| /* Low-level child interface to ptrace. |
| |
| Copyright (C) 1988-1996, 1998-2002, 2004-2012 Free Software |
| Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "command.h" |
| #include "inferior.h" |
| #include "inflow.h" |
| #include "terminal.h" |
| #include "gdbcore.h" |
| #include "regcache.h" |
| |
| #include "gdb_assert.h" |
| #include "gdb_string.h" |
| #include "gdb_ptrace.h" |
| #include "gdb_wait.h" |
| #include <signal.h> |
| |
| #include "inf-ptrace.h" |
| #include "inf-child.h" |
| #include "gdbthread.h" |
| |
| |
| |
| #ifdef PT_GET_PROCESS_STATE |
| |
| static int |
| inf_ptrace_follow_fork (struct target_ops *ops, int follow_child) |
| { |
| pid_t pid, fpid; |
| ptrace_state_t pe; |
| |
| pid = ptid_get_pid (inferior_ptid); |
| |
| if (ptrace (PT_GET_PROCESS_STATE, pid, |
| (PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1) |
| perror_with_name (("ptrace")); |
| |
| gdb_assert (pe.pe_report_event == PTRACE_FORK); |
| fpid = pe.pe_other_pid; |
| |
| if (follow_child) |
| { |
| struct inferior *parent_inf, *child_inf; |
| struct thread_info *tp; |
| |
| parent_inf = find_inferior_pid (pid); |
| |
| /* Add the child. */ |
| child_inf = add_inferior (fpid); |
| child_inf->attach_flag = parent_inf->attach_flag; |
| copy_terminal_info (child_inf, parent_inf); |
| child_inf->pspace = parent_inf->pspace; |
| child_inf->aspace = parent_inf->aspace; |
| |
| /* Before detaching from the parent, remove all breakpoints from |
| it. */ |
| remove_breakpoints (); |
| |
| if (ptrace (PT_DETACH, pid, (PTRACE_TYPE_ARG3)1, 0) == -1) |
| perror_with_name (("ptrace")); |
| |
| /* Switch inferior_ptid out of the parent's way. */ |
| inferior_ptid = pid_to_ptid (fpid); |
| |
| /* Delete the parent. */ |
| detach_inferior (pid); |
| |
| add_thread_silent (inferior_ptid); |
| } |
| else |
| { |
| /* Breakpoints have already been detached from the child by |
| infrun.c. */ |
| |
| if (ptrace (PT_DETACH, fpid, (PTRACE_TYPE_ARG3)1, 0) == -1) |
| perror_with_name (("ptrace")); |
| } |
| |
| return 0; |
| } |
| |
| #endif /* PT_GET_PROCESS_STATE */ |
| |
| |
| /* Prepare to be traced. */ |
| |
| static void |
| inf_ptrace_me (void) |
| { |
| /* "Trace me, Dr. Memory!" */ |
| ptrace (PT_TRACE_ME, 0, (PTRACE_TYPE_ARG3)0, 0); |
| } |
| |
| /* Start a new inferior Unix child process. EXEC_FILE is the file to |
| run, ALLARGS is a string containing the arguments to the program. |
| ENV is the environment vector to pass. If FROM_TTY is non-zero, be |
| chatty about it. */ |
| |
| static void |
| inf_ptrace_create_inferior (struct target_ops *ops, |
| char *exec_file, char *allargs, char **env, |
| int from_tty) |
| { |
| int pid; |
| |
| /* Do not change either targets above or the same target if already present. |
| The reason is the target stack is shared across multiple inferiors. */ |
| int ops_already_pushed = target_is_pushed (ops); |
| struct cleanup *back_to = NULL; |
| |
| if (! ops_already_pushed) |
| { |
| /* Clear possible core file with its process_stratum. */ |
| push_target (ops); |
| back_to = make_cleanup_unpush_target (ops); |
| } |
| |
| pid = fork_inferior (exec_file, allargs, env, inf_ptrace_me, NULL, |
| NULL, NULL, NULL); |
| |
| if (! ops_already_pushed) |
| discard_cleanups (back_to); |
| |
| /* START_INFERIOR_TRAPS_EXPECTED is defined in inferior.h, and will |
| be 1 or 2 depending on whether we're starting without or with a |
| shell. */ |
| startup_inferior (START_INFERIOR_TRAPS_EXPECTED); |
| |
| /* On some targets, there must be some explicit actions taken after |
| the inferior has been started up. */ |
| target_post_startup_inferior (pid_to_ptid (pid)); |
| } |
| |
| #ifdef PT_GET_PROCESS_STATE |
| |
| static void |
| inf_ptrace_post_startup_inferior (ptid_t pid) |
| { |
| ptrace_event_t pe; |
| |
| /* Set the initial event mask. */ |
| memset (&pe, 0, sizeof pe); |
| pe.pe_set_event |= PTRACE_FORK; |
| if (ptrace (PT_SET_EVENT_MASK, ptid_get_pid (pid), |
| (PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1) |
| perror_with_name (("ptrace")); |
| } |
| |
| #endif |
| |
| /* Clean up a rotting corpse of an inferior after it died. */ |
| |
| static void |
| inf_ptrace_mourn_inferior (struct target_ops *ops) |
| { |
| int status; |
| |
| /* Wait just one more time to collect the inferior's exit status. |
| Do not check whether this succeeds though, since we may be |
| dealing with a process that we attached to. Such a process will |
| only report its exit status to its original parent. */ |
| waitpid (ptid_get_pid (inferior_ptid), &status, 0); |
| |
| generic_mourn_inferior (); |
| |
| if (!have_inferiors ()) |
| unpush_target (ops); |
| } |
| |
| /* Attach to the process specified by ARGS. If FROM_TTY is non-zero, |
| be chatty about it. */ |
| |
| static void |
| inf_ptrace_attach (struct target_ops *ops, char *args, int from_tty) |
| { |
| char *exec_file; |
| pid_t pid; |
| struct inferior *inf; |
| |
| /* Do not change either targets above or the same target if already present. |
| The reason is the target stack is shared across multiple inferiors. */ |
| int ops_already_pushed = target_is_pushed (ops); |
| struct cleanup *back_to = NULL; |
| |
| pid = parse_pid_to_attach (args); |
| |
| if (pid == getpid ()) /* Trying to masturbate? */ |
| error (_("I refuse to debug myself!")); |
| |
| if (! ops_already_pushed) |
| { |
| /* target_pid_to_str already uses the target. Also clear possible core |
| file with its process_stratum. */ |
| push_target (ops); |
| back_to = make_cleanup_unpush_target (ops); |
| } |
| |
| if (from_tty) |
| { |
| exec_file = get_exec_file (0); |
| |
| if (exec_file) |
| printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file, |
| target_pid_to_str (pid_to_ptid (pid))); |
| else |
| printf_unfiltered (_("Attaching to %s\n"), |
| target_pid_to_str (pid_to_ptid (pid))); |
| |
| gdb_flush (gdb_stdout); |
| } |
| |
| #ifdef PT_ATTACH |
| errno = 0; |
| ptrace (PT_ATTACH, pid, (PTRACE_TYPE_ARG3)0, 0); |
| if (errno != 0) |
| perror_with_name (("ptrace")); |
| #else |
| error (_("This system does not support attaching to a process")); |
| #endif |
| |
| inf = current_inferior (); |
| inferior_appeared (inf, pid); |
| inf->attach_flag = 1; |
| inferior_ptid = pid_to_ptid (pid); |
| |
| /* Always add a main thread. If some target extends the ptrace |
| target, it should decorate the ptid later with more info. */ |
| add_thread_silent (inferior_ptid); |
| |
| if (! ops_already_pushed) |
| discard_cleanups (back_to); |
| } |
| |
| #ifdef PT_GET_PROCESS_STATE |
| |
| static void |
| inf_ptrace_post_attach (int pid) |
| { |
| ptrace_event_t pe; |
| |
| /* Set the initial event mask. */ |
| memset (&pe, 0, sizeof pe); |
| pe.pe_set_event |= PTRACE_FORK; |
| if (ptrace (PT_SET_EVENT_MASK, pid, |
| (PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1) |
| perror_with_name (("ptrace")); |
| } |
| |
| #endif |
| |
| /* Detach from the inferior, optionally passing it the signal |
| specified by ARGS. If FROM_TTY is non-zero, be chatty about it. */ |
| |
| static void |
| inf_ptrace_detach (struct target_ops *ops, char *args, int from_tty) |
| { |
| pid_t pid = ptid_get_pid (inferior_ptid); |
| int sig = 0; |
| |
| if (from_tty) |
| { |
| char *exec_file = get_exec_file (0); |
| if (exec_file == 0) |
| exec_file = ""; |
| printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file, |
| target_pid_to_str (pid_to_ptid (pid))); |
| gdb_flush (gdb_stdout); |
| } |
| if (args) |
| sig = atoi (args); |
| |
| #ifdef PT_DETACH |
| /* We'd better not have left any breakpoints in the program or it'll |
| die when it hits one. Also note that this may only work if we |
| previously attached to the inferior. It *might* work if we |
| started the process ourselves. */ |
| errno = 0; |
| ptrace (PT_DETACH, pid, (PTRACE_TYPE_ARG3)1, sig); |
| if (errno != 0) |
| perror_with_name (("ptrace")); |
| #else |
| error (_("This system does not support detaching from a process")); |
| #endif |
| |
| inferior_ptid = null_ptid; |
| detach_inferior (pid); |
| |
| if (!have_inferiors ()) |
| unpush_target (ops); |
| } |
| |
| /* Kill the inferior. */ |
| |
| static void |
| inf_ptrace_kill (struct target_ops *ops) |
| { |
| pid_t pid = ptid_get_pid (inferior_ptid); |
| int status; |
| |
| if (pid == 0) |
| return; |
| |
| ptrace (PT_KILL, pid, (PTRACE_TYPE_ARG3)0, 0); |
| waitpid (pid, &status, 0); |
| |
| target_mourn_inferior (); |
| } |
| |
| /* Stop the inferior. */ |
| |
| static void |
| inf_ptrace_stop (ptid_t ptid) |
| { |
| /* Send a SIGINT to the process group. This acts just like the user |
| typed a ^C on the controlling terminal. Note that using a |
| negative process number in kill() is a System V-ism. The proper |
| BSD interface is killpg(). However, all modern BSDs support the |
| System V interface too. */ |
| kill (-inferior_process_group (), SIGINT); |
| } |
| |
| /* Resume execution of thread PTID, or all threads if PTID is -1. If |
| STEP is nonzero, single-step it. If SIGNAL is nonzero, give it |
| that signal. */ |
| |
| static void |
| inf_ptrace_resume (struct target_ops *ops, |
| ptid_t ptid, int step, enum gdb_signal signal) |
| { |
| pid_t pid = ptid_get_pid (ptid); |
| int request; |
| |
| if (pid == -1) |
| /* Resume all threads. Traditionally ptrace() only supports |
| single-threaded processes, so simply resume the inferior. */ |
| pid = ptid_get_pid (inferior_ptid); |
| |
| if (catch_syscall_enabled () > 0) |
| request = PT_SYSCALL; |
| else |
| request = PT_CONTINUE; |
| |
| if (step) |
| { |
| /* If this system does not support PT_STEP, a higher level |
| function will have called single_step() to transmute the step |
| request into a continue request (by setting breakpoints on |
| all possible successor instructions), so we don't have to |
| worry about that here. */ |
| request = PT_STEP; |
| } |
| |
| /* An address of (PTRACE_TYPE_ARG3)1 tells ptrace to continue from |
| where it was. If GDB wanted it to start some other way, we have |
| already written a new program counter value to the child. */ |
| errno = 0; |
| ptrace (request, pid, (PTRACE_TYPE_ARG3)1, gdb_signal_to_host (signal)); |
| if (errno != 0) |
| perror_with_name (("ptrace")); |
| } |
| |
| /* Wait for the child specified by PTID to do something. Return the |
| process ID of the child, or MINUS_ONE_PTID in case of error; store |
| the status in *OURSTATUS. */ |
| |
| static ptid_t |
| inf_ptrace_wait (struct target_ops *ops, |
| ptid_t ptid, struct target_waitstatus *ourstatus, int options) |
| { |
| pid_t pid; |
| int status, save_errno; |
| |
| do |
| { |
| set_sigint_trap (); |
| |
| do |
| { |
| pid = waitpid (ptid_get_pid (ptid), &status, 0); |
| save_errno = errno; |
| } |
| while (pid == -1 && errno == EINTR); |
| |
| clear_sigint_trap (); |
| |
| if (pid == -1) |
| { |
| fprintf_unfiltered (gdb_stderr, |
| _("Child process unexpectedly missing: %s.\n"), |
| safe_strerror (save_errno)); |
| |
| /* Claim it exited with unknown signal. */ |
| ourstatus->kind = TARGET_WAITKIND_SIGNALLED; |
| ourstatus->value.sig = GDB_SIGNAL_UNKNOWN; |
| return inferior_ptid; |
| } |
| |
| /* Ignore terminated detached child processes. */ |
| if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid)) |
| pid = -1; |
| } |
| while (pid == -1); |
| |
| #ifdef PT_GET_PROCESS_STATE |
| if (WIFSTOPPED (status)) |
| { |
| ptrace_state_t pe; |
| pid_t fpid; |
| |
| if (ptrace (PT_GET_PROCESS_STATE, pid, |
| (PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1) |
| perror_with_name (("ptrace")); |
| |
| switch (pe.pe_report_event) |
| { |
| case PTRACE_FORK: |
| ourstatus->kind = TARGET_WAITKIND_FORKED; |
| ourstatus->value.related_pid = pid_to_ptid (pe.pe_other_pid); |
| |
| /* Make sure the other end of the fork is stopped too. */ |
| fpid = waitpid (pe.pe_other_pid, &status, 0); |
| if (fpid == -1) |
| perror_with_name (("waitpid")); |
| |
| if (ptrace (PT_GET_PROCESS_STATE, fpid, |
| (PTRACE_TYPE_ARG3)&pe, sizeof pe) == -1) |
| perror_with_name (("ptrace")); |
| |
| gdb_assert (pe.pe_report_event == PTRACE_FORK); |
| gdb_assert (pe.pe_other_pid == pid); |
| if (fpid == ptid_get_pid (inferior_ptid)) |
| { |
| ourstatus->value.related_pid = pid_to_ptid (pe.pe_other_pid); |
| return pid_to_ptid (fpid); |
| } |
| |
| return pid_to_ptid (pid); |
| } |
| } |
| #endif |
| |
| store_waitstatus (ourstatus, status); |
| return pid_to_ptid (pid); |
| } |
| |
| /* Attempt a transfer all LEN bytes starting at OFFSET between the |
| inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer. |
| Return the number of bytes actually transferred. */ |
| |
| static LONGEST |
| inf_ptrace_xfer_partial (struct target_ops *ops, enum target_object object, |
| const char *annex, gdb_byte *readbuf, |
| const gdb_byte *writebuf, |
| ULONGEST offset, LONGEST len) |
| { |
| pid_t pid = ptid_get_pid (inferior_ptid); |
| |
| switch (object) |
| { |
| case TARGET_OBJECT_MEMORY: |
| #ifdef PT_IO |
| /* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO |
| request that promises to be much more efficient in reading |
| and writing data in the traced process's address space. */ |
| { |
| struct ptrace_io_desc piod; |
| |
| /* NOTE: We assume that there are no distinct address spaces |
| for instruction and data. However, on OpenBSD 3.9 and |
| later, PIOD_WRITE_D doesn't allow changing memory that's |
| mapped read-only. Since most code segments will be |
| read-only, using PIOD_WRITE_D will prevent us from |
| inserting breakpoints, so we use PIOD_WRITE_I instead. */ |
| piod.piod_op = writebuf ? PIOD_WRITE_I : PIOD_READ_D; |
| piod.piod_addr = writebuf ? (void *) writebuf : readbuf; |
| piod.piod_offs = (void *) (long) offset; |
| piod.piod_len = len; |
| |
| errno = 0; |
| if (ptrace (PT_IO, pid, (caddr_t)&piod, 0) == 0) |
| /* Return the actual number of bytes read or written. */ |
| return piod.piod_len; |
| /* If the PT_IO request is somehow not supported, fallback on |
| using PT_WRITE_D/PT_READ_D. Otherwise we will return zero |
| to indicate failure. */ |
| if (errno != EINVAL) |
| return 0; |
| } |
| #endif |
| { |
| union |
| { |
| PTRACE_TYPE_RET word; |
| gdb_byte byte[sizeof (PTRACE_TYPE_RET)]; |
| } buffer; |
| ULONGEST rounded_offset; |
| LONGEST partial_len; |
| |
| /* Round the start offset down to the next long word |
| boundary. */ |
| rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET); |
| |
| /* Since ptrace will transfer a single word starting at that |
| rounded_offset the partial_len needs to be adjusted down to |
| that (remember this function only does a single transfer). |
| Should the required length be even less, adjust it down |
| again. */ |
| partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset; |
| if (partial_len > len) |
| partial_len = len; |
| |
| if (writebuf) |
| { |
| /* If OFFSET:PARTIAL_LEN is smaller than |
| ROUNDED_OFFSET:WORDSIZE then a read/modify write will |
| be needed. Read in the entire word. */ |
| if (rounded_offset < offset |
| || (offset + partial_len |
| < rounded_offset + sizeof (PTRACE_TYPE_RET))) |
| /* Need part of initial word -- fetch it. */ |
| buffer.word = ptrace (PT_READ_I, pid, |
| (PTRACE_TYPE_ARG3)(uintptr_t) |
| rounded_offset, 0); |
| |
| /* Copy data to be written over corresponding part of |
| buffer. */ |
| memcpy (buffer.byte + (offset - rounded_offset), |
| writebuf, partial_len); |
| |
| errno = 0; |
| ptrace (PT_WRITE_D, pid, |
| (PTRACE_TYPE_ARG3)(uintptr_t)rounded_offset, |
| buffer.word); |
| if (errno) |
| { |
| /* Using the appropriate one (I or D) is necessary for |
| Gould NP1, at least. */ |
| errno = 0; |
| ptrace (PT_WRITE_I, pid, |
| (PTRACE_TYPE_ARG3)(uintptr_t)rounded_offset, |
| buffer.word); |
| if (errno) |
| return 0; |
| } |
| } |
| |
| if (readbuf) |
| { |
| errno = 0; |
| buffer.word = ptrace (PT_READ_I, pid, |
| (PTRACE_TYPE_ARG3)(uintptr_t)rounded_offset, |
| 0); |
| if (errno) |
| return 0; |
| /* Copy appropriate bytes out of the buffer. */ |
| memcpy (readbuf, buffer.byte + (offset - rounded_offset), |
| partial_len); |
| } |
| |
| return partial_len; |
| } |
| |
| case TARGET_OBJECT_UNWIND_TABLE: |
| return -1; |
| |
| case TARGET_OBJECT_AUXV: |
| #if defined (PT_IO) && defined (PIOD_READ_AUXV) |
| /* OpenBSD 4.5 has a new PIOD_READ_AUXV operation for the PT_IO |
| request that allows us to read the auxilliary vector. Other |
| BSD's may follow if they feel the need to support PIE. */ |
| { |
| struct ptrace_io_desc piod; |
| |
| if (writebuf) |
| return -1; |
| piod.piod_op = PIOD_READ_AUXV; |
| piod.piod_addr = readbuf; |
| piod.piod_offs = (void *) (long) offset; |
| piod.piod_len = len; |
| |
| errno = 0; |
| if (ptrace (PT_IO, pid, (caddr_t)&piod, 0) == 0) |
| /* Return the actual number of bytes read or written. */ |
| return piod.piod_len; |
| } |
| #endif |
| return -1; |
| |
| case TARGET_OBJECT_WCOOKIE: |
| return -1; |
| |
| default: |
| return -1; |
| } |
| } |
| |
| /* Return non-zero if the thread specified by PTID is alive. */ |
| |
| static int |
| inf_ptrace_thread_alive (struct target_ops *ops, ptid_t ptid) |
| { |
| /* ??? Is kill the right way to do this? */ |
| return (kill (ptid_get_pid (ptid), 0) != -1); |
| } |
| |
| /* Print status information about what we're accessing. */ |
| |
| static void |
| inf_ptrace_files_info (struct target_ops *ignore) |
| { |
| struct inferior *inf = current_inferior (); |
| |
| printf_filtered (_("\tUsing the running image of %s %s.\n"), |
| inf->attach_flag ? "attached" : "child", |
| target_pid_to_str (inferior_ptid)); |
| } |
| |
| static char * |
| inf_ptrace_pid_to_str (struct target_ops *ops, ptid_t ptid) |
| { |
| return normal_pid_to_str (ptid); |
| } |
| |
| #if defined (PT_IO) && defined (PIOD_READ_AUXV) |
| |
| /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR. |
| Return 0 if *READPTR is already at the end of the buffer. |
| Return -1 if there is insufficient buffer for a whole entry. |
| Return 1 if an entry was read into *TYPEP and *VALP. */ |
| |
| static int |
| inf_ptrace_auxv_parse (struct target_ops *ops, gdb_byte **readptr, |
| gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) |
| { |
| struct type *int_type = builtin_type (target_gdbarch)->builtin_int; |
| struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
| const int sizeof_auxv_type = TYPE_LENGTH (int_type); |
| const int sizeof_auxv_val = TYPE_LENGTH (ptr_type); |
| enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
| gdb_byte *ptr = *readptr; |
| |
| if (endptr == ptr) |
| return 0; |
| |
| if (endptr - ptr < 2 * sizeof_auxv_val) |
| return -1; |
| |
| *typep = extract_unsigned_integer (ptr, sizeof_auxv_type, byte_order); |
| ptr += sizeof_auxv_val; /* Alignment. */ |
| *valp = extract_unsigned_integer (ptr, sizeof_auxv_val, byte_order); |
| ptr += sizeof_auxv_val; |
| |
| *readptr = ptr; |
| return 1; |
| } |
| |
| #endif |
| |
| /* Create a prototype ptrace target. The client can override it with |
| local methods. */ |
| |
| struct target_ops * |
| inf_ptrace_target (void) |
| { |
| struct target_ops *t = inf_child_target (); |
| |
| t->to_attach = inf_ptrace_attach; |
| t->to_detach = inf_ptrace_detach; |
| t->to_resume = inf_ptrace_resume; |
| t->to_wait = inf_ptrace_wait; |
| t->to_files_info = inf_ptrace_files_info; |
| t->to_kill = inf_ptrace_kill; |
| t->to_create_inferior = inf_ptrace_create_inferior; |
| #ifdef PT_GET_PROCESS_STATE |
| t->to_follow_fork = inf_ptrace_follow_fork; |
| t->to_post_startup_inferior = inf_ptrace_post_startup_inferior; |
| t->to_post_attach = inf_ptrace_post_attach; |
| #endif |
| t->to_mourn_inferior = inf_ptrace_mourn_inferior; |
| t->to_thread_alive = inf_ptrace_thread_alive; |
| t->to_pid_to_str = inf_ptrace_pid_to_str; |
| t->to_stop = inf_ptrace_stop; |
| t->to_xfer_partial = inf_ptrace_xfer_partial; |
| #if defined (PT_IO) && defined (PIOD_READ_AUXV) |
| t->to_auxv_parse = inf_ptrace_auxv_parse; |
| #endif |
| |
| return t; |
| } |
| |
| |
| /* Pointer to a function that returns the offset within the user area |
| where a particular register is stored. */ |
| static CORE_ADDR (*inf_ptrace_register_u_offset)(struct gdbarch *, int, int); |
| |
| /* Fetch register REGNUM from the inferior. */ |
| |
| static void |
| inf_ptrace_fetch_register (struct regcache *regcache, int regnum) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| CORE_ADDR addr; |
| size_t size; |
| PTRACE_TYPE_RET *buf; |
| int pid, i; |
| |
| /* This isn't really an address, but ptrace thinks of it as one. */ |
| addr = inf_ptrace_register_u_offset (gdbarch, regnum, 0); |
| if (addr == (CORE_ADDR)-1 |
| || gdbarch_cannot_fetch_register (gdbarch, regnum)) |
| { |
| regcache_raw_supply (regcache, regnum, NULL); |
| return; |
| } |
| |
| /* Cater for systems like GNU/Linux, that implement threads as |
| separate processes. */ |
| pid = ptid_get_lwp (inferior_ptid); |
| if (pid == 0) |
| pid = ptid_get_pid (inferior_ptid); |
| |
| size = register_size (gdbarch, regnum); |
| gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0); |
| buf = alloca (size); |
| |
| /* Read the register contents from the inferior a chunk at a time. */ |
| for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++) |
| { |
| errno = 0; |
| buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)(uintptr_t)addr, 0); |
| if (errno != 0) |
| error (_("Couldn't read register %s (#%d): %s."), |
| gdbarch_register_name (gdbarch, regnum), |
| regnum, safe_strerror (errno)); |
| |
| addr += sizeof (PTRACE_TYPE_RET); |
| } |
| regcache_raw_supply (regcache, regnum, buf); |
| } |
| |
| /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this |
| for all registers. */ |
| |
| static void |
| inf_ptrace_fetch_registers (struct target_ops *ops, |
| struct regcache *regcache, int regnum) |
| { |
| if (regnum == -1) |
| for (regnum = 0; |
| regnum < gdbarch_num_regs (get_regcache_arch (regcache)); |
| regnum++) |
| inf_ptrace_fetch_register (regcache, regnum); |
| else |
| inf_ptrace_fetch_register (regcache, regnum); |
| } |
| |
| /* Store register REGNUM into the inferior. */ |
| |
| static void |
| inf_ptrace_store_register (const struct regcache *regcache, int regnum) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| CORE_ADDR addr; |
| size_t size; |
| PTRACE_TYPE_RET *buf; |
| int pid, i; |
| |
| /* This isn't really an address, but ptrace thinks of it as one. */ |
| addr = inf_ptrace_register_u_offset (gdbarch, regnum, 1); |
| if (addr == (CORE_ADDR)-1 |
| || gdbarch_cannot_store_register (gdbarch, regnum)) |
| return; |
| |
| /* Cater for systems like GNU/Linux, that implement threads as |
| separate processes. */ |
| pid = ptid_get_lwp (inferior_ptid); |
| if (pid == 0) |
| pid = ptid_get_pid (inferior_ptid); |
| |
| size = register_size (gdbarch, regnum); |
| gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0); |
| buf = alloca (size); |
| |
| /* Write the register contents into the inferior a chunk at a time. */ |
| regcache_raw_collect (regcache, regnum, buf); |
| for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++) |
| { |
| errno = 0; |
| ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)(uintptr_t)addr, buf[i]); |
| if (errno != 0) |
| error (_("Couldn't write register %s (#%d): %s."), |
| gdbarch_register_name (gdbarch, regnum), |
| regnum, safe_strerror (errno)); |
| |
| addr += sizeof (PTRACE_TYPE_RET); |
| } |
| } |
| |
| /* Store register REGNUM back into the inferior. If REGNUM is -1, do |
| this for all registers. */ |
| |
| static void |
| inf_ptrace_store_registers (struct target_ops *ops, |
| struct regcache *regcache, int regnum) |
| { |
| if (regnum == -1) |
| for (regnum = 0; |
| regnum < gdbarch_num_regs (get_regcache_arch (regcache)); |
| regnum++) |
| inf_ptrace_store_register (regcache, regnum); |
| else |
| inf_ptrace_store_register (regcache, regnum); |
| } |
| |
| /* Create a "traditional" ptrace target. REGISTER_U_OFFSET should be |
| a function returning the offset within the user area where a |
| particular register is stored. */ |
| |
| struct target_ops * |
| inf_ptrace_trad_target (CORE_ADDR (*register_u_offset) |
| (struct gdbarch *, int, int)) |
| { |
| struct target_ops *t = inf_ptrace_target(); |
| |
| gdb_assert (register_u_offset); |
| inf_ptrace_register_u_offset = register_u_offset; |
| t->to_fetch_registers = inf_ptrace_fetch_registers; |
| t->to_store_registers = inf_ptrace_store_registers; |
| |
| return t; |
| } |