| /* Target-dependent code for HP-UX on PA-RISC. |
| |
| Copyright (C) 2002-2005, 2007-2012 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "arch-utils.h" |
| #include "gdbcore.h" |
| #include "osabi.h" |
| #include "frame.h" |
| #include "frame-unwind.h" |
| #include "trad-frame.h" |
| #include "symtab.h" |
| #include "objfiles.h" |
| #include "inferior.h" |
| #include "infcall.h" |
| #include "observer.h" |
| #include "hppa-tdep.h" |
| #include "solib-som.h" |
| #include "solib-pa64.h" |
| #include "regset.h" |
| #include "regcache.h" |
| #include "exceptions.h" |
| |
| #include "gdb_string.h" |
| |
| #define IS_32BIT_TARGET(_gdbarch) \ |
| ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4) |
| |
| /* Bit in the `ss_flag' member of `struct save_state' that indicates |
| that the 64-bit register values are live. From |
| <machine/save_state.h>. */ |
| #define HPPA_HPUX_SS_WIDEREGS 0x40 |
| |
| /* Offsets of various parts of `struct save_state'. From |
| <machine/save_state.h>. */ |
| #define HPPA_HPUX_SS_FLAGS_OFFSET 0 |
| #define HPPA_HPUX_SS_NARROW_OFFSET 4 |
| #define HPPA_HPUX_SS_FPBLOCK_OFFSET 256 |
| #define HPPA_HPUX_SS_WIDE_OFFSET 640 |
| |
| /* The size of `struct save_state. */ |
| #define HPPA_HPUX_SAVE_STATE_SIZE 1152 |
| |
| /* The size of `struct pa89_save_state', which corresponds to PA-RISC |
| 1.1, the lowest common denominator that we support. */ |
| #define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512 |
| |
| |
| /* Forward declarations. */ |
| extern void _initialize_hppa_hpux_tdep (void); |
| extern initialize_file_ftype _initialize_hppa_hpux_tdep; |
| |
| static int |
| in_opd_section (CORE_ADDR pc) |
| { |
| struct obj_section *s; |
| int retval = 0; |
| |
| s = find_pc_section (pc); |
| |
| retval = (s != NULL |
| && s->the_bfd_section->name != NULL |
| && strcmp (s->the_bfd_section->name, ".opd") == 0); |
| return (retval); |
| } |
| |
| /* Return one if PC is in the call path of a trampoline, else return zero. |
| |
| Note we return one for *any* call trampoline (long-call, arg-reloc), not |
| just shared library trampolines (import, export). */ |
| |
| static int |
| hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, |
| CORE_ADDR pc, char *name) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct minimal_symbol *minsym; |
| struct unwind_table_entry *u; |
| |
| /* First see if PC is in one of the two C-library trampolines. */ |
| if (pc == hppa_symbol_address("$$dyncall") |
| || pc == hppa_symbol_address("_sr4export")) |
| return 1; |
| |
| minsym = lookup_minimal_symbol_by_pc (pc); |
| if (minsym && strcmp (SYMBOL_LINKAGE_NAME (minsym), ".stub") == 0) |
| return 1; |
| |
| /* Get the unwind descriptor corresponding to PC, return zero |
| if no unwind was found. */ |
| u = find_unwind_entry (pc); |
| if (!u) |
| return 0; |
| |
| /* If this isn't a linker stub, then return now. */ |
| if (u->stub_unwind.stub_type == 0) |
| return 0; |
| |
| /* By definition a long-branch stub is a call stub. */ |
| if (u->stub_unwind.stub_type == LONG_BRANCH) |
| return 1; |
| |
| /* The call and return path execute the same instructions within |
| an IMPORT stub! So an IMPORT stub is both a call and return |
| trampoline. */ |
| if (u->stub_unwind.stub_type == IMPORT) |
| return 1; |
| |
| /* Parameter relocation stubs always have a call path and may have a |
| return path. */ |
| if (u->stub_unwind.stub_type == PARAMETER_RELOCATION |
| || u->stub_unwind.stub_type == EXPORT) |
| { |
| CORE_ADDR addr; |
| |
| /* Search forward from the current PC until we hit a branch |
| or the end of the stub. */ |
| for (addr = pc; addr <= u->region_end; addr += 4) |
| { |
| unsigned long insn; |
| |
| insn = read_memory_integer (addr, 4, byte_order); |
| |
| /* Does it look like a bl? If so then it's the call path, if |
| we find a bv or be first, then we're on the return path. */ |
| if ((insn & 0xfc00e000) == 0xe8000000) |
| return 1; |
| else if ((insn & 0xfc00e001) == 0xe800c000 |
| || (insn & 0xfc000000) == 0xe0000000) |
| return 0; |
| } |
| |
| /* Should never happen. */ |
| warning (_("Unable to find branch in parameter relocation stub.")); |
| return 0; |
| } |
| |
| /* Unknown stub type. For now, just return zero. */ |
| return 0; |
| } |
| |
| static int |
| hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, |
| CORE_ADDR pc, char *name) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* PA64 has a completely different stub/trampoline scheme. Is it |
| better? Maybe. It's certainly harder to determine with any |
| certainty that we are in a stub because we can not refer to the |
| unwinders to help. |
| |
| The heuristic is simple. Try to lookup the current PC value in th |
| minimal symbol table. If that fails, then assume we are not in a |
| stub and return. |
| |
| Then see if the PC value falls within the section bounds for the |
| section containing the minimal symbol we found in the first |
| step. If it does, then assume we are not in a stub and return. |
| |
| Finally peek at the instructions to see if they look like a stub. */ |
| struct minimal_symbol *minsym; |
| asection *sec; |
| CORE_ADDR addr; |
| int insn; |
| |
| minsym = lookup_minimal_symbol_by_pc (pc); |
| if (! minsym) |
| return 0; |
| |
| sec = SYMBOL_OBJ_SECTION (minsym)->the_bfd_section; |
| |
| if (bfd_get_section_vma (sec->owner, sec) <= pc |
| && pc < (bfd_get_section_vma (sec->owner, sec) |
| + bfd_section_size (sec->owner, sec))) |
| return 0; |
| |
| /* We might be in a stub. Peek at the instructions. Stubs are 3 |
| instructions long. */ |
| insn = read_memory_integer (pc, 4, byte_order); |
| |
| /* Find out where we think we are within the stub. */ |
| if ((insn & 0xffffc00e) == 0x53610000) |
| addr = pc; |
| else if ((insn & 0xffffffff) == 0xe820d000) |
| addr = pc - 4; |
| else if ((insn & 0xffffc00e) == 0x537b0000) |
| addr = pc - 8; |
| else |
| return 0; |
| |
| /* Now verify each insn in the range looks like a stub instruction. */ |
| insn = read_memory_integer (addr, 4, byte_order); |
| if ((insn & 0xffffc00e) != 0x53610000) |
| return 0; |
| |
| /* Now verify each insn in the range looks like a stub instruction. */ |
| insn = read_memory_integer (addr + 4, 4, byte_order); |
| if ((insn & 0xffffffff) != 0xe820d000) |
| return 0; |
| |
| /* Now verify each insn in the range looks like a stub instruction. */ |
| insn = read_memory_integer (addr + 8, 4, byte_order); |
| if ((insn & 0xffffc00e) != 0x537b0000) |
| return 0; |
| |
| /* Looks like a stub. */ |
| return 1; |
| } |
| |
| /* Return one if PC is in the return path of a trampoline, else return zero. |
| |
| Note we return one for *any* call trampoline (long-call, arg-reloc), not |
| just shared library trampolines (import, export). */ |
| |
| static int |
| hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch, |
| CORE_ADDR pc, const char *name) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct unwind_table_entry *u; |
| |
| /* Get the unwind descriptor corresponding to PC, return zero |
| if no unwind was found. */ |
| u = find_unwind_entry (pc); |
| if (!u) |
| return 0; |
| |
| /* If this isn't a linker stub or it's just a long branch stub, then |
| return zero. */ |
| if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) |
| return 0; |
| |
| /* The call and return path execute the same instructions within |
| an IMPORT stub! So an IMPORT stub is both a call and return |
| trampoline. */ |
| if (u->stub_unwind.stub_type == IMPORT) |
| return 1; |
| |
| /* Parameter relocation stubs always have a call path and may have a |
| return path. */ |
| if (u->stub_unwind.stub_type == PARAMETER_RELOCATION |
| || u->stub_unwind.stub_type == EXPORT) |
| { |
| CORE_ADDR addr; |
| |
| /* Search forward from the current PC until we hit a branch |
| or the end of the stub. */ |
| for (addr = pc; addr <= u->region_end; addr += 4) |
| { |
| unsigned long insn; |
| |
| insn = read_memory_integer (addr, 4, byte_order); |
| |
| /* Does it look like a bl? If so then it's the call path, if |
| we find a bv or be first, then we're on the return path. */ |
| if ((insn & 0xfc00e000) == 0xe8000000) |
| return 0; |
| else if ((insn & 0xfc00e001) == 0xe800c000 |
| || (insn & 0xfc000000) == 0xe0000000) |
| return 1; |
| } |
| |
| /* Should never happen. */ |
| warning (_("Unable to find branch in parameter relocation stub.")); |
| return 0; |
| } |
| |
| /* Unknown stub type. For now, just return zero. */ |
| return 0; |
| |
| } |
| |
| /* Figure out if PC is in a trampoline, and if so find out where |
| the trampoline will jump to. If not in a trampoline, return zero. |
| |
| Simple code examination probably is not a good idea since the code |
| sequences in trampolines can also appear in user code. |
| |
| We use unwinds and information from the minimal symbol table to |
| determine when we're in a trampoline. This won't work for ELF |
| (yet) since it doesn't create stub unwind entries. Whether or |
| not ELF will create stub unwinds or normal unwinds for linker |
| stubs is still being debated. |
| |
| This should handle simple calls through dyncall or sr4export, |
| long calls, argument relocation stubs, and dyncall/sr4export |
| calling an argument relocation stub. It even handles some stubs |
| used in dynamic executables. */ |
| |
| static CORE_ADDR |
| hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| long orig_pc = pc; |
| long prev_inst, curr_inst, loc; |
| struct minimal_symbol *msym; |
| struct unwind_table_entry *u; |
| |
| /* Addresses passed to dyncall may *NOT* be the actual address |
| of the function. So we may have to do something special. */ |
| if (pc == hppa_symbol_address("$$dyncall")) |
| { |
| pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); |
| |
| /* If bit 30 (counting from the left) is on, then pc is the address of |
| the PLT entry for this function, not the address of the function |
| itself. Bit 31 has meaning too, but only for MPE. */ |
| if (pc & 0x2) |
| pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, |
| byte_order); |
| } |
| if (pc == hppa_symbol_address("$$dyncall_external")) |
| { |
| pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); |
| pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order); |
| } |
| else if (pc == hppa_symbol_address("_sr4export")) |
| pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); |
| |
| /* Get the unwind descriptor corresponding to PC, return zero |
| if no unwind was found. */ |
| u = find_unwind_entry (pc); |
| if (!u) |
| return 0; |
| |
| /* If this isn't a linker stub, then return now. */ |
| /* elz: attention here! (FIXME) because of a compiler/linker |
| error, some stubs which should have a non zero stub_unwind.stub_type |
| have unfortunately a value of zero. So this function would return here |
| as if we were not in a trampoline. To fix this, we go look at the partial |
| symbol information, which reports this guy as a stub. |
| (FIXME): Unfortunately, we are not that lucky: it turns out that the |
| partial symbol information is also wrong sometimes. This is because |
| when it is entered (somread.c::som_symtab_read()) it can happen that |
| if the type of the symbol (from the som) is Entry, and the symbol is |
| in a shared library, then it can also be a trampoline. This would be OK, |
| except that I believe the way they decide if we are ina shared library |
| does not work. SOOOO..., even if we have a regular function w/o |
| trampolines its minimal symbol can be assigned type mst_solib_trampoline. |
| Also, if we find that the symbol is a real stub, then we fix the unwind |
| descriptor, and define the stub type to be EXPORT. |
| Hopefully this is correct most of the times. */ |
| if (u->stub_unwind.stub_type == 0) |
| { |
| |
| /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed |
| we can delete all the code which appears between the lines. */ |
| /*--------------------------------------------------------------------------*/ |
| msym = lookup_minimal_symbol_by_pc (pc); |
| |
| if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline) |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| |
| else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline) |
| { |
| struct objfile *objfile; |
| struct minimal_symbol *msymbol; |
| int function_found = 0; |
| |
| /* Go look if there is another minimal symbol with the same name as |
| this one, but with type mst_text. This would happen if the msym |
| is an actual trampoline, in which case there would be another |
| symbol with the same name corresponding to the real function. */ |
| |
| ALL_MSYMBOLS (objfile, msymbol) |
| { |
| if (MSYMBOL_TYPE (msymbol) == mst_text |
| && strcmp (SYMBOL_LINKAGE_NAME (msymbol), |
| SYMBOL_LINKAGE_NAME (msym)) == 0) |
| { |
| function_found = 1; |
| break; |
| } |
| } |
| |
| if (function_found) |
| /* The type of msym is correct (mst_solib_trampoline), but |
| the unwind info is wrong, so set it to the correct value. */ |
| u->stub_unwind.stub_type = EXPORT; |
| else |
| /* The stub type info in the unwind is correct (this is not a |
| trampoline), but the msym type information is wrong, it |
| should be mst_text. So we need to fix the msym, and also |
| get out of this function. */ |
| { |
| MSYMBOL_TYPE (msym) = mst_text; |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| } |
| } |
| |
| /*--------------------------------------------------------------------------*/ |
| } |
| |
| /* It's a stub. Search for a branch and figure out where it goes. |
| Note we have to handle multi insn branch sequences like ldil;ble. |
| Most (all?) other branches can be determined by examining the contents |
| of certain registers and the stack. */ |
| |
| loc = pc; |
| curr_inst = 0; |
| prev_inst = 0; |
| while (1) |
| { |
| /* Make sure we haven't walked outside the range of this stub. */ |
| if (u != find_unwind_entry (loc)) |
| { |
| warning (_("Unable to find branch in linker stub")); |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| } |
| |
| prev_inst = curr_inst; |
| curr_inst = read_memory_integer (loc, 4, byte_order); |
| |
| /* Does it look like a branch external using %r1? Then it's the |
| branch from the stub to the actual function. */ |
| if ((curr_inst & 0xffe0e000) == 0xe0202000) |
| { |
| /* Yup. See if the previous instruction loaded |
| a value into %r1. If so compute and return the jump address. */ |
| if ((prev_inst & 0xffe00000) == 0x20200000) |
| return (hppa_extract_21 (prev_inst) |
| + hppa_extract_17 (curr_inst)) & ~0x3; |
| else |
| { |
| warning (_("Unable to find ldil X,%%r1 " |
| "before ble Y(%%sr4,%%r1).")); |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| } |
| } |
| |
| /* Does it look like a be 0(sr0,%r21)? OR |
| Does it look like a be, n 0(sr0,%r21)? OR |
| Does it look like a bve (r21)? (this is on PA2.0) |
| Does it look like a bve, n(r21)? (this is also on PA2.0) |
| That's the branch from an |
| import stub to an export stub. |
| |
| It is impossible to determine the target of the branch via |
| simple examination of instructions and/or data (consider |
| that the address in the plabel may be the address of the |
| bind-on-reference routine in the dynamic loader). |
| |
| So we have try an alternative approach. |
| |
| Get the name of the symbol at our current location; it should |
| be a stub symbol with the same name as the symbol in the |
| shared library. |
| |
| Then lookup a minimal symbol with the same name; we should |
| get the minimal symbol for the target routine in the shared |
| library as those take precedence of import/export stubs. */ |
| if ((curr_inst == 0xe2a00000) || |
| (curr_inst == 0xe2a00002) || |
| (curr_inst == 0xeaa0d000) || |
| (curr_inst == 0xeaa0d002)) |
| { |
| struct minimal_symbol *stubsym, *libsym; |
| |
| stubsym = lookup_minimal_symbol_by_pc (loc); |
| if (stubsym == NULL) |
| { |
| warning (_("Unable to find symbol for 0x%lx"), loc); |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| } |
| |
| libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym), |
| NULL, NULL); |
| if (libsym == NULL) |
| { |
| warning (_("Unable to find library symbol for %s."), |
| SYMBOL_PRINT_NAME (stubsym)); |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| } |
| |
| return SYMBOL_VALUE (libsym); |
| } |
| |
| /* Does it look like bl X,%rp or bl X,%r0? Another way to do a |
| branch from the stub to the actual function. */ |
| /*elz */ |
| else if ((curr_inst & 0xffe0e000) == 0xe8400000 |
| || (curr_inst & 0xffe0e000) == 0xe8000000 |
| || (curr_inst & 0xffe0e000) == 0xe800A000) |
| return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3; |
| |
| /* Does it look like bv (rp)? Note this depends on the |
| current stack pointer being the same as the stack |
| pointer in the stub itself! This is a branch on from the |
| stub back to the original caller. */ |
| /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ |
| else if ((curr_inst & 0xffe0f000) == 0xe840c000) |
| { |
| /* Yup. See if the previous instruction loaded |
| rp from sp - 8. */ |
| if (prev_inst == 0x4bc23ff1) |
| { |
| CORE_ADDR sp; |
| sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM); |
| return read_memory_integer (sp - 8, 4, byte_order) & ~0x3; |
| } |
| else |
| { |
| warning (_("Unable to find restore of %%rp before bv (%%rp).")); |
| return orig_pc == pc ? 0 : pc & ~0x3; |
| } |
| } |
| |
| /* elz: added this case to capture the new instruction |
| at the end of the return part of an export stub used by |
| the PA2.0: BVE, n (rp) */ |
| else if ((curr_inst & 0xffe0f000) == 0xe840d000) |
| { |
| return (read_memory_integer |
| (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24, |
| word_size, byte_order)) & ~0x3; |
| } |
| |
| /* What about be,n 0(sr0,%rp)? It's just another way we return to |
| the original caller from the stub. Used in dynamic executables. */ |
| else if (curr_inst == 0xe0400002) |
| { |
| /* The value we jump to is sitting in sp - 24. But that's |
| loaded several instructions before the be instruction. |
| I guess we could check for the previous instruction being |
| mtsp %r1,%sr0 if we want to do sanity checking. */ |
| return (read_memory_integer |
| (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24, |
| word_size, byte_order)) & ~0x3; |
| } |
| |
| /* Haven't found the branch yet, but we're still in the stub. |
| Keep looking. */ |
| loc += 4; |
| } |
| } |
| |
| static void |
| hppa_skip_permanent_breakpoint (struct regcache *regcache) |
| { |
| /* To step over a breakpoint instruction on the PA takes some |
| fiddling with the instruction address queue. |
| |
| When we stop at a breakpoint, the IA queue front (the instruction |
| we're executing now) points at the breakpoint instruction, and |
| the IA queue back (the next instruction to execute) points to |
| whatever instruction we would execute after the breakpoint, if it |
| were an ordinary instruction. This is the case even if the |
| breakpoint is in the delay slot of a branch instruction. |
| |
| Clearly, to step past the breakpoint, we need to set the queue |
| front to the back. But what do we put in the back? What |
| instruction comes after that one? Because of the branch delay |
| slot, the next insn is always at the back + 4. */ |
| |
| ULONGEST pcoq_tail, pcsq_tail; |
| regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail); |
| regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail); |
| |
| regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail); |
| regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail); |
| |
| regcache_cooked_write_unsigned (regcache, |
| HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4); |
| /* We can leave the tail's space the same, since there's no jump. */ |
| } |
| |
| |
| /* Signal frames. */ |
| struct hppa_hpux_sigtramp_unwind_cache |
| { |
| CORE_ADDR base; |
| struct trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static int hppa_hpux_tramp_reg[] = { |
| HPPA_SAR_REGNUM, |
| HPPA_PCOQ_HEAD_REGNUM, |
| HPPA_PCSQ_HEAD_REGNUM, |
| HPPA_PCOQ_TAIL_REGNUM, |
| HPPA_PCSQ_TAIL_REGNUM, |
| HPPA_EIEM_REGNUM, |
| HPPA_IIR_REGNUM, |
| HPPA_ISR_REGNUM, |
| HPPA_IOR_REGNUM, |
| HPPA_IPSW_REGNUM, |
| -1, |
| HPPA_SR4_REGNUM, |
| HPPA_SR4_REGNUM + 1, |
| HPPA_SR4_REGNUM + 2, |
| HPPA_SR4_REGNUM + 3, |
| HPPA_SR4_REGNUM + 4, |
| HPPA_SR4_REGNUM + 5, |
| HPPA_SR4_REGNUM + 6, |
| HPPA_SR4_REGNUM + 7, |
| HPPA_RCR_REGNUM, |
| HPPA_PID0_REGNUM, |
| HPPA_PID1_REGNUM, |
| HPPA_CCR_REGNUM, |
| HPPA_PID2_REGNUM, |
| HPPA_PID3_REGNUM, |
| HPPA_TR0_REGNUM, |
| HPPA_TR0_REGNUM + 1, |
| HPPA_TR0_REGNUM + 2, |
| HPPA_CR27_REGNUM |
| }; |
| |
| static struct hppa_hpux_sigtramp_unwind_cache * |
| hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame, |
| void **this_cache) |
| |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct hppa_hpux_sigtramp_unwind_cache *info; |
| unsigned int flag; |
| CORE_ADDR sp, scptr, off; |
| int i, incr, szoff; |
| |
| if (*this_cache) |
| return *this_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache); |
| *this_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| |
| if (IS_32BIT_TARGET (gdbarch)) |
| scptr = sp - 1352; |
| else |
| scptr = sp - 1520; |
| |
| off = scptr; |
| |
| /* See /usr/include/machine/save_state.h for the structure of the |
| save_state_t structure. */ |
| |
| flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET, |
| 4, byte_order); |
| |
| if (!(flag & HPPA_HPUX_SS_WIDEREGS)) |
| { |
| /* Narrow registers. */ |
| off = scptr + HPPA_HPUX_SS_NARROW_OFFSET; |
| incr = 4; |
| szoff = 0; |
| } |
| else |
| { |
| /* Wide registers. */ |
| off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8; |
| incr = 8; |
| szoff = (tdep->bytes_per_address == 4 ? 4 : 0); |
| } |
| |
| for (i = 1; i < 32; i++) |
| { |
| info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff; |
| off += incr; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++) |
| { |
| if (hppa_hpux_tramp_reg[i] > 0) |
| info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff; |
| |
| off += incr; |
| } |
| |
| /* TODO: fp regs */ |
| |
| info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| |
| return info; |
| } |
| |
| static void |
| hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct hppa_hpux_sigtramp_unwind_cache *info |
| = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| *this_id = frame_id_build (info->base, get_frame_pc (this_frame)); |
| } |
| |
| static struct value * |
| hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| int regnum) |
| { |
| struct hppa_hpux_sigtramp_unwind_cache *info |
| = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| return hppa_frame_prev_register_helper (this_frame, |
| info->saved_regs, regnum); |
| } |
| |
| static int |
| hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct unwind_table_entry *u; |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| |
| u = find_unwind_entry (pc); |
| |
| /* If this is an export stub, try to get the unwind descriptor for |
| the actual function itself. */ |
| if (u && u->stub_unwind.stub_type == EXPORT) |
| { |
| gdb_byte buf[HPPA_INSN_SIZE]; |
| unsigned long insn; |
| |
| if (!safe_frame_unwind_memory (this_frame, u->region_start, |
| buf, sizeof buf)) |
| return 0; |
| |
| insn = extract_unsigned_integer (buf, sizeof buf, byte_order); |
| if ((insn & 0xffe0e000) == 0xe8400000) |
| u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8); |
| } |
| |
| if (u && u->HP_UX_interrupt_marker) |
| return 1; |
| |
| return 0; |
| } |
| |
| static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = { |
| SIGTRAMP_FRAME, |
| default_frame_unwind_stop_reason, |
| hppa_hpux_sigtramp_frame_this_id, |
| hppa_hpux_sigtramp_frame_prev_register, |
| NULL, |
| hppa_hpux_sigtramp_unwind_sniffer |
| }; |
| |
| static CORE_ADDR |
| hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch, |
| struct value *function) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR faddr; |
| |
| faddr = value_as_address (function); |
| |
| /* Is this a plabel? If so, dereference it to get the gp value. */ |
| if (faddr & 2) |
| { |
| int status; |
| char buf[4]; |
| |
| faddr &= ~3; |
| |
| status = target_read_memory (faddr + 4, buf, sizeof (buf)); |
| if (status == 0) |
| return extract_unsigned_integer (buf, sizeof (buf), byte_order); |
| } |
| |
| return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr); |
| } |
| |
| static CORE_ADDR |
| hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch, |
| struct value *function) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR faddr; |
| char buf[32]; |
| |
| faddr = value_as_address (function); |
| |
| if (in_opd_section (faddr)) |
| { |
| target_read_memory (faddr, buf, sizeof (buf)); |
| return extract_unsigned_integer (&buf[24], 8, byte_order); |
| } |
| else |
| { |
| return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr); |
| } |
| } |
| |
| static unsigned int ldsid_pattern[] = { |
| 0x000010a0, /* ldsid (rX),rY */ |
| 0x00001820, /* mtsp rY,sr0 */ |
| 0xe0000000 /* be,n (sr0,rX) */ |
| }; |
| |
| static CORE_ADDR |
| hppa_hpux_search_pattern (struct gdbarch *gdbarch, |
| CORE_ADDR start, CORE_ADDR end, |
| unsigned int *patterns, int count) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE; |
| unsigned int *insns; |
| gdb_byte *buf; |
| int offset, i; |
| |
| buf = alloca (num_insns * HPPA_INSN_SIZE); |
| insns = alloca (num_insns * sizeof (unsigned int)); |
| |
| read_memory (start, buf, num_insns * HPPA_INSN_SIZE); |
| for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE) |
| insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
| |
| for (offset = 0; offset <= num_insns - count; offset++) |
| { |
| for (i = 0; i < count; i++) |
| { |
| if ((insns[offset + i] & patterns[i]) != patterns[i]) |
| break; |
| } |
| if (i == count) |
| break; |
| } |
| |
| if (offset <= num_insns - count) |
| return start + offset * HPPA_INSN_SIZE; |
| else |
| return 0; |
| } |
| |
| static CORE_ADDR |
| hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc, |
| int *argreg) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct objfile *obj; |
| struct obj_section *sec; |
| struct hppa_objfile_private *priv; |
| struct frame_info *frame; |
| struct unwind_table_entry *u; |
| CORE_ADDR addr, rp; |
| char buf[4]; |
| unsigned int insn; |
| |
| sec = find_pc_section (pc); |
| obj = sec->objfile; |
| priv = objfile_data (obj, hppa_objfile_priv_data); |
| |
| if (!priv) |
| priv = hppa_init_objfile_priv_data (obj); |
| if (!priv) |
| error (_("Internal error creating objfile private data.")); |
| |
| /* Use the cached value if we have one. */ |
| if (priv->dummy_call_sequence_addr != 0) |
| { |
| *argreg = priv->dummy_call_sequence_reg; |
| return priv->dummy_call_sequence_addr; |
| } |
| |
| /* First try a heuristic; if we are in a shared library call, our return |
| pointer is likely to point at an export stub. */ |
| frame = get_current_frame (); |
| rp = frame_unwind_register_unsigned (frame, 2); |
| u = find_unwind_entry (rp); |
| if (u && u->stub_unwind.stub_type == EXPORT) |
| { |
| addr = hppa_hpux_search_pattern (gdbarch, |
| u->region_start, u->region_end, |
| ldsid_pattern, |
| ARRAY_SIZE (ldsid_pattern)); |
| if (addr) |
| goto found_pattern; |
| } |
| |
| /* Next thing to try is to look for an export stub. */ |
| if (priv->unwind_info) |
| { |
| int i; |
| |
| for (i = 0; i < priv->unwind_info->last; i++) |
| { |
| struct unwind_table_entry *u; |
| u = &priv->unwind_info->table[i]; |
| if (u->stub_unwind.stub_type == EXPORT) |
| { |
| addr = hppa_hpux_search_pattern (gdbarch, |
| u->region_start, u->region_end, |
| ldsid_pattern, |
| ARRAY_SIZE (ldsid_pattern)); |
| if (addr) |
| { |
| goto found_pattern; |
| } |
| } |
| } |
| } |
| |
| /* Finally, if this is the main executable, try to locate a sequence |
| from noshlibs */ |
| addr = hppa_symbol_address ("noshlibs"); |
| sec = find_pc_section (addr); |
| |
| if (sec && sec->objfile == obj) |
| { |
| CORE_ADDR start, end; |
| |
| find_pc_partial_function (addr, NULL, &start, &end); |
| if (start != 0 && end != 0) |
| { |
| addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern, |
| ARRAY_SIZE (ldsid_pattern)); |
| if (addr) |
| goto found_pattern; |
| } |
| } |
| |
| /* Can't find a suitable sequence. */ |
| return 0; |
| |
| found_pattern: |
| target_read_memory (addr, buf, sizeof (buf)); |
| insn = extract_unsigned_integer (buf, sizeof (buf), byte_order); |
| priv->dummy_call_sequence_addr = addr; |
| priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f; |
| |
| *argreg = priv->dummy_call_sequence_reg; |
| return priv->dummy_call_sequence_addr; |
| } |
| |
| static CORE_ADDR |
| hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc, |
| int *argreg) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct objfile *obj; |
| struct obj_section *sec; |
| struct hppa_objfile_private *priv; |
| CORE_ADDR addr; |
| struct minimal_symbol *msym; |
| |
| sec = find_pc_section (pc); |
| obj = sec->objfile; |
| priv = objfile_data (obj, hppa_objfile_priv_data); |
| |
| if (!priv) |
| priv = hppa_init_objfile_priv_data (obj); |
| if (!priv) |
| error (_("Internal error creating objfile private data.")); |
| |
| /* Use the cached value if we have one. */ |
| if (priv->dummy_call_sequence_addr != 0) |
| { |
| *argreg = priv->dummy_call_sequence_reg; |
| return priv->dummy_call_sequence_addr; |
| } |
| |
| /* FIXME: Without stub unwind information, locating a suitable sequence is |
| fairly difficult. For now, we implement a very naive and inefficient |
| scheme; try to read in blocks of code, and look for a "bve,n (rp)" |
| instruction. These are likely to occur at the end of functions, so |
| we only look at the last two instructions of each function. */ |
| ALL_OBJFILE_MSYMBOLS (obj, msym) |
| { |
| CORE_ADDR begin, end; |
| const char *name; |
| gdb_byte buf[2 * HPPA_INSN_SIZE]; |
| int offset; |
| |
| find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name, |
| &begin, &end); |
| |
| if (name == NULL || begin == 0 || end == 0) |
| continue; |
| |
| if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0) |
| { |
| for (offset = 0; offset < sizeof (buf); offset++) |
| { |
| unsigned int insn; |
| |
| insn = extract_unsigned_integer (buf + offset, |
| HPPA_INSN_SIZE, byte_order); |
| if (insn == 0xe840d002) /* bve,n (rp) */ |
| { |
| addr = (end - sizeof (buf)) + offset; |
| goto found_pattern; |
| } |
| } |
| } |
| } |
| |
| /* Can't find a suitable sequence. */ |
| return 0; |
| |
| found_pattern: |
| priv->dummy_call_sequence_addr = addr; |
| /* Right now we only look for a "bve,l (rp)" sequence, so the register is |
| always HPPA_RP_REGNUM. */ |
| priv->dummy_call_sequence_reg = HPPA_RP_REGNUM; |
| |
| *argreg = priv->dummy_call_sequence_reg; |
| return priv->dummy_call_sequence_addr; |
| } |
| |
| static CORE_ADDR |
| hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr) |
| { |
| struct objfile *objfile; |
| struct minimal_symbol *funsym, *stubsym; |
| CORE_ADDR stubaddr; |
| |
| funsym = lookup_minimal_symbol_by_pc (funcaddr); |
| stubaddr = 0; |
| |
| ALL_OBJFILES (objfile) |
| { |
| stubsym = lookup_minimal_symbol_solib_trampoline |
| (SYMBOL_LINKAGE_NAME (funsym), objfile); |
| |
| if (stubsym) |
| { |
| struct unwind_table_entry *u; |
| |
| u = find_unwind_entry (SYMBOL_VALUE (stubsym)); |
| if (u == NULL |
| || (u->stub_unwind.stub_type != IMPORT |
| && u->stub_unwind.stub_type != IMPORT_SHLIB)) |
| continue; |
| |
| stubaddr = SYMBOL_VALUE (stubsym); |
| |
| /* If we found an IMPORT stub, then we can stop searching; |
| if we found an IMPORT_SHLIB, we want to continue the search |
| in the hopes that we will find an IMPORT stub. */ |
| if (u->stub_unwind.stub_type == IMPORT) |
| break; |
| } |
| } |
| |
| return stubaddr; |
| } |
| |
| static int |
| hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| int sr; |
| /* The space register to use is encoded in the top 2 bits of the address. */ |
| sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2); |
| return sr + 4; |
| } |
| |
| static CORE_ADDR |
| hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr) |
| { |
| /* In order for us to restore the space register to its starting state, |
| we need the dummy trampoline to return to an instruction address in |
| the same space as where we started the call. We used to place the |
| breakpoint near the current pc, however, this breaks nested dummy calls |
| as the nested call will hit the breakpoint address and terminate |
| prematurely. Instead, we try to look for an address in the same space to |
| put the breakpoint. |
| |
| This is similar in spirit to putting the breakpoint at the "entry point" |
| of an executable. */ |
| |
| struct obj_section *sec; |
| struct unwind_table_entry *u; |
| struct minimal_symbol *msym; |
| CORE_ADDR func; |
| |
| sec = find_pc_section (addr); |
| if (sec) |
| { |
| /* First try the lowest address in the section; we can use it as long |
| as it is "regular" code (i.e. not a stub). */ |
| u = find_unwind_entry (obj_section_addr (sec)); |
| if (!u || u->stub_unwind.stub_type == 0) |
| return obj_section_addr (sec); |
| |
| /* Otherwise, we need to find a symbol for a regular function. We |
| do this by walking the list of msymbols in the objfile. The symbol |
| we find should not be the same as the function that was passed in. */ |
| |
| /* FIXME: this is broken, because we can find a function that will be |
| called by the dummy call target function, which will still not |
| work. */ |
| |
| find_pc_partial_function (addr, NULL, &func, NULL); |
| ALL_OBJFILE_MSYMBOLS (sec->objfile, msym) |
| { |
| u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym)); |
| if (func != SYMBOL_VALUE_ADDRESS (msym) |
| && (!u || u->stub_unwind.stub_type == 0)) |
| return SYMBOL_VALUE_ADDRESS (msym); |
| } |
| } |
| |
| warning (_("Cannot find suitable address to place dummy breakpoint; nested " |
| "calls may fail.")); |
| return addr - 4; |
| } |
| |
| static CORE_ADDR |
| hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, |
| CORE_ADDR funcaddr, |
| struct value **args, int nargs, |
| struct type *value_type, |
| CORE_ADDR *real_pc, CORE_ADDR *bp_addr, |
| struct regcache *regcache) |
| { |
| CORE_ADDR pc, stubaddr; |
| int argreg = 0; |
| |
| pc = regcache_read_pc (regcache); |
| |
| /* Note: we don't want to pass a function descriptor here; push_dummy_call |
| fills in the PIC register for us. */ |
| funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL); |
| |
| /* The simple case is where we call a function in the same space that we are |
| currently in; in that case we don't really need to do anything. */ |
| if (hppa_hpux_sr_for_addr (gdbarch, pc) |
| == hppa_hpux_sr_for_addr (gdbarch, funcaddr)) |
| { |
| /* Intraspace call. */ |
| *bp_addr = hppa_hpux_find_dummy_bpaddr (pc); |
| *real_pc = funcaddr; |
| regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr); |
| |
| return sp; |
| } |
| |
| /* In order to make an interspace call, we need to go through a stub. |
| gcc supplies an appropriate stub called "__gcc_plt_call", however, if |
| an application is compiled with HP compilers then this stub is not |
| available. We used to fallback to "__d_plt_call", however that stub |
| is not entirely useful for us because it doesn't do an interspace |
| return back to the caller. Also, on hppa64-hpux, there is no |
| __gcc_plt_call available. In order to keep the code uniform, we |
| instead don't use either of these stubs, but instead write our own |
| onto the stack. |
| |
| A problem arises since the stack is located in a different space than |
| code, so in order to branch to a stack stub, we will need to do an |
| interspace branch. Previous versions of gdb did this by modifying code |
| at the current pc and doing single-stepping to set the pcsq. Since this |
| is highly undesirable, we use a different scheme: |
| |
| All we really need to do the branch to the stub is a short instruction |
| sequence like this: |
| |
| PA1.1: |
| ldsid (rX),r1 |
| mtsp r1,sr0 |
| be,n (sr0,rX) |
| |
| PA2.0: |
| bve,n (sr0,rX) |
| |
| Instead of writing these sequences ourselves, we can find it in |
| the instruction stream that belongs to the current space. While this |
| seems difficult at first, we are actually guaranteed to find the sequences |
| in several places: |
| |
| For 32-bit code: |
| - in export stubs for shared libraries |
| - in the "noshlibs" routine in the main module |
| |
| For 64-bit code: |
| - at the end of each "regular" function |
| |
| We cache the address of these sequences in the objfile's private data |
| since these operations can potentially be quite expensive. |
| |
| So, what we do is: |
| - write a stack trampoline |
| - look for a suitable instruction sequence in the current space |
| - point the sequence at the trampoline |
| - set the return address of the trampoline to the current space |
| (see hppa_hpux_find_dummy_call_bpaddr) |
| - set the continuing address of the "dummy code" as the sequence. */ |
| |
| if (IS_32BIT_TARGET (gdbarch)) |
| { |
| static unsigned int hppa32_tramp[] = { |
| 0x0fdf1291, /* stw r31,-8(,sp) */ |
| 0x02c010a1, /* ldsid (,r22),r1 */ |
| 0x00011820, /* mtsp r1,sr0 */ |
| 0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */ |
| 0x081f0242, /* copy r31,rp */ |
| 0x0fd11082, /* ldw -8(,sp),rp */ |
| 0x004010a1, /* ldsid (,rp),r1 */ |
| 0x00011820, /* mtsp r1,sr0 */ |
| 0xe0400000, /* be 0(sr0,rp) */ |
| 0x08000240 /* nop */ |
| }; |
| |
| /* for hppa32, we must call the function through a stub so that on |
| return it can return to the space of our trampoline. */ |
| stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr); |
| if (stubaddr == 0) |
| error (_("Cannot call external function not referenced by application " |
| "(no import stub).\n")); |
| regcache_cooked_write_unsigned (regcache, 22, stubaddr); |
| |
| write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp)); |
| |
| *bp_addr = hppa_hpux_find_dummy_bpaddr (pc); |
| regcache_cooked_write_unsigned (regcache, 31, *bp_addr); |
| |
| *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg); |
| if (*real_pc == 0) |
| error (_("Cannot make interspace call from here.")); |
| |
| regcache_cooked_write_unsigned (regcache, argreg, sp); |
| |
| sp += sizeof (hppa32_tramp); |
| } |
| else |
| { |
| static unsigned int hppa64_tramp[] = { |
| 0xeac0f000, /* bve,l (r22),%r2 */ |
| 0x0fdf12d1, /* std r31,-8(,sp) */ |
| 0x0fd110c2, /* ldd -8(,sp),rp */ |
| 0xe840d002, /* bve,n (rp) */ |
| 0x08000240 /* nop */ |
| }; |
| |
| /* for hppa64, we don't need to call through a stub; all functions |
| return via a bve. */ |
| regcache_cooked_write_unsigned (regcache, 22, funcaddr); |
| write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp)); |
| |
| *bp_addr = pc - 4; |
| regcache_cooked_write_unsigned (regcache, 31, *bp_addr); |
| |
| *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg); |
| if (*real_pc == 0) |
| error (_("Cannot make interspace call from here.")); |
| |
| regcache_cooked_write_unsigned (regcache, argreg, sp); |
| |
| sp += sizeof (hppa64_tramp); |
| } |
| |
| sp = gdbarch_frame_align (gdbarch, sp); |
| |
| return sp; |
| } |
| |
| |
| |
| static void |
| hppa_hpux_supply_ss_narrow (struct regcache *regcache, |
| int regnum, const char *save_state) |
| { |
| const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET; |
| int i, offset = 0; |
| |
| for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++) |
| { |
| if (regnum == i || regnum == -1) |
| regcache_raw_supply (regcache, i, ss_narrow + offset); |
| |
| offset += 4; |
| } |
| } |
| |
| static void |
| hppa_hpux_supply_ss_fpblock (struct regcache *regcache, |
| int regnum, const char *save_state) |
| { |
| const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET; |
| int i, offset = 0; |
| |
| /* FIXME: We view the floating-point state as 64 single-precision |
| registers for 32-bit code, and 32 double-precision register for |
| 64-bit code. This distinction is artificial and should be |
| eliminated. If that ever happens, we should remove the if-clause |
| below. */ |
| |
| if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4) |
| { |
| for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++) |
| { |
| if (regnum == i || regnum == -1) |
| regcache_raw_supply (regcache, i, ss_fpblock + offset); |
| |
| offset += 4; |
| } |
| } |
| else |
| { |
| for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++) |
| { |
| if (regnum == i || regnum == -1) |
| regcache_raw_supply (regcache, i, ss_fpblock + offset); |
| |
| offset += 8; |
| } |
| } |
| } |
| |
| static void |
| hppa_hpux_supply_ss_wide (struct regcache *regcache, |
| int regnum, const char *save_state) |
| { |
| const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET; |
| int i, offset = 8; |
| |
| if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4) |
| offset += 4; |
| |
| for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++) |
| { |
| if (regnum == i || regnum == -1) |
| regcache_raw_supply (regcache, i, ss_wide + offset); |
| |
| offset += 8; |
| } |
| } |
| |
| static void |
| hppa_hpux_supply_save_state (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *regs, size_t len) |
| { |
| struct gdbarch *gdbarch = get_regcache_arch (regcache); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| const char *proc_info = regs; |
| const char *save_state = proc_info + 8; |
| ULONGEST flags; |
| |
| flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET, |
| 4, byte_order); |
| if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM) |
| { |
| size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM); |
| char buf[8]; |
| |
| store_unsigned_integer (buf, size, byte_order, flags); |
| regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf); |
| } |
| |
| /* If the SS_WIDEREGS flag is set, we really do need the full |
| `struct save_state'. */ |
| if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE) |
| error (_("Register set contents too small")); |
| |
| if (flags & HPPA_HPUX_SS_WIDEREGS) |
| hppa_hpux_supply_ss_wide (regcache, regnum, save_state); |
| else |
| hppa_hpux_supply_ss_narrow (regcache, regnum, save_state); |
| |
| hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state); |
| } |
| |
| /* HP-UX register set. */ |
| |
| static struct regset hppa_hpux_regset = |
| { |
| NULL, |
| hppa_hpux_supply_save_state |
| }; |
| |
| static const struct regset * |
| hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch, |
| const char *sect_name, size_t sect_size) |
| { |
| if (strcmp (sect_name, ".reg") == 0 |
| && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8) |
| return &hppa_hpux_regset; |
| |
| return NULL; |
| } |
| |
| |
| /* Bit in the `ss_flag' member of `struct save_state' that indicates |
| the state was saved from a system call. From |
| <machine/save_state.h>. */ |
| #define HPPA_HPUX_SS_INSYSCALL 0x02 |
| |
| static CORE_ADDR |
| hppa_hpux_read_pc (struct regcache *regcache) |
| { |
| ULONGEST flags; |
| |
| /* If we're currently in a system call return the contents of %r31. */ |
| regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags); |
| if (flags & HPPA_HPUX_SS_INSYSCALL) |
| { |
| ULONGEST pc; |
| regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc); |
| return pc & ~0x3; |
| } |
| |
| return hppa_read_pc (regcache); |
| } |
| |
| static void |
| hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc) |
| { |
| ULONGEST flags; |
| |
| /* If we're currently in a system call also write PC into %r31. */ |
| regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags); |
| if (flags & HPPA_HPUX_SS_INSYSCALL) |
| regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3); |
| |
| hppa_write_pc (regcache, pc); |
| } |
| |
| static CORE_ADDR |
| hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| { |
| ULONGEST flags; |
| |
| /* If we're currently in a system call return the contents of %r31. */ |
| flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM); |
| if (flags & HPPA_HPUX_SS_INSYSCALL) |
| return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3; |
| |
| return hppa_unwind_pc (gdbarch, next_frame); |
| } |
| |
| |
| /* Given the current value of the pc, check to see if it is inside a stub, and |
| if so, change the value of the pc to point to the caller of the stub. |
| THIS_FRAME is the current frame in the current list of frames. |
| BASE contains to stack frame base of the current frame. |
| SAVE_REGS is the register file stored in the frame cache. */ |
| static void |
| hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base, |
| struct trad_frame_saved_reg *saved_regs) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| struct value *pcoq_head_val; |
| ULONGEST pcoq_head; |
| CORE_ADDR stubpc; |
| struct unwind_table_entry *u; |
| |
| pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs, |
| HPPA_PCOQ_HEAD_REGNUM); |
| pcoq_head = |
| extract_unsigned_integer (value_contents_all (pcoq_head_val), |
| register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM), |
| byte_order); |
| |
| u = find_unwind_entry (pcoq_head); |
| if (u && u->stub_unwind.stub_type == EXPORT) |
| { |
| stubpc = read_memory_integer (base - 24, word_size, byte_order); |
| trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc); |
| } |
| else if (hppa_symbol_address ("__gcc_plt_call") |
| == get_pc_function_start (pcoq_head)) |
| { |
| stubpc = read_memory_integer (base - 8, word_size, byte_order); |
| trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc); |
| } |
| } |
| |
| static void |
| hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (IS_32BIT_TARGET (gdbarch)) |
| tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline; |
| else |
| tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline; |
| |
| tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub; |
| |
| set_gdbarch_in_solib_return_trampoline |
| (gdbarch, hppa_hpux_in_solib_return_trampoline); |
| set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code); |
| |
| set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code); |
| set_gdbarch_call_dummy_location (gdbarch, ON_STACK); |
| |
| set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc); |
| set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc); |
| set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc); |
| set_gdbarch_skip_permanent_breakpoint |
| (gdbarch, hppa_skip_permanent_breakpoint); |
| |
| set_gdbarch_regset_from_core_section |
| (gdbarch, hppa_hpux_regset_from_core_section); |
| |
| frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind); |
| } |
| |
| static void |
| hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| tdep->is_elf = 0; |
| |
| tdep->find_global_pointer = hppa32_hpux_find_global_pointer; |
| |
| hppa_hpux_init_abi (info, gdbarch); |
| som_solib_select (gdbarch); |
| } |
| |
| static void |
| hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| tdep->is_elf = 1; |
| tdep->find_global_pointer = hppa64_hpux_find_global_pointer; |
| |
| hppa_hpux_init_abi (info, gdbarch); |
| pa64_solib_select (gdbarch); |
| } |
| |
| static enum gdb_osabi |
| hppa_hpux_core_osabi_sniffer (bfd *abfd) |
| { |
| if (strcmp (bfd_get_target (abfd), "hpux-core") == 0) |
| return GDB_OSABI_HPUX_SOM; |
| else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0) |
| { |
| asection *section; |
| |
| section = bfd_get_section_by_name (abfd, ".kernel"); |
| if (section) |
| { |
| bfd_size_type size; |
| char *contents; |
| |
| size = bfd_section_size (abfd, section); |
| contents = alloca (size); |
| if (bfd_get_section_contents (abfd, section, contents, |
| (file_ptr) 0, size) |
| && strcmp (contents, "HP-UX") == 0) |
| return GDB_OSABI_HPUX_ELF; |
| } |
| } |
| |
| return GDB_OSABI_UNKNOWN; |
| } |
| |
| void |
| _initialize_hppa_hpux_tdep (void) |
| { |
| /* BFD doesn't set a flavour for HP-UX style core files. It doesn't |
| set the architecture either. */ |
| gdbarch_register_osabi_sniffer (bfd_arch_unknown, |
| bfd_target_unknown_flavour, |
| hppa_hpux_core_osabi_sniffer); |
| gdbarch_register_osabi_sniffer (bfd_arch_hppa, |
| bfd_target_elf_flavour, |
| hppa_hpux_core_osabi_sniffer); |
| |
| gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM, |
| hppa_hpux_som_init_abi); |
| gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF, |
| hppa_hpux_elf_init_abi); |
| } |