| /* IBM RS/6000 native-dependent code for GDB, the GNU debugger. |
| |
| Copyright (C) 1986-1987, 1989, 1991-2004, 2007-2012 Free Software |
| Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "inferior.h" |
| #include "target.h" |
| #include "gdbcore.h" |
| #include "xcoffsolib.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */ |
| #include "bfd.h" |
| #include "exceptions.h" |
| #include "gdb-stabs.h" |
| #include "regcache.h" |
| #include "arch-utils.h" |
| #include "inf-child.h" |
| #include "inf-ptrace.h" |
| #include "ppc-tdep.h" |
| #include "rs6000-tdep.h" |
| #include "exec.h" |
| #include "observer.h" |
| #include "xcoffread.h" |
| |
| #include <sys/ptrace.h> |
| #include <sys/reg.h> |
| |
| #include <sys/param.h> |
| #include <sys/dir.h> |
| #include <sys/user.h> |
| #include <signal.h> |
| #include <sys/ioctl.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| |
| #include <a.out.h> |
| #include <sys/file.h> |
| #include "gdb_stat.h" |
| #include <sys/core.h> |
| #define __LDINFO_PTRACE32__ /* for __ld_info32 */ |
| #define __LDINFO_PTRACE64__ /* for __ld_info64 */ |
| #include <sys/ldr.h> |
| #include <sys/systemcfg.h> |
| |
| /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for |
| debugging 32-bit and 64-bit processes. Define a typedef and macros for |
| accessing fields in the appropriate structures. */ |
| |
| /* In 32-bit compilation mode (which is the only mode from which ptrace() |
| works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */ |
| |
| #ifdef __ld_info32 |
| # define ARCH3264 |
| #endif |
| |
| /* Return whether the current architecture is 64-bit. */ |
| |
| #ifndef ARCH3264 |
| # define ARCH64() 0 |
| #else |
| # define ARCH64() (register_size (target_gdbarch, 0) == 8) |
| #endif |
| |
| /* Union of 32-bit and 64-bit versions of ld_info. */ |
| |
| typedef union { |
| #ifndef ARCH3264 |
| struct ld_info l32; |
| struct ld_info l64; |
| #else |
| struct __ld_info32 l32; |
| struct __ld_info64 l64; |
| #endif |
| } LdInfo; |
| |
| /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x), |
| declare and initialize a variable named VAR suitable for use as the arch64 |
| parameter to the various LDI_*() macros. */ |
| |
| #ifndef ARCH3264 |
| # define ARCH64_DECL(var) |
| #else |
| # define ARCH64_DECL(var) int var = ARCH64 () |
| #endif |
| |
| /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process |
| otherwise. This technique only works for FIELDs with the same data type in |
| 32-bit and 64-bit versions of ld_info. */ |
| |
| #ifndef ARCH3264 |
| # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field |
| #else |
| # define LDI_FIELD(ldi, arch64, field) \ |
| (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field) |
| #endif |
| |
| /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit |
| process otherwise. */ |
| |
| #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next) |
| #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd) |
| #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename) |
| |
| extern struct vmap *map_vmap (bfd * bf, bfd * arch); |
| |
| static void vmap_exec (void); |
| |
| static void vmap_ldinfo (LdInfo *); |
| |
| static struct vmap *add_vmap (LdInfo *); |
| |
| static int objfile_symbol_add (void *); |
| |
| static void vmap_symtab (struct vmap *); |
| |
| static void exec_one_dummy_insn (struct regcache *); |
| |
| extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta); |
| |
| /* Given REGNO, a gdb register number, return the corresponding |
| number suitable for use as a ptrace() parameter. Return -1 if |
| there's no suitable mapping. Also, set the int pointed to by |
| ISFLOAT to indicate whether REGNO is a floating point register. */ |
| |
| static int |
| regmap (struct gdbarch *gdbarch, int regno, int *isfloat) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| *isfloat = 0; |
| if (tdep->ppc_gp0_regnum <= regno |
| && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) |
| return regno; |
| else if (tdep->ppc_fp0_regnum >= 0 |
| && tdep->ppc_fp0_regnum <= regno |
| && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
| { |
| *isfloat = 1; |
| return regno - tdep->ppc_fp0_regnum + FPR0; |
| } |
| else if (regno == gdbarch_pc_regnum (gdbarch)) |
| return IAR; |
| else if (regno == tdep->ppc_ps_regnum) |
| return MSR; |
| else if (regno == tdep->ppc_cr_regnum) |
| return CR; |
| else if (regno == tdep->ppc_lr_regnum) |
| return LR; |
| else if (regno == tdep->ppc_ctr_regnum) |
| return CTR; |
| else if (regno == tdep->ppc_xer_regnum) |
| return XER; |
| else if (tdep->ppc_fpscr_regnum >= 0 |
| && regno == tdep->ppc_fpscr_regnum) |
| return FPSCR; |
| else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum) |
| return MQ; |
| else |
| return -1; |
| } |
| |
| /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */ |
| |
| static int |
| rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf) |
| { |
| int ret = ptrace (req, id, (int *)addr, data, buf); |
| #if 0 |
| printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n", |
| req, id, (unsigned int)addr, data, (unsigned int)buf, ret); |
| #endif |
| return ret; |
| } |
| |
| /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */ |
| |
| static int |
| rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf) |
| { |
| #ifdef ARCH3264 |
| int ret = ptracex (req, id, addr, data, buf); |
| #else |
| int ret = 0; |
| #endif |
| #if 0 |
| printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n", |
| req, id, hex_string (addr), data, (unsigned int)buf, ret); |
| #endif |
| return ret; |
| } |
| |
| /* Fetch register REGNO from the inferior. */ |
| |
| static void |
| fetch_register (struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| int addr[MAX_REGISTER_SIZE]; |
| int nr, isfloat; |
| |
| /* Retrieved values may be -1, so infer errors from errno. */ |
| errno = 0; |
| |
| nr = regmap (gdbarch, regno, &isfloat); |
| |
| /* Floating-point registers. */ |
| if (isfloat) |
| rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0); |
| |
| /* Bogus register number. */ |
| else if (nr < 0) |
| { |
| if (regno >= gdbarch_num_regs (gdbarch)) |
| fprintf_unfiltered (gdb_stderr, |
| "gdb error: register no %d not implemented.\n", |
| regno); |
| return; |
| } |
| |
| /* Fixed-point registers. */ |
| else |
| { |
| if (!ARCH64 ()) |
| *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), |
| (int *) nr, 0, 0); |
| else |
| { |
| /* PT_READ_GPR requires the buffer parameter to point to long long, |
| even if the register is really only 32 bits. */ |
| long long buf; |
| rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf); |
| if (register_size (gdbarch, regno) == 8) |
| memcpy (addr, &buf, 8); |
| else |
| *addr = buf; |
| } |
| } |
| |
| if (!errno) |
| regcache_raw_supply (regcache, regno, (char *) addr); |
| else |
| { |
| #if 0 |
| /* FIXME: this happens 3 times at the start of each 64-bit program. */ |
| perror (_("ptrace read")); |
| #endif |
| errno = 0; |
| } |
| } |
| |
| /* Store register REGNO back into the inferior. */ |
| |
| static void |
| store_register (struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| int addr[MAX_REGISTER_SIZE]; |
| int nr, isfloat; |
| |
| /* Fetch the register's value from the register cache. */ |
| regcache_raw_collect (regcache, regno, addr); |
| |
| /* -1 can be a successful return value, so infer errors from errno. */ |
| errno = 0; |
| |
| nr = regmap (gdbarch, regno, &isfloat); |
| |
| /* Floating-point registers. */ |
| if (isfloat) |
| rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0); |
| |
| /* Bogus register number. */ |
| else if (nr < 0) |
| { |
| if (regno >= gdbarch_num_regs (gdbarch)) |
| fprintf_unfiltered (gdb_stderr, |
| "gdb error: register no %d not implemented.\n", |
| regno); |
| } |
| |
| /* Fixed-point registers. */ |
| else |
| { |
| if (regno == gdbarch_sp_regnum (gdbarch)) |
| /* Execute one dummy instruction (which is a breakpoint) in inferior |
| process to give kernel a chance to do internal housekeeping. |
| Otherwise the following ptrace(2) calls will mess up user stack |
| since kernel will get confused about the bottom of the stack |
| (%sp). */ |
| exec_one_dummy_insn (regcache); |
| |
| /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors, |
| the register's value is passed by value, but for 64-bit inferiors, |
| the address of a buffer containing the value is passed. */ |
| if (!ARCH64 ()) |
| rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), |
| (int *) nr, *addr, 0); |
| else |
| { |
| /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte |
| area, even if the register is really only 32 bits. */ |
| long long buf; |
| if (register_size (gdbarch, regno) == 8) |
| memcpy (&buf, addr, 8); |
| else |
| buf = *addr; |
| rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf); |
| } |
| } |
| |
| if (errno) |
| { |
| perror (_("ptrace write")); |
| errno = 0; |
| } |
| } |
| |
| /* Read from the inferior all registers if REGNO == -1 and just register |
| REGNO otherwise. */ |
| |
| static void |
| rs6000_fetch_inferior_registers (struct target_ops *ops, |
| struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| if (regno != -1) |
| fetch_register (regcache, regno); |
| |
| else |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* Read 32 general purpose registers. */ |
| for (regno = tdep->ppc_gp0_regnum; |
| regno < tdep->ppc_gp0_regnum + ppc_num_gprs; |
| regno++) |
| { |
| fetch_register (regcache, regno); |
| } |
| |
| /* Read general purpose floating point registers. */ |
| if (tdep->ppc_fp0_regnum >= 0) |
| for (regno = 0; regno < ppc_num_fprs; regno++) |
| fetch_register (regcache, tdep->ppc_fp0_regnum + regno); |
| |
| /* Read special registers. */ |
| fetch_register (regcache, gdbarch_pc_regnum (gdbarch)); |
| fetch_register (regcache, tdep->ppc_ps_regnum); |
| fetch_register (regcache, tdep->ppc_cr_regnum); |
| fetch_register (regcache, tdep->ppc_lr_regnum); |
| fetch_register (regcache, tdep->ppc_ctr_regnum); |
| fetch_register (regcache, tdep->ppc_xer_regnum); |
| if (tdep->ppc_fpscr_regnum >= 0) |
| fetch_register (regcache, tdep->ppc_fpscr_regnum); |
| if (tdep->ppc_mq_regnum >= 0) |
| fetch_register (regcache, tdep->ppc_mq_regnum); |
| } |
| } |
| |
| /* Store our register values back into the inferior. |
| If REGNO is -1, do this for all registers. |
| Otherwise, REGNO specifies which register (so we can save time). */ |
| |
| static void |
| rs6000_store_inferior_registers (struct target_ops *ops, |
| struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| if (regno != -1) |
| store_register (regcache, regno); |
| |
| else |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* Write general purpose registers first. */ |
| for (regno = tdep->ppc_gp0_regnum; |
| regno < tdep->ppc_gp0_regnum + ppc_num_gprs; |
| regno++) |
| { |
| store_register (regcache, regno); |
| } |
| |
| /* Write floating point registers. */ |
| if (tdep->ppc_fp0_regnum >= 0) |
| for (regno = 0; regno < ppc_num_fprs; regno++) |
| store_register (regcache, tdep->ppc_fp0_regnum + regno); |
| |
| /* Write special registers. */ |
| store_register (regcache, gdbarch_pc_regnum (gdbarch)); |
| store_register (regcache, tdep->ppc_ps_regnum); |
| store_register (regcache, tdep->ppc_cr_regnum); |
| store_register (regcache, tdep->ppc_lr_regnum); |
| store_register (regcache, tdep->ppc_ctr_regnum); |
| store_register (regcache, tdep->ppc_xer_regnum); |
| if (tdep->ppc_fpscr_regnum >= 0) |
| store_register (regcache, tdep->ppc_fpscr_regnum); |
| if (tdep->ppc_mq_regnum >= 0) |
| store_register (regcache, tdep->ppc_mq_regnum); |
| } |
| } |
| |
| |
| /* Attempt a transfer all LEN bytes starting at OFFSET between the |
| inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer. |
| Return the number of bytes actually transferred. */ |
| |
| static LONGEST |
| rs6000_xfer_partial (struct target_ops *ops, enum target_object object, |
| const char *annex, gdb_byte *readbuf, |
| const gdb_byte *writebuf, |
| ULONGEST offset, LONGEST len) |
| { |
| pid_t pid = ptid_get_pid (inferior_ptid); |
| int arch64 = ARCH64 (); |
| |
| switch (object) |
| { |
| case TARGET_OBJECT_MEMORY: |
| { |
| union |
| { |
| PTRACE_TYPE_RET word; |
| gdb_byte byte[sizeof (PTRACE_TYPE_RET)]; |
| } buffer; |
| ULONGEST rounded_offset; |
| LONGEST partial_len; |
| |
| /* Round the start offset down to the next long word |
| boundary. */ |
| rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET); |
| |
| /* Since ptrace will transfer a single word starting at that |
| rounded_offset the partial_len needs to be adjusted down to |
| that (remember this function only does a single transfer). |
| Should the required length be even less, adjust it down |
| again. */ |
| partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset; |
| if (partial_len > len) |
| partial_len = len; |
| |
| if (writebuf) |
| { |
| /* If OFFSET:PARTIAL_LEN is smaller than |
| ROUNDED_OFFSET:WORDSIZE then a read/modify write will |
| be needed. Read in the entire word. */ |
| if (rounded_offset < offset |
| || (offset + partial_len |
| < rounded_offset + sizeof (PTRACE_TYPE_RET))) |
| { |
| /* Need part of initial word -- fetch it. */ |
| if (arch64) |
| buffer.word = rs6000_ptrace64 (PT_READ_I, pid, |
| rounded_offset, 0, NULL); |
| else |
| buffer.word = rs6000_ptrace32 (PT_READ_I, pid, |
| (int *) (uintptr_t) |
| rounded_offset, |
| 0, NULL); |
| } |
| |
| /* Copy data to be written over corresponding part of |
| buffer. */ |
| memcpy (buffer.byte + (offset - rounded_offset), |
| writebuf, partial_len); |
| |
| errno = 0; |
| if (arch64) |
| rs6000_ptrace64 (PT_WRITE_D, pid, |
| rounded_offset, buffer.word, NULL); |
| else |
| rs6000_ptrace32 (PT_WRITE_D, pid, |
| (int *) (uintptr_t) rounded_offset, |
| buffer.word, NULL); |
| if (errno) |
| return 0; |
| } |
| |
| if (readbuf) |
| { |
| errno = 0; |
| if (arch64) |
| buffer.word = rs6000_ptrace64 (PT_READ_I, pid, |
| rounded_offset, 0, NULL); |
| else |
| buffer.word = rs6000_ptrace32 (PT_READ_I, pid, |
| (int *)(uintptr_t)rounded_offset, |
| 0, NULL); |
| if (errno) |
| return 0; |
| |
| /* Copy appropriate bytes out of the buffer. */ |
| memcpy (readbuf, buffer.byte + (offset - rounded_offset), |
| partial_len); |
| } |
| |
| return partial_len; |
| } |
| |
| default: |
| return -1; |
| } |
| } |
| |
| /* Wait for the child specified by PTID to do something. Return the |
| process ID of the child, or MINUS_ONE_PTID in case of error; store |
| the status in *OURSTATUS. */ |
| |
| static ptid_t |
| rs6000_wait (struct target_ops *ops, |
| ptid_t ptid, struct target_waitstatus *ourstatus, int options) |
| { |
| pid_t pid; |
| int status, save_errno; |
| |
| do |
| { |
| set_sigint_trap (); |
| |
| do |
| { |
| pid = waitpid (ptid_get_pid (ptid), &status, 0); |
| save_errno = errno; |
| } |
| while (pid == -1 && errno == EINTR); |
| |
| clear_sigint_trap (); |
| |
| if (pid == -1) |
| { |
| fprintf_unfiltered (gdb_stderr, |
| _("Child process unexpectedly missing: %s.\n"), |
| safe_strerror (save_errno)); |
| |
| /* Claim it exited with unknown signal. */ |
| ourstatus->kind = TARGET_WAITKIND_SIGNALLED; |
| ourstatus->value.sig = GDB_SIGNAL_UNKNOWN; |
| return inferior_ptid; |
| } |
| |
| /* Ignore terminated detached child processes. */ |
| if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid)) |
| pid = -1; |
| } |
| while (pid == -1); |
| |
| /* AIX has a couple of strange returns from wait(). */ |
| |
| /* stop after load" status. */ |
| if (status == 0x57c) |
| ourstatus->kind = TARGET_WAITKIND_LOADED; |
| /* signal 0. I have no idea why wait(2) returns with this status word. */ |
| else if (status == 0x7f) |
| ourstatus->kind = TARGET_WAITKIND_SPURIOUS; |
| /* A normal waitstatus. Let the usual macros deal with it. */ |
| else |
| store_waitstatus (ourstatus, status); |
| |
| return pid_to_ptid (pid); |
| } |
| |
| /* Execute one dummy breakpoint instruction. This way we give the kernel |
| a chance to do some housekeeping and update inferior's internal data, |
| including u_area. */ |
| |
| static void |
| exec_one_dummy_insn (struct regcache *regcache) |
| { |
| #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200 |
| |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| int ret, status, pid; |
| CORE_ADDR prev_pc; |
| void *bp; |
| |
| /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We |
| assume that this address will never be executed again by the real |
| code. */ |
| |
| bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR); |
| |
| /* You might think this could be done with a single ptrace call, and |
| you'd be correct for just about every platform I've ever worked |
| on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up -- |
| the inferior never hits the breakpoint (it's also worth noting |
| powerpc-ibm-aix4.1.3 works correctly). */ |
| prev_pc = regcache_read_pc (regcache); |
| regcache_write_pc (regcache, DUMMY_INSN_ADDR); |
| if (ARCH64 ()) |
| ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL); |
| else |
| ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), |
| (int *) 1, 0, NULL); |
| |
| if (ret != 0) |
| perror (_("pt_continue")); |
| |
| do |
| { |
| pid = waitpid (PIDGET (inferior_ptid), &status, 0); |
| } |
| while (pid != PIDGET (inferior_ptid)); |
| |
| regcache_write_pc (regcache, prev_pc); |
| deprecated_remove_raw_breakpoint (gdbarch, bp); |
| } |
| |
| |
| /* Copy information about text and data sections from LDI to VP for a 64-bit |
| process if ARCH64 and for a 32-bit process otherwise. */ |
| |
| static void |
| vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64) |
| { |
| if (arch64) |
| { |
| vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg; |
| vp->tend = vp->tstart + ldi->l64.ldinfo_textsize; |
| vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg; |
| vp->dend = vp->dstart + ldi->l64.ldinfo_datasize; |
| } |
| else |
| { |
| vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg; |
| vp->tend = vp->tstart + ldi->l32.ldinfo_textsize; |
| vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg; |
| vp->dend = vp->dstart + ldi->l32.ldinfo_datasize; |
| } |
| |
| /* The run time loader maps the file header in addition to the text |
| section and returns a pointer to the header in ldinfo_textorg. |
| Adjust the text start address to point to the real start address |
| of the text section. */ |
| vp->tstart += vp->toffs; |
| } |
| |
| /* Handle symbol translation on vmapping. */ |
| |
| static void |
| vmap_symtab (struct vmap *vp) |
| { |
| struct objfile *objfile; |
| struct section_offsets *new_offsets; |
| int i; |
| |
| objfile = vp->objfile; |
| if (objfile == NULL) |
| { |
| /* OK, it's not an objfile we opened ourselves. |
| Currently, that can only happen with the exec file, so |
| relocate the symbols for the symfile. */ |
| if (symfile_objfile == NULL) |
| return; |
| objfile = symfile_objfile; |
| } |
| else if (!vp->loaded) |
| /* If symbols are not yet loaded, offsets are not yet valid. */ |
| return; |
| |
| new_offsets = |
| (struct section_offsets *) |
| alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); |
| |
| for (i = 0; i < objfile->num_sections; ++i) |
| new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i); |
| |
| /* The symbols in the object file are linked to the VMA of the section, |
| relocate them VMA relative. */ |
| new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma; |
| new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma; |
| new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma; |
| |
| objfile_relocate (objfile, new_offsets); |
| } |
| |
| /* Add symbols for an objfile. */ |
| |
| static int |
| objfile_symbol_add (void *arg) |
| { |
| struct objfile *obj = (struct objfile *) arg; |
| |
| syms_from_objfile (obj, NULL, 0, 0, 0); |
| new_symfile_objfile (obj, 0); |
| return 1; |
| } |
| |
| /* Add symbols for a vmap. Return zero upon error. */ |
| |
| int |
| vmap_add_symbols (struct vmap *vp) |
| { |
| if (catch_errors (objfile_symbol_add, vp->objfile, |
| "Error while reading shared library symbols:\n", |
| RETURN_MASK_ALL)) |
| { |
| /* Note this is only done if symbol reading was successful. */ |
| vp->loaded = 1; |
| vmap_symtab (vp); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Add a new vmap entry based on ldinfo() information. |
| |
| If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a |
| core file), the caller should set it to -1, and we will open the file. |
| |
| Return the vmap new entry. */ |
| |
| static struct vmap * |
| add_vmap (LdInfo *ldi) |
| { |
| bfd *abfd, *last; |
| char *mem, *objname, *filename; |
| struct objfile *obj; |
| struct vmap *vp; |
| int fd; |
| ARCH64_DECL (arch64); |
| |
| /* This ldi structure was allocated using alloca() in |
| xcoff_relocate_symtab(). Now we need to have persistent object |
| and member names, so we should save them. */ |
| |
| filename = LDI_FILENAME (ldi, arch64); |
| mem = filename + strlen (filename) + 1; |
| mem = xstrdup (mem); |
| objname = xstrdup (filename); |
| |
| fd = LDI_FD (ldi, arch64); |
| if (fd < 0) |
| /* Note that this opens it once for every member; a possible |
| enhancement would be to only open it once for every object. */ |
| abfd = bfd_openr (objname, gnutarget); |
| else |
| abfd = bfd_fdopenr (objname, gnutarget, fd); |
| if (!abfd) |
| { |
| warning (_("Could not open `%s' as an executable file: %s"), |
| objname, bfd_errmsg (bfd_get_error ())); |
| return NULL; |
| } |
| |
| /* Make sure we have an object file. */ |
| |
| if (bfd_check_format (abfd, bfd_object)) |
| vp = map_vmap (abfd, 0); |
| |
| else if (bfd_check_format (abfd, bfd_archive)) |
| { |
| last = 0; |
| /* FIXME??? am I tossing BFDs? bfd? */ |
| while ((last = bfd_openr_next_archived_file (abfd, last))) |
| if (strcmp (mem, last->filename) == 0) |
| break; |
| |
| if (!last) |
| { |
| warning (_("\"%s\": member \"%s\" missing."), objname, mem); |
| bfd_close (abfd); |
| return NULL; |
| } |
| |
| if (!bfd_check_format (last, bfd_object)) |
| { |
| warning (_("\"%s\": member \"%s\" not in executable format: %s."), |
| objname, mem, bfd_errmsg (bfd_get_error ())); |
| bfd_close (last); |
| bfd_close (abfd); |
| return NULL; |
| } |
| |
| vp = map_vmap (last, abfd); |
| } |
| else |
| { |
| warning (_("\"%s\": not in executable format: %s."), |
| objname, bfd_errmsg (bfd_get_error ())); |
| bfd_close (abfd); |
| return NULL; |
| } |
| obj = allocate_objfile (vp->bfd, 0); |
| vp->objfile = obj; |
| |
| /* Always add symbols for the main objfile. */ |
| if (vp == vmap || auto_solib_add) |
| vmap_add_symbols (vp); |
| return vp; |
| } |
| |
| /* update VMAP info with ldinfo() information |
| Input is ptr to ldinfo() results. */ |
| |
| static void |
| vmap_ldinfo (LdInfo *ldi) |
| { |
| struct stat ii, vi; |
| struct vmap *vp; |
| int got_one, retried; |
| int got_exec_file = 0; |
| uint next; |
| int arch64 = ARCH64 (); |
| |
| /* For each *ldi, see if we have a corresponding *vp. |
| If so, update the mapping, and symbol table. |
| If not, add an entry and symbol table. */ |
| |
| do |
| { |
| char *name = LDI_FILENAME (ldi, arch64); |
| char *memb = name + strlen (name) + 1; |
| int fd = LDI_FD (ldi, arch64); |
| |
| retried = 0; |
| |
| if (fstat (fd, &ii) < 0) |
| { |
| /* The kernel sets ld_info to -1, if the process is still using the |
| object, and the object is removed. Keep the symbol info for the |
| removed object and issue a warning. */ |
| warning (_("%s (fd=%d) has disappeared, keeping its symbols"), |
| name, fd); |
| continue; |
| } |
| retry: |
| for (got_one = 0, vp = vmap; vp; vp = vp->nxt) |
| { |
| struct objfile *objfile; |
| |
| /* First try to find a `vp', which is the same as in ldinfo. |
| If not the same, just continue and grep the next `vp'. If same, |
| relocate its tstart, tend, dstart, dend values. If no such `vp' |
| found, get out of this for loop, add this ldi entry as a new vmap |
| (add_vmap) and come back, find its `vp' and so on... */ |
| |
| /* The filenames are not always sufficient to match on. */ |
| |
| if ((name[0] == '/' && strcmp (name, vp->name) != 0) |
| || (memb[0] && strcmp (memb, vp->member) != 0)) |
| continue; |
| |
| /* See if we are referring to the same file. |
| We have to check objfile->obfd, symfile.c:reread_symbols might |
| have updated the obfd after a change. */ |
| objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile; |
| if (objfile == NULL |
| || objfile->obfd == NULL |
| || bfd_stat (objfile->obfd, &vi) < 0) |
| { |
| warning (_("Unable to stat %s, keeping its symbols"), name); |
| continue; |
| } |
| |
| if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino) |
| continue; |
| |
| if (!retried) |
| close (fd); |
| |
| ++got_one; |
| |
| /* Found a corresponding VMAP. Remap! */ |
| |
| vmap_secs (vp, ldi, arch64); |
| |
| /* The objfile is only NULL for the exec file. */ |
| if (vp->objfile == NULL) |
| got_exec_file = 1; |
| |
| /* relocate symbol table(s). */ |
| vmap_symtab (vp); |
| |
| /* Announce new object files. Doing this after symbol relocation |
| makes aix-thread.c's job easier. */ |
| if (vp->objfile) |
| observer_notify_new_objfile (vp->objfile); |
| |
| /* There may be more, so we don't break out of the loop. */ |
| } |
| |
| /* If there was no matching *vp, we must perforce create the |
| sucker(s). */ |
| if (!got_one && !retried) |
| { |
| add_vmap (ldi); |
| ++retried; |
| goto retry; |
| } |
| } |
| while ((next = LDI_NEXT (ldi, arch64)) |
| && (ldi = (void *) (next + (char *) ldi))); |
| |
| /* If we don't find the symfile_objfile anywhere in the ldinfo, it |
| is unlikely that the symbol file is relocated to the proper |
| address. And we might have attached to a process which is |
| running a different copy of the same executable. */ |
| if (symfile_objfile != NULL && !got_exec_file) |
| { |
| warning (_("Symbol file %s\nis not mapped; discarding it.\n\ |
| If in fact that file has symbols which the mapped files listed by\n\ |
| \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\ |
| \"add-symbol-file\" commands (note that you must take care of relocating\n\ |
| symbols to the proper address)."), |
| symfile_objfile->name); |
| free_objfile (symfile_objfile); |
| gdb_assert (symfile_objfile == NULL); |
| } |
| breakpoint_re_set (); |
| } |
| |
| /* As well as symbol tables, exec_sections need relocation. After |
| the inferior process' termination, there will be a relocated symbol |
| table exist with no corresponding inferior process. At that time, we |
| need to use `exec' bfd, rather than the inferior process's memory space |
| to look up symbols. |
| |
| `exec_sections' need to be relocated only once, as long as the exec |
| file remains unchanged. */ |
| |
| static void |
| vmap_exec (void) |
| { |
| static bfd *execbfd; |
| int i; |
| struct target_section_table *table = target_get_section_table (&exec_ops); |
| |
| if (execbfd == exec_bfd) |
| return; |
| |
| execbfd = exec_bfd; |
| |
| if (!vmap || !table->sections) |
| error (_("vmap_exec: vmap or table->sections == 0.")); |
| |
| for (i = 0; &table->sections[i] < table->sections_end; i++) |
| { |
| if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0) |
| { |
| table->sections[i].addr += vmap->tstart - vmap->tvma; |
| table->sections[i].endaddr += vmap->tstart - vmap->tvma; |
| } |
| else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0) |
| { |
| table->sections[i].addr += vmap->dstart - vmap->dvma; |
| table->sections[i].endaddr += vmap->dstart - vmap->dvma; |
| } |
| else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0) |
| { |
| table->sections[i].addr += vmap->dstart - vmap->dvma; |
| table->sections[i].endaddr += vmap->dstart - vmap->dvma; |
| } |
| } |
| } |
| |
| /* Set the current architecture from the host running GDB. Called when |
| starting a child process. */ |
| |
| static void (*super_create_inferior) (struct target_ops *,char *exec_file, |
| char *allargs, char **env, int from_tty); |
| static void |
| rs6000_create_inferior (struct target_ops * ops, char *exec_file, |
| char *allargs, char **env, int from_tty) |
| { |
| enum bfd_architecture arch; |
| unsigned long mach; |
| bfd abfd; |
| struct gdbarch_info info; |
| |
| super_create_inferior (ops, exec_file, allargs, env, from_tty); |
| |
| if (__power_rs ()) |
| { |
| arch = bfd_arch_rs6000; |
| mach = bfd_mach_rs6k; |
| } |
| else |
| { |
| arch = bfd_arch_powerpc; |
| mach = bfd_mach_ppc; |
| } |
| |
| /* FIXME: schauer/2002-02-25: |
| We don't know if we are executing a 32 or 64 bit executable, |
| and have no way to pass the proper word size to rs6000_gdbarch_init. |
| So we have to avoid switching to a new architecture, if the architecture |
| matches already. |
| Blindly calling rs6000_gdbarch_init used to work in older versions of |
| GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to |
| determine the wordsize. */ |
| if (exec_bfd) |
| { |
| const struct bfd_arch_info *exec_bfd_arch_info; |
| |
| exec_bfd_arch_info = bfd_get_arch_info (exec_bfd); |
| if (arch == exec_bfd_arch_info->arch) |
| return; |
| } |
| |
| bfd_default_set_arch_mach (&abfd, arch, mach); |
| |
| gdbarch_info_init (&info); |
| info.bfd_arch_info = bfd_get_arch_info (&abfd); |
| info.abfd = exec_bfd; |
| |
| if (!gdbarch_update_p (info)) |
| internal_error (__FILE__, __LINE__, |
| _("rs6000_create_inferior: failed " |
| "to select architecture")); |
| } |
| |
| |
| /* xcoff_relocate_symtab - hook for symbol table relocation. |
| |
| This is only applicable to live processes, and is a no-op when |
| debugging a core file. */ |
| |
| void |
| xcoff_relocate_symtab (unsigned int pid) |
| { |
| int load_segs = 64; /* number of load segments */ |
| int rc; |
| LdInfo *ldi = NULL; |
| int arch64 = ARCH64 (); |
| int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32); |
| int size; |
| |
| /* Nothing to do if we are debugging a core file. */ |
| if (!target_has_execution) |
| return; |
| |
| do |
| { |
| size = load_segs * ldisize; |
| ldi = (void *) xrealloc (ldi, size); |
| |
| #if 0 |
| /* According to my humble theory, AIX has some timing problems and |
| when the user stack grows, kernel doesn't update stack info in time |
| and ptrace calls step on user stack. That is why we sleep here a |
| little, and give kernel to update its internals. */ |
| usleep (36000); |
| #endif |
| |
| if (arch64) |
| rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL); |
| else |
| rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL); |
| |
| if (rc == -1) |
| { |
| if (errno == ENOMEM) |
| load_segs *= 2; |
| else |
| perror_with_name (_("ptrace ldinfo")); |
| } |
| else |
| { |
| vmap_ldinfo (ldi); |
| vmap_exec (); /* relocate the exec and core sections as well. */ |
| } |
| } while (rc == -1); |
| if (ldi) |
| xfree (ldi); |
| } |
| |
| /* Core file stuff. */ |
| |
| /* Relocate symtabs and read in shared library info, based on symbols |
| from the core file. */ |
| |
| void |
| xcoff_relocate_core (struct target_ops *target) |
| { |
| struct bfd_section *ldinfo_sec; |
| int offset = 0; |
| LdInfo *ldi; |
| struct vmap *vp; |
| int arch64 = ARCH64 (); |
| |
| /* Size of a struct ld_info except for the variable-length filename. */ |
| int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64); |
| |
| /* Allocated size of buffer. */ |
| int buffer_size = nonfilesz; |
| char *buffer = xmalloc (buffer_size); |
| struct cleanup *old = make_cleanup (free_current_contents, &buffer); |
| |
| ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); |
| if (ldinfo_sec == NULL) |
| { |
| bfd_err: |
| fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n", |
| bfd_errmsg (bfd_get_error ())); |
| do_cleanups (old); |
| return; |
| } |
| do |
| { |
| int i; |
| int names_found = 0; |
| |
| /* Read in everything but the name. */ |
| if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer, |
| offset, nonfilesz) == 0) |
| goto bfd_err; |
| |
| /* Now the name. */ |
| i = nonfilesz; |
| do |
| { |
| if (i == buffer_size) |
| { |
| buffer_size *= 2; |
| buffer = xrealloc (buffer, buffer_size); |
| } |
| if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i], |
| offset + i, 1) == 0) |
| goto bfd_err; |
| if (buffer[i++] == '\0') |
| ++names_found; |
| } |
| while (names_found < 2); |
| |
| ldi = (LdInfo *) buffer; |
| |
| /* Can't use a file descriptor from the core file; need to open it. */ |
| if (arch64) |
| ldi->l64.ldinfo_fd = -1; |
| else |
| ldi->l32.ldinfo_fd = -1; |
| |
| /* The first ldinfo is for the exec file, allocated elsewhere. */ |
| if (offset == 0 && vmap != NULL) |
| vp = vmap; |
| else |
| vp = add_vmap (ldi); |
| |
| /* Process next shared library upon error. */ |
| offset += LDI_NEXT (ldi, arch64); |
| if (vp == NULL) |
| continue; |
| |
| vmap_secs (vp, ldi, arch64); |
| |
| /* Unless this is the exec file, |
| add our sections to the section table for the core target. */ |
| if (vp != vmap) |
| { |
| struct target_section *stp; |
| |
| stp = deprecated_core_resize_section_table (2); |
| |
| stp->bfd = vp->bfd; |
| stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text"); |
| stp->addr = vp->tstart; |
| stp->endaddr = vp->tend; |
| stp++; |
| |
| stp->bfd = vp->bfd; |
| stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data"); |
| stp->addr = vp->dstart; |
| stp->endaddr = vp->dend; |
| } |
| |
| vmap_symtab (vp); |
| |
| if (vp != vmap && vp->objfile) |
| observer_notify_new_objfile (vp->objfile); |
| } |
| while (LDI_NEXT (ldi, arch64) != 0); |
| vmap_exec (); |
| breakpoint_re_set (); |
| do_cleanups (old); |
| } |
| |
| /* Under AIX, we have to pass the correct TOC pointer to a function |
| when calling functions in the inferior. |
| We try to find the relative toc offset of the objfile containing PC |
| and add the current load address of the data segment from the vmap. */ |
| |
| static CORE_ADDR |
| find_toc_address (CORE_ADDR pc) |
| { |
| struct vmap *vp; |
| |
| for (vp = vmap; vp; vp = vp->nxt) |
| { |
| if (pc >= vp->tstart && pc < vp->tend) |
| { |
| /* vp->objfile is only NULL for the exec file. */ |
| return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL |
| ? symfile_objfile |
| : vp->objfile); |
| } |
| } |
| error (_("Unable to find TOC entry for pc %s."), hex_string (pc)); |
| } |
| |
| |
| void _initialize_rs6000_nat (void); |
| |
| void |
| _initialize_rs6000_nat (void) |
| { |
| struct target_ops *t; |
| |
| t = inf_ptrace_target (); |
| t->to_fetch_registers = rs6000_fetch_inferior_registers; |
| t->to_store_registers = rs6000_store_inferior_registers; |
| t->to_xfer_partial = rs6000_xfer_partial; |
| |
| super_create_inferior = t->to_create_inferior; |
| t->to_create_inferior = rs6000_create_inferior; |
| |
| t->to_wait = rs6000_wait; |
| |
| add_target (t); |
| |
| /* Initialize hook in rs6000-tdep.c for determining the TOC address |
| when calling functions in the inferior. */ |
| rs6000_find_toc_address_hook = find_toc_address; |
| } |