| /* Frame unwinder for frames with DWARF Call Frame Information. |
| |
| Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc. |
| |
| Contributed by Mark Kettenis. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "dwarf2expr.h" |
| #include "dwarf2.h" |
| #include "frame.h" |
| #include "frame-base.h" |
| #include "frame-unwind.h" |
| #include "gdbcore.h" |
| #include "gdbtypes.h" |
| #include "symtab.h" |
| #include "objfiles.h" |
| #include "regcache.h" |
| #include "value.h" |
| |
| #include "gdb_assert.h" |
| #include "gdb_string.h" |
| |
| #include "complaints.h" |
| #include "dwarf2-frame.h" |
| #include "ax.h" |
| #include "dwarf2loc.h" |
| #include "exceptions.h" |
| #include "dwarf2-frame-tailcall.h" |
| |
| struct comp_unit; |
| |
| /* Call Frame Information (CFI). */ |
| |
| /* Common Information Entry (CIE). */ |
| |
| struct dwarf2_cie |
| { |
| /* Computation Unit for this CIE. */ |
| struct comp_unit *unit; |
| |
| /* Offset into the .debug_frame section where this CIE was found. |
| Used to identify this CIE. */ |
| ULONGEST cie_pointer; |
| |
| /* Constant that is factored out of all advance location |
| instructions. */ |
| ULONGEST code_alignment_factor; |
| |
| /* Constants that is factored out of all offset instructions. */ |
| LONGEST data_alignment_factor; |
| |
| /* Return address column. */ |
| ULONGEST return_address_register; |
| |
| /* Instruction sequence to initialize a register set. */ |
| const gdb_byte *initial_instructions; |
| const gdb_byte *end; |
| |
| /* Saved augmentation, in case it's needed later. */ |
| char *augmentation; |
| |
| /* Encoding of addresses. */ |
| gdb_byte encoding; |
| |
| /* Target address size in bytes. */ |
| int addr_size; |
| |
| /* Target pointer size in bytes. */ |
| int ptr_size; |
| |
| /* True if a 'z' augmentation existed. */ |
| unsigned char saw_z_augmentation; |
| |
| /* True if an 'S' augmentation existed. */ |
| unsigned char signal_frame; |
| |
| /* The version recorded in the CIE. */ |
| unsigned char version; |
| |
| /* The segment size. */ |
| unsigned char segment_size; |
| }; |
| |
| struct dwarf2_cie_table |
| { |
| int num_entries; |
| struct dwarf2_cie **entries; |
| }; |
| |
| /* Frame Description Entry (FDE). */ |
| |
| struct dwarf2_fde |
| { |
| /* CIE for this FDE. */ |
| struct dwarf2_cie *cie; |
| |
| /* First location associated with this FDE. */ |
| CORE_ADDR initial_location; |
| |
| /* Number of bytes of program instructions described by this FDE. */ |
| CORE_ADDR address_range; |
| |
| /* Instruction sequence. */ |
| const gdb_byte *instructions; |
| const gdb_byte *end; |
| |
| /* True if this FDE is read from a .eh_frame instead of a .debug_frame |
| section. */ |
| unsigned char eh_frame_p; |
| }; |
| |
| struct dwarf2_fde_table |
| { |
| int num_entries; |
| struct dwarf2_fde **entries; |
| }; |
| |
| /* A minimal decoding of DWARF2 compilation units. We only decode |
| what's needed to get to the call frame information. */ |
| |
| struct comp_unit |
| { |
| /* Keep the bfd convenient. */ |
| bfd *abfd; |
| |
| struct objfile *objfile; |
| |
| /* Pointer to the .debug_frame section loaded into memory. */ |
| gdb_byte *dwarf_frame_buffer; |
| |
| /* Length of the loaded .debug_frame section. */ |
| bfd_size_type dwarf_frame_size; |
| |
| /* Pointer to the .debug_frame section. */ |
| asection *dwarf_frame_section; |
| |
| /* Base for DW_EH_PE_datarel encodings. */ |
| bfd_vma dbase; |
| |
| /* Base for DW_EH_PE_textrel encodings. */ |
| bfd_vma tbase; |
| }; |
| |
| static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc, |
| CORE_ADDR *out_offset); |
| |
| static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, |
| int eh_frame_p); |
| |
| static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, |
| int ptr_len, const gdb_byte *buf, |
| unsigned int *bytes_read_ptr, |
| CORE_ADDR func_base); |
| |
| |
| /* Structure describing a frame state. */ |
| |
| struct dwarf2_frame_state |
| { |
| /* Each register save state can be described in terms of a CFA slot, |
| another register, or a location expression. */ |
| struct dwarf2_frame_state_reg_info |
| { |
| struct dwarf2_frame_state_reg *reg; |
| int num_regs; |
| |
| LONGEST cfa_offset; |
| ULONGEST cfa_reg; |
| enum { |
| CFA_UNSET, |
| CFA_REG_OFFSET, |
| CFA_EXP |
| } cfa_how; |
| const gdb_byte *cfa_exp; |
| |
| /* Used to implement DW_CFA_remember_state. */ |
| struct dwarf2_frame_state_reg_info *prev; |
| } regs; |
| |
| /* The PC described by the current frame state. */ |
| CORE_ADDR pc; |
| |
| /* Initial register set from the CIE. |
| Used to implement DW_CFA_restore. */ |
| struct dwarf2_frame_state_reg_info initial; |
| |
| /* The information we care about from the CIE. */ |
| LONGEST data_align; |
| ULONGEST code_align; |
| ULONGEST retaddr_column; |
| |
| /* Flags for known producer quirks. */ |
| |
| /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa |
| and DW_CFA_def_cfa_offset takes a factored offset. */ |
| int armcc_cfa_offsets_sf; |
| |
| /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that |
| the CFA is defined as REG - OFFSET rather than REG + OFFSET. */ |
| int armcc_cfa_offsets_reversed; |
| }; |
| |
| /* Store the length the expression for the CFA in the `cfa_reg' field, |
| which is unused in that case. */ |
| #define cfa_exp_len cfa_reg |
| |
| /* Assert that the register set RS is large enough to store gdbarch_num_regs |
| columns. If necessary, enlarge the register set. */ |
| |
| static void |
| dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, |
| int num_regs) |
| { |
| size_t size = sizeof (struct dwarf2_frame_state_reg); |
| |
| if (num_regs <= rs->num_regs) |
| return; |
| |
| rs->reg = (struct dwarf2_frame_state_reg *) |
| xrealloc (rs->reg, num_regs * size); |
| |
| /* Initialize newly allocated registers. */ |
| memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); |
| rs->num_regs = num_regs; |
| } |
| |
| /* Copy the register columns in register set RS into newly allocated |
| memory and return a pointer to this newly created copy. */ |
| |
| static struct dwarf2_frame_state_reg * |
| dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) |
| { |
| size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg); |
| struct dwarf2_frame_state_reg *reg; |
| |
| reg = (struct dwarf2_frame_state_reg *) xmalloc (size); |
| memcpy (reg, rs->reg, size); |
| |
| return reg; |
| } |
| |
| /* Release the memory allocated to register set RS. */ |
| |
| static void |
| dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) |
| { |
| if (rs) |
| { |
| dwarf2_frame_state_free_regs (rs->prev); |
| |
| xfree (rs->reg); |
| xfree (rs); |
| } |
| } |
| |
| /* Release the memory allocated to the frame state FS. */ |
| |
| static void |
| dwarf2_frame_state_free (void *p) |
| { |
| struct dwarf2_frame_state *fs = p; |
| |
| dwarf2_frame_state_free_regs (fs->initial.prev); |
| dwarf2_frame_state_free_regs (fs->regs.prev); |
| xfree (fs->initial.reg); |
| xfree (fs->regs.reg); |
| xfree (fs); |
| } |
| |
| |
| /* Helper functions for execute_stack_op. */ |
| |
| static CORE_ADDR |
| read_reg (void *baton, int reg) |
| { |
| struct frame_info *this_frame = (struct frame_info *) baton; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| int regnum; |
| gdb_byte *buf; |
| |
| regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg); |
| |
| buf = alloca (register_size (gdbarch, regnum)); |
| get_frame_register (this_frame, regnum, buf); |
| |
| /* Convert the register to an integer. This returns a LONGEST |
| rather than a CORE_ADDR, but unpack_pointer does the same thing |
| under the covers, and this makes more sense for non-pointer |
| registers. Maybe read_reg and the associated interfaces should |
| deal with "struct value" instead of CORE_ADDR. */ |
| return unpack_long (register_type (gdbarch, regnum), buf); |
| } |
| |
| static void |
| read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) |
| { |
| read_memory (addr, buf, len); |
| } |
| |
| /* Execute the required actions for both the DW_CFA_restore and |
| DW_CFA_restore_extended instructions. */ |
| static void |
| dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num, |
| struct dwarf2_frame_state *fs, int eh_frame_p) |
| { |
| ULONGEST reg; |
| |
| gdb_assert (fs->initial.reg); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| |
| /* Check if this register was explicitly initialized in the |
| CIE initial instructions. If not, default the rule to |
| UNSPECIFIED. */ |
| if (reg < fs->initial.num_regs) |
| fs->regs.reg[reg] = fs->initial.reg[reg]; |
| else |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED; |
| |
| if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED) |
| complaint (&symfile_complaints, _("\ |
| incomplete CFI data; DW_CFA_restore unspecified\n\ |
| register %s (#%d) at %s"), |
| gdbarch_register_name |
| (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)), |
| gdbarch_dwarf2_reg_to_regnum (gdbarch, reg), |
| paddress (gdbarch, fs->pc)); |
| } |
| |
| /* Virtual method table for execute_stack_op below. */ |
| |
| static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs = |
| { |
| read_reg, |
| read_mem, |
| ctx_no_get_frame_base, |
| ctx_no_get_frame_cfa, |
| ctx_no_get_frame_pc, |
| ctx_no_get_tls_address, |
| ctx_no_dwarf_call, |
| ctx_no_get_base_type, |
| ctx_no_push_dwarf_reg_entry_value, |
| ctx_no_get_addr_index |
| }; |
| |
| static CORE_ADDR |
| execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size, |
| CORE_ADDR offset, struct frame_info *this_frame, |
| CORE_ADDR initial, int initial_in_stack_memory) |
| { |
| struct dwarf_expr_context *ctx; |
| CORE_ADDR result; |
| struct cleanup *old_chain; |
| |
| ctx = new_dwarf_expr_context (); |
| old_chain = make_cleanup_free_dwarf_expr_context (ctx); |
| make_cleanup_value_free_to_mark (value_mark ()); |
| |
| ctx->gdbarch = get_frame_arch (this_frame); |
| ctx->addr_size = addr_size; |
| ctx->ref_addr_size = -1; |
| ctx->offset = offset; |
| ctx->baton = this_frame; |
| ctx->funcs = &dwarf2_frame_ctx_funcs; |
| |
| dwarf_expr_push_address (ctx, initial, initial_in_stack_memory); |
| dwarf_expr_eval (ctx, exp, len); |
| |
| if (ctx->location == DWARF_VALUE_MEMORY) |
| result = dwarf_expr_fetch_address (ctx, 0); |
| else if (ctx->location == DWARF_VALUE_REGISTER) |
| result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0))); |
| else |
| { |
| /* This is actually invalid DWARF, but if we ever do run across |
| it somehow, we might as well support it. So, instead, report |
| it as unimplemented. */ |
| error (_("\ |
| Not implemented: computing unwound register using explicit value operator")); |
| } |
| |
| do_cleanups (old_chain); |
| |
| return result; |
| } |
| |
| |
| /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior |
| PC. Modify FS state accordingly. Return current INSN_PTR where the |
| execution has stopped, one can resume it on the next call. */ |
| |
| static const gdb_byte * |
| execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr, |
| const gdb_byte *insn_end, struct gdbarch *gdbarch, |
| CORE_ADDR pc, struct dwarf2_frame_state *fs) |
| { |
| int eh_frame_p = fde->eh_frame_p; |
| int bytes_read; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| while (insn_ptr < insn_end && fs->pc <= pc) |
| { |
| gdb_byte insn = *insn_ptr++; |
| uint64_t utmp, reg; |
| int64_t offset; |
| |
| if ((insn & 0xc0) == DW_CFA_advance_loc) |
| fs->pc += (insn & 0x3f) * fs->code_align; |
| else if ((insn & 0xc0) == DW_CFA_offset) |
| { |
| reg = insn & 0x3f; |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| offset = utmp * fs->data_align; |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
| fs->regs.reg[reg].loc.offset = offset; |
| } |
| else if ((insn & 0xc0) == DW_CFA_restore) |
| { |
| reg = insn & 0x3f; |
| dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); |
| } |
| else |
| { |
| switch (insn) |
| { |
| case DW_CFA_set_loc: |
| fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding, |
| fde->cie->ptr_size, insn_ptr, |
| &bytes_read, fde->initial_location); |
| /* Apply the objfile offset for relocatable objects. */ |
| fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets, |
| SECT_OFF_TEXT (fde->cie->unit->objfile)); |
| insn_ptr += bytes_read; |
| break; |
| |
| case DW_CFA_advance_loc1: |
| utmp = extract_unsigned_integer (insn_ptr, 1, byte_order); |
| fs->pc += utmp * fs->code_align; |
| insn_ptr++; |
| break; |
| case DW_CFA_advance_loc2: |
| utmp = extract_unsigned_integer (insn_ptr, 2, byte_order); |
| fs->pc += utmp * fs->code_align; |
| insn_ptr += 2; |
| break; |
| case DW_CFA_advance_loc4: |
| utmp = extract_unsigned_integer (insn_ptr, 4, byte_order); |
| fs->pc += utmp * fs->code_align; |
| insn_ptr += 4; |
| break; |
| |
| case DW_CFA_offset_extended: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| offset = utmp * fs->data_align; |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
| fs->regs.reg[reg].loc.offset = offset; |
| break; |
| |
| case DW_CFA_restore_extended: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); |
| break; |
| |
| case DW_CFA_undefined: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; |
| break; |
| |
| case DW_CFA_same_value: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; |
| break; |
| |
| case DW_CFA_register: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; |
| fs->regs.reg[reg].loc.reg = utmp; |
| break; |
| |
| case DW_CFA_remember_state: |
| { |
| struct dwarf2_frame_state_reg_info *new_rs; |
| |
| new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); |
| *new_rs = fs->regs; |
| fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); |
| fs->regs.prev = new_rs; |
| } |
| break; |
| |
| case DW_CFA_restore_state: |
| { |
| struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; |
| |
| if (old_rs == NULL) |
| { |
| complaint (&symfile_complaints, _("\ |
| bad CFI data; mismatched DW_CFA_restore_state at %s"), |
| paddress (gdbarch, fs->pc)); |
| } |
| else |
| { |
| xfree (fs->regs.reg); |
| fs->regs = *old_rs; |
| xfree (old_rs); |
| } |
| } |
| break; |
| |
| case DW_CFA_def_cfa: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| fs->regs.cfa_reg = reg; |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| |
| if (fs->armcc_cfa_offsets_sf) |
| utmp *= fs->data_align; |
| |
| fs->regs.cfa_offset = utmp; |
| fs->regs.cfa_how = CFA_REG_OFFSET; |
| break; |
| |
| case DW_CFA_def_cfa_register: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg, |
| eh_frame_p); |
| fs->regs.cfa_how = CFA_REG_OFFSET; |
| break; |
| |
| case DW_CFA_def_cfa_offset: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| |
| if (fs->armcc_cfa_offsets_sf) |
| utmp *= fs->data_align; |
| |
| fs->regs.cfa_offset = utmp; |
| /* cfa_how deliberately not set. */ |
| break; |
| |
| case DW_CFA_nop: |
| break; |
| |
| case DW_CFA_def_cfa_expression: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| fs->regs.cfa_exp_len = utmp; |
| fs->regs.cfa_exp = insn_ptr; |
| fs->regs.cfa_how = CFA_EXP; |
| insn_ptr += fs->regs.cfa_exp_len; |
| break; |
| |
| case DW_CFA_expression: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| fs->regs.reg[reg].loc.exp = insn_ptr; |
| fs->regs.reg[reg].exp_len = utmp; |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; |
| insn_ptr += utmp; |
| break; |
| |
| case DW_CFA_offset_extended_sf: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
| offset *= fs->data_align; |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
| fs->regs.reg[reg].loc.offset = offset; |
| break; |
| |
| case DW_CFA_val_offset: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| offset = utmp * fs->data_align; |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; |
| fs->regs.reg[reg].loc.offset = offset; |
| break; |
| |
| case DW_CFA_val_offset_sf: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
| offset *= fs->data_align; |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; |
| fs->regs.reg[reg].loc.offset = offset; |
| break; |
| |
| case DW_CFA_val_expression: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| fs->regs.reg[reg].loc.exp = insn_ptr; |
| fs->regs.reg[reg].exp_len = utmp; |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; |
| insn_ptr += utmp; |
| break; |
| |
| case DW_CFA_def_cfa_sf: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg, |
| eh_frame_p); |
| insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
| fs->regs.cfa_offset = offset * fs->data_align; |
| fs->regs.cfa_how = CFA_REG_OFFSET; |
| break; |
| |
| case DW_CFA_def_cfa_offset_sf: |
| insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
| fs->regs.cfa_offset = offset * fs->data_align; |
| /* cfa_how deliberately not set. */ |
| break; |
| |
| case DW_CFA_GNU_window_save: |
| /* This is SPARC-specific code, and contains hard-coded |
| constants for the register numbering scheme used by |
| GCC. Rather than having a architecture-specific |
| operation that's only ever used by a single |
| architecture, we provide the implementation here. |
| Incidentally that's what GCC does too in its |
| unwinder. */ |
| { |
| int size = register_size (gdbarch, 0); |
| |
| dwarf2_frame_state_alloc_regs (&fs->regs, 32); |
| for (reg = 8; reg < 16; reg++) |
| { |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; |
| fs->regs.reg[reg].loc.reg = reg + 16; |
| } |
| for (reg = 16; reg < 32; reg++) |
| { |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
| fs->regs.reg[reg].loc.offset = (reg - 16) * size; |
| } |
| } |
| break; |
| |
| case DW_CFA_GNU_args_size: |
| /* Ignored. */ |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
| break; |
| |
| case DW_CFA_GNU_negative_offset_extended: |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
| reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
| insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset); |
| offset *= fs->data_align; |
| dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
| fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
| fs->regs.reg[reg].loc.offset = -offset; |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("Unknown CFI encountered.")); |
| } |
| } |
| } |
| |
| if (fs->initial.reg == NULL) |
| { |
| /* Don't allow remember/restore between CIE and FDE programs. */ |
| dwarf2_frame_state_free_regs (fs->regs.prev); |
| fs->regs.prev = NULL; |
| } |
| |
| return insn_ptr; |
| } |
| |
| |
| /* Architecture-specific operations. */ |
| |
| /* Per-architecture data key. */ |
| static struct gdbarch_data *dwarf2_frame_data; |
| |
| struct dwarf2_frame_ops |
| { |
| /* Pre-initialize the register state REG for register REGNUM. */ |
| void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, |
| struct frame_info *); |
| |
| /* Check whether the THIS_FRAME is a signal trampoline. */ |
| int (*signal_frame_p) (struct gdbarch *, struct frame_info *); |
| |
| /* Convert .eh_frame register number to DWARF register number, or |
| adjust .debug_frame register number. */ |
| int (*adjust_regnum) (struct gdbarch *, int, int); |
| }; |
| |
| /* Default architecture-specific register state initialization |
| function. */ |
| |
| static void |
| dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, |
| struct dwarf2_frame_state_reg *reg, |
| struct frame_info *this_frame) |
| { |
| /* If we have a register that acts as a program counter, mark it as |
| a destination for the return address. If we have a register that |
| serves as the stack pointer, arrange for it to be filled with the |
| call frame address (CFA). The other registers are marked as |
| unspecified. |
| |
| We copy the return address to the program counter, since many |
| parts in GDB assume that it is possible to get the return address |
| by unwinding the program counter register. However, on ISA's |
| with a dedicated return address register, the CFI usually only |
| contains information to unwind that return address register. |
| |
| The reason we're treating the stack pointer special here is |
| because in many cases GCC doesn't emit CFI for the stack pointer |
| and implicitly assumes that it is equal to the CFA. This makes |
| some sense since the DWARF specification (version 3, draft 8, |
| p. 102) says that: |
| |
| "Typically, the CFA is defined to be the value of the stack |
| pointer at the call site in the previous frame (which may be |
| different from its value on entry to the current frame)." |
| |
| However, this isn't true for all platforms supported by GCC |
| (e.g. IBM S/390 and zSeries). Those architectures should provide |
| their own architecture-specific initialization function. */ |
| |
| if (regnum == gdbarch_pc_regnum (gdbarch)) |
| reg->how = DWARF2_FRAME_REG_RA; |
| else if (regnum == gdbarch_sp_regnum (gdbarch)) |
| reg->how = DWARF2_FRAME_REG_CFA; |
| } |
| |
| /* Return a default for the architecture-specific operations. */ |
| |
| static void * |
| dwarf2_frame_init (struct obstack *obstack) |
| { |
| struct dwarf2_frame_ops *ops; |
| |
| ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); |
| ops->init_reg = dwarf2_frame_default_init_reg; |
| return ops; |
| } |
| |
| /* Set the architecture-specific register state initialization |
| function for GDBARCH to INIT_REG. */ |
| |
| void |
| dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, |
| void (*init_reg) (struct gdbarch *, int, |
| struct dwarf2_frame_state_reg *, |
| struct frame_info *)) |
| { |
| struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
| |
| ops->init_reg = init_reg; |
| } |
| |
| /* Pre-initialize the register state REG for register REGNUM. */ |
| |
| static void |
| dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, |
| struct dwarf2_frame_state_reg *reg, |
| struct frame_info *this_frame) |
| { |
| struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
| |
| ops->init_reg (gdbarch, regnum, reg, this_frame); |
| } |
| |
| /* Set the architecture-specific signal trampoline recognition |
| function for GDBARCH to SIGNAL_FRAME_P. */ |
| |
| void |
| dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch, |
| int (*signal_frame_p) (struct gdbarch *, |
| struct frame_info *)) |
| { |
| struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
| |
| ops->signal_frame_p = signal_frame_p; |
| } |
| |
| /* Query the architecture-specific signal frame recognizer for |
| THIS_FRAME. */ |
| |
| static int |
| dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch, |
| struct frame_info *this_frame) |
| { |
| struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
| |
| if (ops->signal_frame_p == NULL) |
| return 0; |
| return ops->signal_frame_p (gdbarch, this_frame); |
| } |
| |
| /* Set the architecture-specific adjustment of .eh_frame and .debug_frame |
| register numbers. */ |
| |
| void |
| dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch, |
| int (*adjust_regnum) (struct gdbarch *, |
| int, int)) |
| { |
| struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
| |
| ops->adjust_regnum = adjust_regnum; |
| } |
| |
| /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame |
| register. */ |
| |
| static int |
| dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, |
| int regnum, int eh_frame_p) |
| { |
| struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
| |
| if (ops->adjust_regnum == NULL) |
| return regnum; |
| return ops->adjust_regnum (gdbarch, regnum, eh_frame_p); |
| } |
| |
| static void |
| dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs, |
| struct dwarf2_fde *fde) |
| { |
| struct symtab *s; |
| |
| s = find_pc_symtab (fs->pc); |
| if (s == NULL) |
| return; |
| |
| if (producer_is_realview (s->producer)) |
| { |
| if (fde->cie->version == 1) |
| fs->armcc_cfa_offsets_sf = 1; |
| |
| if (fde->cie->version == 1) |
| fs->armcc_cfa_offsets_reversed = 1; |
| |
| /* The reversed offset problem is present in some compilers |
| using DWARF3, but it was eventually fixed. Check the ARM |
| defined augmentations, which are in the format "armcc" followed |
| by a list of one-character options. The "+" option means |
| this problem is fixed (no quirk needed). If the armcc |
| augmentation is missing, the quirk is needed. */ |
| if (fde->cie->version == 3 |
| && (strncmp (fde->cie->augmentation, "armcc", 5) != 0 |
| || strchr (fde->cie->augmentation + 5, '+') == NULL)) |
| fs->armcc_cfa_offsets_reversed = 1; |
| |
| return; |
| } |
| } |
| |
| |
| void |
| dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc, |
| struct gdbarch *gdbarch, |
| CORE_ADDR pc, |
| struct dwarf2_per_cu_data *data) |
| { |
| const int num_regs = gdbarch_num_regs (gdbarch) |
| + gdbarch_num_pseudo_regs (gdbarch); |
| struct dwarf2_fde *fde; |
| CORE_ADDR text_offset; |
| struct dwarf2_frame_state fs; |
| int addr_size; |
| |
| memset (&fs, 0, sizeof (struct dwarf2_frame_state)); |
| |
| fs.pc = pc; |
| |
| /* Find the correct FDE. */ |
| fde = dwarf2_frame_find_fde (&fs.pc, &text_offset); |
| if (fde == NULL) |
| error (_("Could not compute CFA; needed to translate this expression")); |
| |
| /* Extract any interesting information from the CIE. */ |
| fs.data_align = fde->cie->data_alignment_factor; |
| fs.code_align = fde->cie->code_alignment_factor; |
| fs.retaddr_column = fde->cie->return_address_register; |
| addr_size = fde->cie->addr_size; |
| |
| /* Check for "quirks" - known bugs in producers. */ |
| dwarf2_frame_find_quirks (&fs, fde); |
| |
| /* First decode all the insns in the CIE. */ |
| execute_cfa_program (fde, fde->cie->initial_instructions, |
| fde->cie->end, gdbarch, pc, &fs); |
| |
| /* Save the initialized register set. */ |
| fs.initial = fs.regs; |
| fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs); |
| |
| /* Then decode the insns in the FDE up to our target PC. */ |
| execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs); |
| |
| /* Calculate the CFA. */ |
| switch (fs.regs.cfa_how) |
| { |
| case CFA_REG_OFFSET: |
| { |
| int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg); |
| |
| if (regnum == -1) |
| error (_("Unable to access DWARF register number %d"), |
| (int) fs.regs.cfa_reg); /* FIXME */ |
| ax_reg (expr, regnum); |
| |
| if (fs.regs.cfa_offset != 0) |
| { |
| if (fs.armcc_cfa_offsets_reversed) |
| ax_const_l (expr, -fs.regs.cfa_offset); |
| else |
| ax_const_l (expr, fs.regs.cfa_offset); |
| ax_simple (expr, aop_add); |
| } |
| } |
| break; |
| |
| case CFA_EXP: |
| ax_const_l (expr, text_offset); |
| dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size, |
| fs.regs.cfa_exp, |
| fs.regs.cfa_exp + fs.regs.cfa_exp_len, |
| data); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); |
| } |
| } |
| |
| |
| struct dwarf2_frame_cache |
| { |
| /* DWARF Call Frame Address. */ |
| CORE_ADDR cfa; |
| |
| /* Set if the return address column was marked as unavailable |
| (required non-collected memory or registers to compute). */ |
| int unavailable_retaddr; |
| |
| /* Set if the return address column was marked as undefined. */ |
| int undefined_retaddr; |
| |
| /* Saved registers, indexed by GDB register number, not by DWARF |
| register number. */ |
| struct dwarf2_frame_state_reg *reg; |
| |
| /* Return address register. */ |
| struct dwarf2_frame_state_reg retaddr_reg; |
| |
| /* Target address size in bytes. */ |
| int addr_size; |
| |
| /* The .text offset. */ |
| CORE_ADDR text_offset; |
| |
| /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME |
| sequence. If NULL then it is a normal case with no TAILCALL_FRAME |
| involved. Non-bottom frames of a virtual tail call frames chain use |
| dwarf2_tailcall_frame_unwind unwinder so this field does not apply for |
| them. */ |
| void *tailcall_cache; |
| }; |
| |
| /* A cleanup that sets a pointer to NULL. */ |
| |
| static void |
| clear_pointer_cleanup (void *arg) |
| { |
| void **ptr = arg; |
| |
| *ptr = NULL; |
| } |
| |
| static struct dwarf2_frame_cache * |
| dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct cleanup *reset_cache_cleanup, *old_chain; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| const int num_regs = gdbarch_num_regs (gdbarch) |
| + gdbarch_num_pseudo_regs (gdbarch); |
| struct dwarf2_frame_cache *cache; |
| struct dwarf2_frame_state *fs; |
| struct dwarf2_fde *fde; |
| volatile struct gdb_exception ex; |
| CORE_ADDR entry_pc; |
| LONGEST entry_cfa_sp_offset; |
| int entry_cfa_sp_offset_p = 0; |
| const gdb_byte *instr; |
| |
| if (*this_cache) |
| return *this_cache; |
| |
| /* Allocate a new cache. */ |
| cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); |
| cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); |
| *this_cache = cache; |
| reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache); |
| |
| /* Allocate and initialize the frame state. */ |
| fs = XZALLOC (struct dwarf2_frame_state); |
| old_chain = make_cleanup (dwarf2_frame_state_free, fs); |
| |
| /* Unwind the PC. |
| |
| Note that if the next frame is never supposed to return (i.e. a call |
| to abort), the compiler might optimize away the instruction at |
| its return address. As a result the return address will |
| point at some random instruction, and the CFI for that |
| instruction is probably worthless to us. GCC's unwinder solves |
| this problem by substracting 1 from the return address to get an |
| address in the middle of a presumed call instruction (or the |
| instruction in the associated delay slot). This should only be |
| done for "normal" frames and not for resume-type frames (signal |
| handlers, sentinel frames, dummy frames). The function |
| get_frame_address_in_block does just this. It's not clear how |
| reliable the method is though; there is the potential for the |
| register state pre-call being different to that on return. */ |
| fs->pc = get_frame_address_in_block (this_frame); |
| |
| /* Find the correct FDE. */ |
| fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset); |
| gdb_assert (fde != NULL); |
| |
| /* Extract any interesting information from the CIE. */ |
| fs->data_align = fde->cie->data_alignment_factor; |
| fs->code_align = fde->cie->code_alignment_factor; |
| fs->retaddr_column = fde->cie->return_address_register; |
| cache->addr_size = fde->cie->addr_size; |
| |
| /* Check for "quirks" - known bugs in producers. */ |
| dwarf2_frame_find_quirks (fs, fde); |
| |
| /* First decode all the insns in the CIE. */ |
| execute_cfa_program (fde, fde->cie->initial_instructions, |
| fde->cie->end, gdbarch, get_frame_pc (this_frame), fs); |
| |
| /* Save the initialized register set. */ |
| fs->initial = fs->regs; |
| fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); |
| |
| if (get_frame_func_if_available (this_frame, &entry_pc)) |
| { |
| /* Decode the insns in the FDE up to the entry PC. */ |
| instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, |
| entry_pc, fs); |
| |
| if (fs->regs.cfa_how == CFA_REG_OFFSET |
| && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg) |
| == gdbarch_sp_regnum (gdbarch))) |
| { |
| entry_cfa_sp_offset = fs->regs.cfa_offset; |
| entry_cfa_sp_offset_p = 1; |
| } |
| } |
| else |
| instr = fde->instructions; |
| |
| /* Then decode the insns in the FDE up to our target PC. */ |
| execute_cfa_program (fde, instr, fde->end, gdbarch, |
| get_frame_pc (this_frame), fs); |
| |
| TRY_CATCH (ex, RETURN_MASK_ERROR) |
| { |
| /* Calculate the CFA. */ |
| switch (fs->regs.cfa_how) |
| { |
| case CFA_REG_OFFSET: |
| cache->cfa = read_reg (this_frame, fs->regs.cfa_reg); |
| if (fs->armcc_cfa_offsets_reversed) |
| cache->cfa -= fs->regs.cfa_offset; |
| else |
| cache->cfa += fs->regs.cfa_offset; |
| break; |
| |
| case CFA_EXP: |
| cache->cfa = |
| execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len, |
| cache->addr_size, cache->text_offset, |
| this_frame, 0, 0); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); |
| } |
| } |
| if (ex.reason < 0) |
| { |
| if (ex.error == NOT_AVAILABLE_ERROR) |
| { |
| cache->unavailable_retaddr = 1; |
| do_cleanups (old_chain); |
| discard_cleanups (reset_cache_cleanup); |
| return cache; |
| } |
| |
| throw_exception (ex); |
| } |
| |
| /* Initialize the register state. */ |
| { |
| int regnum; |
| |
| for (regnum = 0; regnum < num_regs; regnum++) |
| dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame); |
| } |
| |
| /* Go through the DWARF2 CFI generated table and save its register |
| location information in the cache. Note that we don't skip the |
| return address column; it's perfectly all right for it to |
| correspond to a real register. If it doesn't correspond to a |
| real register, or if we shouldn't treat it as such, |
| gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside |
| the range [0, gdbarch_num_regs). */ |
| { |
| int column; /* CFI speak for "register number". */ |
| |
| for (column = 0; column < fs->regs.num_regs; column++) |
| { |
| /* Use the GDB register number as the destination index. */ |
| int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column); |
| |
| /* If there's no corresponding GDB register, ignore it. */ |
| if (regnum < 0 || regnum >= num_regs) |
| continue; |
| |
| /* NOTE: cagney/2003-09-05: CFI should specify the disposition |
| of all debug info registers. If it doesn't, complain (but |
| not too loudly). It turns out that GCC assumes that an |
| unspecified register implies "same value" when CFI (draft |
| 7) specifies nothing at all. Such a register could equally |
| be interpreted as "undefined". Also note that this check |
| isn't sufficient; it only checks that all registers in the |
| range [0 .. max column] are specified, and won't detect |
| problems when a debug info register falls outside of the |
| table. We need a way of iterating through all the valid |
| DWARF2 register numbers. */ |
| if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) |
| { |
| if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED) |
| complaint (&symfile_complaints, _("\ |
| incomplete CFI data; unspecified registers (e.g., %s) at %s"), |
| gdbarch_register_name (gdbarch, regnum), |
| paddress (gdbarch, fs->pc)); |
| } |
| else |
| cache->reg[regnum] = fs->regs.reg[column]; |
| } |
| } |
| |
| /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information |
| we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */ |
| { |
| int regnum; |
| |
| for (regnum = 0; regnum < num_regs; regnum++) |
| { |
| if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA |
| || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET) |
| { |
| struct dwarf2_frame_state_reg *retaddr_reg = |
| &fs->regs.reg[fs->retaddr_column]; |
| |
| /* It seems rather bizarre to specify an "empty" column as |
| the return adress column. However, this is exactly |
| what GCC does on some targets. It turns out that GCC |
| assumes that the return address can be found in the |
| register corresponding to the return address column. |
| Incidentally, that's how we should treat a return |
| address column specifying "same value" too. */ |
| if (fs->retaddr_column < fs->regs.num_regs |
| && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED |
| && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) |
| { |
| if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) |
| cache->reg[regnum] = *retaddr_reg; |
| else |
| cache->retaddr_reg = *retaddr_reg; |
| } |
| else |
| { |
| if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) |
| { |
| cache->reg[regnum].loc.reg = fs->retaddr_column; |
| cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; |
| } |
| else |
| { |
| cache->retaddr_reg.loc.reg = fs->retaddr_column; |
| cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG; |
| } |
| } |
| } |
| } |
| } |
| |
| if (fs->retaddr_column < fs->regs.num_regs |
| && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED) |
| cache->undefined_retaddr = 1; |
| |
| do_cleanups (old_chain); |
| |
| /* Try to find a virtual tail call frames chain with bottom (callee) frame |
| starting at THIS_FRAME. */ |
| dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache, |
| (entry_cfa_sp_offset_p |
| ? &entry_cfa_sp_offset : NULL)); |
| |
| discard_cleanups (reset_cache_cleanup); |
| return cache; |
| } |
| |
| static enum unwind_stop_reason |
| dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame, |
| void **this_cache) |
| { |
| struct dwarf2_frame_cache *cache |
| = dwarf2_frame_cache (this_frame, this_cache); |
| |
| if (cache->unavailable_retaddr) |
| return UNWIND_UNAVAILABLE; |
| |
| if (cache->undefined_retaddr) |
| return UNWIND_OUTERMOST; |
| |
| return UNWIND_NO_REASON; |
| } |
| |
| static void |
| dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct dwarf2_frame_cache *cache = |
| dwarf2_frame_cache (this_frame, this_cache); |
| |
| if (cache->unavailable_retaddr) |
| return; |
| |
| if (cache->undefined_retaddr) |
| return; |
| |
| (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame)); |
| } |
| |
| static struct value * |
| dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
| int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct dwarf2_frame_cache *cache = |
| dwarf2_frame_cache (this_frame, this_cache); |
| CORE_ADDR addr; |
| int realnum; |
| |
| /* Non-bottom frames of a virtual tail call frames chain use |
| dwarf2_tailcall_frame_unwind unwinder so this code does not apply for |
| them. If dwarf2_tailcall_prev_register_first does not have specific value |
| unwind the register, tail call frames are assumed to have the register set |
| of the top caller. */ |
| if (cache->tailcall_cache) |
| { |
| struct value *val; |
| |
| val = dwarf2_tailcall_prev_register_first (this_frame, |
| &cache->tailcall_cache, |
| regnum); |
| if (val) |
| return val; |
| } |
| |
| switch (cache->reg[regnum].how) |
| { |
| case DWARF2_FRAME_REG_UNDEFINED: |
| /* If CFI explicitly specified that the value isn't defined, |
| mark it as optimized away; the value isn't available. */ |
| return frame_unwind_got_optimized (this_frame, regnum); |
| |
| case DWARF2_FRAME_REG_SAVED_OFFSET: |
| addr = cache->cfa + cache->reg[regnum].loc.offset; |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| case DWARF2_FRAME_REG_SAVED_REG: |
| realnum |
| = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg); |
| return frame_unwind_got_register (this_frame, regnum, realnum); |
| |
| case DWARF2_FRAME_REG_SAVED_EXP: |
| addr = execute_stack_op (cache->reg[regnum].loc.exp, |
| cache->reg[regnum].exp_len, |
| cache->addr_size, cache->text_offset, |
| this_frame, cache->cfa, 1); |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| case DWARF2_FRAME_REG_SAVED_VAL_OFFSET: |
| addr = cache->cfa + cache->reg[regnum].loc.offset; |
| return frame_unwind_got_constant (this_frame, regnum, addr); |
| |
| case DWARF2_FRAME_REG_SAVED_VAL_EXP: |
| addr = execute_stack_op (cache->reg[regnum].loc.exp, |
| cache->reg[regnum].exp_len, |
| cache->addr_size, cache->text_offset, |
| this_frame, cache->cfa, 1); |
| return frame_unwind_got_constant (this_frame, regnum, addr); |
| |
| case DWARF2_FRAME_REG_UNSPECIFIED: |
| /* GCC, in its infinite wisdom decided to not provide unwind |
| information for registers that are "same value". Since |
| DWARF2 (3 draft 7) doesn't define such behavior, said |
| registers are actually undefined (which is different to CFI |
| "undefined"). Code above issues a complaint about this. |
| Here just fudge the books, assume GCC, and that the value is |
| more inner on the stack. */ |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| |
| case DWARF2_FRAME_REG_SAME_VALUE: |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| |
| case DWARF2_FRAME_REG_CFA: |
| return frame_unwind_got_address (this_frame, regnum, cache->cfa); |
| |
| case DWARF2_FRAME_REG_CFA_OFFSET: |
| addr = cache->cfa + cache->reg[regnum].loc.offset; |
| return frame_unwind_got_address (this_frame, regnum, addr); |
| |
| case DWARF2_FRAME_REG_RA_OFFSET: |
| addr = cache->reg[regnum].loc.offset; |
| regnum = gdbarch_dwarf2_reg_to_regnum |
| (gdbarch, cache->retaddr_reg.loc.reg); |
| addr += get_frame_register_unsigned (this_frame, regnum); |
| return frame_unwind_got_address (this_frame, regnum, addr); |
| |
| case DWARF2_FRAME_REG_FN: |
| return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum); |
| |
| default: |
| internal_error (__FILE__, __LINE__, _("Unknown register rule.")); |
| } |
| } |
| |
| /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail |
| call frames chain. */ |
| |
| static void |
| dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache) |
| { |
| struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache); |
| |
| if (cache->tailcall_cache) |
| dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache); |
| } |
| |
| static int |
| dwarf2_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, void **this_cache) |
| { |
| /* Grab an address that is guarenteed to reside somewhere within the |
| function. get_frame_pc(), with a no-return next function, can |
| end up returning something past the end of this function's body. |
| If the frame we're sniffing for is a signal frame whose start |
| address is placed on the stack by the OS, its FDE must |
| extend one byte before its start address or we could potentially |
| select the FDE of the previous function. */ |
| CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
| struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL); |
| |
| if (!fde) |
| return 0; |
| |
| /* On some targets, signal trampolines may have unwind information. |
| We need to recognize them so that we set the frame type |
| correctly. */ |
| |
| if (fde->cie->signal_frame |
| || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame), |
| this_frame)) |
| return self->type == SIGTRAMP_FRAME; |
| |
| if (self->type != NORMAL_FRAME) |
| return 0; |
| |
| /* Preinitializa the cache so that TAILCALL_FRAME can find the record by |
| dwarf2_tailcall_sniffer_first. */ |
| dwarf2_frame_cache (this_frame, this_cache); |
| |
| return 1; |
| } |
| |
| static const struct frame_unwind dwarf2_frame_unwind = |
| { |
| NORMAL_FRAME, |
| dwarf2_frame_unwind_stop_reason, |
| dwarf2_frame_this_id, |
| dwarf2_frame_prev_register, |
| NULL, |
| dwarf2_frame_sniffer, |
| dwarf2_frame_dealloc_cache |
| }; |
| |
| static const struct frame_unwind dwarf2_signal_frame_unwind = |
| { |
| SIGTRAMP_FRAME, |
| dwarf2_frame_unwind_stop_reason, |
| dwarf2_frame_this_id, |
| dwarf2_frame_prev_register, |
| NULL, |
| dwarf2_frame_sniffer, |
| |
| /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */ |
| NULL |
| }; |
| |
| /* Append the DWARF-2 frame unwinders to GDBARCH's list. */ |
| |
| void |
| dwarf2_append_unwinders (struct gdbarch *gdbarch) |
| { |
| /* TAILCALL_FRAME must be first to find the record by |
| dwarf2_tailcall_sniffer_first. */ |
| frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind); |
| |
| frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind); |
| } |
| |
| |
| /* There is no explicitly defined relationship between the CFA and the |
| location of frame's local variables and arguments/parameters. |
| Therefore, frame base methods on this page should probably only be |
| used as a last resort, just to avoid printing total garbage as a |
| response to the "info frame" command. */ |
| |
| static CORE_ADDR |
| dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct dwarf2_frame_cache *cache = |
| dwarf2_frame_cache (this_frame, this_cache); |
| |
| return cache->cfa; |
| } |
| |
| static const struct frame_base dwarf2_frame_base = |
| { |
| &dwarf2_frame_unwind, |
| dwarf2_frame_base_address, |
| dwarf2_frame_base_address, |
| dwarf2_frame_base_address |
| }; |
| |
| const struct frame_base * |
| dwarf2_frame_base_sniffer (struct frame_info *this_frame) |
| { |
| CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
| |
| if (dwarf2_frame_find_fde (&block_addr, NULL)) |
| return &dwarf2_frame_base; |
| |
| return NULL; |
| } |
| |
| /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from |
| the DWARF unwinder. This is used to implement |
| DW_OP_call_frame_cfa. */ |
| |
| CORE_ADDR |
| dwarf2_frame_cfa (struct frame_info *this_frame) |
| { |
| while (get_frame_type (this_frame) == INLINE_FRAME) |
| this_frame = get_prev_frame (this_frame); |
| /* This restriction could be lifted if other unwinders are known to |
| compute the frame base in a way compatible with the DWARF |
| unwinder. */ |
| if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind) |
| && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind)) |
| error (_("can't compute CFA for this frame")); |
| if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE) |
| throw_error (NOT_AVAILABLE_ERROR, |
| _("can't compute CFA for this frame: " |
| "required registers or memory are unavailable")); |
| return get_frame_base (this_frame); |
| } |
| |
| const struct objfile_data *dwarf2_frame_objfile_data; |
| |
| static unsigned int |
| read_1_byte (bfd *abfd, const gdb_byte *buf) |
| { |
| return bfd_get_8 (abfd, buf); |
| } |
| |
| static unsigned int |
| read_4_bytes (bfd *abfd, const gdb_byte *buf) |
| { |
| return bfd_get_32 (abfd, buf); |
| } |
| |
| static ULONGEST |
| read_8_bytes (bfd *abfd, const gdb_byte *buf) |
| { |
| return bfd_get_64 (abfd, buf); |
| } |
| |
| static ULONGEST |
| read_initial_length (bfd *abfd, const gdb_byte *buf, |
| unsigned int *bytes_read_ptr) |
| { |
| LONGEST result; |
| |
| result = bfd_get_32 (abfd, buf); |
| if (result == 0xffffffff) |
| { |
| result = bfd_get_64 (abfd, buf + 4); |
| *bytes_read_ptr = 12; |
| } |
| else |
| *bytes_read_ptr = 4; |
| |
| return result; |
| } |
| |
| |
| /* Pointer encoding helper functions. */ |
| |
| /* GCC supports exception handling based on DWARF2 CFI. However, for |
| technical reasons, it encodes addresses in its FDE's in a different |
| way. Several "pointer encodings" are supported. The encoding |
| that's used for a particular FDE is determined by the 'R' |
| augmentation in the associated CIE. The argument of this |
| augmentation is a single byte. |
| |
| The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a |
| LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether |
| the address is signed or unsigned. Bits 4, 5 and 6 encode how the |
| address should be interpreted (absolute, relative to the current |
| position in the FDE, ...). Bit 7, indicates that the address |
| should be dereferenced. */ |
| |
| static gdb_byte |
| encoding_for_size (unsigned int size) |
| { |
| switch (size) |
| { |
| case 2: |
| return DW_EH_PE_udata2; |
| case 4: |
| return DW_EH_PE_udata4; |
| case 8: |
| return DW_EH_PE_udata8; |
| default: |
| internal_error (__FILE__, __LINE__, _("Unsupported address size")); |
| } |
| } |
| |
| static CORE_ADDR |
| read_encoded_value (struct comp_unit *unit, gdb_byte encoding, |
| int ptr_len, const gdb_byte *buf, |
| unsigned int *bytes_read_ptr, |
| CORE_ADDR func_base) |
| { |
| ptrdiff_t offset; |
| CORE_ADDR base; |
| |
| /* GCC currently doesn't generate DW_EH_PE_indirect encodings for |
| FDE's. */ |
| if (encoding & DW_EH_PE_indirect) |
| internal_error (__FILE__, __LINE__, |
| _("Unsupported encoding: DW_EH_PE_indirect")); |
| |
| *bytes_read_ptr = 0; |
| |
| switch (encoding & 0x70) |
| { |
| case DW_EH_PE_absptr: |
| base = 0; |
| break; |
| case DW_EH_PE_pcrel: |
| base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section); |
| base += (buf - unit->dwarf_frame_buffer); |
| break; |
| case DW_EH_PE_datarel: |
| base = unit->dbase; |
| break; |
| case DW_EH_PE_textrel: |
| base = unit->tbase; |
| break; |
| case DW_EH_PE_funcrel: |
| base = func_base; |
| break; |
| case DW_EH_PE_aligned: |
| base = 0; |
| offset = buf - unit->dwarf_frame_buffer; |
| if ((offset % ptr_len) != 0) |
| { |
| *bytes_read_ptr = ptr_len - (offset % ptr_len); |
| buf += *bytes_read_ptr; |
| } |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("Invalid or unsupported encoding")); |
| } |
| |
| if ((encoding & 0x07) == 0x00) |
| { |
| encoding |= encoding_for_size (ptr_len); |
| if (bfd_get_sign_extend_vma (unit->abfd)) |
| encoding |= DW_EH_PE_signed; |
| } |
| |
| switch (encoding & 0x0f) |
| { |
| case DW_EH_PE_uleb128: |
| { |
| uint64_t value; |
| const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; |
| |
| *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf; |
| return base + value; |
| } |
| case DW_EH_PE_udata2: |
| *bytes_read_ptr += 2; |
| return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); |
| case DW_EH_PE_udata4: |
| *bytes_read_ptr += 4; |
| return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); |
| case DW_EH_PE_udata8: |
| *bytes_read_ptr += 8; |
| return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); |
| case DW_EH_PE_sleb128: |
| { |
| int64_t value; |
| const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; |
| |
| *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf; |
| return base + value; |
| } |
| case DW_EH_PE_sdata2: |
| *bytes_read_ptr += 2; |
| return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); |
| case DW_EH_PE_sdata4: |
| *bytes_read_ptr += 4; |
| return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); |
| case DW_EH_PE_sdata8: |
| *bytes_read_ptr += 8; |
| return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("Invalid or unsupported encoding")); |
| } |
| } |
| |
| |
| static int |
| bsearch_cie_cmp (const void *key, const void *element) |
| { |
| ULONGEST cie_pointer = *(ULONGEST *) key; |
| struct dwarf2_cie *cie = *(struct dwarf2_cie **) element; |
| |
| if (cie_pointer == cie->cie_pointer) |
| return 0; |
| |
| return (cie_pointer < cie->cie_pointer) ? -1 : 1; |
| } |
| |
| /* Find CIE with the given CIE_POINTER in CIE_TABLE. */ |
| static struct dwarf2_cie * |
| find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer) |
| { |
| struct dwarf2_cie **p_cie; |
| |
| /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to |
| bsearch be non-NULL. */ |
| if (cie_table->entries == NULL) |
| { |
| gdb_assert (cie_table->num_entries == 0); |
| return NULL; |
| } |
| |
| p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries, |
| sizeof (cie_table->entries[0]), bsearch_cie_cmp); |
| if (p_cie != NULL) |
| return *p_cie; |
| return NULL; |
| } |
| |
| /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */ |
| static void |
| add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie) |
| { |
| const int n = cie_table->num_entries; |
| |
| gdb_assert (n < 1 |
| || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer); |
| |
| cie_table->entries = |
| xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0])); |
| cie_table->entries[n] = cie; |
| cie_table->num_entries = n + 1; |
| } |
| |
| static int |
| bsearch_fde_cmp (const void *key, const void *element) |
| { |
| CORE_ADDR seek_pc = *(CORE_ADDR *) key; |
| struct dwarf2_fde *fde = *(struct dwarf2_fde **) element; |
| |
| if (seek_pc < fde->initial_location) |
| return -1; |
| if (seek_pc < fde->initial_location + fde->address_range) |
| return 0; |
| return 1; |
| } |
| |
| /* Find the FDE for *PC. Return a pointer to the FDE, and store the |
| inital location associated with it into *PC. */ |
| |
| static struct dwarf2_fde * |
| dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset) |
| { |
| struct objfile *objfile; |
| |
| ALL_OBJFILES (objfile) |
| { |
| struct dwarf2_fde_table *fde_table; |
| struct dwarf2_fde **p_fde; |
| CORE_ADDR offset; |
| CORE_ADDR seek_pc; |
| |
| fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); |
| if (fde_table == NULL) |
| { |
| dwarf2_build_frame_info (objfile); |
| fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); |
| } |
| gdb_assert (fde_table != NULL); |
| |
| if (fde_table->num_entries == 0) |
| continue; |
| |
| gdb_assert (objfile->section_offsets); |
| offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| gdb_assert (fde_table->num_entries > 0); |
| if (*pc < offset + fde_table->entries[0]->initial_location) |
| continue; |
| |
| seek_pc = *pc - offset; |
| p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries, |
| sizeof (fde_table->entries[0]), bsearch_fde_cmp); |
| if (p_fde != NULL) |
| { |
| *pc = (*p_fde)->initial_location + offset; |
| if (out_offset) |
| *out_offset = offset; |
| return *p_fde; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */ |
| static void |
| add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde) |
| { |
| if (fde->address_range == 0) |
| /* Discard useless FDEs. */ |
| return; |
| |
| fde_table->num_entries += 1; |
| fde_table->entries = |
| xrealloc (fde_table->entries, |
| fde_table->num_entries * sizeof (fde_table->entries[0])); |
| fde_table->entries[fde_table->num_entries - 1] = fde; |
| } |
| |
| #ifdef CC_HAS_LONG_LONG |
| #define DW64_CIE_ID 0xffffffffffffffffULL |
| #else |
| #define DW64_CIE_ID ~0 |
| #endif |
| |
| /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE |
| or any of them. */ |
| |
| enum eh_frame_type |
| { |
| EH_CIE_TYPE_ID = 1 << 0, |
| EH_FDE_TYPE_ID = 1 << 1, |
| EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID |
| }; |
| |
| static const gdb_byte *decode_frame_entry (struct comp_unit *unit, |
| const gdb_byte *start, |
| int eh_frame_p, |
| struct dwarf2_cie_table *cie_table, |
| struct dwarf2_fde_table *fde_table, |
| enum eh_frame_type entry_type); |
| |
| /* Decode the next CIE or FDE, entry_type specifies the expected type. |
| Return NULL if invalid input, otherwise the next byte to be processed. */ |
| |
| static const gdb_byte * |
| decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start, |
| int eh_frame_p, |
| struct dwarf2_cie_table *cie_table, |
| struct dwarf2_fde_table *fde_table, |
| enum eh_frame_type entry_type) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (unit->objfile); |
| const gdb_byte *buf, *end; |
| LONGEST length; |
| unsigned int bytes_read; |
| int dwarf64_p; |
| ULONGEST cie_id; |
| ULONGEST cie_pointer; |
| int64_t sleb128; |
| uint64_t uleb128; |
| |
| buf = start; |
| length = read_initial_length (unit->abfd, buf, &bytes_read); |
| buf += bytes_read; |
| end = buf + length; |
| |
| /* Are we still within the section? */ |
| if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) |
| return NULL; |
| |
| if (length == 0) |
| return end; |
| |
| /* Distinguish between 32 and 64-bit encoded frame info. */ |
| dwarf64_p = (bytes_read == 12); |
| |
| /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ |
| if (eh_frame_p) |
| cie_id = 0; |
| else if (dwarf64_p) |
| cie_id = DW64_CIE_ID; |
| else |
| cie_id = DW_CIE_ID; |
| |
| if (dwarf64_p) |
| { |
| cie_pointer = read_8_bytes (unit->abfd, buf); |
| buf += 8; |
| } |
| else |
| { |
| cie_pointer = read_4_bytes (unit->abfd, buf); |
| buf += 4; |
| } |
| |
| if (cie_pointer == cie_id) |
| { |
| /* This is a CIE. */ |
| struct dwarf2_cie *cie; |
| char *augmentation; |
| unsigned int cie_version; |
| |
| /* Check that a CIE was expected. */ |
| if ((entry_type & EH_CIE_TYPE_ID) == 0) |
| error (_("Found a CIE when not expecting it.")); |
| |
| /* Record the offset into the .debug_frame section of this CIE. */ |
| cie_pointer = start - unit->dwarf_frame_buffer; |
| |
| /* Check whether we've already read it. */ |
| if (find_cie (cie_table, cie_pointer)) |
| return end; |
| |
| cie = (struct dwarf2_cie *) |
| obstack_alloc (&unit->objfile->objfile_obstack, |
| sizeof (struct dwarf2_cie)); |
| cie->initial_instructions = NULL; |
| cie->cie_pointer = cie_pointer; |
| |
| /* The encoding for FDE's in a normal .debug_frame section |
| depends on the target address size. */ |
| cie->encoding = DW_EH_PE_absptr; |
| |
| /* We'll determine the final value later, but we need to |
| initialize it conservatively. */ |
| cie->signal_frame = 0; |
| |
| /* Check version number. */ |
| cie_version = read_1_byte (unit->abfd, buf); |
| if (cie_version != 1 && cie_version != 3 && cie_version != 4) |
| return NULL; |
| cie->version = cie_version; |
| buf += 1; |
| |
| /* Interpret the interesting bits of the augmentation. */ |
| cie->augmentation = augmentation = (char *) buf; |
| buf += (strlen (augmentation) + 1); |
| |
| /* Ignore armcc augmentations. We only use them for quirks, |
| and that doesn't happen until later. */ |
| if (strncmp (augmentation, "armcc", 5) == 0) |
| augmentation += strlen (augmentation); |
| |
| /* The GCC 2.x "eh" augmentation has a pointer immediately |
| following the augmentation string, so it must be handled |
| first. */ |
| if (augmentation[0] == 'e' && augmentation[1] == 'h') |
| { |
| /* Skip. */ |
| buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; |
| augmentation += 2; |
| } |
| |
| if (cie->version >= 4) |
| { |
| /* FIXME: check that this is the same as from the CU header. */ |
| cie->addr_size = read_1_byte (unit->abfd, buf); |
| ++buf; |
| cie->segment_size = read_1_byte (unit->abfd, buf); |
| ++buf; |
| } |
| else |
| { |
| cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch); |
| cie->segment_size = 0; |
| } |
| /* Address values in .eh_frame sections are defined to have the |
| target's pointer size. Watchout: This breaks frame info for |
| targets with pointer size < address size, unless a .debug_frame |
| section exists as well. */ |
| if (eh_frame_p) |
| cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; |
| else |
| cie->ptr_size = cie->addr_size; |
| |
| buf = gdb_read_uleb128 (buf, end, &uleb128); |
| if (buf == NULL) |
| return NULL; |
| cie->code_alignment_factor = uleb128; |
| |
| buf = gdb_read_sleb128 (buf, end, &sleb128); |
| if (buf == NULL) |
| return NULL; |
| cie->data_alignment_factor = sleb128; |
| |
| if (cie_version == 1) |
| { |
| cie->return_address_register = read_1_byte (unit->abfd, buf); |
| ++buf; |
| } |
| else |
| { |
| buf = gdb_read_uleb128 (buf, end, &uleb128); |
| if (buf == NULL) |
| return NULL; |
| cie->return_address_register = uleb128; |
| } |
| |
| cie->return_address_register |
| = dwarf2_frame_adjust_regnum (gdbarch, |
| cie->return_address_register, |
| eh_frame_p); |
| |
| cie->saw_z_augmentation = (*augmentation == 'z'); |
| if (cie->saw_z_augmentation) |
| { |
| uint64_t length; |
| |
| buf = gdb_read_uleb128 (buf, end, &length); |
| if (buf == NULL) |
| return NULL; |
| cie->initial_instructions = buf + length; |
| augmentation++; |
| } |
| |
| while (*augmentation) |
| { |
| /* "L" indicates a byte showing how the LSDA pointer is encoded. */ |
| if (*augmentation == 'L') |
| { |
| /* Skip. */ |
| buf++; |
| augmentation++; |
| } |
| |
| /* "R" indicates a byte indicating how FDE addresses are encoded. */ |
| else if (*augmentation == 'R') |
| { |
| cie->encoding = *buf++; |
| augmentation++; |
| } |
| |
| /* "P" indicates a personality routine in the CIE augmentation. */ |
| else if (*augmentation == 'P') |
| { |
| /* Skip. Avoid indirection since we throw away the result. */ |
| gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect; |
| read_encoded_value (unit, encoding, cie->ptr_size, |
| buf, &bytes_read, 0); |
| buf += bytes_read; |
| augmentation++; |
| } |
| |
| /* "S" indicates a signal frame, such that the return |
| address must not be decremented to locate the call frame |
| info for the previous frame; it might even be the first |
| instruction of a function, so decrementing it would take |
| us to a different function. */ |
| else if (*augmentation == 'S') |
| { |
| cie->signal_frame = 1; |
| augmentation++; |
| } |
| |
| /* Otherwise we have an unknown augmentation. Assume that either |
| there is no augmentation data, or we saw a 'z' prefix. */ |
| else |
| { |
| if (cie->initial_instructions) |
| buf = cie->initial_instructions; |
| break; |
| } |
| } |
| |
| cie->initial_instructions = buf; |
| cie->end = end; |
| cie->unit = unit; |
| |
| add_cie (cie_table, cie); |
| } |
| else |
| { |
| /* This is a FDE. */ |
| struct dwarf2_fde *fde; |
| |
| /* Check that an FDE was expected. */ |
| if ((entry_type & EH_FDE_TYPE_ID) == 0) |
| error (_("Found an FDE when not expecting it.")); |
| |
| /* In an .eh_frame section, the CIE pointer is the delta between the |
| address within the FDE where the CIE pointer is stored and the |
| address of the CIE. Convert it to an offset into the .eh_frame |
| section. */ |
| if (eh_frame_p) |
| { |
| cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; |
| cie_pointer -= (dwarf64_p ? 8 : 4); |
| } |
| |
| /* In either case, validate the result is still within the section. */ |
| if (cie_pointer >= unit->dwarf_frame_size) |
| return NULL; |
| |
| fde = (struct dwarf2_fde *) |
| obstack_alloc (&unit->objfile->objfile_obstack, |
| sizeof (struct dwarf2_fde)); |
| fde->cie = find_cie (cie_table, cie_pointer); |
| if (fde->cie == NULL) |
| { |
| decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, |
| eh_frame_p, cie_table, fde_table, |
| EH_CIE_TYPE_ID); |
| fde->cie = find_cie (cie_table, cie_pointer); |
| } |
| |
| gdb_assert (fde->cie != NULL); |
| |
| fde->initial_location = |
| read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size, |
| buf, &bytes_read, 0); |
| buf += bytes_read; |
| |
| fde->address_range = |
| read_encoded_value (unit, fde->cie->encoding & 0x0f, |
| fde->cie->ptr_size, buf, &bytes_read, 0); |
| buf += bytes_read; |
| |
| /* A 'z' augmentation in the CIE implies the presence of an |
| augmentation field in the FDE as well. The only thing known |
| to be in here at present is the LSDA entry for EH. So we |
| can skip the whole thing. */ |
| if (fde->cie->saw_z_augmentation) |
| { |
| uint64_t length; |
| |
| buf = gdb_read_uleb128 (buf, end, &length); |
| if (buf == NULL) |
| return NULL; |
| buf += length; |
| if (buf > end) |
| return NULL; |
| } |
| |
| fde->instructions = buf; |
| fde->end = end; |
| |
| fde->eh_frame_p = eh_frame_p; |
| |
| add_fde (fde_table, fde); |
| } |
| |
| return end; |
| } |
| |
| /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we |
| expect an FDE or a CIE. */ |
| |
| static const gdb_byte * |
| decode_frame_entry (struct comp_unit *unit, const gdb_byte *start, |
| int eh_frame_p, |
| struct dwarf2_cie_table *cie_table, |
| struct dwarf2_fde_table *fde_table, |
| enum eh_frame_type entry_type) |
| { |
| enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; |
| const gdb_byte *ret; |
| ptrdiff_t start_offset; |
| |
| while (1) |
| { |
| ret = decode_frame_entry_1 (unit, start, eh_frame_p, |
| cie_table, fde_table, entry_type); |
| if (ret != NULL) |
| break; |
| |
| /* We have corrupt input data of some form. */ |
| |
| /* ??? Try, weakly, to work around compiler/assembler/linker bugs |
| and mismatches wrt padding and alignment of debug sections. */ |
| /* Note that there is no requirement in the standard for any |
| alignment at all in the frame unwind sections. Testing for |
| alignment before trying to interpret data would be incorrect. |
| |
| However, GCC traditionally arranged for frame sections to be |
| sized such that the FDE length and CIE fields happen to be |
| aligned (in theory, for performance). This, unfortunately, |
| was done with .align directives, which had the side effect of |
| forcing the section to be aligned by the linker. |
| |
| This becomes a problem when you have some other producer that |
| creates frame sections that are not as strictly aligned. That |
| produces a hole in the frame info that gets filled by the |
| linker with zeros. |
| |
| The GCC behaviour is arguably a bug, but it's effectively now |
| part of the ABI, so we're now stuck with it, at least at the |
| object file level. A smart linker may decide, in the process |
| of compressing duplicate CIE information, that it can rewrite |
| the entire output section without this extra padding. */ |
| |
| start_offset = start - unit->dwarf_frame_buffer; |
| if (workaround < ALIGN4 && (start_offset & 3) != 0) |
| { |
| start += 4 - (start_offset & 3); |
| workaround = ALIGN4; |
| continue; |
| } |
| if (workaround < ALIGN8 && (start_offset & 7) != 0) |
| { |
| start += 8 - (start_offset & 7); |
| workaround = ALIGN8; |
| continue; |
| } |
| |
| /* Nothing left to try. Arrange to return as if we've consumed |
| the entire input section. Hopefully we'll get valid info from |
| the other of .debug_frame/.eh_frame. */ |
| workaround = FAIL; |
| ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; |
| break; |
| } |
| |
| switch (workaround) |
| { |
| case NONE: |
| break; |
| |
| case ALIGN4: |
| complaint (&symfile_complaints, _("\ |
| Corrupt data in %s:%s; align 4 workaround apparently succeeded"), |
| unit->dwarf_frame_section->owner->filename, |
| unit->dwarf_frame_section->name); |
| break; |
| |
| case ALIGN8: |
| complaint (&symfile_complaints, _("\ |
| Corrupt data in %s:%s; align 8 workaround apparently succeeded"), |
| unit->dwarf_frame_section->owner->filename, |
| unit->dwarf_frame_section->name); |
| break; |
| |
| default: |
| complaint (&symfile_complaints, |
| _("Corrupt data in %s:%s"), |
| unit->dwarf_frame_section->owner->filename, |
| unit->dwarf_frame_section->name); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int |
| qsort_fde_cmp (const void *a, const void *b) |
| { |
| struct dwarf2_fde *aa = *(struct dwarf2_fde **)a; |
| struct dwarf2_fde *bb = *(struct dwarf2_fde **)b; |
| |
| if (aa->initial_location == bb->initial_location) |
| { |
| if (aa->address_range != bb->address_range |
| && aa->eh_frame_p == 0 && bb->eh_frame_p == 0) |
| /* Linker bug, e.g. gold/10400. |
| Work around it by keeping stable sort order. */ |
| return (a < b) ? -1 : 1; |
| else |
| /* Put eh_frame entries after debug_frame ones. */ |
| return aa->eh_frame_p - bb->eh_frame_p; |
| } |
| |
| return (aa->initial_location < bb->initial_location) ? -1 : 1; |
| } |
| |
| void |
| dwarf2_build_frame_info (struct objfile *objfile) |
| { |
| struct comp_unit *unit; |
| const gdb_byte *frame_ptr; |
| struct dwarf2_cie_table cie_table; |
| struct dwarf2_fde_table fde_table; |
| struct dwarf2_fde_table *fde_table2; |
| volatile struct gdb_exception e; |
| |
| cie_table.num_entries = 0; |
| cie_table.entries = NULL; |
| |
| fde_table.num_entries = 0; |
| fde_table.entries = NULL; |
| |
| /* Build a minimal decoding of the DWARF2 compilation unit. */ |
| unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct comp_unit)); |
| unit->abfd = objfile->obfd; |
| unit->objfile = objfile; |
| unit->dbase = 0; |
| unit->tbase = 0; |
| |
| if (objfile->separate_debug_objfile_backlink == NULL) |
| { |
| /* Do not read .eh_frame from separate file as they must be also |
| present in the main file. */ |
| dwarf2_get_section_info (objfile, DWARF2_EH_FRAME, |
| &unit->dwarf_frame_section, |
| &unit->dwarf_frame_buffer, |
| &unit->dwarf_frame_size); |
| if (unit->dwarf_frame_size) |
| { |
| asection *got, *txt; |
| |
| /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base |
| that is used for the i386/amd64 target, which currently is |
| the only target in GCC that supports/uses the |
| DW_EH_PE_datarel encoding. */ |
| got = bfd_get_section_by_name (unit->abfd, ".got"); |
| if (got) |
| unit->dbase = got->vma; |
| |
| /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 |
| so far. */ |
| txt = bfd_get_section_by_name (unit->abfd, ".text"); |
| if (txt) |
| unit->tbase = txt->vma; |
| |
| TRY_CATCH (e, RETURN_MASK_ERROR) |
| { |
| frame_ptr = unit->dwarf_frame_buffer; |
| while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) |
| frame_ptr = decode_frame_entry (unit, frame_ptr, 1, |
| &cie_table, &fde_table, |
| EH_CIE_OR_FDE_TYPE_ID); |
| } |
| |
| if (e.reason < 0) |
| { |
| warning (_("skipping .eh_frame info of %s: %s"), |
| objfile->name, e.message); |
| |
| if (fde_table.num_entries != 0) |
| { |
| xfree (fde_table.entries); |
| fde_table.entries = NULL; |
| fde_table.num_entries = 0; |
| } |
| /* The cie_table is discarded by the next if. */ |
| } |
| |
| if (cie_table.num_entries != 0) |
| { |
| /* Reinit cie_table: debug_frame has different CIEs. */ |
| xfree (cie_table.entries); |
| cie_table.num_entries = 0; |
| cie_table.entries = NULL; |
| } |
| } |
| } |
| |
| dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME, |
| &unit->dwarf_frame_section, |
| &unit->dwarf_frame_buffer, |
| &unit->dwarf_frame_size); |
| if (unit->dwarf_frame_size) |
| { |
| int num_old_fde_entries = fde_table.num_entries; |
| |
| TRY_CATCH (e, RETURN_MASK_ERROR) |
| { |
| frame_ptr = unit->dwarf_frame_buffer; |
| while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) |
| frame_ptr = decode_frame_entry (unit, frame_ptr, 0, |
| &cie_table, &fde_table, |
| EH_CIE_OR_FDE_TYPE_ID); |
| } |
| if (e.reason < 0) |
| { |
| warning (_("skipping .debug_frame info of %s: %s"), |
| objfile->name, e.message); |
| |
| if (fde_table.num_entries != 0) |
| { |
| fde_table.num_entries = num_old_fde_entries; |
| if (num_old_fde_entries == 0) |
| { |
| xfree (fde_table.entries); |
| fde_table.entries = NULL; |
| } |
| else |
| { |
| fde_table.entries = xrealloc (fde_table.entries, |
| fde_table.num_entries * |
| sizeof (fde_table.entries[0])); |
| } |
| } |
| fde_table.num_entries = num_old_fde_entries; |
| /* The cie_table is discarded by the next if. */ |
| } |
| } |
| |
| /* Discard the cie_table, it is no longer needed. */ |
| if (cie_table.num_entries != 0) |
| { |
| xfree (cie_table.entries); |
| cie_table.entries = NULL; /* Paranoia. */ |
| cie_table.num_entries = 0; /* Paranoia. */ |
| } |
| |
| /* Copy fde_table to obstack: it is needed at runtime. */ |
| fde_table2 = (struct dwarf2_fde_table *) |
| obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2)); |
| |
| if (fde_table.num_entries == 0) |
| { |
| fde_table2->entries = NULL; |
| fde_table2->num_entries = 0; |
| } |
| else |
| { |
| struct dwarf2_fde *fde_prev = NULL; |
| struct dwarf2_fde *first_non_zero_fde = NULL; |
| int i; |
| |
| /* Prepare FDE table for lookups. */ |
| qsort (fde_table.entries, fde_table.num_entries, |
| sizeof (fde_table.entries[0]), qsort_fde_cmp); |
| |
| /* Check for leftovers from --gc-sections. The GNU linker sets |
| the relevant symbols to zero, but doesn't zero the FDE *end* |
| ranges because there's no relocation there. It's (offset, |
| length), not (start, end). On targets where address zero is |
| just another valid address this can be a problem, since the |
| FDEs appear to be non-empty in the output --- we could pick |
| out the wrong FDE. To work around this, when overlaps are |
| detected, we prefer FDEs that do not start at zero. |
| |
| Start by finding the first FDE with non-zero start. Below |
| we'll discard all FDEs that start at zero and overlap this |
| one. */ |
| for (i = 0; i < fde_table.num_entries; i++) |
| { |
| struct dwarf2_fde *fde = fde_table.entries[i]; |
| |
| if (fde->initial_location != 0) |
| { |
| first_non_zero_fde = fde; |
| break; |
| } |
| } |
| |
| /* Since we'll be doing bsearch, squeeze out identical (except |
| for eh_frame_p) fde entries so bsearch result is predictable. |
| Also discard leftovers from --gc-sections. */ |
| fde_table2->num_entries = 0; |
| for (i = 0; i < fde_table.num_entries; i++) |
| { |
| struct dwarf2_fde *fde = fde_table.entries[i]; |
| |
| if (fde->initial_location == 0 |
| && first_non_zero_fde != NULL |
| && (first_non_zero_fde->initial_location |
| < fde->initial_location + fde->address_range)) |
| continue; |
| |
| if (fde_prev != NULL |
| && fde_prev->initial_location == fde->initial_location) |
| continue; |
| |
| obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i], |
| sizeof (fde_table.entries[0])); |
| ++fde_table2->num_entries; |
| fde_prev = fde; |
| } |
| fde_table2->entries = obstack_finish (&objfile->objfile_obstack); |
| |
| /* Discard the original fde_table. */ |
| xfree (fde_table.entries); |
| } |
| |
| set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2); |
| } |
| |
| /* Provide a prototype to silence -Wmissing-prototypes. */ |
| void _initialize_dwarf2_frame (void); |
| |
| void |
| _initialize_dwarf2_frame (void) |
| { |
| dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); |
| dwarf2_frame_objfile_data = register_objfile_data (); |
| } |