| /* Target-dependent code for GDB, the GNU debugger. |
| |
| Copyright (C) 2001-2012 Free Software Foundation, Inc. |
| |
| Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) |
| for IBM Deutschland Entwicklung GmbH, IBM Corporation. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "arch-utils.h" |
| #include "frame.h" |
| #include "inferior.h" |
| #include "symtab.h" |
| #include "target.h" |
| #include "gdbcore.h" |
| #include "gdbcmd.h" |
| #include "objfiles.h" |
| #include "floatformat.h" |
| #include "regcache.h" |
| #include "trad-frame.h" |
| #include "frame-base.h" |
| #include "frame-unwind.h" |
| #include "dwarf2-frame.h" |
| #include "reggroups.h" |
| #include "regset.h" |
| #include "value.h" |
| #include "gdb_assert.h" |
| #include "dis-asm.h" |
| #include "solib-svr4.h" |
| #include "prologue-value.h" |
| #include "linux-tdep.h" |
| #include "s390-tdep.h" |
| |
| #include "stap-probe.h" |
| #include "ax.h" |
| #include "ax-gdb.h" |
| #include "user-regs.h" |
| #include "cli/cli-utils.h" |
| #include <ctype.h> |
| |
| #include "features/s390-linux32.c" |
| #include "features/s390-linux32v1.c" |
| #include "features/s390-linux32v2.c" |
| #include "features/s390-linux64.c" |
| #include "features/s390-linux64v1.c" |
| #include "features/s390-linux64v2.c" |
| #include "features/s390x-linux64.c" |
| #include "features/s390x-linux64v1.c" |
| #include "features/s390x-linux64v2.c" |
| |
| /* The tdep structure. */ |
| |
| struct gdbarch_tdep |
| { |
| /* ABI version. */ |
| enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi; |
| |
| /* Pseudo register numbers. */ |
| int gpr_full_regnum; |
| int pc_regnum; |
| int cc_regnum; |
| |
| /* Core file register sets. */ |
| const struct regset *gregset; |
| int sizeof_gregset; |
| |
| const struct regset *fpregset; |
| int sizeof_fpregset; |
| }; |
| |
| |
| /* ABI call-saved register information. */ |
| |
| static int |
| s390_register_call_saved (struct gdbarch *gdbarch, int regnum) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| switch (tdep->abi) |
| { |
| case ABI_LINUX_S390: |
| if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) |
| || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM |
| || regnum == S390_A0_REGNUM) |
| return 1; |
| |
| break; |
| |
| case ABI_LINUX_ZSERIES: |
| if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) |
| || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM) |
| || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM)) |
| return 1; |
| |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| s390_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
| { |
| /* The last-break address is read-only. */ |
| return regnum == S390_LAST_BREAK_REGNUM; |
| } |
| |
| static void |
| s390_write_pc (struct regcache *regcache, CORE_ADDR pc) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc); |
| |
| /* Set special SYSTEM_CALL register to 0 to prevent the kernel from |
| messing with the PC we just installed, if we happen to be within |
| an interrupted system call that the kernel wants to restart. |
| |
| Note that after we return from the dummy call, the SYSTEM_CALL and |
| ORIG_R2 registers will be automatically restored, and the kernel |
| continues to restart the system call at this point. */ |
| if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0) |
| regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0); |
| } |
| |
| |
| /* DWARF Register Mapping. */ |
| |
| static int s390_dwarf_regmap[] = |
| { |
| /* General Purpose Registers. */ |
| S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, |
| S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, |
| S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, |
| S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, |
| |
| /* Floating Point Registers. */ |
| S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, |
| S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, |
| S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, |
| S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, |
| |
| /* Control Registers (not mapped). */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| |
| /* Access Registers. */ |
| S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, |
| S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, |
| S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, |
| S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, |
| |
| /* Program Status Word. */ |
| S390_PSWM_REGNUM, |
| S390_PSWA_REGNUM, |
| |
| /* GPR Lower Half Access. */ |
| S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, |
| S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, |
| S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, |
| S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, |
| |
| /* GNU/Linux-specific registers (not mapped). */ |
| -1, -1, -1, |
| }; |
| |
| /* Convert DWARF register number REG to the appropriate register |
| number used by GDB. */ |
| static int |
| s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit |
| GPRs. Note that call frame information still refers to the 32-bit |
| lower halves, because s390_adjust_frame_regnum uses register numbers |
| 66 .. 81 to access GPRs. */ |
| if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16) |
| return tdep->gpr_full_regnum + reg; |
| |
| if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) |
| return s390_dwarf_regmap[reg]; |
| |
| warning (_("Unmapped DWARF Register #%d encountered."), reg); |
| return -1; |
| } |
| |
| /* Translate a .eh_frame register to DWARF register, or adjust a |
| .debug_frame register. */ |
| static int |
| s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) |
| { |
| /* See s390_dwarf_reg_to_regnum for comments. */ |
| return (num >= 0 && num < 16)? num + 66 : num; |
| } |
| |
| |
| /* Pseudo registers. */ |
| |
| static const char * |
| s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (regnum == tdep->pc_regnum) |
| return "pc"; |
| |
| if (regnum == tdep->cc_regnum) |
| return "cc"; |
| |
| if (tdep->gpr_full_regnum != -1 |
| && regnum >= tdep->gpr_full_regnum |
| && regnum < tdep->gpr_full_regnum + 16) |
| { |
| static const char *full_name[] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| }; |
| return full_name[regnum - tdep->gpr_full_regnum]; |
| } |
| |
| internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| } |
| |
| static struct type * |
| s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (regnum == tdep->pc_regnum) |
| return builtin_type (gdbarch)->builtin_func_ptr; |
| |
| if (regnum == tdep->cc_regnum) |
| return builtin_type (gdbarch)->builtin_int; |
| |
| if (tdep->gpr_full_regnum != -1 |
| && regnum >= tdep->gpr_full_regnum |
| && regnum < tdep->gpr_full_regnum + 16) |
| return builtin_type (gdbarch)->builtin_uint64; |
| |
| internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| } |
| |
| static enum register_status |
| s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int regsize = register_size (gdbarch, regnum); |
| ULONGEST val; |
| |
| if (regnum == tdep->pc_regnum) |
| { |
| enum register_status status; |
| |
| status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val); |
| if (status == REG_VALID) |
| { |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| val &= 0x7fffffff; |
| store_unsigned_integer (buf, regsize, byte_order, val); |
| } |
| return status; |
| } |
| |
| if (regnum == tdep->cc_regnum) |
| { |
| enum register_status status; |
| |
| status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); |
| if (status == REG_VALID) |
| { |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| val = (val >> 12) & 3; |
| else |
| val = (val >> 44) & 3; |
| store_unsigned_integer (buf, regsize, byte_order, val); |
| } |
| return status; |
| } |
| |
| if (tdep->gpr_full_regnum != -1 |
| && regnum >= tdep->gpr_full_regnum |
| && regnum < tdep->gpr_full_regnum + 16) |
| { |
| enum register_status status; |
| ULONGEST val_upper; |
| |
| regnum -= tdep->gpr_full_regnum; |
| |
| status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val); |
| if (status == REG_VALID) |
| status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, |
| &val_upper); |
| if (status == REG_VALID) |
| { |
| val |= val_upper << 32; |
| store_unsigned_integer (buf, regsize, byte_order, val); |
| } |
| return status; |
| } |
| |
| internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| } |
| |
| static void |
| s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, const gdb_byte *buf) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int regsize = register_size (gdbarch, regnum); |
| ULONGEST val, psw; |
| |
| if (regnum == tdep->pc_regnum) |
| { |
| val = extract_unsigned_integer (buf, regsize, byte_order); |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| { |
| regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); |
| val = (psw & 0x80000000) | (val & 0x7fffffff); |
| } |
| regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val); |
| return; |
| } |
| |
| if (regnum == tdep->cc_regnum) |
| { |
| val = extract_unsigned_integer (buf, regsize, byte_order); |
| regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); |
| else |
| val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); |
| regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val); |
| return; |
| } |
| |
| if (tdep->gpr_full_regnum != -1 |
| && regnum >= tdep->gpr_full_regnum |
| && regnum < tdep->gpr_full_regnum + 16) |
| { |
| regnum -= tdep->gpr_full_regnum; |
| val = extract_unsigned_integer (buf, regsize, byte_order); |
| regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum, |
| val & 0xffffffff); |
| regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, |
| val >> 32); |
| return; |
| } |
| |
| internal_error (__FILE__, __LINE__, _("invalid regnum")); |
| } |
| |
| /* 'float' values are stored in the upper half of floating-point |
| registers, even though we are otherwise a big-endian platform. */ |
| |
| static struct value * |
| s390_value_from_register (struct type *type, int regnum, |
| struct frame_info *frame) |
| { |
| struct value *value = default_value_from_register (type, regnum, frame); |
| int len = TYPE_LENGTH (check_typedef (type)); |
| |
| if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8) |
| set_value_offset (value, 0); |
| |
| return value; |
| } |
| |
| /* Register groups. */ |
| |
| static int |
| s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| struct reggroup *group) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* We usually save/restore the whole PSW, which includes PC and CC. |
| However, some older gdbservers may not support saving/restoring |
| the whole PSW yet, and will return an XML register description |
| excluding those from the save/restore register groups. In those |
| cases, we still need to explicitly save/restore PC and CC in order |
| to push or pop frames. Since this doesn't hurt anything if we |
| already save/restore the whole PSW (it's just redundant), we add |
| PC and CC at this point unconditionally. */ |
| if (group == save_reggroup || group == restore_reggroup) |
| return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum; |
| |
| return default_register_reggroup_p (gdbarch, regnum, group); |
| } |
| |
| |
| /* Core file register sets. */ |
| |
| int s390_regmap_gregset[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| 0x00, 0x04, |
| /* General Purpose Registers. */ |
| 0x08, 0x0c, 0x10, 0x14, |
| 0x18, 0x1c, 0x20, 0x24, |
| 0x28, 0x2c, 0x30, 0x34, |
| 0x38, 0x3c, 0x40, 0x44, |
| /* Access Registers. */ |
| 0x48, 0x4c, 0x50, 0x54, |
| 0x58, 0x5c, 0x60, 0x64, |
| 0x68, 0x6c, 0x70, 0x74, |
| 0x78, 0x7c, 0x80, 0x84, |
| /* Floating Point Control Word. */ |
| -1, |
| /* Floating Point Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GPR Uppper Halves. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GNU/Linux-specific optional "registers". */ |
| 0x88, -1, -1, |
| }; |
| |
| int s390x_regmap_gregset[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| 0x00, 0x08, |
| /* General Purpose Registers. */ |
| 0x10, 0x18, 0x20, 0x28, |
| 0x30, 0x38, 0x40, 0x48, |
| 0x50, 0x58, 0x60, 0x68, |
| 0x70, 0x78, 0x80, 0x88, |
| /* Access Registers. */ |
| 0x90, 0x94, 0x98, 0x9c, |
| 0xa0, 0xa4, 0xa8, 0xac, |
| 0xb0, 0xb4, 0xb8, 0xbc, |
| 0xc0, 0xc4, 0xc8, 0xcc, |
| /* Floating Point Control Word. */ |
| -1, |
| /* Floating Point Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GPR Uppper Halves. */ |
| 0x10, 0x18, 0x20, 0x28, |
| 0x30, 0x38, 0x40, 0x48, |
| 0x50, 0x58, 0x60, 0x68, |
| 0x70, 0x78, 0x80, 0x88, |
| /* GNU/Linux-specific optional "registers". */ |
| 0xd0, -1, -1, |
| }; |
| |
| int s390_regmap_fpregset[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| -1, -1, |
| /* General Purpose Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Access Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Floating Point Control Word. */ |
| 0x00, |
| /* Floating Point Registers. */ |
| 0x08, 0x10, 0x18, 0x20, |
| 0x28, 0x30, 0x38, 0x40, |
| 0x48, 0x50, 0x58, 0x60, |
| 0x68, 0x70, 0x78, 0x80, |
| /* GPR Uppper Halves. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GNU/Linux-specific optional "registers". */ |
| -1, -1, -1, |
| }; |
| |
| int s390_regmap_upper[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| -1, -1, |
| /* General Purpose Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Access Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Floating Point Control Word. */ |
| -1, |
| /* Floating Point Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GPR Uppper Halves. */ |
| 0x00, 0x04, 0x08, 0x0c, |
| 0x10, 0x14, 0x18, 0x1c, |
| 0x20, 0x24, 0x28, 0x2c, |
| 0x30, 0x34, 0x38, 0x3c, |
| /* GNU/Linux-specific optional "registers". */ |
| -1, -1, -1, |
| }; |
| |
| int s390_regmap_last_break[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| -1, -1, |
| /* General Purpose Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Access Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Floating Point Control Word. */ |
| -1, |
| /* Floating Point Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GPR Uppper Halves. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GNU/Linux-specific optional "registers". */ |
| -1, 4, -1, |
| }; |
| |
| int s390x_regmap_last_break[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| -1, -1, |
| /* General Purpose Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Access Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Floating Point Control Word. */ |
| -1, |
| /* Floating Point Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GPR Uppper Halves. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GNU/Linux-specific optional "registers". */ |
| -1, 0, -1, |
| }; |
| |
| int s390_regmap_system_call[S390_NUM_REGS] = |
| { |
| /* Program Status Word. */ |
| -1, -1, |
| /* General Purpose Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Access Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* Floating Point Control Word. */ |
| -1, |
| /* Floating Point Registers. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GPR Uppper Halves. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| /* GNU/Linux-specific optional "registers". */ |
| -1, -1, 0, |
| }; |
| |
| /* Supply register REGNUM from the register set REGSET to register cache |
| REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ |
| static void |
| s390_supply_regset (const struct regset *regset, struct regcache *regcache, |
| int regnum, const void *regs, size_t len) |
| { |
| const int *offset = regset->descr; |
| int i; |
| |
| for (i = 0; i < S390_NUM_REGS; i++) |
| { |
| if ((regnum == i || regnum == -1) && offset[i] != -1) |
| regcache_raw_supply (regcache, i, (const char *)regs + offset[i]); |
| } |
| } |
| |
| /* Collect register REGNUM from the register cache REGCACHE and store |
| it in the buffer specified by REGS and LEN as described by the |
| general-purpose register set REGSET. If REGNUM is -1, do this for |
| all registers in REGSET. */ |
| static void |
| s390_collect_regset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *regs, size_t len) |
| { |
| const int *offset = regset->descr; |
| int i; |
| |
| for (i = 0; i < S390_NUM_REGS; i++) |
| { |
| if ((regnum == i || regnum == -1) && offset[i] != -1) |
| regcache_raw_collect (regcache, i, (char *)regs + offset[i]); |
| } |
| } |
| |
| static const struct regset s390_gregset = { |
| s390_regmap_gregset, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static const struct regset s390x_gregset = { |
| s390x_regmap_gregset, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static const struct regset s390_fpregset = { |
| s390_regmap_fpregset, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static const struct regset s390_upper_regset = { |
| s390_regmap_upper, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static const struct regset s390_last_break_regset = { |
| s390_regmap_last_break, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static const struct regset s390x_last_break_regset = { |
| s390x_regmap_last_break, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static const struct regset s390_system_call_regset = { |
| s390_regmap_system_call, |
| s390_supply_regset, |
| s390_collect_regset |
| }; |
| |
| static struct core_regset_section s390_linux32_regset_sections[] = |
| { |
| { ".reg", s390_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390_linux32v1_regset_sections[] = |
| { |
| { ".reg", s390_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-last-break", 8, "s390 last-break address" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390_linux32v2_regset_sections[] = |
| { |
| { ".reg", s390_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-last-break", 8, "s390 last-break address" }, |
| { ".reg-s390-system-call", 4, "s390 system-call" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390_linux64_regset_sections[] = |
| { |
| { ".reg", s390_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390_linux64v1_regset_sections[] = |
| { |
| { ".reg", s390_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" }, |
| { ".reg-s390-last-break", 8, "s930 last-break address" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390_linux64v2_regset_sections[] = |
| { |
| { ".reg", s390_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" }, |
| { ".reg-s390-last-break", 8, "s930 last-break address" }, |
| { ".reg-s390-system-call", 4, "s390 system-call" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390x_linux64_regset_sections[] = |
| { |
| { ".reg", s390x_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390x_linux64v1_regset_sections[] = |
| { |
| { ".reg", s390x_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-last-break", 8, "s930 last-break address" }, |
| { NULL, 0} |
| }; |
| |
| static struct core_regset_section s390x_linux64v2_regset_sections[] = |
| { |
| { ".reg", s390x_sizeof_gregset, "general-purpose" }, |
| { ".reg2", s390_sizeof_fpregset, "floating-point" }, |
| { ".reg-s390-last-break", 8, "s930 last-break address" }, |
| { ".reg-s390-system-call", 4, "s390 system-call" }, |
| { NULL, 0} |
| }; |
| |
| |
| /* Return the appropriate register set for the core section identified |
| by SECT_NAME and SECT_SIZE. */ |
| static const struct regset * |
| s390_regset_from_core_section (struct gdbarch *gdbarch, |
| const char *sect_name, size_t sect_size) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset) |
| return tdep->gregset; |
| |
| if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset) |
| return tdep->fpregset; |
| |
| if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4) |
| return &s390_upper_regset; |
| |
| if (strcmp (sect_name, ".reg-s390-last-break") == 0 && sect_size >= 8) |
| return (gdbarch_ptr_bit (gdbarch) == 32 |
| ? &s390_last_break_regset : &s390x_last_break_regset); |
| |
| if (strcmp (sect_name, ".reg-s390-system-call") == 0 && sect_size >= 4) |
| return &s390_system_call_regset; |
| |
| return NULL; |
| } |
| |
| static const struct target_desc * |
| s390_core_read_description (struct gdbarch *gdbarch, |
| struct target_ops *target, bfd *abfd) |
| { |
| asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs"); |
| asection *v1 = bfd_get_section_by_name (abfd, ".reg-s390-last-break"); |
| asection *v2 = bfd_get_section_by_name (abfd, ".reg-s390-system-call"); |
| asection *section = bfd_get_section_by_name (abfd, ".reg"); |
| if (!section) |
| return NULL; |
| |
| switch (bfd_section_size (abfd, section)) |
| { |
| case s390_sizeof_gregset: |
| if (high_gprs) |
| return (v2? tdesc_s390_linux64v2 : |
| v1? tdesc_s390_linux64v1 : tdesc_s390_linux64); |
| else |
| return (v2? tdesc_s390_linux32v2 : |
| v1? tdesc_s390_linux32v1 : tdesc_s390_linux32); |
| |
| case s390x_sizeof_gregset: |
| return (v2? tdesc_s390x_linux64v2 : |
| v1? tdesc_s390x_linux64v1 : tdesc_s390x_linux64); |
| |
| default: |
| return NULL; |
| } |
| } |
| |
| |
| /* Decoding S/390 instructions. */ |
| |
| /* Named opcode values for the S/390 instructions we recognize. Some |
| instructions have their opcode split across two fields; those are the |
| op1_* and op2_* enums. */ |
| enum |
| { |
| op1_lhi = 0xa7, op2_lhi = 0x08, |
| op1_lghi = 0xa7, op2_lghi = 0x09, |
| op1_lgfi = 0xc0, op2_lgfi = 0x01, |
| op_lr = 0x18, |
| op_lgr = 0xb904, |
| op_l = 0x58, |
| op1_ly = 0xe3, op2_ly = 0x58, |
| op1_lg = 0xe3, op2_lg = 0x04, |
| op_lm = 0x98, |
| op1_lmy = 0xeb, op2_lmy = 0x98, |
| op1_lmg = 0xeb, op2_lmg = 0x04, |
| op_st = 0x50, |
| op1_sty = 0xe3, op2_sty = 0x50, |
| op1_stg = 0xe3, op2_stg = 0x24, |
| op_std = 0x60, |
| op_stm = 0x90, |
| op1_stmy = 0xeb, op2_stmy = 0x90, |
| op1_stmg = 0xeb, op2_stmg = 0x24, |
| op1_aghi = 0xa7, op2_aghi = 0x0b, |
| op1_ahi = 0xa7, op2_ahi = 0x0a, |
| op1_agfi = 0xc2, op2_agfi = 0x08, |
| op1_afi = 0xc2, op2_afi = 0x09, |
| op1_algfi= 0xc2, op2_algfi= 0x0a, |
| op1_alfi = 0xc2, op2_alfi = 0x0b, |
| op_ar = 0x1a, |
| op_agr = 0xb908, |
| op_a = 0x5a, |
| op1_ay = 0xe3, op2_ay = 0x5a, |
| op1_ag = 0xe3, op2_ag = 0x08, |
| op1_slgfi= 0xc2, op2_slgfi= 0x04, |
| op1_slfi = 0xc2, op2_slfi = 0x05, |
| op_sr = 0x1b, |
| op_sgr = 0xb909, |
| op_s = 0x5b, |
| op1_sy = 0xe3, op2_sy = 0x5b, |
| op1_sg = 0xe3, op2_sg = 0x09, |
| op_nr = 0x14, |
| op_ngr = 0xb980, |
| op_la = 0x41, |
| op1_lay = 0xe3, op2_lay = 0x71, |
| op1_larl = 0xc0, op2_larl = 0x00, |
| op_basr = 0x0d, |
| op_bas = 0x4d, |
| op_bcr = 0x07, |
| op_bc = 0x0d, |
| op_bctr = 0x06, |
| op_bctgr = 0xb946, |
| op_bct = 0x46, |
| op1_bctg = 0xe3, op2_bctg = 0x46, |
| op_bxh = 0x86, |
| op1_bxhg = 0xeb, op2_bxhg = 0x44, |
| op_bxle = 0x87, |
| op1_bxleg= 0xeb, op2_bxleg= 0x45, |
| op1_bras = 0xa7, op2_bras = 0x05, |
| op1_brasl= 0xc0, op2_brasl= 0x05, |
| op1_brc = 0xa7, op2_brc = 0x04, |
| op1_brcl = 0xc0, op2_brcl = 0x04, |
| op1_brct = 0xa7, op2_brct = 0x06, |
| op1_brctg= 0xa7, op2_brctg= 0x07, |
| op_brxh = 0x84, |
| op1_brxhg= 0xec, op2_brxhg= 0x44, |
| op_brxle = 0x85, |
| op1_brxlg= 0xec, op2_brxlg= 0x45, |
| }; |
| |
| |
| /* Read a single instruction from address AT. */ |
| |
| #define S390_MAX_INSTR_SIZE 6 |
| static int |
| s390_readinstruction (bfd_byte instr[], CORE_ADDR at) |
| { |
| static int s390_instrlen[] = { 2, 4, 4, 6 }; |
| int instrlen; |
| |
| if (target_read_memory (at, &instr[0], 2)) |
| return -1; |
| instrlen = s390_instrlen[instr[0] >> 6]; |
| if (instrlen > 2) |
| { |
| if (target_read_memory (at + 2, &instr[2], instrlen - 2)) |
| return -1; |
| } |
| return instrlen; |
| } |
| |
| |
| /* The functions below are for recognizing and decoding S/390 |
| instructions of various formats. Each of them checks whether INSN |
| is an instruction of the given format, with the specified opcodes. |
| If it is, it sets the remaining arguments to the values of the |
| instruction's fields, and returns a non-zero value; otherwise, it |
| returns zero. |
| |
| These functions' arguments appear in the order they appear in the |
| instruction, not in the machine-language form. So, opcodes always |
| come first, even though they're sometimes scattered around the |
| instructions. And displacements appear before base and extension |
| registers, as they do in the assembly syntax, not at the end, as |
| they do in the machine language. */ |
| static int |
| is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) |
| { |
| if (insn[0] == op1 && (insn[1] & 0xf) == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| /* i2 is a 16-bit signed quantity. */ |
| *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_ril (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, int *i2) |
| { |
| if (insn[0] == op1 && (insn[1] & 0xf) == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| /* i2 is a signed quantity. If the host 'int' is 32 bits long, |
| no sign extension is necessary, but we don't want to assume |
| that. */ |
| *i2 = (((insn[2] << 24) |
| | (insn[3] << 16) |
| | (insn[4] << 8) |
| | (insn[5])) ^ 0x80000000) - 0x80000000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r2 = insn[1] & 0xf; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) |
| { |
| if (((insn[0] << 8) | insn[1]) == op) |
| { |
| /* Yes, insn[3]. insn[2] is unused in RRE format. */ |
| *r1 = (insn[3] >> 4) & 0xf; |
| *r2 = insn[3] & 0xf; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rs (bfd_byte *insn, int op, |
| unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r3 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| *d2 = ((insn[2] & 0xf) << 8) | insn[3]; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rsy (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) |
| { |
| if (insn[0] == op1 |
| && insn[5] == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r3 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| /* The 'long displacement' is a 20-bit signed integer. */ |
| *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) |
| ^ 0x80000) - 0x80000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rsi (bfd_byte *insn, int op, |
| unsigned int *r1, unsigned int *r3, int *i2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r3 = insn[1] & 0xf; |
| /* i2 is a 16-bit signed quantity. */ |
| *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rie (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, unsigned int *r3, int *i2) |
| { |
| if (insn[0] == op1 |
| && insn[5] == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *r3 = insn[1] & 0xf; |
| /* i2 is a 16-bit signed quantity. */ |
| *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rx (bfd_byte *insn, int op, |
| unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) |
| { |
| if (insn[0] == op) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *x2 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| *d2 = ((insn[2] & 0xf) << 8) | insn[3]; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| static int |
| is_rxy (bfd_byte *insn, int op1, int op2, |
| unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) |
| { |
| if (insn[0] == op1 |
| && insn[5] == op2) |
| { |
| *r1 = (insn[1] >> 4) & 0xf; |
| *x2 = insn[1] & 0xf; |
| *b2 = (insn[2] >> 4) & 0xf; |
| /* The 'long displacement' is a 20-bit signed integer. */ |
| *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) |
| ^ 0x80000) - 0x80000; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| |
| /* Prologue analysis. */ |
| |
| #define S390_NUM_GPRS 16 |
| #define S390_NUM_FPRS 16 |
| |
| struct s390_prologue_data { |
| |
| /* The stack. */ |
| struct pv_area *stack; |
| |
| /* The size and byte-order of a GPR or FPR. */ |
| int gpr_size; |
| int fpr_size; |
| enum bfd_endian byte_order; |
| |
| /* The general-purpose registers. */ |
| pv_t gpr[S390_NUM_GPRS]; |
| |
| /* The floating-point registers. */ |
| pv_t fpr[S390_NUM_FPRS]; |
| |
| /* The offset relative to the CFA where the incoming GPR N was saved |
| by the function prologue. 0 if not saved or unknown. */ |
| int gpr_slot[S390_NUM_GPRS]; |
| |
| /* Likewise for FPRs. */ |
| int fpr_slot[S390_NUM_FPRS]; |
| |
| /* Nonzero if the backchain was saved. This is assumed to be the |
| case when the incoming SP is saved at the current SP location. */ |
| int back_chain_saved_p; |
| }; |
| |
| /* Return the effective address for an X-style instruction, like: |
| |
| L R1, D2(X2, B2) |
| |
| Here, X2 and B2 are registers, and D2 is a signed 20-bit |
| constant; the effective address is the sum of all three. If either |
| X2 or B2 are zero, then it doesn't contribute to the sum --- this |
| means that r0 can't be used as either X2 or B2. */ |
| static pv_t |
| s390_addr (struct s390_prologue_data *data, |
| int d2, unsigned int x2, unsigned int b2) |
| { |
| pv_t result; |
| |
| result = pv_constant (d2); |
| if (x2) |
| result = pv_add (result, data->gpr[x2]); |
| if (b2) |
| result = pv_add (result, data->gpr[b2]); |
| |
| return result; |
| } |
| |
| /* Do a SIZE-byte store of VALUE to D2(X2,B2). */ |
| static void |
| s390_store (struct s390_prologue_data *data, |
| int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, |
| pv_t value) |
| { |
| pv_t addr = s390_addr (data, d2, x2, b2); |
| pv_t offset; |
| |
| /* Check whether we are storing the backchain. */ |
| offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); |
| |
| if (pv_is_constant (offset) && offset.k == 0) |
| if (size == data->gpr_size |
| && pv_is_register_k (value, S390_SP_REGNUM, 0)) |
| { |
| data->back_chain_saved_p = 1; |
| return; |
| } |
| |
| |
| /* Check whether we are storing a register into the stack. */ |
| if (!pv_area_store_would_trash (data->stack, addr)) |
| pv_area_store (data->stack, addr, size, value); |
| |
| |
| /* Note: If this is some store we cannot identify, you might think we |
| should forget our cached values, as any of those might have been hit. |
| |
| However, we make the assumption that the register save areas are only |
| ever stored to once in any given function, and we do recognize these |
| stores. Thus every store we cannot recognize does not hit our data. */ |
| } |
| |
| /* Do a SIZE-byte load from D2(X2,B2). */ |
| static pv_t |
| s390_load (struct s390_prologue_data *data, |
| int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) |
| |
| { |
| pv_t addr = s390_addr (data, d2, x2, b2); |
| |
| /* If it's a load from an in-line constant pool, then we can |
| simulate that, under the assumption that the code isn't |
| going to change between the time the processor actually |
| executed it creating the current frame, and the time when |
| we're analyzing the code to unwind past that frame. */ |
| if (pv_is_constant (addr)) |
| { |
| struct target_section *secp; |
| secp = target_section_by_addr (¤t_target, addr.k); |
| if (secp != NULL |
| && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section) |
| & SEC_READONLY)) |
| return pv_constant (read_memory_integer (addr.k, size, |
| data->byte_order)); |
| } |
| |
| /* Check whether we are accessing one of our save slots. */ |
| return pv_area_fetch (data->stack, addr, size); |
| } |
| |
| /* Function for finding saved registers in a 'struct pv_area'; we pass |
| this to pv_area_scan. |
| |
| If VALUE is a saved register, ADDR says it was saved at a constant |
| offset from the frame base, and SIZE indicates that the whole |
| register was saved, record its offset in the reg_offset table in |
| PROLOGUE_UNTYPED. */ |
| static void |
| s390_check_for_saved (void *data_untyped, pv_t addr, |
| CORE_ADDR size, pv_t value) |
| { |
| struct s390_prologue_data *data = data_untyped; |
| int i, offset; |
| |
| if (!pv_is_register (addr, S390_SP_REGNUM)) |
| return; |
| |
| offset = 16 * data->gpr_size + 32 - addr.k; |
| |
| /* If we are storing the original value of a register, we want to |
| record the CFA offset. If the same register is stored multiple |
| times, the stack slot with the highest address counts. */ |
| |
| for (i = 0; i < S390_NUM_GPRS; i++) |
| if (size == data->gpr_size |
| && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) |
| if (data->gpr_slot[i] == 0 |
| || data->gpr_slot[i] > offset) |
| { |
| data->gpr_slot[i] = offset; |
| return; |
| } |
| |
| for (i = 0; i < S390_NUM_FPRS; i++) |
| if (size == data->fpr_size |
| && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) |
| if (data->fpr_slot[i] == 0 |
| || data->fpr_slot[i] > offset) |
| { |
| data->fpr_slot[i] = offset; |
| return; |
| } |
| } |
| |
| /* Analyze the prologue of the function starting at START_PC, |
| continuing at most until CURRENT_PC. Initialize DATA to |
| hold all information we find out about the state of the registers |
| and stack slots. Return the address of the instruction after |
| the last one that changed the SP, FP, or back chain; or zero |
| on error. */ |
| static CORE_ADDR |
| s390_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR start_pc, |
| CORE_ADDR current_pc, |
| struct s390_prologue_data *data) |
| { |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| |
| /* Our return value: |
| The address of the instruction after the last one that changed |
| the SP, FP, or back chain; zero if we got an error trying to |
| read memory. */ |
| CORE_ADDR result = start_pc; |
| |
| /* The current PC for our abstract interpretation. */ |
| CORE_ADDR pc; |
| |
| /* The address of the next instruction after that. */ |
| CORE_ADDR next_pc; |
| |
| /* Set up everything's initial value. */ |
| { |
| int i; |
| |
| data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
| |
| /* For the purpose of prologue tracking, we consider the GPR size to |
| be equal to the ABI word size, even if it is actually larger |
| (i.e. when running a 32-bit binary under a 64-bit kernel). */ |
| data->gpr_size = word_size; |
| data->fpr_size = 8; |
| data->byte_order = gdbarch_byte_order (gdbarch); |
| |
| for (i = 0; i < S390_NUM_GPRS; i++) |
| data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); |
| |
| for (i = 0; i < S390_NUM_FPRS; i++) |
| data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); |
| |
| for (i = 0; i < S390_NUM_GPRS; i++) |
| data->gpr_slot[i] = 0; |
| |
| for (i = 0; i < S390_NUM_FPRS; i++) |
| data->fpr_slot[i] = 0; |
| |
| data->back_chain_saved_p = 0; |
| } |
| |
| /* Start interpreting instructions, until we hit the frame's |
| current PC or the first branch instruction. */ |
| for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) |
| { |
| bfd_byte insn[S390_MAX_INSTR_SIZE]; |
| int insn_len = s390_readinstruction (insn, pc); |
| |
| bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; |
| bfd_byte *insn32 = word_size == 4 ? insn : dummy; |
| bfd_byte *insn64 = word_size == 8 ? insn : dummy; |
| |
| /* Fields for various kinds of instructions. */ |
| unsigned int b2, r1, r2, x2, r3; |
| int i2, d2; |
| |
| /* The values of SP and FP before this instruction, |
| for detecting instructions that change them. */ |
| pv_t pre_insn_sp, pre_insn_fp; |
| /* Likewise for the flag whether the back chain was saved. */ |
| int pre_insn_back_chain_saved_p; |
| |
| /* If we got an error trying to read the instruction, report it. */ |
| if (insn_len < 0) |
| { |
| result = 0; |
| break; |
| } |
| |
| next_pc = pc + insn_len; |
| |
| pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
| pre_insn_back_chain_saved_p = data->back_chain_saved_p; |
| |
| |
| /* LHI r1, i2 --- load halfword immediate. */ |
| /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ |
| /* LGFI r1, i2 --- load fullword immediate. */ |
| if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) |
| || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) |
| || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) |
| data->gpr[r1] = pv_constant (i2); |
| |
| /* LR r1, r2 --- load from register. */ |
| /* LGR r1, r2 --- load from register (64-bit version). */ |
| else if (is_rr (insn32, op_lr, &r1, &r2) |
| || is_rre (insn64, op_lgr, &r1, &r2)) |
| data->gpr[r1] = data->gpr[r2]; |
| |
| /* L r1, d2(x2, b2) --- load. */ |
| /* LY r1, d2(x2, b2) --- load (long-displacement version). */ |
| /* LG r1, d2(x2, b2) --- load (64-bit version). */ |
| else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); |
| |
| /* ST r1, d2(x2, b2) --- store. */ |
| /* STY r1, d2(x2, b2) --- store (long-displacement version). */ |
| /* STG r1, d2(x2, b2) --- store (64-bit version). */ |
| else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) |
| s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); |
| |
| /* STD r1, d2(x2,b2) --- store floating-point register. */ |
| else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) |
| s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); |
| |
| /* STM r1, r3, d2(b2) --- store multiple. */ |
| /* STMY r1, r3, d2(b2) --- store multiple (long-displacement |
| version). */ |
| /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ |
| else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) |
| || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) |
| || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) |
| { |
| for (; r1 <= r3; r1++, d2 += data->gpr_size) |
| s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); |
| } |
| |
| /* AHI r1, i2 --- add halfword immediate. */ |
| /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ |
| /* AFI r1, i2 --- add fullword immediate. */ |
| /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ |
| else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) |
| || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) |
| || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) |
| || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) |
| data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); |
| |
| /* ALFI r1, i2 --- add logical immediate. */ |
| /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ |
| else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) |
| || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) |
| data->gpr[r1] = pv_add_constant (data->gpr[r1], |
| (CORE_ADDR)i2 & 0xffffffff); |
| |
| /* AR r1, r2 -- add register. */ |
| /* AGR r1, r2 -- add register (64-bit version). */ |
| else if (is_rr (insn32, op_ar, &r1, &r2) |
| || is_rre (insn64, op_agr, &r1, &r2)) |
| data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); |
| |
| /* A r1, d2(x2, b2) -- add. */ |
| /* AY r1, d2(x2, b2) -- add (long-displacement version). */ |
| /* AG r1, d2(x2, b2) -- add (64-bit version). */ |
| else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = pv_add (data->gpr[r1], |
| s390_load (data, d2, x2, b2, data->gpr_size)); |
| |
| /* SLFI r1, i2 --- subtract logical immediate. */ |
| /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ |
| else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) |
| || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) |
| data->gpr[r1] = pv_add_constant (data->gpr[r1], |
| -((CORE_ADDR)i2 & 0xffffffff)); |
| |
| /* SR r1, r2 -- subtract register. */ |
| /* SGR r1, r2 -- subtract register (64-bit version). */ |
| else if (is_rr (insn32, op_sr, &r1, &r2) |
| || is_rre (insn64, op_sgr, &r1, &r2)) |
| data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); |
| |
| /* S r1, d2(x2, b2) -- subtract. */ |
| /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ |
| /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ |
| else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) |
| || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) |
| || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = pv_subtract (data->gpr[r1], |
| s390_load (data, d2, x2, b2, data->gpr_size)); |
| |
| /* LA r1, d2(x2, b2) --- load address. */ |
| /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ |
| else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) |
| || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) |
| data->gpr[r1] = s390_addr (data, d2, x2, b2); |
| |
| /* LARL r1, i2 --- load address relative long. */ |
| else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) |
| data->gpr[r1] = pv_constant (pc + i2 * 2); |
| |
| /* BASR r1, 0 --- branch and save. |
| Since r2 is zero, this saves the PC in r1, but doesn't branch. */ |
| else if (is_rr (insn, op_basr, &r1, &r2) |
| && r2 == 0) |
| data->gpr[r1] = pv_constant (next_pc); |
| |
| /* BRAS r1, i2 --- branch relative and save. */ |
| else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) |
| { |
| data->gpr[r1] = pv_constant (next_pc); |
| next_pc = pc + i2 * 2; |
| |
| /* We'd better not interpret any backward branches. We'll |
| never terminate. */ |
| if (next_pc <= pc) |
| break; |
| } |
| |
| /* Terminate search when hitting any other branch instruction. */ |
| else if (is_rr (insn, op_basr, &r1, &r2) |
| || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) |
| || is_rr (insn, op_bcr, &r1, &r2) |
| || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) |
| || is_ri (insn, op1_brc, op2_brc, &r1, &i2) |
| || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2) |
| || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) |
| break; |
| |
| else |
| /* An instruction we don't know how to simulate. The only |
| safe thing to do would be to set every value we're tracking |
| to 'unknown'. Instead, we'll be optimistic: we assume that |
| we *can* interpret every instruction that the compiler uses |
| to manipulate any of the data we're interested in here -- |
| then we can just ignore anything else. */ |
| ; |
| |
| /* Record the address after the last instruction that changed |
| the FP, SP, or backlink. Ignore instructions that changed |
| them back to their original values --- those are probably |
| restore instructions. (The back chain is never restored, |
| just popped.) */ |
| { |
| pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
| |
| if ((! pv_is_identical (pre_insn_sp, sp) |
| && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) |
| && sp.kind != pvk_unknown) |
| || (! pv_is_identical (pre_insn_fp, fp) |
| && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) |
| && fp.kind != pvk_unknown) |
| || pre_insn_back_chain_saved_p != data->back_chain_saved_p) |
| result = next_pc; |
| } |
| } |
| |
| /* Record where all the registers were saved. */ |
| pv_area_scan (data->stack, s390_check_for_saved, data); |
| |
| free_pv_area (data->stack); |
| data->stack = NULL; |
| |
| return result; |
| } |
| |
| /* Advance PC across any function entry prologue instructions to reach |
| some "real" code. */ |
| static CORE_ADDR |
| s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| struct s390_prologue_data data; |
| CORE_ADDR skip_pc; |
| skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); |
| return skip_pc ? skip_pc : pc; |
| } |
| |
| /* Return true if we are in the functin's epilogue, i.e. after the |
| instruction that destroyed the function's stack frame. */ |
| static int |
| s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| |
| /* In frameless functions, there's not frame to destroy and thus |
| we don't care about the epilogue. |
| |
| In functions with frame, the epilogue sequence is a pair of |
| a LM-type instruction that restores (amongst others) the |
| return register %r14 and the stack pointer %r15, followed |
| by a branch 'br %r14' --or equivalent-- that effects the |
| actual return. |
| |
| In that situation, this function needs to return 'true' in |
| exactly one case: when pc points to that branch instruction. |
| |
| Thus we try to disassemble the one instructions immediately |
| preceding pc and check whether it is an LM-type instruction |
| modifying the stack pointer. |
| |
| Note that disassembling backwards is not reliable, so there |
| is a slight chance of false positives here ... */ |
| |
| bfd_byte insn[6]; |
| unsigned int r1, r3, b2; |
| int d2; |
| |
| if (word_size == 4 |
| && !target_read_memory (pc - 4, insn, 4) |
| && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) |
| && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
| return 1; |
| |
| if (word_size == 4 |
| && !target_read_memory (pc - 6, insn, 6) |
| && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) |
| && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
| return 1; |
| |
| if (word_size == 8 |
| && !target_read_memory (pc - 6, insn, 6) |
| && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) |
| && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Displaced stepping. */ |
| |
| /* Fix up the state of registers and memory after having single-stepped |
| a displaced instruction. */ |
| static void |
| s390_displaced_step_fixup (struct gdbarch *gdbarch, |
| struct displaced_step_closure *closure, |
| CORE_ADDR from, CORE_ADDR to, |
| struct regcache *regs) |
| { |
| /* Since we use simple_displaced_step_copy_insn, our closure is a |
| copy of the instruction. */ |
| gdb_byte *insn = (gdb_byte *) closure; |
| static int s390_instrlen[] = { 2, 4, 4, 6 }; |
| int insnlen = s390_instrlen[insn[0] >> 6]; |
| |
| /* Fields for various kinds of instructions. */ |
| unsigned int b2, r1, r2, x2, r3; |
| int i2, d2; |
| |
| /* Get current PC and addressing mode bit. */ |
| CORE_ADDR pc = regcache_read_pc (regs); |
| ULONGEST amode = 0; |
| |
| if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) |
| { |
| regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode); |
| amode &= 0x80000000; |
| } |
| |
| if (debug_displaced) |
| fprintf_unfiltered (gdb_stdlog, |
| "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n", |
| paddress (gdbarch, from), paddress (gdbarch, to), |
| paddress (gdbarch, pc), insnlen, (int) amode); |
| |
| /* Handle absolute branch and save instructions. */ |
| if (is_rr (insn, op_basr, &r1, &r2) |
| || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)) |
| { |
| /* Recompute saved return address in R1. */ |
| regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, |
| amode | (from + insnlen)); |
| } |
| |
| /* Handle absolute branch instructions. */ |
| else if (is_rr (insn, op_bcr, &r1, &r2) |
| || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) |
| || is_rr (insn, op_bctr, &r1, &r2) |
| || is_rre (insn, op_bctgr, &r1, &r2) |
| || is_rx (insn, op_bct, &r1, &d2, &x2, &b2) |
| || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2) |
| || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2) |
| || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2) |
| || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2) |
| || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2)) |
| { |
| /* Update PC iff branch was *not* taken. */ |
| if (pc == to + insnlen) |
| regcache_write_pc (regs, from + insnlen); |
| } |
| |
| /* Handle PC-relative branch and save instructions. */ |
| else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2) |
| || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2)) |
| { |
| /* Update PC. */ |
| regcache_write_pc (regs, pc - to + from); |
| /* Recompute saved return address in R1. */ |
| regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, |
| amode | (from + insnlen)); |
| } |
| |
| /* Handle PC-relative branch instructions. */ |
| else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2) |
| || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2) |
| || is_ri (insn, op1_brct, op2_brct, &r1, &i2) |
| || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2) |
| || is_rsi (insn, op_brxh, &r1, &r3, &i2) |
| || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2) |
| || is_rsi (insn, op_brxle, &r1, &r3, &i2) |
| || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2)) |
| { |
| /* Update PC. */ |
| regcache_write_pc (regs, pc - to + from); |
| } |
| |
| /* Handle LOAD ADDRESS RELATIVE LONG. */ |
| else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) |
| { |
| /* Update PC. */ |
| regcache_write_pc (regs, from + insnlen); |
| /* Recompute output address in R1. */ |
| regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, |
| amode | (from + i2 * 2)); |
| } |
| |
| /* If we executed a breakpoint instruction, point PC right back at it. */ |
| else if (insn[0] == 0x0 && insn[1] == 0x1) |
| regcache_write_pc (regs, from); |
| |
| /* For any other insn, PC points right after the original instruction. */ |
| else |
| regcache_write_pc (regs, from + insnlen); |
| |
| if (debug_displaced) |
| fprintf_unfiltered (gdb_stdlog, |
| "displaced: (s390) pc is now %s\n", |
| paddress (gdbarch, regcache_read_pc (regs))); |
| } |
| |
| |
| /* Helper routine to unwind pseudo registers. */ |
| |
| static struct value * |
| s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| struct type *type = register_type (gdbarch, regnum); |
| |
| /* Unwind PC via PSW address. */ |
| if (regnum == tdep->pc_regnum) |
| { |
| struct value *val; |
| |
| val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM); |
| if (!value_optimized_out (val)) |
| { |
| LONGEST pswa = value_as_long (val); |
| |
| if (TYPE_LENGTH (type) == 4) |
| return value_from_pointer (type, pswa & 0x7fffffff); |
| else |
| return value_from_pointer (type, pswa); |
| } |
| } |
| |
| /* Unwind CC via PSW mask. */ |
| if (regnum == tdep->cc_regnum) |
| { |
| struct value *val; |
| |
| val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM); |
| if (!value_optimized_out (val)) |
| { |
| LONGEST pswm = value_as_long (val); |
| |
| if (TYPE_LENGTH (type) == 4) |
| return value_from_longest (type, (pswm >> 12) & 3); |
| else |
| return value_from_longest (type, (pswm >> 44) & 3); |
| } |
| } |
| |
| /* Unwind full GPRs to show at least the lower halves (as the |
| upper halves are undefined). */ |
| if (tdep->gpr_full_regnum != -1 |
| && regnum >= tdep->gpr_full_regnum |
| && regnum < tdep->gpr_full_regnum + 16) |
| { |
| int reg = regnum - tdep->gpr_full_regnum; |
| struct value *val; |
| |
| val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg); |
| if (!value_optimized_out (val)) |
| return value_cast (type, val); |
| } |
| |
| return allocate_optimized_out_value (type); |
| } |
| |
| static struct value * |
| s390_trad_frame_prev_register (struct frame_info *this_frame, |
| struct trad_frame_saved_reg saved_regs[], |
| int regnum) |
| { |
| if (regnum < S390_NUM_REGS) |
| return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
| else |
| return s390_unwind_pseudo_register (this_frame, regnum); |
| } |
| |
| |
| /* Normal stack frames. */ |
| |
| struct s390_unwind_cache { |
| |
| CORE_ADDR func; |
| CORE_ADDR frame_base; |
| CORE_ADDR local_base; |
| |
| struct trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static int |
| s390_prologue_frame_unwind_cache (struct frame_info *this_frame, |
| struct s390_unwind_cache *info) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| struct s390_prologue_data data; |
| pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
| pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| int i; |
| CORE_ADDR cfa; |
| CORE_ADDR func; |
| CORE_ADDR result; |
| ULONGEST reg; |
| CORE_ADDR prev_sp; |
| int frame_pointer; |
| int size; |
| struct frame_info *next_frame; |
| |
| /* Try to find the function start address. If we can't find it, we don't |
| bother searching for it -- with modern compilers this would be mostly |
| pointless anyway. Trust that we'll either have valid DWARF-2 CFI data |
| or else a valid backchain ... */ |
| func = get_frame_func (this_frame); |
| if (!func) |
| return 0; |
| |
| /* Try to analyze the prologue. */ |
| result = s390_analyze_prologue (gdbarch, func, |
| get_frame_pc (this_frame), &data); |
| if (!result) |
| return 0; |
| |
| /* If this was successful, we should have found the instruction that |
| sets the stack pointer register to the previous value of the stack |
| pointer minus the frame size. */ |
| if (!pv_is_register (*sp, S390_SP_REGNUM)) |
| return 0; |
| |
| /* A frame size of zero at this point can mean either a real |
| frameless function, or else a failure to find the prologue. |
| Perform some sanity checks to verify we really have a |
| frameless function. */ |
| if (sp->k == 0) |
| { |
| /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame |
| size zero. This is only possible if the next frame is a sentinel |
| frame, a dummy frame, or a signal trampoline frame. */ |
| /* FIXME: cagney/2004-05-01: This sanity check shouldn't be |
| needed, instead the code should simpliy rely on its |
| analysis. */ |
| next_frame = get_next_frame (this_frame); |
| while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) |
| next_frame = get_next_frame (next_frame); |
| if (next_frame |
| && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) |
| return 0; |
| |
| /* If we really have a frameless function, %r14 must be valid |
| -- in particular, it must point to a different function. */ |
| reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM); |
| reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; |
| if (get_pc_function_start (reg) == func) |
| { |
| /* However, there is one case where it *is* valid for %r14 |
| to point to the same function -- if this is a recursive |
| call, and we have stopped in the prologue *before* the |
| stack frame was allocated. |
| |
| Recognize this case by looking ahead a bit ... */ |
| |
| struct s390_prologue_data data2; |
| pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
| |
| if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) |
| && pv_is_register (*sp, S390_SP_REGNUM) |
| && sp->k != 0)) |
| return 0; |
| } |
| } |
| |
| |
| /* OK, we've found valid prologue data. */ |
| size = -sp->k; |
| |
| /* If the frame pointer originally also holds the same value |
| as the stack pointer, we're probably using it. If it holds |
| some other value -- even a constant offset -- it is most |
| likely used as temp register. */ |
| if (pv_is_identical (*sp, *fp)) |
| frame_pointer = S390_FRAME_REGNUM; |
| else |
| frame_pointer = S390_SP_REGNUM; |
| |
| /* If we've detected a function with stack frame, we'll still have to |
| treat it as frameless if we're currently within the function epilog |
| code at a point where the frame pointer has already been restored. |
| This can only happen in an innermost frame. */ |
| /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, |
| instead the code should simpliy rely on its analysis. */ |
| next_frame = get_next_frame (this_frame); |
| while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) |
| next_frame = get_next_frame (next_frame); |
| if (size > 0 |
| && (next_frame == NULL |
| || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME)) |
| { |
| /* See the comment in s390_in_function_epilogue_p on why this is |
| not completely reliable ... */ |
| if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame))) |
| { |
| memset (&data, 0, sizeof (data)); |
| size = 0; |
| frame_pointer = S390_SP_REGNUM; |
| } |
| } |
| |
| /* Once we know the frame register and the frame size, we can unwind |
| the current value of the frame register from the next frame, and |
| add back the frame size to arrive that the previous frame's |
| stack pointer value. */ |
| prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size; |
| cfa = prev_sp + 16*word_size + 32; |
| |
| /* Set up ABI call-saved/call-clobbered registers. */ |
| for (i = 0; i < S390_NUM_REGS; i++) |
| if (!s390_register_call_saved (gdbarch, i)) |
| trad_frame_set_unknown (info->saved_regs, i); |
| |
| /* CC is always call-clobbered. */ |
| trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM); |
| |
| /* Record the addresses of all register spill slots the prologue parser |
| has recognized. Consider only registers defined as call-saved by the |
| ABI; for call-clobbered registers the parser may have recognized |
| spurious stores. */ |
| |
| for (i = 0; i < 16; i++) |
| if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i) |
| && data.gpr_slot[i] != 0) |
| info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i]; |
| |
| for (i = 0; i < 16; i++) |
| if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i) |
| && data.fpr_slot[i] != 0) |
| info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i]; |
| |
| /* Function return will set PC to %r14. */ |
| info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; |
| |
| /* In frameless functions, we unwind simply by moving the return |
| address to the PC. However, if we actually stored to the |
| save area, use that -- we might only think the function frameless |
| because we're in the middle of the prologue ... */ |
| if (size == 0 |
| && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM)) |
| { |
| info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM; |
| } |
| |
| /* Another sanity check: unless this is a frameless function, |
| we should have found spill slots for SP and PC. |
| If not, we cannot unwind further -- this happens e.g. in |
| libc's thread_start routine. */ |
| if (size > 0) |
| { |
| if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM) |
| || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM)) |
| prev_sp = -1; |
| } |
| |
| /* We use the current value of the frame register as local_base, |
| and the top of the register save area as frame_base. */ |
| if (prev_sp != -1) |
| { |
| info->frame_base = prev_sp + 16*word_size + 32; |
| info->local_base = prev_sp - size; |
| } |
| |
| info->func = func; |
| return 1; |
| } |
| |
| static void |
| s390_backchain_frame_unwind_cache (struct frame_info *this_frame, |
| struct s390_unwind_cache *info) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR backchain; |
| ULONGEST reg; |
| LONGEST sp; |
| int i; |
| |
| /* Set up ABI call-saved/call-clobbered registers. */ |
| for (i = 0; i < S390_NUM_REGS; i++) |
| if (!s390_register_call_saved (gdbarch, i)) |
| trad_frame_set_unknown (info->saved_regs, i); |
| |
| /* CC is always call-clobbered. */ |
| trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM); |
| |
| /* Get the backchain. */ |
| reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| backchain = read_memory_unsigned_integer (reg, word_size, byte_order); |
| |
| /* A zero backchain terminates the frame chain. As additional |
| sanity check, let's verify that the spill slot for SP in the |
| save area pointed to by the backchain in fact links back to |
| the save area. */ |
| if (backchain != 0 |
| && safe_read_memory_integer (backchain + 15*word_size, |
| word_size, byte_order, &sp) |
| && (CORE_ADDR)sp == backchain) |
| { |
| /* We don't know which registers were saved, but it will have |
| to be at least %r14 and %r15. This will allow us to continue |
| unwinding, but other prev-frame registers may be incorrect ... */ |
| info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size; |
| info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size; |
| |
| /* Function return will set PC to %r14. */ |
| info->saved_regs[S390_PSWA_REGNUM] |
| = info->saved_regs[S390_RETADDR_REGNUM]; |
| |
| /* We use the current value of the frame register as local_base, |
| and the top of the register save area as frame_base. */ |
| info->frame_base = backchain + 16*word_size + 32; |
| info->local_base = reg; |
| } |
| |
| info->func = get_frame_pc (this_frame); |
| } |
| |
| static struct s390_unwind_cache * |
| s390_frame_unwind_cache (struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| struct s390_unwind_cache *info; |
| if (*this_prologue_cache) |
| return *this_prologue_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); |
| *this_prologue_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| info->func = -1; |
| info->frame_base = -1; |
| info->local_base = -1; |
| |
| /* Try to use prologue analysis to fill the unwind cache. |
| If this fails, fall back to reading the stack backchain. */ |
| if (!s390_prologue_frame_unwind_cache (this_frame, info)) |
| s390_backchain_frame_unwind_cache (this_frame, info); |
| |
| return info; |
| } |
| |
| static void |
| s390_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| if (info->frame_base == -1) |
| return; |
| |
| *this_id = frame_id_build (info->frame_base, info->func); |
| } |
| |
| static struct value * |
| s390_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); |
| } |
| |
| static const struct frame_unwind s390_frame_unwind = { |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| s390_frame_this_id, |
| s390_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| |
| /* Code stubs and their stack frames. For things like PLTs and NULL |
| function calls (where there is no true frame and the return address |
| is in the RETADDR register). */ |
| |
| struct s390_stub_unwind_cache |
| { |
| CORE_ADDR frame_base; |
| struct trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static struct s390_stub_unwind_cache * |
| s390_stub_frame_unwind_cache (struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| struct s390_stub_unwind_cache *info; |
| ULONGEST reg; |
| |
| if (*this_prologue_cache) |
| return *this_prologue_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); |
| *this_prologue_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* The return address is in register %r14. */ |
| info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM; |
| |
| /* Retrieve stack pointer and determine our frame base. */ |
| reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| info->frame_base = reg + 16*word_size + 32; |
| |
| return info; |
| } |
| |
| static void |
| s390_stub_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct s390_stub_unwind_cache *info |
| = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); |
| } |
| |
| static struct value * |
| s390_stub_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct s390_stub_unwind_cache *info |
| = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); |
| } |
| |
| static int |
| s390_stub_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| CORE_ADDR addr_in_block; |
| bfd_byte insn[S390_MAX_INSTR_SIZE]; |
| |
| /* If the current PC points to non-readable memory, we assume we |
| have trapped due to an invalid function pointer call. We handle |
| the non-existing current function like a PLT stub. */ |
| addr_in_block = get_frame_address_in_block (this_frame); |
| if (in_plt_section (addr_in_block, NULL) |
| || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0) |
| return 1; |
| return 0; |
| } |
| |
| static const struct frame_unwind s390_stub_frame_unwind = { |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| s390_stub_frame_this_id, |
| s390_stub_frame_prev_register, |
| NULL, |
| s390_stub_frame_sniffer |
| }; |
| |
| |
| /* Signal trampoline stack frames. */ |
| |
| struct s390_sigtramp_unwind_cache { |
| CORE_ADDR frame_base; |
| struct trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static struct s390_sigtramp_unwind_cache * |
| s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct s390_sigtramp_unwind_cache *info; |
| ULONGEST this_sp, prev_sp; |
| CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off; |
| int i; |
| |
| if (*this_prologue_cache) |
| return *this_prologue_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache); |
| *this_prologue_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| next_ra = get_frame_pc (this_frame); |
| next_cfa = this_sp + 16*word_size + 32; |
| |
| /* New-style RT frame: |
| retcode + alignment (8 bytes) |
| siginfo (128 bytes) |
| ucontext (contains sigregs at offset 5 words). */ |
| if (next_ra == next_cfa) |
| { |
| sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8); |
| /* sigregs are followed by uc_sigmask (8 bytes), then by the |
| upper GPR halves if present. */ |
| sigreg_high_off = 8; |
| } |
| |
| /* Old-style RT frame and all non-RT frames: |
| old signal mask (8 bytes) |
| pointer to sigregs. */ |
| else |
| { |
| sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, |
| word_size, byte_order); |
| /* sigregs are followed by signo (4 bytes), then by the |
| upper GPR halves if present. */ |
| sigreg_high_off = 4; |
| } |
| |
| /* The sigregs structure looks like this: |
| long psw_mask; |
| long psw_addr; |
| long gprs[16]; |
| int acrs[16]; |
| int fpc; |
| int __pad; |
| double fprs[16]; */ |
| |
| /* PSW mask and address. */ |
| info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr; |
| sigreg_ptr += word_size; |
| info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr; |
| sigreg_ptr += word_size; |
| |
| /* Then the GPRs. */ |
| for (i = 0; i < 16; i++) |
| { |
| info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr; |
| sigreg_ptr += word_size; |
| } |
| |
| /* Then the ACRs. */ |
| for (i = 0; i < 16; i++) |
| { |
| info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr; |
| sigreg_ptr += 4; |
| } |
| |
| /* The floating-point control word. */ |
| info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr; |
| sigreg_ptr += 8; |
| |
| /* And finally the FPRs. */ |
| for (i = 0; i < 16; i++) |
| { |
| info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr; |
| sigreg_ptr += 8; |
| } |
| |
| /* If we have them, the GPR upper halves are appended at the end. */ |
| sigreg_ptr += sigreg_high_off; |
| if (tdep->gpr_full_regnum != -1) |
| for (i = 0; i < 16; i++) |
| { |
| info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr; |
| sigreg_ptr += 4; |
| } |
| |
| /* Restore the previous frame's SP. */ |
| prev_sp = read_memory_unsigned_integer ( |
| info->saved_regs[S390_SP_REGNUM].addr, |
| word_size, byte_order); |
| |
| /* Determine our frame base. */ |
| info->frame_base = prev_sp + 16*word_size + 32; |
| |
| return info; |
| } |
| |
| static void |
| s390_sigtramp_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct s390_sigtramp_unwind_cache *info |
| = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
| *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); |
| } |
| |
| static struct value * |
| s390_sigtramp_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct s390_sigtramp_unwind_cache *info |
| = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
| return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); |
| } |
| |
| static int |
| s390_sigtramp_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| bfd_byte sigreturn[2]; |
| |
| if (target_read_memory (pc, sigreturn, 2)) |
| return 0; |
| |
| if (sigreturn[0] != 0x0a /* svc */) |
| return 0; |
| |
| if (sigreturn[1] != 119 /* sigreturn */ |
| && sigreturn[1] != 173 /* rt_sigreturn */) |
| return 0; |
| |
| return 1; |
| } |
| |
| static const struct frame_unwind s390_sigtramp_frame_unwind = { |
| SIGTRAMP_FRAME, |
| default_frame_unwind_stop_reason, |
| s390_sigtramp_frame_this_id, |
| s390_sigtramp_frame_prev_register, |
| NULL, |
| s390_sigtramp_frame_sniffer |
| }; |
| |
| |
| /* Frame base handling. */ |
| |
| static CORE_ADDR |
| s390_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_cache); |
| return info->frame_base; |
| } |
| |
| static CORE_ADDR |
| s390_local_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct s390_unwind_cache *info |
| = s390_frame_unwind_cache (this_frame, this_cache); |
| return info->local_base; |
| } |
| |
| static const struct frame_base s390_frame_base = { |
| &s390_frame_unwind, |
| s390_frame_base_address, |
| s390_local_base_address, |
| s390_local_base_address |
| }; |
| |
| static CORE_ADDR |
| s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| ULONGEST pc; |
| pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum); |
| return gdbarch_addr_bits_remove (gdbarch, pc); |
| } |
| |
| static CORE_ADDR |
| s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| { |
| ULONGEST sp; |
| sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); |
| return gdbarch_addr_bits_remove (gdbarch, sp); |
| } |
| |
| |
| /* DWARF-2 frame support. */ |
| |
| static struct value * |
| s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, |
| int regnum) |
| { |
| return s390_unwind_pseudo_register (this_frame, regnum); |
| } |
| |
| static void |
| s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, |
| struct dwarf2_frame_state_reg *reg, |
| struct frame_info *this_frame) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* The condition code (and thus PSW mask) is call-clobbered. */ |
| if (regnum == S390_PSWM_REGNUM) |
| reg->how = DWARF2_FRAME_REG_UNDEFINED; |
| |
| /* The PSW address unwinds to the return address. */ |
| else if (regnum == S390_PSWA_REGNUM) |
| reg->how = DWARF2_FRAME_REG_RA; |
| |
| /* Fixed registers are call-saved or call-clobbered |
| depending on the ABI in use. */ |
| else if (regnum < S390_NUM_REGS) |
| { |
| if (s390_register_call_saved (gdbarch, regnum)) |
| reg->how = DWARF2_FRAME_REG_SAME_VALUE; |
| else |
| reg->how = DWARF2_FRAME_REG_UNDEFINED; |
| } |
| |
| /* We install a special function to unwind pseudos. */ |
| else |
| { |
| reg->how = DWARF2_FRAME_REG_FN; |
| reg->loc.fn = s390_dwarf2_prev_register; |
| } |
| } |
| |
| |
| /* Dummy function calls. */ |
| |
| /* Return non-zero if TYPE is an integer-like type, zero otherwise. |
| "Integer-like" types are those that should be passed the way |
| integers are: integers, enums, ranges, characters, and booleans. */ |
| static int |
| is_integer_like (struct type *type) |
| { |
| enum type_code code = TYPE_CODE (type); |
| |
| return (code == TYPE_CODE_INT |
| || code == TYPE_CODE_ENUM |
| || code == TYPE_CODE_RANGE |
| || code == TYPE_CODE_CHAR |
| || code == TYPE_CODE_BOOL); |
| } |
| |
| /* Return non-zero if TYPE is a pointer-like type, zero otherwise. |
| "Pointer-like" types are those that should be passed the way |
| pointers are: pointers and references. */ |
| static int |
| is_pointer_like (struct type *type) |
| { |
| enum type_code code = TYPE_CODE (type); |
| |
| return (code == TYPE_CODE_PTR |
| || code == TYPE_CODE_REF); |
| } |
| |
| |
| /* Return non-zero if TYPE is a `float singleton' or `double |
| singleton', zero otherwise. |
| |
| A `T singleton' is a struct type with one member, whose type is |
| either T or a `T singleton'. So, the following are all float |
| singletons: |
| |
| struct { float x }; |
| struct { struct { float x; } x; }; |
| struct { struct { struct { float x; } x; } x; }; |
| |
| ... and so on. |
| |
| All such structures are passed as if they were floats or doubles, |
| as the (revised) ABI says. */ |
| static int |
| is_float_singleton (struct type *type) |
| { |
| if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) |
| { |
| struct type *singleton_type = TYPE_FIELD_TYPE (type, 0); |
| CHECK_TYPEDEF (singleton_type); |
| |
| return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT |
| || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT |
| || is_float_singleton (singleton_type)); |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Return non-zero if TYPE is a struct-like type, zero otherwise. |
| "Struct-like" types are those that should be passed as structs are: |
| structs and unions. |
| |
| As an odd quirk, not mentioned in the ABI, GCC passes float and |
| double singletons as if they were a plain float, double, etc. (The |
| corresponding union types are handled normally.) So we exclude |
| those types here. *shrug* */ |
| static int |
| is_struct_like (struct type *type) |
| { |
| enum type_code code = TYPE_CODE (type); |
| |
| return (code == TYPE_CODE_UNION |
| || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type))); |
| } |
| |
| |
| /* Return non-zero if TYPE is a float-like type, zero otherwise. |
| "Float-like" types are those that should be passed as |
| floating-point values are. |
| |
| You'd think this would just be floats, doubles, long doubles, etc. |
| But as an odd quirk, not mentioned in the ABI, GCC passes float and |
| double singletons as if they were a plain float, double, etc. (The |
| corresponding union types are handled normally.) So we include |
| those types here. *shrug* */ |
| static int |
| is_float_like (struct type *type) |
| { |
| return (TYPE_CODE (type) == TYPE_CODE_FLT |
| || TYPE_CODE (type) == TYPE_CODE_DECFLOAT |
| || is_float_singleton (type)); |
| } |
| |
| |
| static int |
| is_power_of_two (unsigned int n) |
| { |
| return ((n & (n - 1)) == 0); |
| } |
| |
| /* Return non-zero if TYPE should be passed as a pointer to a copy, |
| zero otherwise. */ |
| static int |
| s390_function_arg_pass_by_reference (struct type *type) |
| { |
| unsigned length = TYPE_LENGTH (type); |
| if (length > 8) |
| return 1; |
| |
| return (is_struct_like (type) && !is_power_of_two (TYPE_LENGTH (type))) |
| || TYPE_CODE (type) == TYPE_CODE_COMPLEX |
| || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)); |
| } |
| |
| /* Return non-zero if TYPE should be passed in a float register |
| if possible. */ |
| static int |
| s390_function_arg_float (struct type *type) |
| { |
| unsigned length = TYPE_LENGTH (type); |
| if (length > 8) |
| return 0; |
| |
| return is_float_like (type); |
| } |
| |
| /* Return non-zero if TYPE should be passed in an integer register |
| (or a pair of integer registers) if possible. */ |
| static int |
| s390_function_arg_integer (struct type *type) |
| { |
| unsigned length = TYPE_LENGTH (type); |
| if (length > 8) |
| return 0; |
| |
| return is_integer_like (type) |
| || is_pointer_like (type) |
| || (is_struct_like (type) && is_power_of_two (length)); |
| } |
| |
| /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full |
| word as required for the ABI. */ |
| static LONGEST |
| extend_simple_arg (struct gdbarch *gdbarch, struct value *arg) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct type *type = check_typedef (value_type (arg)); |
| |
| /* Even structs get passed in the least significant bits of the |
| register / memory word. It's not really right to extract them as |
| an integer, but it does take care of the extension. */ |
| if (TYPE_UNSIGNED (type)) |
| return extract_unsigned_integer (value_contents (arg), |
| TYPE_LENGTH (type), byte_order); |
| else |
| return extract_signed_integer (value_contents (arg), |
| TYPE_LENGTH (type), byte_order); |
| } |
| |
| |
| /* Return the alignment required by TYPE. */ |
| static int |
| alignment_of (struct type *type) |
| { |
| int alignment; |
| |
| if (is_integer_like (type) |
| || is_pointer_like (type) |
| || TYPE_CODE (type) == TYPE_CODE_FLT |
| || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) |
| alignment = TYPE_LENGTH (type); |
| else if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
| || TYPE_CODE (type) == TYPE_CODE_UNION) |
| { |
| int i; |
| |
| alignment = 1; |
| for (i = 0; i < TYPE_NFIELDS (type); i++) |
| { |
| int field_alignment |
| = alignment_of (check_typedef (TYPE_FIELD_TYPE (type, i))); |
| |
| if (field_alignment > alignment) |
| alignment = field_alignment; |
| } |
| } |
| else |
| alignment = 1; |
| |
| /* Check that everything we ever return is a power of two. Lots of |
| code doesn't want to deal with aligning things to arbitrary |
| boundaries. */ |
| gdb_assert ((alignment & (alignment - 1)) == 0); |
| |
| return alignment; |
| } |
| |
| |
| /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in |
| place to be passed to a function, as specified by the "GNU/Linux |
| for S/390 ELF Application Binary Interface Supplement". |
| |
| SP is the current stack pointer. We must put arguments, links, |
| padding, etc. whereever they belong, and return the new stack |
| pointer value. |
| |
| If STRUCT_RETURN is non-zero, then the function we're calling is |
| going to return a structure by value; STRUCT_ADDR is the address of |
| a block we've allocated for it on the stack. |
| |
| Our caller has taken care of any type promotions needed to satisfy |
| prototypes or the old K&R argument-passing rules. */ |
| static CORE_ADDR |
| s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| int struct_return, CORE_ADDR struct_addr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int i; |
| |
| /* If the i'th argument is passed as a reference to a copy, then |
| copy_addr[i] is the address of the copy we made. */ |
| CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR)); |
| |
| /* Reserve space for the reference-to-copy area. */ |
| for (i = 0; i < nargs; i++) |
| { |
| struct value *arg = args[i]; |
| struct type *type = check_typedef (value_type (arg)); |
| unsigned length = TYPE_LENGTH (type); |
| |
| if (s390_function_arg_pass_by_reference (type)) |
| { |
| sp -= length; |
| sp = align_down (sp, alignment_of (type)); |
| copy_addr[i] = sp; |
| } |
| } |
| |
| /* Reserve space for the parameter area. As a conservative |
| simplification, we assume that everything will be passed on the |
| stack. Since every argument larger than 8 bytes will be |
| passed by reference, we use this simple upper bound. */ |
| sp -= nargs * 8; |
| |
| /* After all that, make sure it's still aligned on an eight-byte |
| boundary. */ |
| sp = align_down (sp, 8); |
| |
| /* Allocate the standard frame areas: the register save area, the |
| word reserved for the compiler (which seems kind of meaningless), |
| and the back chain pointer. */ |
| sp -= 16*word_size + 32; |
| |
| /* Now we have the final SP value. Make sure we didn't underflow; |
| on 31-bit, this would result in addresses with the high bit set, |
| which causes confusion elsewhere. Note that if we error out |
| here, stack and registers remain untouched. */ |
| if (gdbarch_addr_bits_remove (gdbarch, sp) != sp) |
| error (_("Stack overflow")); |
| |
| |
| /* Finally, place the actual parameters, working from SP towards |
| higher addresses. The code above is supposed to reserve enough |
| space for this. */ |
| { |
| int fr = 0; |
| int gr = 2; |
| CORE_ADDR starg = sp + 16*word_size + 32; |
| |
| /* A struct is returned using general register 2. */ |
| if (struct_return) |
| { |
| regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, |
| struct_addr); |
| gr++; |
| } |
| |
| for (i = 0; i < nargs; i++) |
| { |
| struct value *arg = args[i]; |
| struct type *type = check_typedef (value_type (arg)); |
| unsigned length = TYPE_LENGTH (type); |
| |
| if (s390_function_arg_pass_by_reference (type)) |
| { |
| /* Actually copy the argument contents to the stack slot |
| that was reserved above. */ |
| write_memory (copy_addr[i], value_contents (arg), length); |
| |
| if (gr <= 6) |
| { |
| regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, |
| copy_addr[i]); |
| gr++; |
| } |
| else |
| { |
| write_memory_unsigned_integer (starg, word_size, byte_order, |
| copy_addr[i]); |
| starg += word_size; |
| } |
| } |
| else if (s390_function_arg_float (type)) |
| { |
| /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments, |
| the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */ |
| if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) |
| { |
| /* When we store a single-precision value in an FP register, |
| it occupies the leftmost bits. */ |
| regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr, |
| 0, length, value_contents (arg)); |
| fr += 2; |
| } |
| else |
| { |
| /* When we store a single-precision value in a stack slot, |
| it occupies the rightmost bits. */ |
| starg = align_up (starg + length, word_size); |
| write_memory (starg - length, value_contents (arg), length); |
| } |
| } |
| else if (s390_function_arg_integer (type) && length <= word_size) |
| { |
| if (gr <= 6) |
| { |
| /* Integer arguments are always extended to word size. */ |
| regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr, |
| extend_simple_arg (gdbarch, |
| arg)); |
| gr++; |
| } |
| else |
| { |
| /* Integer arguments are always extended to word size. */ |
| write_memory_signed_integer (starg, word_size, byte_order, |
| extend_simple_arg (gdbarch, arg)); |
| starg += word_size; |
| } |
| } |
| else if (s390_function_arg_integer (type) && length == 2*word_size) |
| { |
| if (gr <= 5) |
| { |
| regcache_cooked_write (regcache, S390_R0_REGNUM + gr, |
| value_contents (arg)); |
| regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1, |
| value_contents (arg) + word_size); |
| gr += 2; |
| } |
| else |
| { |
| /* If we skipped r6 because we couldn't fit a DOUBLE_ARG |
| in it, then don't go back and use it again later. */ |
| gr = 7; |
| |
| write_memory (starg, value_contents (arg), length); |
| starg += length; |
| } |
| } |
| else |
| internal_error (__FILE__, __LINE__, _("unknown argument type")); |
| } |
| } |
| |
| /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */ |
| if (word_size == 4) |
| { |
| ULONGEST pswa; |
| regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa); |
| bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000); |
| } |
| regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); |
| |
| /* Store updated stack pointer. */ |
| regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp); |
| |
| /* We need to return the 'stack part' of the frame ID, |
| which is actually the top of the register save area. */ |
| return sp + 16*word_size + 32; |
| } |
| |
| /* Assuming THIS_FRAME is a dummy, return the frame ID of that |
| dummy frame. The frame ID's base needs to match the TOS value |
| returned by push_dummy_call, and the PC match the dummy frame's |
| breakpoint. */ |
| static struct frame_id |
| s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| { |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); |
| sp = gdbarch_addr_bits_remove (gdbarch, sp); |
| |
| return frame_id_build (sp + 16*word_size + 32, |
| get_frame_pc (this_frame)); |
| } |
| |
| static CORE_ADDR |
| s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| /* Both the 32- and 64-bit ABI's say that the stack pointer should |
| always be aligned on an eight-byte boundary. */ |
| return (addr & -8); |
| } |
| |
| |
| /* Function return value access. */ |
| |
| static enum return_value_convention |
| s390_return_value_convention (struct gdbarch *gdbarch, struct type *type) |
| { |
| int length = TYPE_LENGTH (type); |
| if (length > 8) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| |
| switch (TYPE_CODE (type)) |
| { |
| case TYPE_CODE_STRUCT: |
| case TYPE_CODE_UNION: |
| case TYPE_CODE_ARRAY: |
| case TYPE_CODE_COMPLEX: |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| |
| default: |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| } |
| |
| static enum return_value_convention |
| s390_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *out, const gdb_byte *in) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| enum return_value_convention rvc; |
| int length; |
| |
| type = check_typedef (type); |
| rvc = s390_return_value_convention (gdbarch, type); |
| length = TYPE_LENGTH (type); |
| |
| if (in) |
| { |
| switch (rvc) |
| { |
| case RETURN_VALUE_REGISTER_CONVENTION: |
| if (TYPE_CODE (type) == TYPE_CODE_FLT |
| || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) |
| { |
| /* When we store a single-precision value in an FP register, |
| it occupies the leftmost bits. */ |
| regcache_cooked_write_part (regcache, S390_F0_REGNUM, |
| 0, length, in); |
| } |
| else if (length <= word_size) |
| { |
| /* Integer arguments are always extended to word size. */ |
| if (TYPE_UNSIGNED (type)) |
| regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, |
| extract_unsigned_integer (in, length, byte_order)); |
| else |
| regcache_cooked_write_signed (regcache, S390_R2_REGNUM, |
| extract_signed_integer (in, length, byte_order)); |
| } |
| else if (length == 2*word_size) |
| { |
| regcache_cooked_write (regcache, S390_R2_REGNUM, in); |
| regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size); |
| } |
| else |
| internal_error (__FILE__, __LINE__, _("invalid return type")); |
| break; |
| |
| case RETURN_VALUE_STRUCT_CONVENTION: |
| error (_("Cannot set function return value.")); |
| break; |
| } |
| } |
| else if (out) |
| { |
| switch (rvc) |
| { |
| case RETURN_VALUE_REGISTER_CONVENTION: |
| if (TYPE_CODE (type) == TYPE_CODE_FLT |
| || TYPE_CODE (type) == TYPE_CODE_DECFLOAT) |
| { |
| /* When we store a single-precision value in an FP register, |
| it occupies the leftmost bits. */ |
| regcache_cooked_read_part (regcache, S390_F0_REGNUM, |
| 0, length, out); |
| } |
| else if (length <= word_size) |
| { |
| /* Integer arguments occupy the rightmost bits. */ |
| regcache_cooked_read_part (regcache, S390_R2_REGNUM, |
| word_size - length, length, out); |
| } |
| else if (length == 2*word_size) |
| { |
| regcache_cooked_read (regcache, S390_R2_REGNUM, out); |
| |