| /* Evaluate expressions for GDB. |
| |
| Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "gdb_string.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "value.h" |
| #include "expression.h" |
| #include "target.h" |
| #include "frame.h" |
| #include "language.h" /* For CAST_IS_CONVERSION. */ |
| #include "f-lang.h" /* For array bound stuff. */ |
| #include "cp-abi.h" |
| #include "infcall.h" |
| #include "objc-lang.h" |
| #include "block.h" |
| #include "parser-defs.h" |
| #include "cp-support.h" |
| #include "ui-out.h" |
| #include "exceptions.h" |
| #include "regcache.h" |
| #include "user-regs.h" |
| #include "valprint.h" |
| #include "gdb_obstack.h" |
| #include "objfiles.h" |
| #include "python/python.h" |
| |
| #include "gdb_assert.h" |
| |
| #include <ctype.h> |
| |
| /* This is defined in valops.c */ |
| extern int overload_resolution; |
| |
| /* Prototypes for local functions. */ |
| |
| static struct value *evaluate_subexp_for_sizeof (struct expression *, int *); |
| |
| static struct value *evaluate_subexp_for_address (struct expression *, |
| int *, enum noside); |
| |
| static char *get_label (struct expression *, int *); |
| |
| static struct value *evaluate_struct_tuple (struct value *, |
| struct expression *, int *, |
| enum noside, int); |
| |
| static LONGEST init_array_element (struct value *, struct value *, |
| struct expression *, int *, enum noside, |
| LONGEST, LONGEST); |
| |
| struct value * |
| evaluate_subexp (struct type *expect_type, struct expression *exp, |
| int *pos, enum noside noside) |
| { |
| return (*exp->language_defn->la_exp_desc->evaluate_exp) |
| (expect_type, exp, pos, noside); |
| } |
| |
| /* Parse the string EXP as a C expression, evaluate it, |
| and return the result as a number. */ |
| |
| CORE_ADDR |
| parse_and_eval_address (char *exp) |
| { |
| struct expression *expr = parse_expression (exp); |
| CORE_ADDR addr; |
| struct cleanup *old_chain = |
| make_cleanup (free_current_contents, &expr); |
| |
| addr = value_as_address (evaluate_expression (expr)); |
| do_cleanups (old_chain); |
| return addr; |
| } |
| |
| /* Like parse_and_eval_address, but treats the value of the expression |
| as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */ |
| LONGEST |
| parse_and_eval_long (char *exp) |
| { |
| struct expression *expr = parse_expression (exp); |
| LONGEST retval; |
| struct cleanup *old_chain = |
| make_cleanup (free_current_contents, &expr); |
| |
| retval = value_as_long (evaluate_expression (expr)); |
| do_cleanups (old_chain); |
| return (retval); |
| } |
| |
| struct value * |
| parse_and_eval (char *exp) |
| { |
| struct expression *expr = parse_expression (exp); |
| struct value *val; |
| struct cleanup *old_chain = |
| make_cleanup (free_current_contents, &expr); |
| |
| val = evaluate_expression (expr); |
| do_cleanups (old_chain); |
| return val; |
| } |
| |
| /* Parse up to a comma (or to a closeparen) |
| in the string EXPP as an expression, evaluate it, and return the value. |
| EXPP is advanced to point to the comma. */ |
| |
| struct value * |
| parse_to_comma_and_eval (char **expp) |
| { |
| struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1); |
| struct value *val; |
| struct cleanup *old_chain = |
| make_cleanup (free_current_contents, &expr); |
| |
| val = evaluate_expression (expr); |
| do_cleanups (old_chain); |
| return val; |
| } |
| |
| /* Evaluate an expression in internal prefix form |
| such as is constructed by parse.y. |
| |
| See expression.h for info on the format of an expression. */ |
| |
| struct value * |
| evaluate_expression (struct expression *exp) |
| { |
| int pc = 0; |
| |
| return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL); |
| } |
| |
| /* Evaluate an expression, avoiding all memory references |
| and getting a value whose type alone is correct. */ |
| |
| struct value * |
| evaluate_type (struct expression *exp) |
| { |
| int pc = 0; |
| |
| return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS); |
| } |
| |
| /* Evaluate a subexpression, avoiding all memory references and |
| getting a value whose type alone is correct. */ |
| |
| struct value * |
| evaluate_subexpression_type (struct expression *exp, int subexp) |
| { |
| return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS); |
| } |
| |
| /* Find the current value of a watchpoint on EXP. Return the value in |
| *VALP and *RESULTP and the chain of intermediate and final values |
| in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does |
| not need them. |
| |
| If a memory error occurs while evaluating the expression, *RESULTP will |
| be set to NULL. *RESULTP may be a lazy value, if the result could |
| not be read from memory. It is used to determine whether a value |
| is user-specified (we should watch the whole value) or intermediate |
| (we should watch only the bit used to locate the final value). |
| |
| If the final value, or any intermediate value, could not be read |
| from memory, *VALP will be set to NULL. *VAL_CHAIN will still be |
| set to any referenced values. *VALP will never be a lazy value. |
| This is the value which we store in struct breakpoint. |
| |
| If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the |
| value chain. The caller must free the values individually. If |
| VAL_CHAIN is NULL, all generated values will be left on the value |
| chain. */ |
| |
| void |
| fetch_subexp_value (struct expression *exp, int *pc, struct value **valp, |
| struct value **resultp, struct value **val_chain) |
| { |
| struct value *mark, *new_mark, *result; |
| volatile struct gdb_exception ex; |
| |
| *valp = NULL; |
| if (resultp) |
| *resultp = NULL; |
| if (val_chain) |
| *val_chain = NULL; |
| |
| /* Evaluate the expression. */ |
| mark = value_mark (); |
| result = NULL; |
| |
| TRY_CATCH (ex, RETURN_MASK_ALL) |
| { |
| result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL); |
| } |
| if (ex.reason < 0) |
| { |
| /* Ignore memory errors, we want watchpoints pointing at |
| inaccessible memory to still be created; otherwise, throw the |
| error to some higher catcher. */ |
| switch (ex.error) |
| { |
| case MEMORY_ERROR: |
| break; |
| default: |
| throw_exception (ex); |
| break; |
| } |
| } |
| |
| new_mark = value_mark (); |
| if (mark == new_mark) |
| return; |
| if (resultp) |
| *resultp = result; |
| |
| /* Make sure it's not lazy, so that after the target stops again we |
| have a non-lazy previous value to compare with. */ |
| if (result != NULL) |
| { |
| if (!value_lazy (result)) |
| *valp = result; |
| else |
| { |
| volatile struct gdb_exception except; |
| |
| TRY_CATCH (except, RETURN_MASK_ERROR) |
| { |
| value_fetch_lazy (result); |
| *valp = result; |
| } |
| } |
| } |
| |
| if (val_chain) |
| { |
| /* Return the chain of intermediate values. We use this to |
| decide which addresses to watch. */ |
| *val_chain = new_mark; |
| value_release_to_mark (mark); |
| } |
| } |
| |
| /* Extract a field operation from an expression. If the subexpression |
| of EXP starting at *SUBEXP is not a structure dereference |
| operation, return NULL. Otherwise, return the name of the |
| dereferenced field, and advance *SUBEXP to point to the |
| subexpression of the left-hand-side of the dereference. This is |
| used when completing field names. */ |
| |
| char * |
| extract_field_op (struct expression *exp, int *subexp) |
| { |
| int tem; |
| char *result; |
| |
| if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT |
| && exp->elts[*subexp].opcode != STRUCTOP_PTR) |
| return NULL; |
| tem = longest_to_int (exp->elts[*subexp + 1].longconst); |
| result = &exp->elts[*subexp + 2].string; |
| (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1); |
| return result; |
| } |
| |
| /* If the next expression is an OP_LABELED, skips past it, |
| returning the label. Otherwise, does nothing and returns NULL. */ |
| |
| static char * |
| get_label (struct expression *exp, int *pos) |
| { |
| if (exp->elts[*pos].opcode == OP_LABELED) |
| { |
| int pc = (*pos)++; |
| char *name = &exp->elts[pc + 2].string; |
| int tem = longest_to_int (exp->elts[pc + 1].longconst); |
| |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); |
| return name; |
| } |
| else |
| return NULL; |
| } |
| |
| /* This function evaluates tuples (in (the deleted) Chill) or |
| brace-initializers (in C/C++) for structure types. */ |
| |
| static struct value * |
| evaluate_struct_tuple (struct value *struct_val, |
| struct expression *exp, |
| int *pos, enum noside noside, int nargs) |
| { |
| struct type *struct_type = check_typedef (value_type (struct_val)); |
| struct type *substruct_type = struct_type; |
| struct type *field_type; |
| int fieldno = -1; |
| int variantno = -1; |
| int subfieldno = -1; |
| |
| while (--nargs >= 0) |
| { |
| int pc = *pos; |
| struct value *val = NULL; |
| int nlabels = 0; |
| int bitpos, bitsize; |
| bfd_byte *addr; |
| |
| /* Skip past the labels, and count them. */ |
| while (get_label (exp, pos) != NULL) |
| nlabels++; |
| |
| do |
| { |
| char *label = get_label (exp, &pc); |
| |
| if (label) |
| { |
| for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); |
| fieldno++) |
| { |
| const char *field_name = |
| TYPE_FIELD_NAME (struct_type, fieldno); |
| |
| if (field_name != NULL && strcmp (field_name, label) == 0) |
| { |
| variantno = -1; |
| subfieldno = fieldno; |
| substruct_type = struct_type; |
| goto found; |
| } |
| } |
| for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); |
| fieldno++) |
| { |
| const char *field_name = |
| TYPE_FIELD_NAME (struct_type, fieldno); |
| |
| field_type = TYPE_FIELD_TYPE (struct_type, fieldno); |
| if ((field_name == 0 || *field_name == '\0') |
| && TYPE_CODE (field_type) == TYPE_CODE_UNION) |
| { |
| variantno = 0; |
| for (; variantno < TYPE_NFIELDS (field_type); |
| variantno++) |
| { |
| substruct_type |
| = TYPE_FIELD_TYPE (field_type, variantno); |
| if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT) |
| { |
| for (subfieldno = 0; |
| subfieldno < TYPE_NFIELDS (substruct_type); |
| subfieldno++) |
| { |
| if (strcmp(TYPE_FIELD_NAME (substruct_type, |
| subfieldno), |
| label) == 0) |
| { |
| goto found; |
| } |
| } |
| } |
| } |
| } |
| } |
| error (_("there is no field named %s"), label); |
| found: |
| ; |
| } |
| else |
| { |
| /* Unlabelled tuple element - go to next field. */ |
| if (variantno >= 0) |
| { |
| subfieldno++; |
| if (subfieldno >= TYPE_NFIELDS (substruct_type)) |
| { |
| variantno = -1; |
| substruct_type = struct_type; |
| } |
| } |
| if (variantno < 0) |
| { |
| fieldno++; |
| /* Skip static fields. */ |
| while (fieldno < TYPE_NFIELDS (struct_type) |
| && field_is_static (&TYPE_FIELD (struct_type, |
| fieldno))) |
| fieldno++; |
| subfieldno = fieldno; |
| if (fieldno >= TYPE_NFIELDS (struct_type)) |
| error (_("too many initializers")); |
| field_type = TYPE_FIELD_TYPE (struct_type, fieldno); |
| if (TYPE_CODE (field_type) == TYPE_CODE_UNION |
| && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0') |
| error (_("don't know which variant you want to set")); |
| } |
| } |
| |
| /* Here, struct_type is the type of the inner struct, |
| while substruct_type is the type of the inner struct. |
| These are the same for normal structures, but a variant struct |
| contains anonymous union fields that contain substruct fields. |
| The value fieldno is the index of the top-level (normal or |
| anonymous union) field in struct_field, while the value |
| subfieldno is the index of the actual real (named inner) field |
| in substruct_type. */ |
| |
| field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno); |
| if (val == 0) |
| val = evaluate_subexp (field_type, exp, pos, noside); |
| |
| /* Now actually set the field in struct_val. */ |
| |
| /* Assign val to field fieldno. */ |
| if (value_type (val) != field_type) |
| val = value_cast (field_type, val); |
| |
| bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno); |
| bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno); |
| if (variantno >= 0) |
| bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno); |
| addr = value_contents_writeable (struct_val) + bitpos / 8; |
| if (bitsize) |
| modify_field (struct_type, addr, |
| value_as_long (val), bitpos % 8, bitsize); |
| else |
| memcpy (addr, value_contents (val), |
| TYPE_LENGTH (value_type (val))); |
| } |
| while (--nlabels > 0); |
| } |
| return struct_val; |
| } |
| |
| /* Recursive helper function for setting elements of array tuples for |
| (the deleted) Chill. The target is ARRAY (which has bounds |
| LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS |
| and NOSIDE are as usual. Evaluates index expresions and sets the |
| specified element(s) of ARRAY to ELEMENT. Returns last index |
| value. */ |
| |
| static LONGEST |
| init_array_element (struct value *array, struct value *element, |
| struct expression *exp, int *pos, |
| enum noside noside, LONGEST low_bound, LONGEST high_bound) |
| { |
| LONGEST index; |
| int element_size = TYPE_LENGTH (value_type (element)); |
| |
| if (exp->elts[*pos].opcode == BINOP_COMMA) |
| { |
| (*pos)++; |
| init_array_element (array, element, exp, pos, noside, |
| low_bound, high_bound); |
| return init_array_element (array, element, |
| exp, pos, noside, low_bound, high_bound); |
| } |
| else if (exp->elts[*pos].opcode == BINOP_RANGE) |
| { |
| LONGEST low, high; |
| |
| (*pos)++; |
| low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| if (low < low_bound || high > high_bound) |
| error (_("tuple range index out of range")); |
| for (index = low; index <= high; index++) |
| { |
| memcpy (value_contents_raw (array) |
| + (index - low_bound) * element_size, |
| value_contents (element), element_size); |
| } |
| } |
| else |
| { |
| index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| if (index < low_bound || index > high_bound) |
| error (_("tuple index out of range")); |
| memcpy (value_contents_raw (array) + (index - low_bound) * element_size, |
| value_contents (element), element_size); |
| } |
| return index; |
| } |
| |
| static struct value * |
| value_f90_subarray (struct value *array, |
| struct expression *exp, int *pos, enum noside noside) |
| { |
| int pc = (*pos) + 1; |
| LONGEST low_bound, high_bound; |
| struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array))); |
| enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst); |
| |
| *pos += 3; |
| |
| if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT) |
| low_bound = TYPE_LOW_BOUND (range); |
| else |
| low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| |
| if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT) |
| high_bound = TYPE_HIGH_BOUND (range); |
| else |
| high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| |
| return value_slice (array, low_bound, high_bound - low_bound + 1); |
| } |
| |
| |
| /* Promote value ARG1 as appropriate before performing a unary operation |
| on this argument. |
| If the result is not appropriate for any particular language then it |
| needs to patch this function. */ |
| |
| void |
| unop_promote (const struct language_defn *language, struct gdbarch *gdbarch, |
| struct value **arg1) |
| { |
| struct type *type1; |
| |
| *arg1 = coerce_ref (*arg1); |
| type1 = check_typedef (value_type (*arg1)); |
| |
| if (is_integral_type (type1)) |
| { |
| switch (language->la_language) |
| { |
| default: |
| /* Perform integral promotion for ANSI C/C++. |
| If not appropropriate for any particular language |
| it needs to modify this function. */ |
| { |
| struct type *builtin_int = builtin_type (gdbarch)->builtin_int; |
| |
| if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int)) |
| *arg1 = value_cast (builtin_int, *arg1); |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Promote values ARG1 and ARG2 as appropriate before performing a binary |
| operation on those two operands. |
| If the result is not appropriate for any particular language then it |
| needs to patch this function. */ |
| |
| void |
| binop_promote (const struct language_defn *language, struct gdbarch *gdbarch, |
| struct value **arg1, struct value **arg2) |
| { |
| struct type *promoted_type = NULL; |
| struct type *type1; |
| struct type *type2; |
| |
| *arg1 = coerce_ref (*arg1); |
| *arg2 = coerce_ref (*arg2); |
| |
| type1 = check_typedef (value_type (*arg1)); |
| type2 = check_typedef (value_type (*arg2)); |
| |
| if ((TYPE_CODE (type1) != TYPE_CODE_FLT |
| && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT |
| && !is_integral_type (type1)) |
| || (TYPE_CODE (type2) != TYPE_CODE_FLT |
| && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT |
| && !is_integral_type (type2))) |
| return; |
| |
| if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT |
| || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT) |
| { |
| /* No promotion required. */ |
| } |
| else if (TYPE_CODE (type1) == TYPE_CODE_FLT |
| || TYPE_CODE (type2) == TYPE_CODE_FLT) |
| { |
| switch (language->la_language) |
| { |
| case language_c: |
| case language_cplus: |
| case language_asm: |
| case language_objc: |
| case language_opencl: |
| /* No promotion required. */ |
| break; |
| |
| default: |
| /* For other languages the result type is unchanged from gdb |
| version 6.7 for backward compatibility. |
| If either arg was long double, make sure that value is also long |
| double. Otherwise use double. */ |
| if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch) |
| || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch)) |
| promoted_type = builtin_type (gdbarch)->builtin_long_double; |
| else |
| promoted_type = builtin_type (gdbarch)->builtin_double; |
| break; |
| } |
| } |
| else if (TYPE_CODE (type1) == TYPE_CODE_BOOL |
| && TYPE_CODE (type2) == TYPE_CODE_BOOL) |
| { |
| /* No promotion required. */ |
| } |
| else |
| /* Integral operations here. */ |
| /* FIXME: Also mixed integral/booleans, with result an integer. */ |
| { |
| const struct builtin_type *builtin = builtin_type (gdbarch); |
| unsigned int promoted_len1 = TYPE_LENGTH (type1); |
| unsigned int promoted_len2 = TYPE_LENGTH (type2); |
| int is_unsigned1 = TYPE_UNSIGNED (type1); |
| int is_unsigned2 = TYPE_UNSIGNED (type2); |
| unsigned int result_len; |
| int unsigned_operation; |
| |
| /* Determine type length and signedness after promotion for |
| both operands. */ |
| if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int)) |
| { |
| is_unsigned1 = 0; |
| promoted_len1 = TYPE_LENGTH (builtin->builtin_int); |
| } |
| if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int)) |
| { |
| is_unsigned2 = 0; |
| promoted_len2 = TYPE_LENGTH (builtin->builtin_int); |
| } |
| |
| if (promoted_len1 > promoted_len2) |
| { |
| unsigned_operation = is_unsigned1; |
| result_len = promoted_len1; |
| } |
| else if (promoted_len2 > promoted_len1) |
| { |
| unsigned_operation = is_unsigned2; |
| result_len = promoted_len2; |
| } |
| else |
| { |
| unsigned_operation = is_unsigned1 || is_unsigned2; |
| result_len = promoted_len1; |
| } |
| |
| switch (language->la_language) |
| { |
| case language_c: |
| case language_cplus: |
| case language_asm: |
| case language_objc: |
| if (result_len <= TYPE_LENGTH (builtin->builtin_int)) |
| { |
| promoted_type = (unsigned_operation |
| ? builtin->builtin_unsigned_int |
| : builtin->builtin_int); |
| } |
| else if (result_len <= TYPE_LENGTH (builtin->builtin_long)) |
| { |
| promoted_type = (unsigned_operation |
| ? builtin->builtin_unsigned_long |
| : builtin->builtin_long); |
| } |
| else |
| { |
| promoted_type = (unsigned_operation |
| ? builtin->builtin_unsigned_long_long |
| : builtin->builtin_long_long); |
| } |
| break; |
| case language_opencl: |
| if (result_len <= TYPE_LENGTH (lookup_signed_typename |
| (language, gdbarch, "int"))) |
| { |
| promoted_type = |
| (unsigned_operation |
| ? lookup_unsigned_typename (language, gdbarch, "int") |
| : lookup_signed_typename (language, gdbarch, "int")); |
| } |
| else if (result_len <= TYPE_LENGTH (lookup_signed_typename |
| (language, gdbarch, "long"))) |
| { |
| promoted_type = |
| (unsigned_operation |
| ? lookup_unsigned_typename (language, gdbarch, "long") |
| : lookup_signed_typename (language, gdbarch,"long")); |
| } |
| break; |
| default: |
| /* For other languages the result type is unchanged from gdb |
| version 6.7 for backward compatibility. |
| If either arg was long long, make sure that value is also long |
| long. Otherwise use long. */ |
| if (unsigned_operation) |
| { |
| if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT) |
| promoted_type = builtin->builtin_unsigned_long_long; |
| else |
| promoted_type = builtin->builtin_unsigned_long; |
| } |
| else |
| { |
| if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT) |
| promoted_type = builtin->builtin_long_long; |
| else |
| promoted_type = builtin->builtin_long; |
| } |
| break; |
| } |
| } |
| |
| if (promoted_type) |
| { |
| /* Promote both operands to common type. */ |
| *arg1 = value_cast (promoted_type, *arg1); |
| *arg2 = value_cast (promoted_type, *arg2); |
| } |
| } |
| |
| static int |
| ptrmath_type_p (const struct language_defn *lang, struct type *type) |
| { |
| type = check_typedef (type); |
| if (TYPE_CODE (type) == TYPE_CODE_REF) |
| type = TYPE_TARGET_TYPE (type); |
| |
| switch (TYPE_CODE (type)) |
| { |
| case TYPE_CODE_PTR: |
| case TYPE_CODE_FUNC: |
| return 1; |
| |
| case TYPE_CODE_ARRAY: |
| return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Constructs a fake method with the given parameter types. |
| This function is used by the parser to construct an "expected" |
| type for method overload resolution. */ |
| |
| static struct type * |
| make_params (int num_types, struct type **param_types) |
| { |
| struct type *type = XZALLOC (struct type); |
| TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type); |
| TYPE_LENGTH (type) = 1; |
| TYPE_CODE (type) = TYPE_CODE_METHOD; |
| TYPE_VPTR_FIELDNO (type) = -1; |
| TYPE_CHAIN (type) = type; |
| if (num_types > 0) |
| { |
| if (param_types[num_types - 1] == NULL) |
| { |
| --num_types; |
| TYPE_VARARGS (type) = 1; |
| } |
| else if (TYPE_CODE (check_typedef (param_types[num_types - 1])) |
| == TYPE_CODE_VOID) |
| { |
| --num_types; |
| /* Caller should have ensured this. */ |
| gdb_assert (num_types == 0); |
| TYPE_PROTOTYPED (type) = 1; |
| } |
| } |
| |
| TYPE_NFIELDS (type) = num_types; |
| TYPE_FIELDS (type) = (struct field *) |
| TYPE_ZALLOC (type, sizeof (struct field) * num_types); |
| |
| while (num_types-- > 0) |
| TYPE_FIELD_TYPE (type, num_types) = param_types[num_types]; |
| |
| return type; |
| } |
| |
| struct value * |
| evaluate_subexp_standard (struct type *expect_type, |
| struct expression *exp, int *pos, |
| enum noside noside) |
| { |
| enum exp_opcode op; |
| int tem, tem2, tem3; |
| int pc, pc2 = 0, oldpos; |
| struct value *arg1 = NULL; |
| struct value *arg2 = NULL; |
| struct value *arg3; |
| struct type *type; |
| int nargs; |
| struct value **argvec; |
| int lower; |
| int code; |
| int ix; |
| long mem_offset; |
| struct type **arg_types; |
| int save_pos1; |
| struct symbol *function = NULL; |
| char *function_name = NULL; |
| |
| pc = (*pos)++; |
| op = exp->elts[pc].opcode; |
| |
| switch (op) |
| { |
| case OP_SCOPE: |
| tem = longest_to_int (exp->elts[pc + 2].longconst); |
| (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| arg1 = value_aggregate_elt (exp->elts[pc + 1].type, |
| &exp->elts[pc + 3].string, |
| expect_type, 0, noside); |
| if (arg1 == NULL) |
| error (_("There is no field named %s"), &exp->elts[pc + 3].string); |
| return arg1; |
| |
| case OP_LONG: |
| (*pos) += 3; |
| return value_from_longest (exp->elts[pc + 1].type, |
| exp->elts[pc + 2].longconst); |
| |
| case OP_DOUBLE: |
| (*pos) += 3; |
| return value_from_double (exp->elts[pc + 1].type, |
| exp->elts[pc + 2].doubleconst); |
| |
| case OP_DECFLOAT: |
| (*pos) += 3; |
| return value_from_decfloat (exp->elts[pc + 1].type, |
| exp->elts[pc + 2].decfloatconst); |
| |
| case OP_ADL_FUNC: |
| case OP_VAR_VALUE: |
| (*pos) += 3; |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| /* JYG: We used to just return value_zero of the symbol type |
| if we're asked to avoid side effects. Otherwise we return |
| value_of_variable (...). However I'm not sure if |
| value_of_variable () has any side effect. |
| We need a full value object returned here for whatis_exp () |
| to call evaluate_type () and then pass the full value to |
| value_rtti_target_type () if we are dealing with a pointer |
| or reference to a base class and print object is on. */ |
| |
| { |
| volatile struct gdb_exception except; |
| struct value *ret = NULL; |
| |
| TRY_CATCH (except, RETURN_MASK_ERROR) |
| { |
| ret = value_of_variable (exp->elts[pc + 2].symbol, |
| exp->elts[pc + 1].block); |
| } |
| |
| if (except.reason < 0) |
| { |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), |
| not_lval); |
| else |
| throw_exception (except); |
| } |
| |
| return ret; |
| } |
| |
| case OP_VAR_ENTRY_VALUE: |
| (*pos) += 2; |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| { |
| struct symbol *sym = exp->elts[pc + 1].symbol; |
| struct frame_info *frame; |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (SYMBOL_TYPE (sym), not_lval); |
| |
| if (SYMBOL_CLASS (sym) != LOC_COMPUTED |
| || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL) |
| error (_("Symbol \"%s\" does not have any specific entry value"), |
| SYMBOL_PRINT_NAME (sym)); |
| |
| frame = get_selected_frame (NULL); |
| return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame); |
| } |
| |
| case OP_LAST: |
| (*pos) += 2; |
| return |
| access_value_history (longest_to_int (exp->elts[pc + 1].longconst)); |
| |
| case OP_REGISTER: |
| { |
| const char *name = &exp->elts[pc + 2].string; |
| int regno; |
| struct value *val; |
| |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); |
| regno = user_reg_map_name_to_regnum (exp->gdbarch, |
| name, strlen (name)); |
| if (regno == -1) |
| error (_("Register $%s not available."), name); |
| |
| /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return |
| a value with the appropriate register type. Unfortunately, |
| we don't have easy access to the type of user registers. |
| So for these registers, we fetch the register value regardless |
| of the evaluation mode. */ |
| if (noside == EVAL_AVOID_SIDE_EFFECTS |
| && regno < gdbarch_num_regs (exp->gdbarch) |
| + gdbarch_num_pseudo_regs (exp->gdbarch)) |
| val = value_zero (register_type (exp->gdbarch, regno), not_lval); |
| else |
| val = value_of_register (regno, get_selected_frame (NULL)); |
| if (val == NULL) |
| error (_("Value of register %s not available."), name); |
| else |
| return val; |
| } |
| case OP_BOOL: |
| (*pos) += 2; |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, exp->elts[pc + 1].longconst); |
| |
| case OP_INTERNALVAR: |
| (*pos) += 2; |
| return value_of_internalvar (exp->gdbarch, |
| exp->elts[pc + 1].internalvar); |
| |
| case OP_STRING: |
| tem = longest_to_int (exp->elts[pc + 1].longconst); |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| type = language_string_char_type (exp->language_defn, exp->gdbarch); |
| return value_string (&exp->elts[pc + 2].string, tem, type); |
| |
| case OP_OBJC_NSSTRING: /* Objective C Foundation Class |
| NSString constant. */ |
| tem = longest_to_int (exp->elts[pc + 1].longconst); |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); |
| if (noside == EVAL_SKIP) |
| { |
| goto nosideret; |
| } |
| return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1); |
| |
| case OP_BITSTRING: |
| tem = longest_to_int (exp->elts[pc + 1].longconst); |
| (*pos) |
| += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| return value_bitstring (&exp->elts[pc + 2].string, tem, |
| builtin_type (exp->gdbarch)->builtin_int); |
| break; |
| |
| case OP_ARRAY: |
| (*pos) += 3; |
| tem2 = longest_to_int (exp->elts[pc + 1].longconst); |
| tem3 = longest_to_int (exp->elts[pc + 2].longconst); |
| nargs = tem3 - tem2 + 1; |
| type = expect_type ? check_typedef (expect_type) : NULL_TYPE; |
| |
| if (expect_type != NULL_TYPE && noside != EVAL_SKIP |
| && TYPE_CODE (type) == TYPE_CODE_STRUCT) |
| { |
| struct value *rec = allocate_value (expect_type); |
| |
| memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type)); |
| return evaluate_struct_tuple (rec, exp, pos, noside, nargs); |
| } |
| |
| if (expect_type != NULL_TYPE && noside != EVAL_SKIP |
| && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
| { |
| struct type *range_type = TYPE_INDEX_TYPE (type); |
| struct type *element_type = TYPE_TARGET_TYPE (type); |
| struct value *array = allocate_value (expect_type); |
| int element_size = TYPE_LENGTH (check_typedef (element_type)); |
| LONGEST low_bound, high_bound, index; |
| |
| if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) |
| { |
| low_bound = 0; |
| high_bound = (TYPE_LENGTH (type) / element_size) - 1; |
| } |
| index = low_bound; |
| memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type)); |
| for (tem = nargs; --nargs >= 0;) |
| { |
| struct value *element; |
| int index_pc = 0; |
| |
| if (exp->elts[*pos].opcode == BINOP_RANGE) |
| { |
| index_pc = ++(*pos); |
| evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
| } |
| element = evaluate_subexp (element_type, exp, pos, noside); |
| if (value_type (element) != element_type) |
| element = value_cast (element_type, element); |
| if (index_pc) |
| { |
| int continue_pc = *pos; |
| |
| *pos = index_pc; |
| index = init_array_element (array, element, exp, pos, noside, |
| low_bound, high_bound); |
| *pos = continue_pc; |
| } |
| else |
| { |
| if (index > high_bound) |
| /* To avoid memory corruption. */ |
| error (_("Too many array elements")); |
| memcpy (value_contents_raw (array) |
| + (index - low_bound) * element_size, |
| value_contents (element), |
| element_size); |
| } |
| index++; |
| } |
| return array; |
| } |
| |
| if (expect_type != NULL_TYPE && noside != EVAL_SKIP |
| && TYPE_CODE (type) == TYPE_CODE_SET) |
| { |
| struct value *set = allocate_value (expect_type); |
| gdb_byte *valaddr = value_contents_raw (set); |
| struct type *element_type = TYPE_INDEX_TYPE (type); |
| struct type *check_type = element_type; |
| LONGEST low_bound, high_bound; |
| |
| /* Get targettype of elementtype. */ |
| while (TYPE_CODE (check_type) == TYPE_CODE_RANGE |
| || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF) |
| check_type = TYPE_TARGET_TYPE (check_type); |
| |
| if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0) |
| error (_("(power)set type with unknown size")); |
| memset (valaddr, '\0', TYPE_LENGTH (type)); |
| for (tem = 0; tem < nargs; tem++) |
| { |
| LONGEST range_low, range_high; |
| struct type *range_low_type, *range_high_type; |
| struct value *elem_val; |
| |
| if (exp->elts[*pos].opcode == BINOP_RANGE) |
| { |
| (*pos)++; |
| elem_val = evaluate_subexp (element_type, exp, pos, noside); |
| range_low_type = value_type (elem_val); |
| range_low = value_as_long (elem_val); |
| elem_val = evaluate_subexp (element_type, exp, pos, noside); |
| range_high_type = value_type (elem_val); |
| range_high = value_as_long (elem_val); |
| } |
| else |
| { |
| elem_val = evaluate_subexp (element_type, exp, pos, noside); |
| range_low_type = range_high_type = value_type (elem_val); |
| range_low = range_high = value_as_long (elem_val); |
| } |
| /* Check types of elements to avoid mixture of elements from |
| different types. Also check if type of element is "compatible" |
| with element type of powerset. */ |
| if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE) |
| range_low_type = TYPE_TARGET_TYPE (range_low_type); |
| if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE) |
| range_high_type = TYPE_TARGET_TYPE (range_high_type); |
| if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) |
| || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM |
| && (range_low_type != range_high_type))) |
| /* different element modes. */ |
| error (_("POWERSET tuple elements of different mode")); |
| if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) |
| || (TYPE_CODE (check_type) == TYPE_CODE_ENUM |
| && range_low_type != check_type)) |
| error (_("incompatible POWERSET tuple elements")); |
| if (range_low > range_high) |
| { |
| warning (_("empty POWERSET tuple range")); |
| continue; |
| } |
| if (range_low < low_bound || range_high > high_bound) |
| error (_("POWERSET tuple element out of range")); |
| range_low -= low_bound; |
| range_high -= low_bound; |
| for (; range_low <= range_high; range_low++) |
| { |
| int bit_index = (unsigned) range_low % TARGET_CHAR_BIT; |
| |
| if (gdbarch_bits_big_endian (exp->gdbarch)) |
| bit_index = TARGET_CHAR_BIT - 1 - bit_index; |
| valaddr[(unsigned) range_low / TARGET_CHAR_BIT] |
| |= 1 << bit_index; |
| } |
| } |
| return set; |
| } |
| |
| argvec = (struct value **) alloca (sizeof (struct value *) * nargs); |
| for (tem = 0; tem < nargs; tem++) |
| { |
| /* Ensure that array expressions are coerced into pointer |
| objects. */ |
| argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); |
| } |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| return value_array (tem2, tem3, argvec); |
| |
| case TERNOP_SLICE: |
| { |
| struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| int lowbound |
| = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| int upper |
| = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| return value_slice (array, lowbound, upper - lowbound + 1); |
| } |
| |
| case TERNOP_SLICE_COUNT: |
| { |
| struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| int lowbound |
| = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| int length |
| = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| |
| return value_slice (array, lowbound, length); |
| } |
| |
| case TERNOP_COND: |
| /* Skip third and second args to evaluate the first one. */ |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (value_logical_not (arg1)) |
| { |
| evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
| return evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| } |
| else |
| { |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
| return arg2; |
| } |
| |
| case OP_OBJC_SELECTOR: |
| { /* Objective C @selector operator. */ |
| char *sel = &exp->elts[pc + 2].string; |
| int len = longest_to_int (exp->elts[pc + 1].longconst); |
| struct type *selector_type; |
| |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| if (sel[len] != 0) |
| sel[len] = 0; /* Make sure it's terminated. */ |
| |
| selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr; |
| return value_from_longest (selector_type, |
| lookup_child_selector (exp->gdbarch, sel)); |
| } |
| |
| case OP_OBJC_MSGCALL: |
| { /* Objective C message (method) call. */ |
| |
| CORE_ADDR responds_selector = 0; |
| CORE_ADDR method_selector = 0; |
| |
| CORE_ADDR selector = 0; |
| |
| int struct_return = 0; |
| int sub_no_side = 0; |
| |
| struct value *msg_send = NULL; |
| struct value *msg_send_stret = NULL; |
| int gnu_runtime = 0; |
| |
| struct value *target = NULL; |
| struct value *method = NULL; |
| struct value *called_method = NULL; |
| |
| struct type *selector_type = NULL; |
| struct type *long_type; |
| |
| struct value *ret = NULL; |
| CORE_ADDR addr = 0; |
| |
| selector = exp->elts[pc + 1].longconst; |
| nargs = exp->elts[pc + 2].longconst; |
| argvec = (struct value **) alloca (sizeof (struct value *) |
| * (nargs + 5)); |
| |
| (*pos) += 3; |
| |
| long_type = builtin_type (exp->gdbarch)->builtin_long; |
| selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr; |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| sub_no_side = EVAL_NORMAL; |
| else |
| sub_no_side = noside; |
| |
| target = evaluate_subexp (selector_type, exp, pos, sub_no_side); |
| |
| if (value_as_long (target) == 0) |
| return value_from_longest (long_type, 0); |
| |
| if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0)) |
| gnu_runtime = 1; |
| |
| /* Find the method dispatch (Apple runtime) or method lookup |
| (GNU runtime) function for Objective-C. These will be used |
| to lookup the symbol information for the method. If we |
| can't find any symbol information, then we'll use these to |
| call the method, otherwise we can call the method |
| directly. The msg_send_stret function is used in the special |
| case of a method that returns a structure (Apple runtime |
| only). */ |
| if (gnu_runtime) |
| { |
| struct type *type = selector_type; |
| |
| type = lookup_function_type (type); |
| type = lookup_pointer_type (type); |
| type = lookup_function_type (type); |
| type = lookup_pointer_type (type); |
| |
| msg_send = find_function_in_inferior ("objc_msg_lookup", NULL); |
| msg_send_stret |
| = find_function_in_inferior ("objc_msg_lookup", NULL); |
| |
| msg_send = value_from_pointer (type, value_as_address (msg_send)); |
| msg_send_stret = value_from_pointer (type, |
| value_as_address (msg_send_stret)); |
| } |
| else |
| { |
| msg_send = find_function_in_inferior ("objc_msgSend", NULL); |
| /* Special dispatcher for methods returning structs. */ |
| msg_send_stret |
| = find_function_in_inferior ("objc_msgSend_stret", NULL); |
| } |
| |
| /* Verify the target object responds to this method. The |
| standard top-level 'Object' class uses a different name for |
| the verification method than the non-standard, but more |
| often used, 'NSObject' class. Make sure we check for both. */ |
| |
| responds_selector |
| = lookup_child_selector (exp->gdbarch, "respondsToSelector:"); |
| if (responds_selector == 0) |
| responds_selector |
| = lookup_child_selector (exp->gdbarch, "respondsTo:"); |
| |
| if (responds_selector == 0) |
| error (_("no 'respondsTo:' or 'respondsToSelector:' method")); |
| |
| method_selector |
| = lookup_child_selector (exp->gdbarch, "methodForSelector:"); |
| if (method_selector == 0) |
| method_selector |
| = lookup_child_selector (exp->gdbarch, "methodFor:"); |
| |
| if (method_selector == 0) |
| error (_("no 'methodFor:' or 'methodForSelector:' method")); |
| |
| /* Call the verification method, to make sure that the target |
| class implements the desired method. */ |
| |
| argvec[0] = msg_send; |
| argvec[1] = target; |
| argvec[2] = value_from_longest (long_type, responds_selector); |
| argvec[3] = value_from_longest (long_type, selector); |
| argvec[4] = 0; |
| |
| ret = call_function_by_hand (argvec[0], 3, argvec + 1); |
| if (gnu_runtime) |
| { |
| /* Function objc_msg_lookup returns a pointer. */ |
| argvec[0] = ret; |
| ret = call_function_by_hand (argvec[0], 3, argvec + 1); |
| } |
| if (value_as_long (ret) == 0) |
| error (_("Target does not respond to this message selector.")); |
| |
| /* Call "methodForSelector:" method, to get the address of a |
| function method that implements this selector for this |
| class. If we can find a symbol at that address, then we |
| know the return type, parameter types etc. (that's a good |
| thing). */ |
| |
| argvec[0] = msg_send; |
| argvec[1] = target; |
| argvec[2] = value_from_longest (long_type, method_selector); |
| argvec[3] = value_from_longest (long_type, selector); |
| argvec[4] = 0; |
| |
| ret = call_function_by_hand (argvec[0], 3, argvec + 1); |
| if (gnu_runtime) |
| { |
| argvec[0] = ret; |
| ret = call_function_by_hand (argvec[0], 3, argvec + 1); |
| } |
| |
| /* ret should now be the selector. */ |
| |
| addr = value_as_long (ret); |
| if (addr) |
| { |
| struct symbol *sym = NULL; |
| |
| /* The address might point to a function descriptor; |
| resolve it to the actual code address instead. */ |
| addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr, |
| ¤t_target); |
| |
| /* Is it a high_level symbol? */ |
| sym = find_pc_function (addr); |
| if (sym != NULL) |
| method = value_of_variable (sym, 0); |
| } |
| |
| /* If we found a method with symbol information, check to see |
| if it returns a struct. Otherwise assume it doesn't. */ |
| |
| if (method) |
| { |
| CORE_ADDR funaddr; |
| struct type *val_type; |
| |
| funaddr = find_function_addr (method, &val_type); |
| |
| block_for_pc (funaddr); |
| |
| CHECK_TYPEDEF (val_type); |
| |
| if ((val_type == NULL) |
| || (TYPE_CODE(val_type) == TYPE_CODE_ERROR)) |
| { |
| if (expect_type != NULL) |
| val_type = expect_type; |
| } |
| |
| struct_return = using_struct_return (exp->gdbarch, method, |
| val_type); |
| } |
| else if (expect_type != NULL) |
| { |
| struct_return = using_struct_return (exp->gdbarch, NULL, |
| check_typedef (expect_type)); |
| } |
| |
| /* Found a function symbol. Now we will substitute its |
| value in place of the message dispatcher (obj_msgSend), |
| so that we call the method directly instead of thru |
| the dispatcher. The main reason for doing this is that |
| we can now evaluate the return value and parameter values |
| according to their known data types, in case we need to |
| do things like promotion, dereferencing, special handling |
| of structs and doubles, etc. |
| |
| We want to use the type signature of 'method', but still |
| jump to objc_msgSend() or objc_msgSend_stret() to better |
| mimic the behavior of the runtime. */ |
| |
| if (method) |
| { |
| if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC) |
| error (_("method address has symbol information " |
| "with non-function type; skipping")); |
| |
| /* Create a function pointer of the appropriate type, and |
| replace its value with the value of msg_send or |
| msg_send_stret. We must use a pointer here, as |
| msg_send and msg_send_stret are of pointer type, and |
| the representation may be different on systems that use |
| function descriptors. */ |
| if (struct_return) |
| called_method |
| = value_from_pointer (lookup_pointer_type (value_type (method)), |
| value_as_address (msg_send_stret)); |
| else |
| called_method |
| = value_from_pointer (lookup_pointer_type (value_type (method)), |
| value_as_address (msg_send)); |
| } |
| else |
| { |
| if (struct_return) |
| called_method = msg_send_stret; |
| else |
| called_method = msg_send; |
| } |
| |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| /* If the return type doesn't look like a function type, |
| call an error. This can happen if somebody tries to |
| turn a variable into a function call. This is here |
| because people often want to call, eg, strcmp, which |
| gdb doesn't know is a function. If gdb isn't asked for |
| it's opinion (ie. through "whatis"), it won't offer |
| it. */ |
| |
| struct type *type = value_type (called_method); |
| |
| if (type && TYPE_CODE (type) == TYPE_CODE_PTR) |
| type = TYPE_TARGET_TYPE (type); |
| type = TYPE_TARGET_TYPE (type); |
| |
| if (type) |
| { |
| if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type) |
| return allocate_value (expect_type); |
| else |
| return allocate_value (type); |
| } |
| else |
| error (_("Expression of type other than " |
| "\"method returning ...\" used as a method")); |
| } |
| |
| /* Now depending on whether we found a symbol for the method, |
| we will either call the runtime dispatcher or the method |
| directly. */ |
| |
| argvec[0] = called_method; |
| argvec[1] = target; |
| argvec[2] = value_from_longest (long_type, selector); |
| /* User-supplied arguments. */ |
| for (tem = 0; tem < nargs; tem++) |
| argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside); |
| argvec[tem + 3] = 0; |
| |
| if (gnu_runtime && (method != NULL)) |
| { |
| /* Function objc_msg_lookup returns a pointer. */ |
| deprecated_set_value_type (argvec[0], |
| lookup_pointer_type (lookup_function_type (value_type (argvec[0])))); |
| argvec[0] |
| = call_function_by_hand (argvec[0], nargs + 2, argvec + 1); |
| } |
| |
| ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1); |
| return ret; |
| } |
| break; |
| |
| case OP_FUNCALL: |
| (*pos) += 2; |
| op = exp->elts[*pos].opcode; |
| nargs = longest_to_int (exp->elts[pc + 1].longconst); |
| /* Allocate arg vector, including space for the function to be |
| called in argvec[0] and a terminating NULL. */ |
| argvec = (struct value **) |
| alloca (sizeof (struct value *) * (nargs + 3)); |
| if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) |
| { |
| nargs++; |
| /* First, evaluate the structure into arg2. */ |
| pc2 = (*pos)++; |
| |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| if (op == STRUCTOP_MEMBER) |
| { |
| arg2 = evaluate_subexp_for_address (exp, pos, noside); |
| } |
| else |
| { |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| } |
| |
| /* If the function is a virtual function, then the |
| aggregate value (providing the structure) plays |
| its part by providing the vtable. Otherwise, |
| it is just along for the ride: call the function |
| directly. */ |
| |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| if (TYPE_CODE (check_typedef (value_type (arg1))) |
| != TYPE_CODE_METHODPTR) |
| error (_("Non-pointer-to-member value used in pointer-to-member " |
| "construct")); |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| struct type *method_type = check_typedef (value_type (arg1)); |
| |
| arg1 = value_zero (method_type, not_lval); |
| } |
| else |
| arg1 = cplus_method_ptr_to_value (&arg2, arg1); |
| |
| /* Now, say which argument to start evaluating from. */ |
| tem = 2; |
| } |
| else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR) |
| { |
| /* Hair for method invocations. */ |
| int tem2; |
| |
| nargs++; |
| /* First, evaluate the structure into arg2. */ |
| pc2 = (*pos)++; |
| tem2 = longest_to_int (exp->elts[pc2 + 1].longconst); |
| *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| if (op == STRUCTOP_STRUCT) |
| { |
| /* If v is a variable in a register, and the user types |
| v.method (), this will produce an error, because v has |
| no address. |
| |
| A possible way around this would be to allocate a |
| copy of the variable on the stack, copy in the |
| contents, call the function, and copy out the |
| contents. I.e. convert this from call by reference |
| to call by copy-return (or whatever it's called). |
| However, this does not work because it is not the |
| same: the method being called could stash a copy of |
| the address, and then future uses through that address |
| (after the method returns) would be expected to |
| use the variable itself, not some copy of it. */ |
| arg2 = evaluate_subexp_for_address (exp, pos, noside); |
| } |
| else |
| { |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| /* Check to see if the operator '->' has been |
| overloaded. If the operator has been overloaded |
| replace arg2 with the value returned by the custom |
| operator and continue evaluation. */ |
| while (unop_user_defined_p (op, arg2)) |
| { |
| volatile struct gdb_exception except; |
| struct value *value = NULL; |
| TRY_CATCH (except, RETURN_MASK_ERROR) |
| { |
| value = value_x_unop (arg2, op, noside); |
| } |
| |
| if (except.reason < 0) |
| { |
| if (except.error == NOT_FOUND_ERROR) |
| break; |
| else |
| throw_exception (except); |
| } |
| arg2 = value; |
| } |
| } |
| /* Now, say which argument to start evaluating from. */ |
| tem = 2; |
| } |
| else if (op == OP_SCOPE |
| && overload_resolution |
| && (exp->language_defn->la_language == language_cplus)) |
| { |
| /* Unpack it locally so we can properly handle overload |
| resolution. */ |
| char *name; |
| int local_tem; |
| |
| pc2 = (*pos)++; |
| local_tem = longest_to_int (exp->elts[pc2 + 2].longconst); |
| (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1); |
| type = exp->elts[pc2 + 1].type; |
| name = &exp->elts[pc2 + 3].string; |
| |
| function = NULL; |
| function_name = NULL; |
| if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE) |
| { |
| function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type), |
| name, |
| get_selected_block (0), |
| VAR_DOMAIN); |
| if (function == NULL) |
| error (_("No symbol \"%s\" in namespace \"%s\"."), |
| name, TYPE_TAG_NAME (type)); |
| |
| tem = 1; |
| } |
| else |
| { |
| gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT |
| || TYPE_CODE (type) == TYPE_CODE_UNION); |
| function_name = name; |
| |
| arg2 = value_zero (type, lval_memory); |
| ++nargs; |
| tem = 2; |
| } |
| } |
| else if (op == OP_ADL_FUNC) |
| { |
| /* Save the function position and move pos so that the arguments |
| can be evaluated. */ |
| int func_name_len; |
| |
| save_pos1 = *pos; |
| tem = 1; |
| |
| func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst); |
| (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1); |
| } |
| else |
| { |
| /* Non-method function call. */ |
| save_pos1 = *pos; |
| tem = 1; |
| |
| /* If this is a C++ function wait until overload resolution. */ |
| if (op == OP_VAR_VALUE |
| && overload_resolution |
| && (exp->language_defn->la_language == language_cplus)) |
| { |
| (*pos) += 4; /* Skip the evaluation of the symbol. */ |
| argvec[0] = NULL; |
| } |
| else |
| { |
| argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside); |
| type = value_type (argvec[0]); |
| if (type && TYPE_CODE (type) == TYPE_CODE_PTR) |
| type = TYPE_TARGET_TYPE (type); |
| if (type && TYPE_CODE (type) == TYPE_CODE_FUNC) |
| { |
| for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++) |
| { |
| argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, |
| tem - 1), |
| exp, pos, noside); |
| } |
| } |
| } |
| } |
| |
| /* Evaluate arguments. */ |
| for (; tem <= nargs; tem++) |
| { |
| /* Ensure that array expressions are coerced into pointer |
| objects. */ |
| argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); |
| } |
| |
| /* Signal end of arglist. */ |
| argvec[tem] = 0; |
| if (op == OP_ADL_FUNC) |
| { |
| struct symbol *symp; |
| char *func_name; |
| int name_len; |
| int string_pc = save_pos1 + 3; |
| |
| /* Extract the function name. */ |
| name_len = longest_to_int (exp->elts[string_pc].longconst); |
| func_name = (char *) alloca (name_len + 1); |
| strcpy (func_name, &exp->elts[string_pc + 1].string); |
| |
| find_overload_match (&argvec[1], nargs, func_name, |
| NON_METHOD, /* not method */ |
| 0, /* strict match */ |
| NULL, NULL, /* pass NULL symbol since |
| symbol is unknown */ |
| NULL, &symp, NULL, 0); |
| |
| /* Now fix the expression being evaluated. */ |
| exp->elts[save_pos1 + 2].symbol = symp; |
| argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside); |
| } |
| |
| if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR |
| || (op == OP_SCOPE && function_name != NULL)) |
| { |
| int static_memfuncp; |
| char *tstr; |
| |
| /* Method invocation : stuff "this" as first parameter. */ |
| argvec[1] = arg2; |
| |
| if (op != OP_SCOPE) |
| { |
| /* Name of method from expression. */ |
| tstr = &exp->elts[pc2 + 2].string; |
| } |
| else |
| tstr = function_name; |
| |
| if (overload_resolution && (exp->language_defn->la_language |
| == language_cplus)) |
| { |
| /* Language is C++, do some overload resolution before |
| evaluation. */ |
| struct value *valp = NULL; |
| |
| (void) find_overload_match (&argvec[1], nargs, tstr, |
| METHOD, /* method */ |
| 0, /* strict match */ |
| &arg2, /* the object */ |
| NULL, &valp, NULL, |
| &static_memfuncp, 0); |
| |
| if (op == OP_SCOPE && !static_memfuncp) |
| { |
| /* For the time being, we don't handle this. */ |
| error (_("Call to overloaded function %s requires " |
| "`this' pointer"), |
| function_name); |
| } |
| argvec[1] = arg2; /* the ``this'' pointer */ |
| argvec[0] = valp; /* Use the method found after overload |
| resolution. */ |
| } |
| else |
| /* Non-C++ case -- or no overload resolution. */ |
| { |
| struct value *temp = arg2; |
| |
| argvec[0] = value_struct_elt (&temp, argvec + 1, tstr, |
| &static_memfuncp, |
| op == STRUCTOP_STRUCT |
| ? "structure" : "structure pointer"); |
| /* value_struct_elt updates temp with the correct value |
| of the ``this'' pointer if necessary, so modify argvec[1] to |
| reflect any ``this'' changes. */ |
| arg2 |
| = value_from_longest (lookup_pointer_type(value_type (temp)), |
| value_address (temp) |
| + value_embedded_offset (temp)); |
| argvec[1] = arg2; /* the ``this'' pointer */ |
| } |
| |
| if (static_memfuncp) |
| { |
| argvec[1] = argvec[0]; |
| nargs--; |
| argvec++; |
| } |
| } |
| else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) |
| { |
| argvec[1] = arg2; |
| argvec[0] = arg1; |
| } |
| else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL)) |
| { |
| /* Non-member function being called. */ |
| /* fn: This can only be done for C++ functions. A C-style function |
| in a C++ program, for instance, does not have the fields that |
| are expected here. */ |
| |
| if (overload_resolution && (exp->language_defn->la_language |
| == language_cplus)) |
| { |
| /* Language is C++, do some overload resolution before |
| evaluation. */ |
| struct symbol *symp; |
| int no_adl = 0; |
| |
| /* If a scope has been specified disable ADL. */ |
| if (op == OP_SCOPE) |
| no_adl = 1; |
| |
| if (op == OP_VAR_VALUE) |
| function = exp->elts[save_pos1+2].symbol; |
| |
| (void) find_overload_match (&argvec[1], nargs, |
| NULL, /* no need for name */ |
| NON_METHOD, /* not method */ |
| 0, /* strict match */ |
| NULL, function, /* the function */ |
| NULL, &symp, NULL, no_adl); |
| |
| if (op == OP_VAR_VALUE) |
| { |
| /* Now fix the expression being evaluated. */ |
| exp->elts[save_pos1+2].symbol = symp; |
| argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, |
| noside); |
| } |
| else |
| argvec[0] = value_of_variable (symp, get_selected_block (0)); |
| } |
| else |
| { |
| /* Not C++, or no overload resolution allowed. */ |
| /* Nothing to be done; argvec already correctly set up. */ |
| } |
| } |
| else |
| { |
| /* It is probably a C-style function. */ |
| /* Nothing to be done; argvec already correctly set up. */ |
| } |
| |
| do_call_it: |
| |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (argvec[0] == NULL) |
| error (_("Cannot evaluate function -- may be inlined")); |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| /* If the return type doesn't look like a function type, call an |
| error. This can happen if somebody tries to turn a variable into |
| a function call. This is here because people often want to |
| call, eg, strcmp, which gdb doesn't know is a function. If |
| gdb isn't asked for it's opinion (ie. through "whatis"), |
| it won't offer it. */ |
| |
| struct type *ftype = value_type (argvec[0]); |
| |
| if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION) |
| { |
| /* We don't know anything about what the internal |
| function might return, but we have to return |
| something. */ |
| return value_zero (builtin_type (exp->gdbarch)->builtin_int, |
| not_lval); |
| } |
| else if (TYPE_GNU_IFUNC (ftype)) |
| return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype))); |
| else if (TYPE_TARGET_TYPE (ftype)) |
| return allocate_value (TYPE_TARGET_TYPE (ftype)); |
| else |
| error (_("Expression of type other than " |
| "\"Function returning ...\" used as function")); |
| } |
| if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION) |
| return call_internal_function (exp->gdbarch, exp->language_defn, |
| argvec[0], nargs, argvec + 1); |
| |
| return call_function_by_hand (argvec[0], nargs, argvec + 1); |
| /* pai: FIXME save value from call_function_by_hand, then adjust |
| pc by adjust_fn_pc if +ve. */ |
| |
| case OP_F77_UNDETERMINED_ARGLIST: |
| |
| /* Remember that in F77, functions, substring ops and |
| array subscript operations cannot be disambiguated |
| at parse time. We have made all array subscript operations, |
| substring operations as well as function calls come here |
| and we now have to discover what the heck this thing actually was. |
| If it is a function, we process just as if we got an OP_FUNCALL. */ |
| |
| nargs = longest_to_int (exp->elts[pc + 1].longconst); |
| (*pos) += 2; |
| |
| /* First determine the type code we are dealing with. */ |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| type = check_typedef (value_type (arg1)); |
| code = TYPE_CODE (type); |
| |
| if (code == TYPE_CODE_PTR) |
| { |
| /* Fortran always passes variable to subroutines as pointer. |
| So we need to look into its target type to see if it is |
| array, string or function. If it is, we need to switch |
| to the target value the original one points to. */ |
| struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); |
| |
| if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY |
| || TYPE_CODE (target_type) == TYPE_CODE_STRING |
| || TYPE_CODE (target_type) == TYPE_CODE_FUNC) |
| { |
| arg1 = value_ind (arg1); |
| type = check_typedef (value_type (arg1)); |
| code = TYPE_CODE (type); |
| } |
| } |
| |
| switch (code) |
| { |
| case TYPE_CODE_ARRAY: |
| if (exp->elts[*pos].opcode == OP_F90_RANGE) |
| return value_f90_subarray (arg1, exp, pos, noside); |
| else |
| goto multi_f77_subscript; |
| |
| case TYPE_CODE_STRING: |
| if (exp->elts[*pos].opcode == OP_F90_RANGE) |
| return value_f90_subarray (arg1, exp, pos, noside); |
| else |
| { |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| return value_subscript (arg1, value_as_long (arg2)); |
| } |
| |
| case TYPE_CODE_PTR: |
| case TYPE_CODE_FUNC: |
| /* It's a function call. */ |
| /* Allocate arg vector, including space for the function to be |
| called in argvec[0] and a terminating NULL. */ |
| argvec = (struct value **) |
| alloca (sizeof (struct value *) * (nargs + 2)); |
| argvec[0] = arg1; |
| tem = 1; |
| for (; tem <= nargs; tem++) |
| argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); |
| argvec[tem] = 0; /* signal end of arglist */ |
| goto do_call_it; |
| |
| default: |
| error (_("Cannot perform substring on this type")); |
| } |
| |
| case OP_COMPLEX: |
| /* We have a complex number, There should be 2 floating |
| point numbers that compose it. */ |
| (*pos) += 2; |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type); |
| |
| case STRUCTOP_STRUCT: |
| tem = longest_to_int (exp->elts[pc + 1].longconst); |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (lookup_struct_elt_type (value_type (arg1), |
| &exp->elts[pc + 2].string, |
| 0), |
| lval_memory); |
| else |
| { |
| struct value *temp = arg1; |
| |
| return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string, |
| NULL, "structure"); |
| } |
| |
| case STRUCTOP_PTR: |
| tem = longest_to_int (exp->elts[pc + 1].longconst); |
| (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| /* Check to see if operator '->' has been overloaded. If so replace |
| arg1 with the value returned by evaluating operator->(). */ |
| while (unop_user_defined_p (op, arg1)) |
| { |
| volatile struct gdb_exception except; |
| struct value *value = NULL; |
| TRY_CATCH (except, RETURN_MASK_ERROR) |
| { |
| value = value_x_unop (arg1, op, noside); |
| } |
| |
| if (except.reason < 0) |
| { |
| if (except.error == NOT_FOUND_ERROR) |
| break; |
| else |
| throw_exception (except); |
| } |
| arg1 = value; |
| } |
| |
| /* JYG: if print object is on we need to replace the base type |
| with rtti type in order to continue on with successful |
| lookup of member / method only available in the rtti type. */ |
| { |
| struct type *type = value_type (arg1); |
| struct type *real_type; |
| int full, top, using_enc; |
| struct value_print_options opts; |
| |
| get_user_print_options (&opts); |
| if (opts.objectprint && TYPE_TARGET_TYPE(type) |
| && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS)) |
| { |
| real_type = value_rtti_indirect_type (arg1, &full, &top, |
| &using_enc); |
| if (real_type) |
| arg1 = value_cast (real_type, arg1); |
| } |
| } |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (lookup_struct_elt_type (value_type (arg1), |
| &exp->elts[pc + 2].string, |
| 0), |
| lval_memory); |
| else |
| { |
| struct value *temp = arg1; |
| |
| return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string, |
| NULL, "structure pointer"); |
| } |
| |
| case STRUCTOP_MEMBER: |
| case STRUCTOP_MPTR: |
| if (op == STRUCTOP_MEMBER) |
| arg1 = evaluate_subexp_for_address (exp, pos, noside); |
| else |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| |
| type = check_typedef (value_type (arg2)); |
| switch (TYPE_CODE (type)) |
| { |
| case TYPE_CODE_METHODPTR: |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (TYPE_TARGET_TYPE (type), not_lval); |
| else |
| { |
| arg2 = cplus_method_ptr_to_value (&arg1, arg2); |
| gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR); |
| return value_ind (arg2); |
| } |
| |
| case TYPE_CODE_MEMBERPTR: |
| /* Now, convert these values to an address. */ |
| arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)), |
| arg1, 1); |
| |
| mem_offset = value_as_long (arg2); |
| |
| arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
| value_as_long (arg1) + mem_offset); |
| return value_ind (arg3); |
| |
| default: |
| error (_("non-pointer-to-member value used " |
| "in pointer-to-member construct")); |
| } |
| |
| case TYPE_INSTANCE: |
| nargs = longest_to_int (exp->elts[pc + 1].longconst); |
| arg_types = (struct type **) alloca (nargs * sizeof (struct type *)); |
| for (ix = 0; ix < nargs; ++ix) |
| arg_types[ix] = exp->elts[pc + 1 + ix + 1].type; |
| |
| expect_type = make_params (nargs, arg_types); |
| *(pos) += 3 + nargs; |
| arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
| xfree (TYPE_FIELDS (expect_type)); |
| xfree (TYPE_MAIN_TYPE (expect_type)); |
| xfree (expect_type); |
| return arg1; |
| |
| case BINOP_CONCAT: |
| arg1 = evaluate_subexp_with_coercion (exp, pos, noside); |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| else |
| return value_concat (arg1, arg2); |
| |
| case BINOP_ASSIGN: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| |
| if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| else |
| return value_assign (arg1, arg2); |
| |
| case BINOP_ASSIGN_MODIFY: |
| (*pos) += 2; |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| op = exp->elts[pc + 1].opcode; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside); |
| else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn, |
| value_type (arg1)) |
| && is_integral_type (value_type (arg2))) |
| arg2 = value_ptradd (arg1, value_as_long (arg2)); |
| else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn, |
| value_type (arg1)) |
| && is_integral_type (value_type (arg2))) |
| arg2 = value_ptradd (arg1, - value_as_long (arg2)); |
| else |
| { |
| struct value *tmp = arg1; |
| |
| /* For shift and integer exponentiation operations, |
| only promote the first argument. */ |
| if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP) |
| && is_integral_type (value_type (arg2))) |
| unop_promote (exp->language_defn, exp->gdbarch, &tmp); |
| else |
| binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); |
| |
| arg2 = value_binop (tmp, arg2, op); |
| } |
| return value_assign (arg1, arg2); |
| |
| case BINOP_ADD: |
| arg1 = evaluate_subexp_with_coercion (exp, pos, noside); |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| else if (ptrmath_type_p (exp->language_defn, value_type (arg1)) |
| && is_integral_type (value_type (arg2))) |
| return value_ptradd (arg1, value_as_long (arg2)); |
| else if (ptrmath_type_p (exp->language_defn, value_type (arg2)) |
| && is_integral_type (value_type (arg1))) |
| return value_ptradd (arg2, value_as_long (arg1)); |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| return value_binop (arg1, arg2, BINOP_ADD); |
| } |
| |
| case BINOP_SUB: |
| arg1 = evaluate_subexp_with_coercion (exp, pos, noside); |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| else if (ptrmath_type_p (exp->language_defn, value_type (arg1)) |
| && ptrmath_type_p (exp->language_defn, value_type (arg2))) |
| { |
| /* FIXME -- should be ptrdiff_t */ |
| type = builtin_type (exp->gdbarch)->builtin_long; |
| return value_from_longest (type, value_ptrdiff (arg1, arg2)); |
| } |
| else if (ptrmath_type_p (exp->language_defn, value_type (arg1)) |
| && is_integral_type (value_type (arg2))) |
| return value_ptradd (arg1, - value_as_long (arg2)); |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| return value_binop (arg1, arg2, BINOP_SUB); |
| } |
| |
| case BINOP_EXP: |
| case BINOP_MUL: |
| case BINOP_DIV: |
| case BINOP_INTDIV: |
| case BINOP_REM: |
| case BINOP_MOD: |
| case BINOP_LSH: |
| case BINOP_RSH: |
| case BINOP_BITWISE_AND: |
| case BINOP_BITWISE_IOR: |
| case BINOP_BITWISE_XOR: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| else |
| { |
| /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero, |
| fudge arg2 to avoid division-by-zero, the caller is |
| (theoretically) only looking for the type of the result. */ |
| if (noside == EVAL_AVOID_SIDE_EFFECTS |
| /* ??? Do we really want to test for BINOP_MOD here? |
| The implementation of value_binop gives it a well-defined |
| value. */ |
| && (op == BINOP_DIV |
| || op == BINOP_INTDIV |
| || op == BINOP_REM |
| || op == BINOP_MOD) |
| && value_logical_not (arg2)) |
| { |
| struct value *v_one, *retval; |
| |
| v_one = value_one (value_type (arg2)); |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one); |
| retval = value_binop (arg1, v_one, op); |
| return retval; |
| } |
| else |
| { |
| /* For shift and integer exponentiation operations, |
| only promote the first argument. */ |
| if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP) |
| && is_integral_type (value_type (arg2))) |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| else |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| |
| return value_binop (arg1, arg2, op); |
| } |
| } |
| |
| case BINOP_RANGE: |
| evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| error (_("':' operator used in invalid context")); |
| |
| case BINOP_SUBSCRIPT: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| else |
| { |
| /* If the user attempts to subscript something that is not an |
| array or pointer type (like a plain int variable for example), |
| then report this as an error. */ |
| |
| arg1 = coerce_ref (arg1); |
| type = check_typedef (value_type (arg1)); |
| if (TYPE_CODE (type) != TYPE_CODE_ARRAY |
| && TYPE_CODE (type) != TYPE_CODE_PTR) |
| { |
| if (TYPE_NAME (type)) |
| error (_("cannot subscript something of type `%s'"), |
| TYPE_NAME (type)); |
| else |
| error (_("cannot subscript requested type")); |
| } |
| |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1)); |
| else |
| return value_subscript (arg1, value_as_long (arg2)); |
| } |
| |
| case BINOP_IN: |
| arg1 = evaluate_subexp_with_coercion (exp, pos, noside); |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) value_in (arg1, arg2)); |
| |
| case MULTI_SUBSCRIPT: |
| (*pos) += 2; |
| nargs = longest_to_int (exp->elts[pc + 1].longconst); |
| arg1 = evaluate_subexp_with_coercion (exp, pos, noside); |
| while (nargs-- > 0) |
| { |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| /* FIXME: EVAL_SKIP handling may not be correct. */ |
| if (noside == EVAL_SKIP) |
| { |
| if (nargs > 0) |
| { |
| continue; |
| } |
| else |
| { |
| goto nosideret; |
| } |
| } |
| /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */ |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| /* If the user attempts to subscript something that has no target |
| type (like a plain int variable for example), then report this |
| as an error. */ |
| |
| type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1))); |
| if (type != NULL) |
| { |
| arg1 = value_zero (type, VALUE_LVAL (arg1)); |
| noside = EVAL_SKIP; |
| continue; |
| } |
| else |
| { |
| error (_("cannot subscript something of type `%s'"), |
| TYPE_NAME (value_type (arg1))); |
| } |
| } |
| |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| arg1 = coerce_ref (arg1); |
| type = check_typedef (value_type (arg1)); |
| |
| switch (TYPE_CODE (type)) |
| { |
| case TYPE_CODE_PTR: |
| case TYPE_CODE_ARRAY: |
| case TYPE_CODE_STRING: |
| arg1 = value_subscript (arg1, value_as_long (arg2)); |
| break; |
| |
| case TYPE_CODE_BITSTRING: |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| arg1 = value_bitstring_subscript (type, arg1, |
| value_as_long (arg2)); |
| break; |
| |
| default: |
| if (TYPE_NAME (type)) |
| error (_("cannot subscript something of type `%s'"), |
| TYPE_NAME (type)); |
| else |
| error (_("cannot subscript requested type")); |
| } |
| } |
| } |
| return (arg1); |
| |
| multi_f77_subscript: |
| { |
| LONGEST subscript_array[MAX_FORTRAN_DIMS]; |
| int ndimensions = 1, i; |
| struct value *array = arg1; |
| |
| if (nargs > MAX_FORTRAN_DIMS) |
| error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS); |
| |
| ndimensions = calc_f77_array_dims (type); |
| |
| if (nargs != ndimensions) |
| error (_("Wrong number of subscripts")); |
| |
| gdb_assert (nargs > 0); |
| |
| /* Now that we know we have a legal array subscript expression |
| let us actually find out where this element exists in the array. */ |
| |
| /* Take array indices left to right. */ |
| for (i = 0; i < nargs; i++) |
| { |
| /* Evaluate each subscript; it must be a legal integer in F77. */ |
| arg2 = evaluate_subexp_with_coercion (exp, pos, noside); |
| |
| /* Fill in the subscript array. */ |
| |
| subscript_array[i] = value_as_long (arg2); |
| } |
| |
| /* Internal type of array is arranged right to left. */ |
| for (i = nargs; i > 0; i--) |
| { |
| struct type *array_type = check_typedef (value_type (array)); |
| LONGEST index = subscript_array[i - 1]; |
| |
| lower = f77_get_lowerbound (array_type); |
| array = value_subscripted_rvalue (array, index, lower); |
| } |
| |
| return array; |
| } |
| |
| case BINOP_LOGICAL_AND: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| { |
| evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| goto nosideret; |
| } |
| |
| oldpos = *pos; |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
| *pos = oldpos; |
| |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| tem = value_logical_not (arg1); |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, |
| (tem ? EVAL_SKIP : noside)); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, |
| (LONGEST) (!tem && !value_logical_not (arg2))); |
| } |
| |
| case BINOP_LOGICAL_OR: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| { |
| evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| goto nosideret; |
| } |
| |
| oldpos = *pos; |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
| *pos = oldpos; |
| |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| tem = value_logical_not (arg1); |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, |
| (!tem ? EVAL_SKIP : noside)); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, |
| (LONGEST) (!tem || !value_logical_not (arg2))); |
| } |
| |
| case BINOP_EQUAL: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = value_equal (arg1, arg2); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) tem); |
| } |
| |
| case BINOP_NOTEQUAL: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = value_equal (arg1, arg2); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) ! tem); |
| } |
| |
| case BINOP_LESS: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = value_less (arg1, arg2); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) tem); |
| } |
| |
| case BINOP_GTR: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = value_less (arg2, arg1); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) tem); |
| } |
| |
| case BINOP_GEQ: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = value_less (arg2, arg1) || value_equal (arg1, arg2); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) tem); |
| } |
| |
| case BINOP_LEQ: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (binop_user_defined_p (op, arg1, arg2)) |
| { |
| return value_x_binop (arg1, arg2, op, OP_NULL, noside); |
| } |
| else |
| { |
| binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
| tem = value_less (arg1, arg2) || value_equal (arg1, arg2); |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) tem); |
| } |
| |
| case BINOP_REPEAT: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| type = check_typedef (value_type (arg2)); |
| if (TYPE_CODE (type) != TYPE_CODE_INT) |
| error (_("Non-integral right operand for \"@\" operator.")); |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| return allocate_repeat_value (value_type (arg1), |
| longest_to_int (value_as_long (arg2))); |
| } |
| else |
| return value_repeat (arg1, longest_to_int (value_as_long (arg2))); |
| |
| case BINOP_COMMA: |
| evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| return evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| case UNOP_PLUS: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (unop_user_defined_p (op, arg1)) |
| return value_x_unop (arg1, op, noside); |
| else |
| { |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| return value_pos (arg1); |
| } |
| |
| case UNOP_NEG: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (unop_user_defined_p (op, arg1)) |
| return value_x_unop (arg1, op, noside); |
| else |
| { |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| return value_neg (arg1); |
| } |
| |
| case UNOP_COMPLEMENT: |
| /* C++: check for and handle destructor names. */ |
| op = exp->elts[*pos].opcode; |
| |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (unop_user_defined_p (UNOP_COMPLEMENT, arg1)) |
| return value_x_unop (arg1, UNOP_COMPLEMENT, noside); |
| else |
| { |
| unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
| return value_complement (arg1); |
| } |
| |
| case UNOP_LOGICAL_NOT: |
| arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (unop_user_defined_p (op, arg1)) |
| return value_x_unop (arg1, op, noside); |
| else |
| { |
| type = language_bool_type (exp->language_defn, exp->gdbarch); |
| return value_from_longest (type, (LONGEST) value_logical_not (arg1)); |
| } |
| |
| case UNOP_IND: |
| if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) |
| expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type)); |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| type = check_typedef (value_type (arg1)); |
| if (TYPE_CODE (type) == TYPE_CODE_METHODPTR |
| || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR) |
| error (_("Attempt to dereference pointer " |
| "to member without an object")); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (unop_user_defined_p (op, arg1)) |
| return value_x_unop (arg1, op, noside); |
| else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| type = check_typedef (value_type (arg1)); |
| if (TYPE_CODE (type) == TYPE_CODE_PTR |
| || TYPE_CODE (type) == TYPE_CODE_REF |
| /* In C you can dereference an array to get the 1st elt. */ |
| || TYPE_CODE (type) == TYPE_CODE_ARRAY |
| ) |
| return value_zero (TYPE_TARGET_TYPE (type), |
| lval_memory); |
| else if (TYPE_CODE (type) == TYPE_CODE_INT) |
| /* GDB allows dereferencing an int. */ |
| return value_zero (builtin_type (exp->gdbarch)->builtin_int, |
| lval_memory); |
| else |
| error (_("Attempt to take contents of a non-pointer value.")); |
| } |
| |
| /* Allow * on an integer so we can cast it to whatever we want. |
| This returns an int, which seems like the most C-like thing to |
| do. "long long" variables are rare enough that |
| BUILTIN_TYPE_LONGEST would seem to be a mistake. */ |
| if (TYPE_CODE (type) == TYPE_CODE_INT) |
| return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, |
| (CORE_ADDR) value_as_address (arg1)); |
| return value_ind (arg1); |
| |
| case UNOP_ADDR: |
| /* C++: check for and handle pointer to members. */ |
| |
| op = exp->elts[*pos].opcode; |
| |
| if (noside == EVAL_SKIP) |
| { |
| evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
| goto nosideret; |
| } |
| else |
| { |
| struct value *retvalp = evaluate_subexp_for_address (exp, pos, |
| noside); |
| |
| return retvalp; |
| } |
| |
| case UNOP_SIZEOF: |
| if (noside == EVAL_SKIP) |
| { |
| evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
| goto nosideret; |
| } |
| return evaluate_subexp_for_sizeof (exp, pos); |
| |
| case UNOP_CAST: |
| (*pos) += 2; |
| type = exp->elts[pc + 1].type; |
| arg1 = evaluate_subexp (type, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (type != value_type (arg1)) |
| arg1 = value_cast (type, arg1); |
| return arg1; |
| |
| case UNOP_DYNAMIC_CAST: |
| (*pos) += 2; |
| type = exp->elts[pc + 1].type; |
| arg1 = evaluate_subexp (type, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| return value_dynamic_cast (type, arg1); |
| |
| case UNOP_REINTERPRET_CAST: |
| (*pos) += 2; |
| type = exp->elts[pc + 1].type; |
| arg1 = evaluate_subexp (type, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| return value_reinterpret_cast (type, arg1); |
| |
| case UNOP_MEMVAL: |
| (*pos) += 2; |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (exp->elts[pc + 1].type, lval_memory); |
| else |
| return value_at_lazy (exp->elts[pc + 1].type, |
| value_as_address (arg1)); |
| |
| case UNOP_MEMVAL_TLS: |
| (*pos) += 3; |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| return value_zero (exp->elts[pc + 2].type, lval_memory); |
| else |
| { |
| CORE_ADDR tls_addr; |
| |
| tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile, |
| value_as_address (arg1)); |
| return value_at_lazy (exp->elts[pc + 2].type, tls_addr); |
| } |
| |
| case UNOP_PREINCREMENT: |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| else if (unop_user_defined_p (op, arg1)) |
| { |
| return value_x_unop (arg1, op, noside); |
| } |
| else |
| { |
| if (ptrmath_type_p (exp->language_defn, value_type (arg1))) |
| arg2 = value_ptradd (arg1, 1); |
| else |
| { |
| struct value *tmp = arg1; |
| |
| arg2 = value_one (value_type (arg1)); |
| binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); |
| arg2 = value_binop (tmp, arg2, BINOP_ADD); |
| } |
| |
| return value_assign (arg1, arg2); |
| } |
| |
| case UNOP_PREDECREMENT: |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| else if (unop_user_defined_p (op, arg1)) |
| { |
| return value_x_unop (arg1, op, noside); |
| } |
| else |
| { |
| if (ptrmath_type_p (exp->language_defn, value_type (arg1))) |
| arg2 = value_ptradd (arg1, -1); |
| else |
| { |
| struct value *tmp = arg1; |
| |
| arg2 = value_one (value_type (arg1)); |
| binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); |
| arg2 = value_binop (tmp, arg2, BINOP_SUB); |
| } |
| |
| return value_assign (arg1, arg2); |
| } |
| |
| case UNOP_POSTINCREMENT: |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| else if (unop_user_defined_p (op, arg1)) |
| { |
| return value_x_unop (arg1, op, noside); |
| } |
| else |
| { |
| arg3 = value_non_lval (arg1); |
| |
| if (ptrmath_type_p (exp->language_defn, value_type (arg1))) |
| arg2 = value_ptradd (arg1, 1); |
| else |
| { |
| struct value *tmp = arg1; |
| |
| arg2 = value_one (value_type (arg1)); |
| binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); |
| arg2 = value_binop (tmp, arg2, BINOP_ADD); |
| } |
| |
| value_assign (arg1, arg2); |
| return arg3; |
| } |
| |
| case UNOP_POSTDECREMENT: |
| arg1 = evaluate_subexp (expect_type, exp, pos, noside); |
| if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
| return arg1; |
| else if (unop_user_defined_p (op, arg1)) |
| { |
| return value_x_unop (arg1, op, noside); |
| } |
| else |
| { |
| arg3 = value_non_lval (arg1); |
| |
| if (ptrmath_type_p (exp->language_defn, value_type (arg1))) |
| arg2 = value_ptradd (arg1, -1); |
| else |
| { |
| struct value *tmp = arg1; |
| |
| arg2 = value_one (value_type (arg1)); |
| binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); |
| arg2 = value_binop (tmp, arg2, BINOP_SUB); |
| } |
| |
| value_assign (arg1, arg2); |
| return arg3; |
| } |
| |
| case OP_THIS: |
| (*pos) += 1; |
| return value_of_this (exp->language_defn); |
| |
| case OP_TYPE: |
| /* The value is not supposed to be used. This is here to make it |
| easier to accommodate expressions that contain types. */ |
| (*pos) += 2; |
| if (noside == EVAL_SKIP) |
| goto nosideret; |
| else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| struct type *type = exp->elts[pc + 1].type; |
| |
| /* If this is a typedef, then find its immediate target. We |
| use check_typedef to resolve stubs, but we ignore its |
| result because we do not want to dig past all |
| typedefs. */ |
| check_typedef (type); |
| if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
| type = TYPE_TARGET_TYPE (type); |
| return allocate_value (type); |
| } |
| else |
| error (_("Attempt to use a type name as an expression")); |
| |
| default: |
| /* Removing this case and compiling with gcc -Wall reveals that |
| a lot of cases are hitting this case. Some of these should |
| probably be removed from expression.h; others are legitimate |
| expressions which are (apparently) not fully implemented. |
| |
| If there are any cases landing here which mean a user error, |
| then they should be separate cases, with more descriptive |
| error messages. */ |
| |
| error (_("GDB does not (yet) know how to " |
| "evaluate that kind of expression")); |
| } |
| |
| nosideret: |
| return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
| } |
| |
| /* Evaluate a subexpression of EXP, at index *POS, |
| and return the address of that subexpression. |
| Advance *POS over the subexpression. |
| If the subexpression isn't an lvalue, get an error. |
| NOSIDE may be EVAL_AVOID_SIDE_EFFECTS; |
| then only the type of the result need be correct. */ |
| |
| static struct value * |
| evaluate_subexp_for_address (struct expression *exp, int *pos, |
| enum noside noside) |
| { |
| enum exp_opcode op; |
| int pc; |
| struct symbol *var; |
| struct value *x; |
| int tem; |
| |
| pc = (*pos); |
| op = exp->elts[pc].opcode; |
| |
| switch (op) |
| { |
| case UNOP_IND: |
| (*pos)++; |
| x = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
| |
| /* We can't optimize out "&*" if there's a user-defined operator*. */ |
| if (unop_user_defined_p (op, x)) |
| { |
| x = value_x_unop (x, op, noside); |
| goto default_case_after_eval; |
| } |
| |
| return coerce_array (x); |
| |
| case UNOP_MEMVAL: |
| (*pos) += 3; |
| return value_cast (lookup_pointer_type (exp->elts[pc + 1].type), |
| evaluate_subexp (NULL_TYPE, exp, pos, noside)); |
| |
| case OP_VAR_VALUE: |
| var = exp->elts[pc + 2].symbol; |
| |
| /* C++: The "address" of a reference should yield the address |
| * of the object pointed to. Let value_addr() deal with it. */ |
| if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF) |
| goto default_case; |
| |
| (*pos) += 4; |
| if (noside == EVAL_AVOID_SIDE_EFFECTS) |
| { |
| struct type *type = |
| lookup_pointer_type (SYMBOL_TYPE (var)); |
| enum address_class sym_class = SYMBOL_CLASS (var); |
| |
| if (sym_class == LOC_CONST |
| || sym_class == LOC_CONST_BYTES |
| || sym_class == LOC_REGISTER) |
| error (_("Attempt to take address of register or constant.")); |
| |
| return |
| value_zero (type, not_lval); |
| } |
| else |
| return address_of_variable (var, exp->elts[pc + 1].block); |
| |
| case OP_SCOPE: |
| tem = longest_to_int (exp->elts[pc + 2].longconst); |
| (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1); |
| x = value_aggregate_elt (exp->elts[pc + 1].type, |
| &exp->elts[pc + 3].string, |
|