
| int new_oload_champ; |
| struct symbol **new_oload_syms; |
| struct badness_vector *new_oload_champ_bv; |
| char *new_namespace; |
| |
| if (next_namespace_len != 0) |
| { |
| gdb_assert (qualified_name[next_namespace_len] == ':'); |
| next_namespace_len += 2; |
| } |
| next_namespace_len += |
| cp_find_first_component (qualified_name + next_namespace_len); |
| |
| /* Initialize these to values that can safely be xfree'd. */ |
| *oload_syms = NULL; |
| *oload_champ_bv = NULL; |
| |
| /* First, see if we have a deeper namespace we can search in. |
| If we get a good match there, use it. */ |
| |
| if (qualified_name[next_namespace_len] == ':') |
| { |
| searched_deeper = 1; |
| |
| if (find_oload_champ_namespace_loop (args, nargs, |
| func_name, qualified_name, |
| next_namespace_len, |
| oload_syms, oload_champ_bv, |
| oload_champ, no_adl)) |
| { |
| return 1; |
| } |
| }; |
| |
| /* If we reach here, either we're in the deepest namespace or we |
| didn't find a good match in a deeper namespace. But, in the |
| latter case, we still have a bad match in a deeper namespace; |
| note that we might not find any match at all in the current |
| namespace. (There's always a match in the deepest namespace, |
| because this overload mechanism only gets called if there's a |
| function symbol to start off with.) */ |
| |
| old_cleanups = make_cleanup (xfree, *oload_syms); |
| make_cleanup (xfree, *oload_champ_bv); |
| new_namespace = alloca (namespace_len + 1); |
| strncpy (new_namespace, qualified_name, namespace_len); |
| new_namespace[namespace_len] = '\0'; |
| new_oload_syms = make_symbol_overload_list (func_name, |
| new_namespace); |
| |
| /* If we have reached the deepest level perform argument |
| determined lookup. */ |
| if (!searched_deeper && !no_adl) |
| { |
| int ix; |
| struct type **arg_types; |
| |
| /* Prepare list of argument types for overload resolution. */ |
| arg_types = (struct type **) |
| alloca (nargs * (sizeof (struct type *))); |
| for (ix = 0; ix < nargs; ix++) |
| arg_types[ix] = value_type (args[ix]); |
| make_symbol_overload_list_adl (arg_types, nargs, func_name); |
| } |
| |
| while (new_oload_syms[num_fns]) |
| ++num_fns; |
| |
| new_oload_champ = find_oload_champ (args, nargs, 0, num_fns, |
| NULL, new_oload_syms, |
| &new_oload_champ_bv); |
| |
| /* Case 1: We found a good match. Free earlier matches (if any), |
| and return it. Case 2: We didn't find a good match, but we're |
| not the deepest function. Then go with the bad match that the |
| deeper function found. Case 3: We found a bad match, and we're |
| the deepest function. Then return what we found, even though |
| it's a bad match. */ |
| |
| if (new_oload_champ != -1 |
| && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD) |
| { |
| *oload_syms = new_oload_syms; |
| *oload_champ = new_oload_champ; |
| *oload_champ_bv = new_oload_champ_bv; |
| do_cleanups (old_cleanups); |
| return 1; |
| } |
| else if (searched_deeper) |
| { |
| xfree (new_oload_syms); |
| xfree (new_oload_champ_bv); |
| discard_cleanups (old_cleanups); |
| return 0; |
| } |
| else |
| { |
| *oload_syms = new_oload_syms; |
| *oload_champ = new_oload_champ; |
| *oload_champ_bv = new_oload_champ_bv; |
| do_cleanups (old_cleanups); |
| return 0; |
| } |
| } |
| |
| /* Look for a function to take NARGS args of ARGS. Find |
| the best match from among the overloaded methods or functions |
| (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively. |
| The number of methods/functions in the list is given by NUM_FNS. |
| Return the index of the best match; store an indication of the |
| quality of the match in OLOAD_CHAMP_BV. |
| |
| It is the caller's responsibility to free *OLOAD_CHAMP_BV. */ |
| |
| static int |
| find_oload_champ (struct value **args, int nargs, int method, |
| int num_fns, struct fn_field *fns_ptr, |
| struct symbol **oload_syms, |
| struct badness_vector **oload_champ_bv) |
| { |
| int ix; |
| /* A measure of how good an overloaded instance is. */ |
| struct badness_vector *bv; |
| /* Index of best overloaded function. */ |
| int oload_champ = -1; |
| /* Current ambiguity state for overload resolution. */ |
| int oload_ambiguous = 0; |
| /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */ |
| |
| *oload_champ_bv = NULL; |
| |
| /* Consider each candidate in turn. */ |
| for (ix = 0; ix < num_fns; ix++) |
| { |
| int jj; |
| int static_offset = oload_method_static (method, fns_ptr, ix); |
| int nparms; |
| struct type **parm_types; |
| |
| if (method) |
| { |
| nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix)); |
| } |
| else |
| { |
| /* If it's not a method, this is the proper place. */ |
| nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); |
| } |
| |
| /* Prepare array of parameter types. */ |
| parm_types = (struct type **) |
| xmalloc (nparms * (sizeof (struct type *))); |
| for (jj = 0; jj < nparms; jj++) |
| parm_types[jj] = (method |
| ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type) |
| : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), |
| jj)); |
| |
| /* Compare parameter types to supplied argument types. Skip |
| THIS for static methods. */ |
| bv = rank_function (parm_types, nparms, |
| args + static_offset, |
| nargs - static_offset); |
| |
| if (!*oload_champ_bv) |
| { |
| *oload_champ_bv = bv; |
| oload_champ = 0; |
| } |
| else /* See whether current candidate is better or worse than |
| previous best. */ |
| switch (compare_badness (bv, *oload_champ_bv)) |
| { |
| case 0: /* Top two contenders are equally good. */ |
| oload_ambiguous = 1; |
| break; |
| case 1: /* Incomparable top contenders. */ |
| oload_ambiguous = 2; |
| break; |
| case 2: /* New champion, record details. */ |
| *oload_champ_bv = bv; |
| oload_ambiguous = 0; |
| oload_champ = ix; |
| break; |
| case 3: |
| default: |
| break; |
| } |
| xfree (parm_types); |
| if (overload_debug) |
| { |
| if (method) |
| fprintf_filtered (gdb_stderr, |
| "Overloaded method instance %s, # of parms %d\n", |
| fns_ptr[ix].physname, nparms); |
| else |
| fprintf_filtered (gdb_stderr, |
| "Overloaded function instance " |
| "%s # of parms %d\n", |
| SYMBOL_DEMANGLED_NAME (oload_syms[ix]), |
| nparms); |
| for (jj = 0; jj < nargs - static_offset; jj++) |
| fprintf_filtered (gdb_stderr, |
| "...Badness @ %d : %d\n", |
| jj, bv->rank[jj].rank); |
| fprintf_filtered (gdb_stderr, "Overload resolution " |
| "champion is %d, ambiguous? %d\n", |
| oload_champ, oload_ambiguous); |
| } |
| } |
| |
| return oload_champ; |
| } |
| |
| /* Return 1 if we're looking at a static method, 0 if we're looking at |
| a non-static method or a function that isn't a method. */ |
| |
| static int |
| oload_method_static (int method, struct fn_field *fns_ptr, int index) |
| { |
| if (method && fns_ptr && index >= 0 |
| && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Check how good an overload match OLOAD_CHAMP_BV represents. */ |
| |
| static enum oload_classification |
| classify_oload_match (struct badness_vector *oload_champ_bv, |
| int nargs, |
| int static_offset) |
| { |
| int ix; |
| enum oload_classification worst = STANDARD; |
| |
| for (ix = 1; ix <= nargs - static_offset; ix++) |
| { |
| /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS |
| or worse return INCOMPATIBLE. */ |
| if (compare_ranks (oload
|