| /* DWARF 2 location expression support for GDB. |
| |
| Copyright (C) 2003, 2005, 2007-2012 Free Software Foundation, Inc. |
| |
| Contributed by Daniel Jacobowitz, MontaVista Software, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "ui-out.h" |
| #include "value.h" |
| #include "frame.h" |
| #include "gdbcore.h" |
| #include "target.h" |
| #include "inferior.h" |
| #include "ax.h" |
| #include "ax-gdb.h" |
| #include "regcache.h" |
| #include "objfiles.h" |
| #include "exceptions.h" |
| #include "block.h" |
| #include "gdbcmd.h" |
| |
| #include "dwarf2.h" |
| #include "dwarf2expr.h" |
| #include "dwarf2loc.h" |
| #include "dwarf2-frame.h" |
| |
| #include "gdb_string.h" |
| #include "gdb_assert.h" |
| |
| DEF_VEC_I(int); |
| |
| extern int dwarf2_always_disassemble; |
| |
| static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc, |
| const gdb_byte **start, size_t *length); |
| |
| static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs; |
| |
| static struct value *dwarf2_evaluate_loc_desc_full (struct type *type, |
| struct frame_info *frame, |
| const gdb_byte *data, |
| unsigned short size, |
| struct dwarf2_per_cu_data *per_cu, |
| LONGEST byte_offset); |
| |
| /* Until these have formal names, we define these here. |
| ref: http://gcc.gnu.org/wiki/DebugFission |
| Each entry in .debug_loc.dwo begins with a byte that describes the entry, |
| and is then followed by data specific to that entry. */ |
| |
| enum debug_loc_kind |
| { |
| /* Indicates the end of the list of entries. */ |
| DEBUG_LOC_END_OF_LIST = 0, |
| |
| /* This is followed by an unsigned LEB128 number that is an index into |
| .debug_addr and specifies the base address for all following entries. */ |
| DEBUG_LOC_BASE_ADDRESS = 1, |
| |
| /* This is followed by two unsigned LEB128 numbers that are indices into |
| .debug_addr and specify the beginning and ending addresses, and then |
| a normal location expression as in .debug_loc. */ |
| DEBUG_LOC_START_END = 2, |
| |
| /* This is followed by an unsigned LEB128 number that is an index into |
| .debug_addr and specifies the beginning address, and a 4 byte unsigned |
| number that specifies the length, and then a normal location expression |
| as in .debug_loc. */ |
| DEBUG_LOC_START_LENGTH = 3, |
| |
| /* An internal value indicating there is insufficient data. */ |
| DEBUG_LOC_BUFFER_OVERFLOW = -1, |
| |
| /* An internal value indicating an invalid kind of entry was found. */ |
| DEBUG_LOC_INVALID_ENTRY = -2 |
| }; |
| |
| /* Decode the addresses in a non-dwo .debug_loc entry. |
| A pointer to the next byte to examine is returned in *NEW_PTR. |
| The encoded low,high addresses are return in *LOW,*HIGH. |
| The result indicates the kind of entry found. */ |
| |
| static enum debug_loc_kind |
| decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end, |
| const gdb_byte **new_ptr, |
| CORE_ADDR *low, CORE_ADDR *high, |
| enum bfd_endian byte_order, |
| unsigned int addr_size, |
| int signed_addr_p) |
| { |
| CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); |
| |
| if (buf_end - loc_ptr < 2 * addr_size) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| |
| if (signed_addr_p) |
| *low = extract_signed_integer (loc_ptr, addr_size, byte_order); |
| else |
| *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order); |
| loc_ptr += addr_size; |
| |
| if (signed_addr_p) |
| *high = extract_signed_integer (loc_ptr, addr_size, byte_order); |
| else |
| *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order); |
| loc_ptr += addr_size; |
| |
| *new_ptr = loc_ptr; |
| |
| /* A base-address-selection entry. */ |
| if ((*low & base_mask) == base_mask) |
| return DEBUG_LOC_BASE_ADDRESS; |
| |
| /* An end-of-list entry. */ |
| if (*low == 0 && *high == 0) |
| return DEBUG_LOC_END_OF_LIST; |
| |
| return DEBUG_LOC_START_END; |
| } |
| |
| /* Decode the addresses in .debug_loc.dwo entry. |
| A pointer to the next byte to examine is returned in *NEW_PTR. |
| The encoded low,high addresses are return in *LOW,*HIGH. |
| The result indicates the kind of entry found. */ |
| |
| static enum debug_loc_kind |
| decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu, |
| const gdb_byte *loc_ptr, |
| const gdb_byte *buf_end, |
| const gdb_byte **new_ptr, |
| CORE_ADDR *low, CORE_ADDR *high, |
| enum bfd_endian byte_order) |
| { |
| uint64_t low_index, high_index; |
| |
| if (loc_ptr == buf_end) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| |
| switch (*loc_ptr++) |
| { |
| case DEBUG_LOC_END_OF_LIST: |
| *new_ptr = loc_ptr; |
| return DEBUG_LOC_END_OF_LIST; |
| case DEBUG_LOC_BASE_ADDRESS: |
| *low = 0; |
| loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index); |
| if (loc_ptr == NULL) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| *high = dwarf2_read_addr_index (per_cu, high_index); |
| *new_ptr = loc_ptr; |
| return DEBUG_LOC_BASE_ADDRESS; |
| case DEBUG_LOC_START_END: |
| loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index); |
| if (loc_ptr == NULL) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| *low = dwarf2_read_addr_index (per_cu, low_index); |
| loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index); |
| if (loc_ptr == NULL) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| *high = dwarf2_read_addr_index (per_cu, high_index); |
| *new_ptr = loc_ptr; |
| return DEBUG_LOC_START_END; |
| case DEBUG_LOC_START_LENGTH: |
| loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index); |
| if (loc_ptr == NULL) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| *low = dwarf2_read_addr_index (per_cu, low_index); |
| if (loc_ptr + 4 > buf_end) |
| return DEBUG_LOC_BUFFER_OVERFLOW; |
| *high = *low; |
| *high += extract_unsigned_integer (loc_ptr, 4, byte_order); |
| *new_ptr = loc_ptr + 4; |
| return DEBUG_LOC_START_LENGTH; |
| default: |
| return DEBUG_LOC_INVALID_ENTRY; |
| } |
| } |
| |
| /* A function for dealing with location lists. Given a |
| symbol baton (BATON) and a pc value (PC), find the appropriate |
| location expression, set *LOCEXPR_LENGTH, and return a pointer |
| to the beginning of the expression. Returns NULL on failure. |
| |
| For now, only return the first matching location expression; there |
| can be more than one in the list. */ |
| |
| const gdb_byte * |
| dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton, |
| size_t *locexpr_length, CORE_ADDR pc) |
| { |
| struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu); |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu); |
| int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd); |
| /* Adjust base_address for relocatable objects. */ |
| CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu); |
| CORE_ADDR base_address = baton->base_address + base_offset; |
| const gdb_byte *loc_ptr, *buf_end; |
| |
| loc_ptr = baton->data; |
| buf_end = baton->data + baton->size; |
| |
| while (1) |
| { |
| CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */ |
| int length; |
| enum debug_loc_kind kind; |
| const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */ |
| |
| if (baton->from_dwo) |
| kind = decode_debug_loc_dwo_addresses (baton->per_cu, |
| loc_ptr, buf_end, &new_ptr, |
| &low, &high, byte_order); |
| else |
| kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr, |
| &low, &high, |
| byte_order, addr_size, |
| signed_addr_p); |
| loc_ptr = new_ptr; |
| switch (kind) |
| { |
| case DEBUG_LOC_END_OF_LIST: |
| *locexpr_length = 0; |
| return NULL; |
| case DEBUG_LOC_BASE_ADDRESS: |
| base_address = high + base_offset; |
| continue; |
| case DEBUG_LOC_START_END: |
| case DEBUG_LOC_START_LENGTH: |
| break; |
| case DEBUG_LOC_BUFFER_OVERFLOW: |
| case DEBUG_LOC_INVALID_ENTRY: |
| error (_("dwarf2_find_location_expression: " |
| "Corrupted DWARF expression.")); |
| default: |
| gdb_assert_not_reached ("bad debug_loc_kind"); |
| } |
| |
| /* Otherwise, a location expression entry. */ |
| low += base_address; |
| high += base_address; |
| |
| length = extract_unsigned_integer (loc_ptr, 2, byte_order); |
| loc_ptr += 2; |
| |
| if (low == high && pc == low) |
| { |
| /* This is entry PC record present only at entry point |
| of a function. Verify it is really the function entry point. */ |
| |
| struct block *pc_block = block_for_pc (pc); |
| struct symbol *pc_func = NULL; |
| |
| if (pc_block) |
| pc_func = block_linkage_function (pc_block); |
| |
| if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func))) |
| { |
| *locexpr_length = length; |
| return loc_ptr; |
| } |
| } |
| |
| if (pc >= low && pc < high) |
| { |
| *locexpr_length = length; |
| return loc_ptr; |
| } |
| |
| loc_ptr += length; |
| } |
| } |
| |
| /* This is the baton used when performing dwarf2 expression |
| evaluation. */ |
| struct dwarf_expr_baton |
| { |
| struct frame_info *frame; |
| struct dwarf2_per_cu_data *per_cu; |
| }; |
| |
| /* Helper functions for dwarf2_evaluate_loc_desc. */ |
| |
| /* Using the frame specified in BATON, return the value of register |
| REGNUM, treated as a pointer. */ |
| static CORE_ADDR |
| dwarf_expr_read_reg (void *baton, int dwarf_regnum) |
| { |
| struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton; |
| struct gdbarch *gdbarch = get_frame_arch (debaton->frame); |
| CORE_ADDR result; |
| int regnum; |
| |
| regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum); |
| result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr, |
| regnum, debaton->frame); |
| return result; |
| } |
| |
| /* Read memory at ADDR (length LEN) into BUF. */ |
| |
| static void |
| dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) |
| { |
| read_memory (addr, buf, len); |
| } |
| |
| /* Using the frame specified in BATON, find the location expression |
| describing the frame base. Return a pointer to it in START and |
| its length in LENGTH. */ |
| static void |
| dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length) |
| { |
| /* FIXME: cagney/2003-03-26: This code should be using |
| get_frame_base_address(), and then implement a dwarf2 specific |
| this_base method. */ |
| struct symbol *framefunc; |
| struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton; |
| |
| /* Use block_linkage_function, which returns a real (not inlined) |
| function, instead of get_frame_function, which may return an |
| inlined function. */ |
| framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL)); |
| |
| /* If we found a frame-relative symbol then it was certainly within |
| some function associated with a frame. If we can't find the frame, |
| something has gone wrong. */ |
| gdb_assert (framefunc != NULL); |
| |
| dwarf_expr_frame_base_1 (framefunc, |
| get_frame_address_in_block (debaton->frame), |
| start, length); |
| } |
| |
| static void |
| dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc, |
| const gdb_byte **start, size_t *length) |
| { |
| if (SYMBOL_LOCATION_BATON (framefunc) == NULL) |
| *length = 0; |
| else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs) |
| { |
| struct dwarf2_loclist_baton *symbaton; |
| |
| symbaton = SYMBOL_LOCATION_BATON (framefunc); |
| *start = dwarf2_find_location_expression (symbaton, length, pc); |
| } |
| else |
| { |
| struct dwarf2_locexpr_baton *symbaton; |
| |
| symbaton = SYMBOL_LOCATION_BATON (framefunc); |
| if (symbaton != NULL) |
| { |
| *length = symbaton->size; |
| *start = symbaton->data; |
| } |
| else |
| *length = 0; |
| } |
| |
| if (*length == 0) |
| error (_("Could not find the frame base for \"%s\"."), |
| SYMBOL_NATURAL_NAME (framefunc)); |
| } |
| |
| /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for |
| the frame in BATON. */ |
| |
| static CORE_ADDR |
| dwarf_expr_frame_cfa (void *baton) |
| { |
| struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton; |
| |
| return dwarf2_frame_cfa (debaton->frame); |
| } |
| |
| /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for |
| the frame in BATON. */ |
| |
| static CORE_ADDR |
| dwarf_expr_frame_pc (void *baton) |
| { |
| struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton; |
| |
| return get_frame_address_in_block (debaton->frame); |
| } |
| |
| /* Using the objfile specified in BATON, find the address for the |
| current thread's thread-local storage with offset OFFSET. */ |
| static CORE_ADDR |
| dwarf_expr_tls_address (void *baton, CORE_ADDR offset) |
| { |
| struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton; |
| struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu); |
| |
| return target_translate_tls_address (objfile, offset); |
| } |
| |
| /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in |
| current CU (as is PER_CU). State of the CTX is not affected by the |
| call and return. */ |
| |
| static void |
| per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset, |
| struct dwarf2_per_cu_data *per_cu, |
| CORE_ADDR (*get_frame_pc) (void *baton), |
| void *baton) |
| { |
| struct dwarf2_locexpr_baton block; |
| |
| block = dwarf2_fetch_die_location_block (die_offset, per_cu, |
| get_frame_pc, baton); |
| |
| /* DW_OP_call_ref is currently not supported. */ |
| gdb_assert (block.per_cu == per_cu); |
| |
| dwarf_expr_eval (ctx, block.data, block.size); |
| } |
| |
| /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */ |
| |
| static void |
| dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset) |
| { |
| struct dwarf_expr_baton *debaton = ctx->baton; |
| |
| per_cu_dwarf_call (ctx, die_offset, debaton->per_cu, |
| ctx->funcs->get_frame_pc, ctx->baton); |
| } |
| |
| /* Callback function for dwarf2_evaluate_loc_desc. */ |
| |
| static struct type * |
| dwarf_expr_get_base_type (struct dwarf_expr_context *ctx, |
| cu_offset die_offset) |
| { |
| struct dwarf_expr_baton *debaton = ctx->baton; |
| |
| return dwarf2_get_die_type (die_offset, debaton->per_cu); |
| } |
| |
| /* See dwarf2loc.h. */ |
| |
| int entry_values_debug = 0; |
| |
| /* Helper to set entry_values_debug. */ |
| |
| static void |
| show_entry_values_debug (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Entry values and tail call frames debugging is %s.\n"), |
| value); |
| } |
| |
| /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address. |
| CALLER_FRAME (for registers) can be NULL if it is not known. This function |
| always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */ |
| |
| static CORE_ADDR |
| call_site_to_target_addr (struct gdbarch *call_site_gdbarch, |
| struct call_site *call_site, |
| struct frame_info *caller_frame) |
| { |
| switch (FIELD_LOC_KIND (call_site->target)) |
| { |
| case FIELD_LOC_KIND_DWARF_BLOCK: |
| { |
| struct dwarf2_locexpr_baton *dwarf_block; |
| struct value *val; |
| struct type *caller_core_addr_type; |
| struct gdbarch *caller_arch; |
| |
| dwarf_block = FIELD_DWARF_BLOCK (call_site->target); |
| if (dwarf_block == NULL) |
| { |
| struct minimal_symbol *msym; |
| |
| msym = lookup_minimal_symbol_by_pc (call_site->pc - 1); |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DW_AT_GNU_call_site_target is not specified " |
| "at %s in %s"), |
| paddress (call_site_gdbarch, call_site->pc), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym)); |
| |
| } |
| if (caller_frame == NULL) |
| { |
| struct minimal_symbol *msym; |
| |
| msym = lookup_minimal_symbol_by_pc (call_site->pc - 1); |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DW_AT_GNU_call_site_target DWARF block resolving " |
| "requires known frame which is currently not " |
| "available at %s in %s"), |
| paddress (call_site_gdbarch, call_site->pc), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym)); |
| |
| } |
| caller_arch = get_frame_arch (caller_frame); |
| caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr; |
| val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame, |
| dwarf_block->data, dwarf_block->size, |
| dwarf_block->per_cu); |
| /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF |
| location. */ |
| if (VALUE_LVAL (val) == lval_memory) |
| return value_address (val); |
| else |
| return value_as_address (val); |
| } |
| |
| case FIELD_LOC_KIND_PHYSNAME: |
| { |
| const char *physname; |
| struct minimal_symbol *msym; |
| |
| physname = FIELD_STATIC_PHYSNAME (call_site->target); |
| msym = lookup_minimal_symbol_text (physname, NULL); |
| if (msym == NULL) |
| { |
| msym = lookup_minimal_symbol_by_pc (call_site->pc - 1); |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("Cannot find function \"%s\" for a call site target " |
| "at %s in %s"), |
| physname, paddress (call_site_gdbarch, call_site->pc), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym)); |
| |
| } |
| return SYMBOL_VALUE_ADDRESS (msym); |
| } |
| |
| case FIELD_LOC_KIND_PHYSADDR: |
| return FIELD_STATIC_PHYSADDR (call_site->target); |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("invalid call site target kind")); |
| } |
| } |
| |
| /* Convert function entry point exact address ADDR to the function which is |
| compliant with TAIL_CALL_LIST_COMPLETE condition. Throw |
| NO_ENTRY_VALUE_ERROR otherwise. */ |
| |
| static struct symbol * |
| func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| struct symbol *sym = find_pc_function (addr); |
| struct type *type; |
| |
| if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr) |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DW_TAG_GNU_call_site resolving failed to find function " |
| "name for address %s"), |
| paddress (gdbarch, addr)); |
| |
| type = SYMBOL_TYPE (sym); |
| gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC); |
| gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); |
| |
| return sym; |
| } |
| |
| /* Verify function with entry point exact address ADDR can never call itself |
| via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it |
| can call itself via tail calls. |
| |
| If a funtion can tail call itself its entry value based parameters are |
| unreliable. There is no verification whether the value of some/all |
| parameters is unchanged through the self tail call, we expect if there is |
| a self tail call all the parameters can be modified. */ |
| |
| static void |
| func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr) |
| { |
| struct obstack addr_obstack; |
| struct cleanup *old_chain; |
| CORE_ADDR addr; |
| |
| /* Track here CORE_ADDRs which were already visited. */ |
| htab_t addr_hash; |
| |
| /* The verification is completely unordered. Track here function addresses |
| which still need to be iterated. */ |
| VEC (CORE_ADDR) *todo = NULL; |
| |
| obstack_init (&addr_obstack); |
| old_chain = make_cleanup_obstack_free (&addr_obstack); |
| addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL, |
| &addr_obstack, hashtab_obstack_allocate, |
| NULL); |
| make_cleanup_htab_delete (addr_hash); |
| |
| make_cleanup (VEC_cleanup (CORE_ADDR), &todo); |
| |
| VEC_safe_push (CORE_ADDR, todo, verify_addr); |
| while (!VEC_empty (CORE_ADDR, todo)) |
| { |
| struct symbol *func_sym; |
| struct call_site *call_site; |
| |
| addr = VEC_pop (CORE_ADDR, todo); |
| |
| func_sym = func_addr_to_tail_call_list (gdbarch, addr); |
| |
| for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym)); |
| call_site; call_site = call_site->tail_call_next) |
| { |
| CORE_ADDR target_addr; |
| void **slot; |
| |
| /* CALLER_FRAME with registers is not available for tail-call jumped |
| frames. */ |
| target_addr = call_site_to_target_addr (gdbarch, call_site, NULL); |
| |
| if (target_addr == verify_addr) |
| { |
| struct minimal_symbol *msym; |
| |
| msym = lookup_minimal_symbol_by_pc (verify_addr); |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DW_OP_GNU_entry_value resolving has found " |
| "function \"%s\" at %s can call itself via tail " |
| "calls"), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym), |
| paddress (gdbarch, verify_addr)); |
| } |
| |
| slot = htab_find_slot (addr_hash, &target_addr, INSERT); |
| if (*slot == NULL) |
| { |
| *slot = obstack_copy (&addr_obstack, &target_addr, |
| sizeof (target_addr)); |
| VEC_safe_push (CORE_ADDR, todo, target_addr); |
| } |
| } |
| } |
| |
| do_cleanups (old_chain); |
| } |
| |
| /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for |
| ENTRY_VALUES_DEBUG. */ |
| |
| static void |
| tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site) |
| { |
| CORE_ADDR addr = call_site->pc; |
| struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (addr - 1); |
| |
| fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym)); |
| |
| } |
| |
| /* vec.h needs single word type name, typedef it. */ |
| typedef struct call_site *call_sitep; |
| |
| /* Define VEC (call_sitep) functions. */ |
| DEF_VEC_P (call_sitep); |
| |
| /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP |
| only top callers and bottom callees which are present in both. GDBARCH is |
| used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are |
| no remaining possibilities to provide unambiguous non-trivial result. |
| RESULTP should point to NULL on the first (initialization) call. Caller is |
| responsible for xfree of any RESULTP data. */ |
| |
| static void |
| chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp, |
| VEC (call_sitep) *chain) |
| { |
| struct call_site_chain *result = *resultp; |
| long length = VEC_length (call_sitep, chain); |
| int callers, callees, idx; |
| |
| if (result == NULL) |
| { |
| /* Create the initial chain containing all the passed PCs. */ |
| |
| result = xmalloc (sizeof (*result) + sizeof (*result->call_site) |
| * (length - 1)); |
| result->length = length; |
| result->callers = result->callees = length; |
| memcpy (result->call_site, VEC_address (call_sitep, chain), |
| sizeof (*result->call_site) * length); |
| *resultp = result; |
| |
| if (entry_values_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "tailcall: initial:"); |
| for (idx = 0; idx < length; idx++) |
| tailcall_dump (gdbarch, result->call_site[idx]); |
| fputc_unfiltered ('\n', gdb_stdlog); |
| } |
| |
| return; |
| } |
| |
| if (entry_values_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "tailcall: compare:"); |
| for (idx = 0; idx < length; idx++) |
| tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx)); |
| fputc_unfiltered ('\n', gdb_stdlog); |
| } |
| |
| /* Intersect callers. */ |
| |
| callers = min (result->callers, length); |
| for (idx = 0; idx < callers; idx++) |
| if (result->call_site[idx] != VEC_index (call_sitep, chain, idx)) |
| { |
| result->callers = idx; |
| break; |
| } |
| |
| /* Intersect callees. */ |
| |
| callees = min (result->callees, length); |
| for (idx = 0; idx < callees; idx++) |
| if (result->call_site[result->length - 1 - idx] |
| != VEC_index (call_sitep, chain, length - 1 - idx)) |
| { |
| result->callees = idx; |
| break; |
| } |
| |
| if (entry_values_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:"); |
| for (idx = 0; idx < result->callers; idx++) |
| tailcall_dump (gdbarch, result->call_site[idx]); |
| fputs_unfiltered (" |", gdb_stdlog); |
| for (idx = 0; idx < result->callees; idx++) |
| tailcall_dump (gdbarch, result->call_site[result->length |
| - result->callees + idx]); |
| fputc_unfiltered ('\n', gdb_stdlog); |
| } |
| |
| if (result->callers == 0 && result->callees == 0) |
| { |
| /* There are no common callers or callees. It could be also a direct |
| call (which has length 0) with ambiguous possibility of an indirect |
| call - CALLERS == CALLEES == 0 is valid during the first allocation |
| but any subsequence processing of such entry means ambiguity. */ |
| xfree (result); |
| *resultp = NULL; |
| return; |
| } |
| |
| /* See call_site_find_chain_1 why there is no way to reach the bottom callee |
| PC again. In such case there must be two different code paths to reach |
| it, therefore some of the former determined intermediate PCs must differ |
| and the unambiguous chain gets shortened. */ |
| gdb_assert (result->callers + result->callees < result->length); |
| } |
| |
| /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the |
| assumed frames between them use GDBARCH. Use depth first search so we can |
| keep single CHAIN of call_site's back to CALLER_PC. Function recursion |
| would have needless GDB stack overhead. Caller is responsible for xfree of |
| the returned result. Any unreliability results in thrown |
| NO_ENTRY_VALUE_ERROR. */ |
| |
| static struct call_site_chain * |
| call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc, |
| CORE_ADDR callee_pc) |
| { |
| struct obstack addr_obstack; |
| struct cleanup *back_to_retval, *back_to_workdata; |
| struct call_site_chain *retval = NULL; |
| struct call_site *call_site; |
| |
| /* Mark CALL_SITEs so we do not visit the same ones twice. */ |
| htab_t addr_hash; |
| |
| /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's |
| call_site nor any possible call_site at CALLEE_PC's function is there. |
| Any CALL_SITE in CHAIN will be iterated to its siblings - via |
| TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */ |
| VEC (call_sitep) *chain = NULL; |
| |
| /* We are not interested in the specific PC inside the callee function. */ |
| callee_pc = get_pc_function_start (callee_pc); |
| if (callee_pc == 0) |
| throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"), |
| paddress (gdbarch, callee_pc)); |
| |
| back_to_retval = make_cleanup (free_current_contents, &retval); |
| |
| obstack_init (&addr_obstack); |
| back_to_workdata = make_cleanup_obstack_free (&addr_obstack); |
| addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL, |
| &addr_obstack, hashtab_obstack_allocate, |
| NULL); |
| make_cleanup_htab_delete (addr_hash); |
| |
| make_cleanup (VEC_cleanup (call_sitep), &chain); |
| |
| /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site |
| at the target's function. All the possible tail call sites in the |
| target's function will get iterated as already pushed into CHAIN via their |
| TAIL_CALL_NEXT. */ |
| call_site = call_site_for_pc (gdbarch, caller_pc); |
| |
| while (call_site) |
| { |
| CORE_ADDR target_func_addr; |
| struct call_site *target_call_site; |
| |
| /* CALLER_FRAME with registers is not available for tail-call jumped |
| frames. */ |
| target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL); |
| |
| if (target_func_addr == callee_pc) |
| { |
| chain_candidate (gdbarch, &retval, chain); |
| if (retval == NULL) |
| break; |
| |
| /* There is no way to reach CALLEE_PC again as we would prevent |
| entering it twice as being already marked in ADDR_HASH. */ |
| target_call_site = NULL; |
| } |
| else |
| { |
| struct symbol *target_func; |
| |
| target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr); |
| target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func)); |
| } |
| |
| do |
| { |
| /* Attempt to visit TARGET_CALL_SITE. */ |
| |
| if (target_call_site) |
| { |
| void **slot; |
| |
| slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT); |
| if (*slot == NULL) |
| { |
| /* Successfully entered TARGET_CALL_SITE. */ |
| |
| *slot = &target_call_site->pc; |
| VEC_safe_push (call_sitep, chain, target_call_site); |
| break; |
| } |
| } |
| |
| /* Backtrack (without revisiting the originating call_site). Try the |
| callers's sibling; if there isn't any try the callers's callers's |
| sibling etc. */ |
| |
| target_call_site = NULL; |
| while (!VEC_empty (call_sitep, chain)) |
| { |
| call_site = VEC_pop (call_sitep, chain); |
| |
| gdb_assert (htab_find_slot (addr_hash, &call_site->pc, |
| NO_INSERT) != NULL); |
| htab_remove_elt (addr_hash, &call_site->pc); |
| |
| target_call_site = call_site->tail_call_next; |
| if (target_call_site) |
| break; |
| } |
| } |
| while (target_call_site); |
| |
| if (VEC_empty (call_sitep, chain)) |
| call_site = NULL; |
| else |
| call_site = VEC_last (call_sitep, chain); |
| } |
| |
| if (retval == NULL) |
| { |
| struct minimal_symbol *msym_caller, *msym_callee; |
| |
| msym_caller = lookup_minimal_symbol_by_pc (caller_pc); |
| msym_callee = lookup_minimal_symbol_by_pc (callee_pc); |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("There are no unambiguously determinable intermediate " |
| "callers or callees between caller function \"%s\" at %s " |
| "and callee function \"%s\" at %s"), |
| (msym_caller == NULL |
| ? "???" : SYMBOL_PRINT_NAME (msym_caller)), |
| paddress (gdbarch, caller_pc), |
| (msym_callee == NULL |
| ? "???" : SYMBOL_PRINT_NAME (msym_callee)), |
| paddress (gdbarch, callee_pc)); |
| } |
| |
| do_cleanups (back_to_workdata); |
| discard_cleanups (back_to_retval); |
| return retval; |
| } |
| |
| /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the |
| assumed frames between them use GDBARCH. If valid call_site_chain cannot be |
| constructed return NULL. Caller is responsible for xfree of the returned |
| result. */ |
| |
| struct call_site_chain * |
| call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc, |
| CORE_ADDR callee_pc) |
| { |
| volatile struct gdb_exception e; |
| struct call_site_chain *retval = NULL; |
| |
| TRY_CATCH (e, RETURN_MASK_ERROR) |
| { |
| retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc); |
| } |
| if (e.reason < 0) |
| { |
| if (e.error == NO_ENTRY_VALUE_ERROR) |
| { |
| if (entry_values_debug) |
| exception_print (gdb_stdout, e); |
| |
| return NULL; |
| } |
| else |
| throw_exception (e); |
| } |
| return retval; |
| } |
| |
| /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */ |
| |
| static int |
| call_site_parameter_matches (struct call_site_parameter *parameter, |
| enum call_site_parameter_kind kind, |
| union call_site_parameter_u kind_u) |
| { |
| if (kind == parameter->kind) |
| switch (kind) |
| { |
| case CALL_SITE_PARAMETER_DWARF_REG: |
| return kind_u.dwarf_reg == parameter->u.dwarf_reg; |
| case CALL_SITE_PARAMETER_FB_OFFSET: |
| return kind_u.fb_offset == parameter->u.fb_offset; |
| case CALL_SITE_PARAMETER_PARAM_OFFSET: |
| return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off; |
| } |
| return 0; |
| } |
| |
| /* Fetch call_site_parameter from caller matching KIND and KIND_U. |
| FRAME is for callee. |
| |
| Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR |
| otherwise. */ |
| |
| static struct call_site_parameter * |
| dwarf_expr_reg_to_entry_parameter (struct frame_info *frame, |
| enum call_site_parameter_kind kind, |
| union call_site_parameter_u kind_u, |
| struct dwarf2_per_cu_data **per_cu_return) |
| { |
| CORE_ADDR func_addr = get_frame_func (frame); |
| CORE_ADDR caller_pc; |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| struct frame_info *caller_frame = get_prev_frame (frame); |
| struct call_site *call_site; |
| int iparams; |
| /* Initialize it just to avoid a GCC false warning. */ |
| struct call_site_parameter *parameter = NULL; |
| CORE_ADDR target_addr; |
| |
| if (gdbarch != frame_unwind_arch (frame)) |
| { |
| struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr); |
| struct gdbarch *caller_gdbarch = frame_unwind_arch (frame); |
| |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DW_OP_GNU_entry_value resolving callee gdbarch %s " |
| "(of %s (%s)) does not match caller gdbarch %s"), |
| gdbarch_bfd_arch_info (gdbarch)->printable_name, |
| paddress (gdbarch, func_addr), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym), |
| gdbarch_bfd_arch_info (caller_gdbarch)->printable_name); |
| } |
| |
| if (caller_frame == NULL) |
| { |
| struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr); |
| |
| throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving " |
| "requires caller of %s (%s)"), |
| paddress (gdbarch, func_addr), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym)); |
| } |
| caller_pc = get_frame_pc (caller_frame); |
| call_site = call_site_for_pc (gdbarch, caller_pc); |
| |
| target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame); |
| if (target_addr != func_addr) |
| { |
| struct minimal_symbol *target_msym, *func_msym; |
| |
| target_msym = lookup_minimal_symbol_by_pc (target_addr); |
| func_msym = lookup_minimal_symbol_by_pc (func_addr); |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DW_OP_GNU_entry_value resolving expects callee %s at %s " |
| "but the called frame is for %s at %s"), |
| (target_msym == NULL ? "???" |
| : SYMBOL_PRINT_NAME (target_msym)), |
| paddress (gdbarch, target_addr), |
| func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym), |
| paddress (gdbarch, func_addr)); |
| } |
| |
| /* No entry value based parameters would be reliable if this function can |
| call itself via tail calls. */ |
| func_verify_no_selftailcall (gdbarch, func_addr); |
| |
| for (iparams = 0; iparams < call_site->parameter_count; iparams++) |
| { |
| parameter = &call_site->parameter[iparams]; |
| if (call_site_parameter_matches (parameter, kind, kind_u)) |
| break; |
| } |
| if (iparams == call_site->parameter_count) |
| { |
| struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (caller_pc); |
| |
| /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not |
| determine its value. */ |
| throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter " |
| "at DW_TAG_GNU_call_site %s at %s"), |
| paddress (gdbarch, caller_pc), |
| msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym)); |
| } |
| |
| *per_cu_return = call_site->per_cu; |
| return parameter; |
| } |
| |
| /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return |
| the normal DW_AT_GNU_call_site_value block. Otherwise return the |
| DW_AT_GNU_call_site_data_value (dereferenced) block. |
| |
| TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned |
| struct value. |
| |
| Function always returns non-NULL, non-optimized out value. It throws |
| NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */ |
| |
| static struct value * |
| dwarf_entry_parameter_to_value (struct call_site_parameter *parameter, |
| CORE_ADDR deref_size, struct type *type, |
| struct frame_info *caller_frame, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| const gdb_byte *data_src; |
| gdb_byte *data; |
| size_t size; |
| |
| data_src = deref_size == -1 ? parameter->value : parameter->data_value; |
| size = deref_size == -1 ? parameter->value_size : parameter->data_value_size; |
| |
| /* DEREF_SIZE size is not verified here. */ |
| if (data_src == NULL) |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("Cannot resolve DW_AT_GNU_call_site_data_value")); |
| |
| /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF |
| location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from |
| DWARF block. */ |
| data = alloca (size + 1); |
| memcpy (data, data_src, size); |
| data[size] = DW_OP_stack_value; |
| |
| return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu); |
| } |
| |
| /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U. |
| Choose DEREF_SIZE value of that parameter. Search caller of the CTX's |
| frame. CTX must be of dwarf_expr_ctx_funcs kind. |
| |
| The CTX caller can be from a different CU - per_cu_dwarf_call implementation |
| can be more simple as it does not support cross-CU DWARF executions. */ |
| |
| static void |
| dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx, |
| enum call_site_parameter_kind kind, |
| union call_site_parameter_u kind_u, |
| int deref_size) |
| { |
| struct dwarf_expr_baton *debaton; |
| struct frame_info *frame, *caller_frame; |
| struct dwarf2_per_cu_data *caller_per_cu; |
| struct dwarf_expr_baton baton_local; |
| struct dwarf_expr_context saved_ctx; |
| struct call_site_parameter *parameter; |
| const gdb_byte *data_src; |
| size_t size; |
| |
| gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs); |
| debaton = ctx->baton; |
| frame = debaton->frame; |
| caller_frame = get_prev_frame (frame); |
| |
| parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u, |
| &caller_per_cu); |
| data_src = deref_size == -1 ? parameter->value : parameter->data_value; |
| size = deref_size == -1 ? parameter->value_size : parameter->data_value_size; |
| |
| /* DEREF_SIZE size is not verified here. */ |
| if (data_src == NULL) |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("Cannot resolve DW_AT_GNU_call_site_data_value")); |
| |
| baton_local.frame = caller_frame; |
| baton_local.per_cu = caller_per_cu; |
| |
| saved_ctx.gdbarch = ctx->gdbarch; |
| saved_ctx.addr_size = ctx->addr_size; |
| saved_ctx.offset = ctx->offset; |
| saved_ctx.baton = ctx->baton; |
| ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu)); |
| ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu); |
| ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu); |
| ctx->baton = &baton_local; |
| |
| dwarf_expr_eval (ctx, data_src, size); |
| |
| ctx->gdbarch = saved_ctx.gdbarch; |
| ctx->addr_size = saved_ctx.addr_size; |
| ctx->offset = saved_ctx.offset; |
| ctx->baton = saved_ctx.baton; |
| } |
| |
| /* Callback function for dwarf2_evaluate_loc_desc. |
| Fetch the address indexed by DW_OP_GNU_addr_index. */ |
| |
| static CORE_ADDR |
| dwarf_expr_get_addr_index (void *baton, unsigned int index) |
| { |
| struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton; |
| |
| return dwarf2_read_addr_index (debaton->per_cu, index); |
| } |
| |
| /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform |
| the indirect method on it, that is use its stored target value, the sole |
| purpose of entry_data_value_funcs.. */ |
| |
| static struct value * |
| entry_data_value_coerce_ref (const struct value *value) |
| { |
| struct type *checked_type = check_typedef (value_type (value)); |
| struct value *target_val; |
| |
| if (TYPE_CODE (checked_type) != TYPE_CODE_REF) |
| return NULL; |
| |
| target_val = value_computed_closure (value); |
| value_incref (target_val); |
| return target_val; |
| } |
| |
| /* Implement copy_closure. */ |
| |
| static void * |
| entry_data_value_copy_closure (const struct value *v) |
| { |
| struct value *target_val = value_computed_closure (v); |
| |
| value_incref (target_val); |
| return target_val; |
| } |
| |
| /* Implement free_closure. */ |
| |
| static void |
| entry_data_value_free_closure (struct value *v) |
| { |
| struct value *target_val = value_computed_closure (v); |
| |
| value_free (target_val); |
| } |
| |
| /* Vector for methods for an entry value reference where the referenced value |
| is stored in the caller. On the first dereference use |
| DW_AT_GNU_call_site_data_value in the caller. */ |
| |
| static const struct lval_funcs entry_data_value_funcs = |
| { |
| NULL, /* read */ |
| NULL, /* write */ |
| NULL, /* check_validity */ |
| NULL, /* check_any_valid */ |
| NULL, /* indirect */ |
| entry_data_value_coerce_ref, |
| NULL, /* check_synthetic_pointer */ |
| entry_data_value_copy_closure, |
| entry_data_value_free_closure |
| }; |
| |
| /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U |
| are used to match DW_AT_location at the caller's |
| DW_TAG_GNU_call_site_parameter. |
| |
| Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it |
| cannot resolve the parameter for any reason. */ |
| |
| static struct value * |
| value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame, |
| enum call_site_parameter_kind kind, |
| union call_site_parameter_u kind_u) |
| { |
| struct type *checked_type = check_typedef (type); |
| struct type *target_type = TYPE_TARGET_TYPE (checked_type); |
| struct frame_info *caller_frame = get_prev_frame (frame); |
| struct value *outer_val, *target_val, *val; |
| struct call_site_parameter *parameter; |
| struct dwarf2_per_cu_data *caller_per_cu; |
| CORE_ADDR addr; |
| |
| parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u, |
| &caller_per_cu); |
| |
| outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */, |
| type, caller_frame, |
| caller_per_cu); |
| |
| /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be |
| used and it is not available do not fall back to OUTER_VAL - dereferencing |
| TYPE_CODE_REF with non-entry data value would give current value - not the |
| entry value. */ |
| |
| if (TYPE_CODE (checked_type) != TYPE_CODE_REF |
| || TYPE_TARGET_TYPE (checked_type) == NULL) |
| return outer_val; |
| |
| target_val = dwarf_entry_parameter_to_value (parameter, |
| TYPE_LENGTH (target_type), |
| target_type, caller_frame, |
| caller_per_cu); |
| |
| /* value_as_address dereferences TYPE_CODE_REF. */ |
| addr = extract_typed_address (value_contents (outer_val), checked_type); |
| |
| /* The target entry value has artificial address of the entry value |
| reference. */ |
| VALUE_LVAL (target_val) = lval_memory; |
| set_value_address (target_val, addr); |
| |
| release_value (target_val); |
| val = allocate_computed_value (type, &entry_data_value_funcs, |
| target_val /* closure */); |
| |
| /* Copy the referencing pointer to the new computed value. */ |
| memcpy (value_contents_raw (val), value_contents_raw (outer_val), |
| TYPE_LENGTH (checked_type)); |
| set_value_lazy (val, 0); |
| |
| return val; |
| } |
| |
| /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and |
| SIZE are DWARF block used to match DW_AT_location at the caller's |
| DW_TAG_GNU_call_site_parameter. |
| |
| Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it |
| cannot resolve the parameter for any reason. */ |
| |
| static struct value * |
| value_of_dwarf_block_entry (struct type *type, struct frame_info *frame, |
| const gdb_byte *block, size_t block_len) |
| { |
| union call_site_parameter_u kind_u; |
| |
| kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len); |
| if (kind_u.dwarf_reg != -1) |
| return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG, |
| kind_u); |
| |
| if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset)) |
| return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET, |
| kind_u); |
| |
| /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message |
| suppressed during normal operation. The expression can be arbitrary if |
| there is no caller-callee entry value binding expected. */ |
| throw_error (NO_ENTRY_VALUE_ERROR, |
| _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported " |
| "only for single DW_OP_reg* or for DW_OP_fbreg(*)")); |
| } |
| |
| struct piece_closure |
| { |
| /* Reference count. */ |
| int refc; |
| |
| /* The CU from which this closure's expression came. */ |
| struct dwarf2_per_cu_data *per_cu; |
| |
| /* The number of pieces used to describe this variable. */ |
| int n_pieces; |
| |
| /* The target address size, used only for DWARF_VALUE_STACK. */ |
| int addr_size; |
| |
| /* The pieces themselves. */ |
| struct dwarf_expr_piece *pieces; |
| }; |
| |
| /* Allocate a closure for a value formed from separately-described |
| PIECES. */ |
| |
| static struct piece_closure * |
| allocate_piece_closure (struct dwarf2_per_cu_data *per_cu, |
| int n_pieces, struct dwarf_expr_piece *pieces, |
| int addr_size) |
| { |
| struct piece_closure *c = XZALLOC (struct piece_closure); |
| int i; |
| |
| c->refc = 1; |
| c->per_cu = per_cu; |
| c->n_pieces = n_pieces; |
| c->addr_size = addr_size; |
| c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece); |
| |
| memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece)); |
| for (i = 0; i < n_pieces; ++i) |
| if (c->pieces[i].location == DWARF_VALUE_STACK) |
| value_incref (c->pieces[i].v.value); |
| |
| return c; |
| } |
| |
| /* The lowest-level function to extract bits from a byte buffer. |
| SOURCE is the buffer. It is updated if we read to the end of a |
| byte. |
| SOURCE_OFFSET_BITS is the offset of the first bit to read. It is |
| updated to reflect the number of bits actually read. |
| NBITS is the number of bits we want to read. It is updated to |
| reflect the number of bits actually read. This function may read |
| fewer bits. |
| BITS_BIG_ENDIAN is taken directly from gdbarch. |
| This function returns the extracted bits. */ |
| |
| static unsigned int |
| extract_bits_primitive (const gdb_byte **source, |
| unsigned int *source_offset_bits, |
| int *nbits, int bits_big_endian) |
| { |
| unsigned int avail, mask, datum; |
| |
| gdb_assert (*source_offset_bits < 8); |
| |
| avail = 8 - *source_offset_bits; |
| if (avail > *nbits) |
| avail = *nbits; |
| |
| mask = (1 << avail) - 1; |
| datum = **source; |
| if (bits_big_endian) |
| datum >>= 8 - (*source_offset_bits + *nbits); |
| else |
| datum >>= *source_offset_bits; |
| datum &= mask; |
| |
| *nbits -= avail; |
| *source_offset_bits += avail; |
| if (*source_offset_bits >= 8) |
| { |
| *source_offset_bits -= 8; |
| ++*source; |
| } |
| |
| return datum; |
| } |
| |
| /* Extract some bits from a source buffer and move forward in the |
| buffer. |
| |
| SOURCE is the source buffer. It is updated as bytes are read. |
| SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as |
| bits are read. |
| NBITS is the number of bits to read. |
| BITS_BIG_ENDIAN is taken directly from gdbarch. |
| |
| This function returns the bits that were read. */ |
| |
| static unsigned int |
| extract_bits (const gdb_byte **source, unsigned int *source_offset_bits, |
| int nbits, int bits_big_endian) |
| { |
| unsigned int datum; |
| |
| gdb_assert (nbits > 0 && nbits <= 8); |
| |
| datum = extract_bits_primitive (source, source_offset_bits, &nbits, |
| bits_big_endian); |
| if (nbits > 0) |
| { |
| unsigned int more; |
| |
| more = extract_bits_primitive (source, source_offset_bits, &nbits, |
| bits_big_endian); |
| if (bits_big_endian) |
| datum <<= nbits; |
| else |
| more <<= nbits; |
| datum |= more; |
| } |
| |
| return datum; |
| } |
| |
| /* Write some bits into a buffer and move forward in the buffer. |
| |
| DATUM is the bits to write. The low-order bits of DATUM are used. |
| DEST is the destination buffer. It is updated as bytes are |
| written. |
| DEST_OFFSET_BITS is the bit offset in DEST at which writing is |
| done. |
| NBITS is the number of valid bits in DATUM. |
| BITS_BIG_ENDIAN is taken directly from gdbarch. */ |
| |
| static void |
| insert_bits (unsigned int datum, |
| gdb_byte *dest, unsigned int dest_offset_bits, |
| int nbits, int bits_big_endian) |
| { |
| unsigned int mask; |
| |
| gdb_assert (dest_offset_bits + nbits <= 8); |
| |
| mask = (1 << nbits) - 1; |
| if (bits_big_endian) |
| { |
| datum <<= 8 - (dest_offset_bits + nbits); |
| mask <<= 8 - (dest_offset_bits + nbits); |
| } |
| else |
| { |
| datum <<= dest_offset_bits; |
| mask <<= dest_offset_bits; |
| } |
| |
| gdb_assert ((datum & ~mask) == 0); |
| |
| *dest = (*dest & ~mask) | datum; |
| } |
| |
| /* Copy bits from a source to a destination. |
| |
| DEST is where the bits should be written. |
| DEST_OFFSET_BITS is the bit offset into DEST. |
| SOURCE is the source of bits. |
| SOURCE_OFFSET_BITS is the bit offset into SOURCE. |
| BIT_COUNT is the number of bits to copy. |
| BITS_BIG_ENDIAN is taken directly from gdbarch. */ |
| |
| static void |
| copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits, |
| const gdb_byte *source, unsigned int source_offset_bits, |
| unsigned int bit_count, |
| int bits_big_endian) |
| { |
| unsigned int dest_avail; |
| int datum; |
| |
| /* Reduce everything to byte-size pieces. */ |
| dest += dest_offset_bits / 8; |
| dest_offset_bits %= 8; |
| source += source_offset_bits / 8; |
| source_offset_bits %= 8; |
| |
| dest_avail = 8 - dest_offset_bits % 8; |
| |
| /* See if we can fill the first destination byte. */ |
| if (dest_avail < bit_count) |
| { |
| datum = extract_bits (&source, &source_offset_bits, dest_avail, |
| bits_big_endian); |
| insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian); |
| ++dest; |
| dest_offset_bits = 0; |
| bit_count -= dest_avail; |
| } |
| |
| /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer |
| than 8 bits remaining. */ |
| gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8); |
| for (; bit_count >= 8; bit_count -= 8) |
| { |
| datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian); |
| *dest++ = (gdb_byte) datum; |
| } |
| |
| /* Finally, we may have a few leftover bits. */ |
| gdb_assert (bit_count <= 8 - dest_offset_bits % 8); |
| if (bit_count > 0) |
| { |
| datum = extract_bits (&source, &source_offset_bits, bit_count, |
| bits_big_endian); |
| insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian); |
| } |
| } |
| |
| static void |
| read_pieced_value (struct value *v) |
| { |
| int i; |
| long offset = 0; |
| ULONGEST bits_to_skip; |
| gdb_byte *contents; |
| struct piece_closure *c |
| = (struct piece_closure *) value_computed_closure (v); |
| struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v)); |
| size_t type_len; |
| size_t buffer_size = 0; |
| char *buffer = NULL; |
| struct cleanup *cleanup; |
| int bits_big_endian |
| = gdbarch_bits_big_endian (get_type_arch (value_type (v))); |
| |
| if (value_type (v) != value_enclosing_type (v)) |
| internal_error (__FILE__, __LINE__, |
| _("Should not be able to create a lazy value with " |
| "an enclosing type")); |
| |
| cleanup = make_cleanup (free_current_contents, &buffer); |
| |
| contents = value_contents_raw (v); |
| bits_to_skip = 8 * value_offset (v); |
| if (value_bitsize (v)) |
| { |
| bits_to_skip += value_bitpos (v); |
| type_len = value_bitsize (v); |
| } |
| else |
| type_len = 8 * TYPE_LENGTH (value_type (v)); |
| |
| for (i = 0; i < c->n_pieces && offset < type_len; i++) |
| { |
| struct dwarf_expr_piece *p = &c->pieces[i]; |
| size_t this_size, this_size_bits; |
| long dest_offset_bits, source_offset_bits, source_offset; |
| const gdb_byte *intermediate_buffer; |
| |
| /* Compute size, source, and destination offsets for copying, in |
| bits. */ |
| this_size_bits = p->size; |
| if (bits_to_skip > 0 && bits_to_skip >= this_size_bits) |
| { |
| bits_to_skip -= this_size_bits; |
| continue; |
| } |
| if (this_size_bits > type_len - offset) |
| this_size_bits = type_len - offset; |
| if (bits_to_skip > 0) |
| { |
| dest_offset_bits = 0; |
| source_offset_bits = bits_to_skip; |
| this_size_bits -= bits_to_skip; |
| bits_to_skip = 0; |
| } |
| else |
| { |
| dest_offset_bits = offset; |
| source_offset_bits = 0; |
| } |
| |
| this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8; |
| source_offset = source_offset_bits / 8; |
| if (buffer_size < this_size) |
| { |
| buffer_size = this_size; |
| buffer = xrealloc (buffer, buffer_size); |
| } |
| intermediate_buffer = buffer; |
| |
| /* Copy from the source to DEST_BUFFER. */ |
| switch (p->location) |
| { |
| case DWARF_VALUE_REGISTER: |
| { |
| struct gdbarch *arch = get_frame_arch (frame); |
| int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno); |
| int reg_offset = source_offset; |
| |
| if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG |
| && this_size < register_size (arch, gdb_regnum)) |
| { |
| /* Big-endian, and we want less than full size. */ |
| reg_offset = register_size (arch, gdb_regnum) - this_size; |
| /* We want the lower-order THIS_SIZE_BITS of the bytes |
| we extract from the register. */ |
| source_offset_bits += 8 * this_size - this_size_bits; |
| } |
| |
| if (gdb_regnum != -1) |
| { |
| int optim, unavail; |
| |
| if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset, |
| this_size, buffer, |
| &optim, &unavail)) |
| { |
| /* Just so garbage doesn't ever shine through. */ |
| memset (buffer, 0, this_size); |
| |
| if (optim) |
| set_value_optimized_out (v, 1); |
| if (unavail) |
| mark_value_bytes_unavailable (v, offset, this_size); |
| } |
| } |
| else |
| { |
| error (_("Unable to access DWARF register number %s"), |
| paddress (arch, p->v.regno)); |
| } |
| } |
| break; |
| |
| case DWARF_VALUE_MEMORY: |
| read_value_memory (v, offset, |
| p->v.mem.in_stack_memory, |
| p->v.mem.addr + source_offset, |
| buffer, this_size); |
| break; |
| |
| case DWARF_VALUE_STACK: |
| { |
| size_t n = this_size; |
| |
| if (n > c->addr_size - source_offset) |
| n = (c->addr_size >= source_offset |
| ? c->addr_size - source_offset |
| : 0); |
| if (n == 0) |
| { |
| /* Nothing. */ |
| } |
| else |
| { |
| const gdb_byte *val_bytes = value_contents_all (p->v.value); |
| |
| intermediate_buffer = val_bytes + source_offset; |
| } |
| } |
| break; |
| |
| case DWARF_VALUE_LITERAL: |
| { |
| size_t n = this_size; |
| |
| if (n > p->v.literal.length - source_offset) |
| n = (p->v.literal.length >= source_offset |
| ? p->v.literal.length - source_offset |
| : 0); |
| if (n != 0) |
| intermediate_buffer = p->v.literal.data + source_offset; |
| } |
| break; |
| |
| /* These bits show up as zeros -- but do not cause the value |
| to be considered optimized-out. */ |
| case DWARF_VALUE_IMPLICIT_POINTER: |
| break; |
| |
| case DWARF_VALUE_OPTIMIZED_OUT: |
| set_value_optimized_out (v, 1); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("invalid location type")); |
| } |
| |
| if (p->location != DWARF_VALUE_OPTIMIZED_OUT |
| && p->location != DWARF_VALUE_IMPLICIT_POINTER) |
| copy_bitwise (contents, dest_offset_bits, |
| intermediate_buffer, source_offset_bits % 8, |
| this_size_bits, bits_big_endian); |
| |
| offset += this_size_bits; |
| } |
| |
| do_cleanups (cleanup); |
| } |
| |
| static void |
| write_pieced_value (struct value *to, struct value *from) |
| { |
| int i; |
| long offset = 0; |
| ULONGEST bits_to_skip; |
| const gdb_byte *contents; |
| struct piece_closure *c |
| = (struct piece_closure *) value_computed_closure (to); |
| struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to)); |
| size_t type_len; |
| size_t buffer_size = 0; |
| char *buffer = NULL; |
| struct cleanup *cleanup; |
| int bits_big_endian |
| = gdbarch_bits_big_endian (get_type_arch (value_type (to))); |
| |
| if (frame == NULL) |
| { |
| set_value_optimized_out (to, 1); |
| return; |
| } |
| |
| cleanup = make_cleanup (free_current_contents, &buffer); |
| |
| contents = value_contents (from); |
| bits_to_skip = 8 * value_offset (to); |
| if (value_bitsize (to)) |
| { |
| bits_to_skip += value_bitpos (to); |
| type_len = value_bitsize (to); |
| } |
| else |
| type_len = 8 * TYPE_LENGTH (value_type (to)); |
| |
| for (i = 0; i < c->n_pieces && offset < type_len; i++) |
| { |
| struct dwarf_expr_piece *p = &c->pieces[i]; |
| size_t this_size_bits, this_size; |
| long dest_offset_bits, source_offset_bits, dest_offset, source_offset; |
| int need_bitwise; |
| const gdb_byte *source_buffer; |
| |
| this_size_bits = p->size; |
| if (bits_to_skip > 0 && bits_to_skip >= this_size_bits) |
| { |
| bits_to_skip -= this_size_bits; |
| continue; |
| } |
| if (this_size_bits > type_len - offset) |
| this_size_bits = type_len - offset; |
| if (bits_to_skip > 0) |
| { |
| dest_offset_bits = bits_to_skip; |
| source_offset_bits = 0; |
| this_size_bits -= bits_to_skip; |
| bits_to_skip = 0; |
| } |
| else |
| { |
| dest_offset_bits = 0; |
| source_offset_bits = offset; |
| } |
| |
| this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8; |
| source_offset = source_offset_bits / 8; |
| dest_offset = dest_offset_bits / 8; |
| if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0) |
| { |
| source_buffer = contents + source_offset; |
| need_bitwise = 0; |
| } |
| else |
| { |
| if (buffer_size < this_size) |
| { |
| buffer_size = this_size; |
| buffer = xrealloc (buffer, buffer_size); |
| } |
| source_buffer = buffer; |
| need_bitwise = 1; |
| } |
| |
| switch (p->location) |
| { |
| case DWARF_VALUE_REGISTER: |
| { |
| struct gdbarch *arch = get_frame_arch (frame); |
| int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno); |
| int reg_offset = dest_offset; |
| |
| if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG |
| && this_size <= register_size (arch, gdb_regnum)) |
| /* Big-endian, and we want less than full size. */ |
| reg_offset = register_size (arch, gdb_regnum) - this_size; |
| |
| if (gdb_regnum != -1) |
| { |
| if (need_bitwise) |
| { |
| int optim, unavail; |
| |
| if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset, |
| this_size, buffer, |
| &optim, &unavail)) |
| { |
| if (optim) |
| error (_("Can't do read-modify-write to " |
| "update bitfield; containing word has been " |
| "optimized out")); |
| if (unavail) |
| throw_error (NOT_AVAILABLE_ERROR, |
| _("Can't do read-modify-write to update " |
| "bitfield; containing word " |
| "is unavailable")); |
| } |
| copy_bitwise (buffer, dest_offset_bits, |
| contents, source_offset_bits, |
| this_size_bits, |
| bits_big_endian); |
| } |
| |
| put_frame_register_bytes (frame, gdb_regnum, reg_offset, |
| this_size, source_buffer); |
| } |
| else |
| { |
| error (_("Unable to write to DWARF register number %s"), |
| paddress (arch, p->v.regno)); |
| } |
| } |
| break; |
| case DWARF_VALUE_MEMORY: |
| if (need_bitwise) |
| { |
| /* Only the first and last bytes can possibly have any |
| bits reused. */ |
| read_memory (p->v.mem.addr + dest_offset, buffer, 1); |
| read_memory (p->v.mem.addr + dest_offset + this_size - 1, |
| buffer + this_size - 1, 1); |
| copy_bitwise (buffer, dest_offset_bits, |
| contents, source_offset_bits, |
| this_size_bits, |
| bits_big_endian); |
| } |
| |
| write_memory (p->v.mem.addr + dest_offset, |
| source_buffer, this_size); |
| break; |
| default: |
| set_value_optimized_out (to, 1); |
| break; |
| } |
| offset += this_size_bits; |
| } |
| |
| do_cleanups (cleanup); |
| } |
| |
| /* A helper function that checks bit validity in a pieced value. |
| CHECK_FOR indicates the kind of validity checking. |
| DWARF_VALUE_MEMORY means to check whether any bit is valid. |
| DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is |
| optimized out. |
| DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an |
| implicit pointer. */ |
| |
| static int |
| check_pieced_value_bits (const struct value *value, int bit_offset, |
| int bit_length, |
| enum dwarf_value_location check_for) |
| { |
| struct piece_closure *c |
| = (struct piece_closure *) value_computed_closure (value); |
| int i; |
| int validity = (check_for == DWARF_VALUE_MEMORY |
| || check_for == DWARF_VALUE_IMPLICIT_POINTER); |
| |
| bit_offset += 8 * value_offset (value); |
| if (value_bitsize (value)) |
| bit_offset += value_bitpos (value); |
| |
| for (i = 0; i < c->n_pieces && bit_length > 0; i++) |
| { |
| struct dwarf_expr_piece *p = &c->pieces[i]; |
| size_t this_size_bits = p->size; |
| |
| if (bit_offset > 0) |
| { |
| if (bit_offset >= this_size_bits) |
| { |
| bit_offset -= this_size_bits; |
| continue; |
| } |
| |
| bit_length -= this_size_bits - bit_offset; |
| bit_offset = 0; |
| } |
| else |
| bit_length -= this_size_bits; |
| |
| if (check_for == DWARF_VALUE_IMPLICIT_POINTER) |
| { |
| if (p->location != DWARF_VALUE_IMPLICIT_POINTER) |
| return 0; |
| } |
| else if (p->location == DWARF_VALUE_OPTIMIZED_OUT |
| || p->location == DWARF_VALUE_IMPLICIT_POINTER) |
| { |
| if (validity) |
| return 0; |
| } |
| else |
| { |
| if (!validity) |
| return 1; |
| } |
| } |
| |
| return validity; |
| } |
| |
| static int |
| check_pieced_value_validity (const struct value *value, int bit_offset, |
| int bit_length) |
| { |
| return check_pieced_value_bits (value, bit_offset, bit_length, |
| DWARF_VALUE_MEMORY); |
| } |
| |
| static int |
| check_pieced_value_invalid (const struct value *value) |
| { |
| return check_pieced_value_bits (value, 0, |
| 8 * TYPE_LENGTH (value_type (value)), |
| DWARF_VALUE_OPTIMIZED_OUT); |
| } |
| |
| /* An implementation of an lval_funcs method to see whether a value is |
| a synthetic pointer. */ |
| |
| static int |
| check_pieced_synthetic_pointer (const struct value *value, int bit_offset, |
| int bit_length) |
| { |
| return check_pieced_value_bits (value, bit_offset, bit_length, |
| DWARF_VALUE_IMPLICIT_POINTER); |
| } |
| |
| /* A wrapper function for get_frame_address_in_block. */ |
| |
| static CORE_ADDR |
| get_frame_address_in_block_wrapper (void *baton) |
| { |
| return get_frame_address_in_block (baton); |
| } |
| |
| /* An implementation of an lval_funcs method to indirect through a |
| pointer. This handles the synthetic pointer case when needed. */ |
| |
| static struct value * |
| indirect_pieced_value (struct value *value) |
| { |
| struct piece_closure *c |
| = (struct piece_closure *) value_computed_closure (value); |
| struct type *type; |
| struct frame_info *frame; |
| struct dwarf2_locexpr_baton baton; |
| int i, bit_offset, bit_length; |
| struct dwarf_expr_piece *piece = NULL; |
| LONGEST byte_offset; |
| |
| type = check_typedef (value_type (value)); |
| if (TYPE_CODE (type) != TYPE_CODE_PTR) |
| return NULL; |
| |
| bit_length = 8 * TYPE_LENGTH (type); |
| bit_offset = 8 * value_offset (value); |
| if (value_bitsize (value)) |
| bit_offset += value_bitpos (value); |
| |
| for (i = 0; i < c->n_pieces && bit_length > 0; i++) |
| { |
| struct dwarf_expr_piece *p = &c->pieces[i]; |
| size_t this_size_bits = p->size; |
| |
| if (bit_offset > 0) |
| { |
| if (bit_offset >= this_size_bits) |
| { |
| bit_offset -= this_size_bits; |
| continue; |
| } |
| |
| bit_length -= this_size_bits - bit_offset; |
| bit_offset = 0; |
| } |
| else |
| bit_length -= this_size_bits; |
| |
| if (p->location != DWARF_VALUE_IMPLICIT_POINTER) |
| return NULL; |
| |
| if (bit_length != 0) |
| error (_("Invalid use of DW_OP_GNU_implicit_pointer")); |
| |
| piece = p; |
| break; |
| } |
| |
| frame = get_selected_frame (_("No frame selected.")); |
| |
| /* This is an offset requested by GDB, such as value subcripts. */ |
| byte_offset = value_as_address (value); |
| |
| gdb_assert (piece); |
| baton = dwarf2_fetch_die_location_block (piece->v.ptr.die, c->per_cu, |
| get_frame_address_in_block_wrapper, |
| frame); |
| |
| return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame, |
| baton.data, baton.size, baton.per_cu, |
| piece->v.ptr.offset + byte_offset); |
| } |
| |
| static void * |
| copy_pieced_value_closure (const struct value *v) |
| { |
| struct piece_closure *c |
| = (struct piece_closure *) value_computed_closure (v); |
| |
| ++c->refc; |
| return c; |
| } |
| |
| static void |
| free_pieced_value_closure (struct value *v) |
| { |
| struct piece_closure *c |
| = (struct piece_closure *) value_computed_closure (v); |
| |
| --c->refc; |
| if (c->refc == 0) |
| { |
| int i; |
| |
| for (i = 0; i < c->n_pieces; ++i) |
| if (c->pieces[i].location == DWARF_VALUE_STACK) |
| value_free (c->pieces[i].v.value); |
| |
| xfree (c->pieces); |
| xfree (c); |
| } |
| } |
| |
| /* Functions for accessing a variable described by DW_OP_piece. */ |
| static const struct lval_funcs pieced_value_funcs = { |
| read_pieced_value, |
| write_pieced_value, |
| check_pieced_value_validity, |
| check_pieced_value_invalid, |
| indirect_pieced_value, |
| NULL, /* coerce_ref */ |
| check_pieced_synthetic_pointer, |
| copy_pieced_value_closure, |
| free_pieced_value_closure |
| }; |
| |
| /* Helper function which throws an error if a synthetic pointer is |
| invalid. */ |
| |
| static void |
| invalid_synthetic_pointer (void) |
| { |
| error (_("access outside bounds of object " |
| "referenced via synthetic pointer")); |
| } |
| |
| /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */ |
| |
| static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs = |
| { |
| dwarf_expr_read_reg, |
| dwarf_expr_read_mem, |
| dwarf_expr_frame_base, |
| dwarf_expr_frame_cfa, |
| dwarf_expr_frame_pc, |
| dwarf_expr_tls_address, |
| dwarf_expr_dwarf_call, |
| dwarf_expr_get_base_type, |
| dwarf_expr_push_dwarf_reg_entry_value, |
| dwarf_expr_get_addr_index |
| }; |
| |
| /* Evaluate a location description, starting at DATA and with length |
| SIZE, to find the current location of variable of TYPE in the |
| context of FRAME. BYTE_OFFSET is applied after the contents are |
| computed. */ |
| |
| static struct value * |
| dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame, |
| const gdb_byte *data, unsigned short size, |
| struct dwarf2_per_cu_data *per_cu, |
| LONGEST byte_offset) |
| { |
| struct value *retval; |
| struct dwarf_expr_baton baton; |
| struct dwarf_expr_context *ctx; |
| struct cleanup *old_chain, *value_chain; |
| struct objfile *objfile = dwarf2_per_cu_objfile (per_cu); |
| volatile struct gdb_exception ex; |
| |
| if (byte_offset < 0) |
| invalid_synthetic_pointer (); |
| |
| if (size == 0) |
| return allocate_optimized_out_value (type); |
| |
| baton.frame = frame; |
| baton.per_cu = per_cu; |
| |
| ctx = new_dwarf_expr_context (); |
| old_chain = make_cleanup_free_dwarf_expr_context (ctx); |
| value_chain = make_cleanup_value_free_to_mark (value_mark ()); |
| |
| ctx->gdbarch = get_objfile_arch (objfile); |
| ctx->addr_size = dwarf2_per_cu_addr_size (per_cu); |
| ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu); |
| ctx->offset = dwarf2_per_cu_text_offset (per_cu); |
| ctx->baton = &baton; |
| ctx->funcs = &dwarf_expr_ctx_funcs; |
| |
| TRY_CATCH (ex, RETURN_MASK_ERROR) |
| { |
| dwarf_expr_eval (ctx, data, size); |
| } |
| if (ex.reason < 0) |
| { |
| if (ex.error == NOT_AVAILABLE_ERROR) |
| { |
| do_cleanups (old_chain); |
| retval = allocate_value (type); |
| mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type)); |
| return retval; |
| } |
| else if (ex.error == NO_ENTRY_VALUE_ERROR) |
| { |
| if (entry_values_debug) |
| exception_print (gdb_stdout, ex); |
| do_cleanups (old_chain); |
| return allocate_optimized_out_value (type); |
| } |
| else |
| throw_exception (ex); |
| } |
| |
| if (ctx->num_pieces > 0) |
| { |
| struct piece_closure *c; |
| struct frame_id frame_id = get_frame_id (frame); |
| ULONGEST bit_size = 0; |
| int i; |
| |
| for (i = 0; i < ctx->num_pieces; ++i) |
| bit_size += ctx->pieces[i].size; |
| if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size) |
| invalid_synthetic_pointer (); |
| |
| c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces, |
| ctx->addr_size); |
| /* We must clean up the value chain after creating the piece |
| closure but before allocating the result. */ |
| do_cleanups (value_chain); |
| retval = allocate_computed_value (type, &pieced_value_funcs, c); |
| VALUE_FRAME_ID (retval) = frame_id; |
| set_value_offset (retval, byte_offset); |
| } |
| else |
| { |
| switch (ctx->location) |
| { |
| case DWARF_VALUE_REGISTER: |
| { |
| struct gdbarch *arch = get_frame_arch (frame); |
| ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0)); |
| int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum); |
| |
| if (byte_offset != 0) |
| error (_("cannot use offset on synthetic pointer to register")); |
| do_cleanups (value_chain); |
| if (gdb_regnum != -1) |
| retval = value_from_register (type, gdb_regnum, frame); |
| else |
| error (_("Unable to access DWARF register number %s"), |
| paddress (arch, dwarf_regnum)); |
| } |
| break; |
| |
| case DWARF_VALUE_MEMORY: |
| { |
| CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0); |
| int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0); |
| |
| do_cleanups (value_chain); |
| retval = allocate_value_lazy (type); |
| VALUE_LVAL (retval) = lval_memory; |
| if (in_stack_memory) |
| set_value_stack (retval, 1); |
| set_value_address (retval, address + byte_offset); |
| } |
| break; |
| |
| case DWARF_VALUE_STACK: |
| { |
| struct value *value = dwarf_expr_fetch (ctx, 0); |
| gdb_byte *contents; |
| const gdb_byte *val_bytes; |
| size_t n = TYPE_LENGTH (value_type (value)); |
| |
| if (byte_offset + TYPE_LENGTH (type) > n) |
| invalid_synthetic_pointer (); |
| |
| val_bytes = value_contents_all (value); |
| val_bytes += byte_offset; |
| n -= byte_offset; |
| |
| /* Preserve VALUE because we are going to free values back |
| to the mark, but we still need the value contents |
| below. */ |
| value_incref (value); |
| do_cleanups (value_chain); |
| make_cleanup_value_free (value); |
| |
| retval = allocate_value (type); |
| contents = value_contents_raw (retval); |
| if (n > TYPE_LENGTH (type)) |
| { |
| struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile); |
| |
| if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG) |
| val_bytes += n - TYPE_LENGTH (type); |
| n = TYPE_LENGTH (type); |
| } |
| memcpy (contents, val_bytes, n); |
| } |
| break; |
| |
| case DWARF_VALUE_LITERAL: |
| { |
| bfd_byte *contents; |
| const bfd_byte *ldata; |
| size_t n = ctx->len; |
| |
| if (byte_offset + TYPE_LENGTH (type) > n) |
| invalid_synthetic_pointer (); |
| |
| do_cleanups (value_chain); |
| retval = allocate_value (type); |
| contents = value_contents_raw (retval); |
| |
| ldata = ctx->data + byte_offset; |
| n -= byte_offset; |
| |
| if (n > TYPE_LENGTH (type)) |
| { |
| struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile); |
| |
| if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG) |
| ldata += n - TYPE_LENGTH (type); |
| n = TYPE_LENGTH (type); |
| } |
| memcpy (contents, ldata, n); |
| } |
| break; |
| |
| case DWARF_VALUE_OPTIMIZED_OUT: |
| do_cleanups (value_chain); |
| retval = allocate_optimized_out_value (type); |
| break; |
| |
| /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced |
| operation by execute_stack_op. */ |
| case DWARF_VALUE_IMPLICIT_POINTER: |
| /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context -- |
| it can only be encountered when making a piece. */ |
| default: |
| internal_error (__FILE__, __LINE__, _("invalid location type")); |
| } |
| } |
| |
| set_value_initialized (retval, ctx->initialized); |
| |
| do_cleanups (old_chain); |
| |
| return retval; |
| } |
| |
| /* The exported interface to dwarf2_evaluate_loc_desc_full; it always |
| passes 0 as the byte_offset. */ |
| |
| struct value * |
| dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame, |
| const gdb_byte *data, unsigned short size, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0); |
| } |
| |
| |
| /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */ |
| |
| struct needs_frame_baton |
| { |
| int needs_frame; |
| struct dwarf2_per_cu_data *per_cu; |
| }; |
| |
| /* Reads from registers do require a frame. */ |
| static CORE_ADDR |
| needs_frame_read_reg (void *baton, int regnum) |
| { |
| struct needs_frame_baton *nf_baton = baton; |
| |
| nf_baton->needs_frame = 1; |
| return 1; |
| } |
| |
| /* Reads from memory do not require a frame. */ |
| static void |
| needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) |
| { |
| memset (buf, 0, len); |
| } |
| |
| /* Frame-relative accesses do require a frame. */ |
| static void |
| needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length) |
| { |
| static gdb_byte lit0 = DW_OP_lit0; |
| struct needs_frame_baton *nf_baton = baton; |
| |
| *start = &lit0; |
| *length = 1; |
| |
| nf_baton->needs_frame = 1; |
| } |
| |
| /* CFA accesses require a frame. */ |
| |
| static CORE_ADDR |
| needs_frame_frame_cfa (void *baton) |
| { |
| struct needs_frame_baton *nf_baton = baton; |
| |
| nf_baton->needs_frame = 1; |
| return 1; |
| } |
| |
| /* Thread-local accesses do require a frame. */ |
| static CORE_ADDR |
| needs_frame_tls_address (void *baton, CORE_ADDR offset) |
| { |
| struct needs_frame_baton *nf_baton = baton; |
| |
| nf_baton->needs_frame = 1; |
| return 1; |
| } |
| |
| /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */ |
| |
| static void |
| needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset) |
| { |
| struct needs_frame_baton *nf_baton = ctx->baton; |
| |
| per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu, |
| ctx->funcs->get_frame_pc, ctx->baton); |
| } |
| |
| /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */ |
| |
| static void |
| needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx, |
| enum call_site_parameter_kind kind, |
| union call_site_parameter_u kind_u, int deref_size) |
| { |
| struct needs_frame_baton *nf_baton = ctx->baton; |
| |
| nf_baton->needs_frame = 1; |
| |
| /* The expression may require some stub values on DWARF stack. */ |
| dwarf_expr_push_address (ctx, 0, 0); |
| } |
| |
| /* DW_OP_GNU_addr_index doesn't require a frame. */ |
| |
| static CORE_ADDR |
| needs_get_addr_index (void *baton, unsigned int index) |
| { |
| /* Nothing to do. */ |
| return 1; |
| } |
| |
| /* Virtual method table for dwarf2_loc_desc_needs_frame below. */ |
| |
| static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs = |
| { |
| needs_frame_read_reg, |
| needs_frame_read_mem, |
| needs_frame_frame_base, |
| needs_frame_frame_cfa, |
| needs_frame_frame_cfa, /* get_frame_pc */ |
| needs_frame_tls_address, |
| needs_frame_dwarf_call, |
| NULL, /* get_base_type */ |
| needs_dwarf_reg_entry_value, |
| needs_get_addr_index |
| }; |
| |
| /* Return non-zero iff the location expression at DATA (length SIZE) |
| requires a frame to evaluate. */ |
| |
| static int |
| dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| struct needs_frame_baton baton; |
| struct dwarf_expr_context *ctx; |
| int in_reg; |
| struct cleanup *old_chain; |
| struct objfile *objfile = dwarf2_per_cu_objfile (per_cu); |
| |
| baton.needs_frame = 0; |
| baton.per_cu = per_cu; |
| |
| ctx = new_dwarf_expr_context (); |
| old_chain = make_cleanup_free_dwarf_expr_context (ctx); |
| make_cleanup_value_free_to_mark (value_mark ()); |
| |
| ctx->gdbarch = get_objfile_arch (objfile); |
| ctx->addr_size = dwarf2_per_cu_addr_size (per_cu); |
| ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu); |
| ctx->offset = dwarf2_per_cu_text_offset (per_cu); |
| ctx->baton = &baton; |
| ctx->funcs = &needs_frame_ctx_funcs; |
| |
| dwarf_expr_eval (ctx, data, size); |
| |
| in_reg = ctx->location == DWARF_VALUE_REGISTER; |
| |
| if (ctx->num_pieces > 0) |
| { |
| int i; |
| |
| /* If the location has several pieces, and any of them are in |
| registers, then we will need a frame to fetch them from. */ |
| for (i = 0; i < ctx->num_pieces; i++) |
| if (ctx->pieces[i].location == DWARF_VALUE_REGISTER) |
| in_reg = 1; |
| } |
| |
| do_cleanups (old_chain); |
| |
| return baton.needs_frame || in_reg; |
| } |
| |
| /* A helper function that throws an unimplemented error mentioning a |
| given DWARF operator. */ |
| |
| static void |
| unimplemented (unsigned int op) |
| { |
| const char *name = get_DW_OP_name (op); |
| |
| if (name) |
| error (_("DWARF operator %s cannot be translated to an agent expression"), |
| name); |
| else |
| error (_("Unknown DWARF operator 0x%02x cannot be translated " |
| "to an agent expression"), |
| op); |
| } |
| |
| /* A helper function to convert a DWARF register to an arch register. |
| ARCH is the architecture. |
| DWARF_REG is the register. |
| This will throw an exception if the DWARF register cannot be |
| translated to an architecture register. */ |
| |
| static int |
| translate_register (struct gdbarch *arch, int dwarf_reg) |
| { |
| int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg); |
| if (reg == -1) |
| error (_("Unable to access DWARF register number %d"), dwarf_reg); |
| return reg; |
| } |
| |
| /* A helper function that emits an access to memory. ARCH is the |
| target architecture. EXPR is the expression which we are building. |
| NBITS is the number of bits we want to read. This emits the |
| opcodes needed to read the memory and then extract the desired |
| bits. */ |
| |
| static void |
| access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits) |
| { |
| ULONGEST nbytes = (nbits + 7) / 8; |
| |
| gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST)); |
| |
| if (trace_kludge) |
| ax_trace_quick (expr, nbytes); |
| |
| if (nbits <= 8) |
| ax_simple (expr, aop_ref8); |
| else if (nbits <= 16) |
| ax_simple (expr, aop_ref16); |
| else if (nbits <= 32) |
| ax_simple (expr, aop_ref32); |
| else |
| ax_simple (expr, aop_ref64); |
| |
| /* If we read exactly the number of bytes we wanted, we're done. */ |
| if (8 * nbytes == nbits) |
| return; |
| |
| if (gdbarch_bits_big_endian (arch)) |
| { |
| /* On a bits-big-endian machine, we want the high-order |
| NBITS. */ |
| ax_const_l (expr, 8 * nbytes - nbits); |
| ax_simple (expr, aop_rsh_unsigned); |
| } |
| else |
| { |
| /* On a bits-little-endian box, we want the low-order NBITS. */ |
| ax_zero_ext (expr, nbits); |
| } |
| } |
| |
| /* A helper function to return the frame's PC. */ |
| |
| static CORE_ADDR |
| get_ax_pc (void *baton) |
| { |
| struct agent_expr *expr = baton; |
| |
| return expr->scope; |
| } |
| |
| /* Compile a DWARF location expression to an agent expression. |
| |
| EXPR is the agent expression we are building. |
| LOC is the agent value we modify. |
| ARCH is the architecture. |
| ADDR_SIZE is the size of addresses, in bytes. |
| OP_PTR is the start of the location expression. |
| OP_END is one past the last byte of the location expression. |
| |
| This will throw an exception for various kinds of errors -- for |
| example, if the expression cannot be compiled, or if the expression |
| is invalid. */ |
| |
| void |
| dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc, |
| struct gdbarch *arch, unsigned int addr_size, |
| const gdb_byte *op_ptr, const gdb_byte *op_end, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| struct cleanup *cleanups; |
| int i, *offsets; |
| VEC(int) *dw_labels = NULL, *patches = NULL; |
| const gdb_byte * const base = op_ptr; |
| const gdb_byte *previous_piece = op_ptr; |
| enum bfd_endian byte_order = gdbarch_byte_order (arch); |
| ULONGEST bits_collected = 0; |
| unsigned int addr_size_bits = 8 * addr_size; |
| int bits_big_endian = gdbarch_bits_big_endian (arch); |
| |
| offsets = xmalloc ((op_end - op_ptr) * sizeof (int)); |
| cleanups = make_cleanup (xfree, offsets); |
| |
| for (i = 0; i < op_end - op_ptr; ++i) |
| offsets[i] = -1; |
| |
| make_cleanup (VEC_cleanup (int), &dw_labels); |
| make_cleanup (VEC_cleanup (int), &patches); |
| |
| /* By default we are making an address. */ |
| loc->kind = axs_lvalue_memory; |
| |
| while (op_ptr < op_end) |
| { |
| enum dwarf_location_atom op = *op_ptr; |
| uint64_t uoffset, reg; |
| int64_t offset; |
| int i; |
| |
| offsets[op_ptr - base] = expr->len; |
| ++op_ptr; |
| |
| /* Our basic approach to code generation is to map DWARF |
| operations directly to AX operations. However, there are |
| some differences. |
| |
| First, DWARF works on address-sized units, but AX always uses |
| LONGEST. For most operations we simply ignore this |
| difference; instead we generate sign extensions as needed |
| before division and comparison operations. It would be nice |
| to omit the sign extensions, but there is no way to determine |
| the size of the target's LONGEST. (This code uses the size |
| of the host LONGEST in some cases -- that is a bug but it is |
| difficult to fix.) |
| |
| Second, some DWARF operations cannot be translated to AX. |
| For these we simply fail. See |
| http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */ |
| switch (op) |
| { |
| case DW_OP_lit0: |
| case DW_OP_lit1: |
| case DW_OP_lit2: |
| case DW_OP_lit3: |
| case DW_OP_lit4: |
| case DW_OP_lit5: |
| case DW_OP_lit6: |
| case DW_OP_lit7: |
| case DW_OP_lit8: |
| case DW_OP_lit9: |
| case DW_OP_lit10: |
| case DW_OP_lit11: |
| case DW_OP_lit12: |
| case DW_OP_lit13: |
| case DW_OP_lit14: |
| case DW_OP_lit15: |
| case DW_OP_lit16: |
| case DW_OP_lit17: |
| case DW_OP_lit18: |
| case DW_OP_lit19: |
| case DW_OP_lit20: |
| case DW_OP_lit21: |
| case DW_OP_lit22: |
| case DW_OP_lit23: |
| case DW_OP_lit24: |
| case DW_OP_lit25: |
| case DW_OP_lit26: |
| case DW_OP_lit27: |
| case DW_OP_lit28: |
| case DW_OP_lit29: |
| case DW_OP_lit30: |
| case DW_OP_lit31: |
| ax_const_l (expr, op - DW_OP_lit0); |
| break; |
| |
| case DW_OP_addr: |
| uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order); |
| op_ptr += addr_size; |
| /* Some versions of GCC emit DW_OP_addr before |
| DW_OP_GNU_push_tls_address. In this case the value is an |
| index, not an address. We don't support things like |
| branching between the address and the TLS op. */ |
| if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address) |
| uoffset += dwarf2_per_cu_text_offset (per_cu); |
| ax_const_l (expr, uoffset); |
| break; |
| |
| case DW_OP_const1u: |
| ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order)); |
| op_ptr += 1; |
| break; |
| case DW_OP_const1s: |
| ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order)); |
| op_ptr += 1; |
| break; |
| case DW_OP_const2u: |
| ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order)); |
| op_ptr += 2; |
| break; |
| case DW_OP_const2s: |
| ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order)); |
| op_ptr += 2; |
| break; |
| case DW_OP_const4u: |
| ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order)); |
| op_ptr += 4; |
| break; |
| case DW_OP_const4s: |
| ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order)); |
| op_ptr += 4; |
| break; |
| case DW_OP_const8u: |
| ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order)); |
| op_ptr += 8; |
| break; |
| case DW_OP_const8s: |
| ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order)); |
| op_ptr += 8; |
| break; |
| case DW_OP_constu: |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); |
| ax_const_l (expr, uoffset); |
| break; |
| case DW_OP_consts: |
| op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); |
| ax_const_l (expr, offset); |
| break; |
| |
| case DW_OP_reg0: |
| case DW_OP_reg1: |
| case DW_OP_reg2: |
| case DW_OP_reg3: |
| case DW_OP_reg4: |
| case DW_OP_reg5: |
| case DW_OP_reg6: |
| case DW_OP_reg7: |
| case DW_OP_reg8: |
| case DW_OP_reg9: |
| case DW_OP_reg10: |
| case DW_OP_reg11: |
| case DW_OP_reg12: |
| case DW_OP_reg13: |
| case DW_OP_reg14: |
| case DW_OP_reg15: |
| case DW_OP_reg16: |
| case DW_OP_reg17: |
| case DW_OP_reg18: |
| case DW_OP_reg19: |
| case DW_OP_reg20: |
| case DW_OP_reg21: |
| case DW_OP_reg22: |
| case DW_OP_reg23: |
| case DW_OP_reg24: |
| case DW_OP_reg25: |
| case DW_OP_reg26: |
| case DW_OP_reg27: |
| case DW_OP_reg28: |
| case DW_OP_reg29: |
| case DW_OP_reg30: |
| case DW_OP_reg31: |
| dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx"); |
| loc->u.reg = translate_register (arch, op - DW_OP_reg0); |
| loc->kind = axs_lvalue_register; |
| break; |
| |
| case DW_OP_regx: |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); |
| dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx"); |
| loc->u.reg = translate_register (arch, reg); |
| loc->kind = axs_lvalue_register; |
| break; |
| |
| case DW_OP_implicit_value: |
| { |
| uint64_t len; |
| |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, &len); |
| if (op_ptr + len > op_end) |
| error (_("DW_OP_implicit_value: too few bytes available.")); |
| if (len > sizeof (ULONGEST)) |
| error (_("Cannot translate DW_OP_implicit_value of %d bytes"), |
| (int) len); |
| |
| ax_const_l (expr, extract_unsigned_integer (op_ptr, len, |
| byte_order)); |
| op_ptr += len; |
| dwarf_expr_require_composition (op_ptr, op_end, |
| "DW_OP_implicit_value"); |
| |
| loc->kind = axs_rvalue; |
| } |
| break; |
| |
| case DW_OP_stack_value: |
| dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value"); |
| loc->kind = axs_rvalue; |
| break; |
| |
| case DW_OP_breg0: |
| case DW_OP_breg1: |
| case DW_OP_breg2: |
| case DW_OP_breg3: |
| case DW_OP_breg4: |
| case DW_OP_breg5: |
| case DW_OP_breg6: |
| case DW_OP_breg7: |
| case DW_OP_breg8: |
| case DW_OP_breg9: |
| case DW_OP_breg10: |
| case DW_OP_breg11: |
| case DW_OP_breg12: |
| case DW_OP_breg13: |
| case DW_OP_breg14: |
| case DW_OP_breg15: |
| case DW_OP_breg16: |
| case DW_OP_breg17: |
| case DW_OP_breg18: |
| case DW_OP_breg19: |
| case DW_OP_breg20: |
| case DW_OP_breg21: |
| case DW_OP_breg22: |
| case DW_OP_breg23: |
| case DW_OP_breg24: |
| case DW_OP_breg25: |
| case DW_OP_breg26: |
| case DW_OP_breg27: |
| case DW_OP_breg28: |
| case DW_OP_breg29: |
| case DW_OP_breg30: |
| case DW_OP_breg31: |
| op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); |
| i = translate_register (arch, op - DW_OP_breg0); |
| ax_reg (expr, i); |
| if (offset != 0) |
| { |
| ax_const_l (expr, offset); |
| ax_simple (expr, aop_add); |
| } |
| break; |
| case DW_OP_bregx: |
| { |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); |
| op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); |
| i = translate_register (arch, reg); |
| ax_reg (expr, i); |
| if (offset != 0) |
| { |
| ax_const_l (expr, offset); |
| ax_simple (expr, aop_add); |
| } |
| } |
| break; |
| case DW_OP_fbreg: |
| { |
| const gdb_byte *datastart; |
| size_t datalen; |
| struct block *b; |
| struct symbol *framefunc; |
| LONGEST base_offset = 0; |
| |
| b = block_for_pc (expr->scope); |
| |
| if (!b) |
| error (_("No block found for address")); |
| |
| framefunc = block_linkage_function (b); |
| |
| if (!framefunc) |
| error (_("No function found for block")); |
| |
| dwarf_expr_frame_base_1 (framefunc, expr->scope, |
| &datastart, &datalen); |
| |
| op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); |
| dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart, |
| datastart + datalen, per_cu); |
| |
| if (offset != 0) |
| { |
| ax_const_l (expr, offset); |
| ax_simple (expr, aop_add); |
| } |
| |
| loc->kind = axs_lvalue_memory; |
| } |
| break; |
| |
| case DW_OP_dup: |
| ax_simple (expr, aop_dup); |
| break; |
| |
| case DW_OP_drop: |
| ax_simple (expr, aop_pop); |
| break; |
| |
| case DW_OP_pick: |
| offset = *op_ptr++; |
| ax_pick (expr, offset); |
| break; |
| |
| case DW_OP_swap: |
| ax_simple (expr, aop_swap); |
| break; |
| |
| case DW_OP_over: |
| ax_pick (expr, 1); |
| break; |
| |
| case DW_OP_rot: |
| ax_simple (expr, aop_rot); |
| break; |
| |
| case DW_OP_deref: |
| case DW_OP_deref_size: |
| { |
| int size; |
| |
| if (op == DW_OP_deref_size) |
| size = *op_ptr++; |
| else |
| size = addr_size; |
| |
| switch (size) |
| { |
| case 8: |
| ax_simple (expr, aop_ref8); |
| break; |
| case 16: |
| ax_simple (expr, aop_ref16); |
| break; |
| case 32: |
| ax_simple (expr, aop_ref32); |
| break; |
| case 64: |
| ax_simple (expr, aop_ref64); |
| break; |
| default: |
| /* Note that get_DW_OP_name will never return |
| NULL here. */ |
| error (_("Unsupported size %d in %s"), |
| size, get_DW_OP_name (op)); |
| } |
| } |
| break; |
| |
| case DW_OP_abs: |
| /* Sign extend the operand. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_dup); |
| ax_const_l (expr, 0); |
| ax_simple (expr, aop_less_signed); |
| ax_simple (expr, aop_log_not); |
| i = ax_goto (expr, aop_if_goto); |
| /* We have to emit 0 - X. */ |
| ax_const_l (expr, 0); |
| ax_simple (expr, aop_swap); |
| ax_simple (expr, aop_sub); |
| ax_label (expr, i, expr->len); |
| break; |
| |
| case DW_OP_neg: |
| /* No need to sign extend here. */ |
| ax_const_l (expr, 0); |
| ax_simple (expr, aop_swap); |
| ax_simple (expr, aop_sub); |
| break; |
| |
| case DW_OP_not: |
| /* Sign extend the operand. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_bit_not); |
| break; |
| |
| case DW_OP_plus_uconst: |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); |
| /* It would be really weird to emit `DW_OP_plus_uconst 0', |
| but we micro-optimize anyhow. */ |
| if (reg != 0) |
| { |
| ax_const_l (expr, reg); |
| ax_simple (expr, aop_add); |
| } |
| break; |
| |
| case DW_OP_and: |
| ax_simple (expr, aop_bit_and); |
| break; |
| |
| case DW_OP_div: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_simple (expr, aop_div_signed); |
| break; |
| |
| case DW_OP_minus: |
| ax_simple (expr, aop_sub); |
| break; |
| |
| case DW_OP_mod: |
| ax_simple (expr, aop_rem_unsigned); |
| break; |
| |
| case DW_OP_mul: |
| ax_simple (expr, aop_mul); |
| break; |
| |
| case DW_OP_or: |
| ax_simple (expr, aop_bit_or); |
| break; |
| |
| case DW_OP_plus: |
| ax_simple (expr, aop_add); |
| break; |
| |
| case DW_OP_shl: |
| ax_simple (expr, aop_lsh); |
| break; |
| |
| case DW_OP_shr: |
| ax_simple (expr, aop_rsh_unsigned); |
| break; |
| |
| case DW_OP_shra: |
| ax_simple (expr, aop_rsh_signed); |
| break; |
| |
| case DW_OP_xor: |
| ax_simple (expr, aop_bit_xor); |
| break; |
| |
| case DW_OP_le: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| /* Note no swap here: A <= B is !(B < A). */ |
| ax_simple (expr, aop_less_signed); |
| ax_simple (expr, aop_log_not); |
| break; |
| |
| case DW_OP_ge: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| /* A >= B is !(A < B). */ |
| ax_simple (expr, aop_less_signed); |
| ax_simple (expr, aop_log_not); |
| break; |
| |
| case DW_OP_eq: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| /* No need for a second swap here. */ |
| ax_simple (expr, aop_equal); |
| break; |
| |
| case DW_OP_lt: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_simple (expr, aop_less_signed); |
| break; |
| |
| case DW_OP_gt: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| /* Note no swap here: A > B is B < A. */ |
| ax_simple (expr, aop_less_signed); |
| break; |
| |
| case DW_OP_ne: |
| /* Sign extend the operands. */ |
| ax_ext (expr, addr_size_bits); |
| ax_simple (expr, aop_swap); |
| ax_ext (expr, addr_size_bits); |
| /* No need for a swap here. */ |
| ax_simple (expr, aop_equal); |
| ax_simple (expr, aop_log_not); |
| break; |
| |
| case DW_OP_call_frame_cfa: |
| dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu); |
| loc->kind = axs_lvalue_memory; |
| break; |
| |
| case DW_OP_GNU_push_tls_address: |
| unimplemented (op); |
| break; |
| |
| case DW_OP_skip: |
| offset = extract_signed_integer (op_ptr, 2, byte_order); |
| op_ptr += 2; |
| i = ax_goto (expr, aop_goto); |
| VEC_safe_push (int, dw_labels, op_ptr + offset - base); |
| VEC_safe_push (int, patches, i); |
| break; |
| |
| case DW_OP_bra: |
| offset = extract_signed_integer (op_ptr, 2, byte_order); |
| op_ptr += 2; |
| /* Zero extend the operand. */ |
| ax_zero_ext (expr, addr_size_bits); |
| i = ax_goto (expr, aop_if_goto); |
| VEC_safe_push (int, dw_labels, op_ptr + offset - base); |
| VEC_safe_push (int, patches, i); |
| break; |
| |
| case DW_OP_nop: |
| break; |
| |
| case DW_OP_piece: |
| case DW_OP_bit_piece: |
| { |
| uint64_t size, offset; |
| |
| if (op_ptr - 1 == previous_piece) |
| error (_("Cannot translate empty pieces to agent expressions")); |
| previous_piece = op_ptr - 1; |
| |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, &size); |
| if (op == DW_OP_piece) |
| { |
| size *= 8; |
| offset = 0; |
| } |
| else |
| op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset); |
| |
| if (bits_collected + size > 8 * sizeof (LONGEST)) |
| error (_("Expression pieces exceed word size")); |
| |
| /* Access the bits. */ |
| switch (loc->kind) |
| { |
| case axs_lvalue_register: |
| ax_reg (expr, loc->u.reg); |
| break; |
| |
| case axs_lvalue_memory: |
| /* Offset the pointer, if needed. */ |
| if (offset > 8) |
| { |
| ax_const_l (expr, offset / 8); |
| ax_simple (expr, aop_add); |
| offset %= 8; |
| } |
| access_memory (arch, expr, size); |
| break; |
| } |
| |
| /* For a bits-big-endian target, shift up what we already |
| have. For a bits-little-endian target, shift up the |
| new data. Note that there is a potential bug here if |
| the DWARF expression leaves multiple values on the |
| stack. */ |
| if (bits_collected > 0) |
| { |
| if (bits_big_endian) |
| { |
| ax_simple (expr, aop_swap); |
| ax_const_l (expr, size); |
| ax_simple (expr, aop_lsh); |
| /* We don't need a second swap here, because |
| aop_bit_or is symmetric. */ |
| } |
| else |
| { |
| ax_const_l (expr, size); |
| ax_simple (expr, aop_lsh); |
| } |
| ax_simple (expr, aop_bit_or); |
| } |
| |
| bits_collected += size; |
| loc->kind = axs_rvalue; |
| } |
| break; |
| |
| case DW_OP_GNU_uninit: |
| unimplemented (op); |
| |
| case DW_OP_call2: |
| case DW_OP_call4: |
| { |
| struct dwarf2_locexpr_baton block; |
| int size = (op == DW_OP_call2 ? 2 : 4); |
| cu_offset offset; |
| |
| uoffset = extract_unsigned_integer (op_ptr, size, byte_order); |
| op_ptr += size; |
| |
| offset.cu_off = uoffset; |
| block = dwarf2_fetch_die_location_block (offset, per_cu, |
| get_ax_pc, expr); |
| |
| /* DW_OP_call_ref is currently not supported. */ |
| gdb_assert (block.per_cu == per_cu); |
| |
| dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, |
| block.data, block.data + block.size, |
| per_cu); |
| } |
| break; |
| |
| case DW_OP_call_ref: |
| unimplemented (op); |
| |
| default: |
| unimplemented (op); |
| } |
| } |
| |
| /* Patch all the branches we emitted. */ |
| for (i = 0; i < VEC_length (int, patches); ++i) |
| { |
| int targ = offsets[VEC_index (int, dw_labels, i)]; |
| if (targ == -1) |
| internal_error (__FILE__, __LINE__, _("invalid label")); |
| ax_label (expr, VEC_index (int, patches, i), targ); |
| } |
| |
| do_cleanups (cleanups); |
| } |
| |
|