| /* Implementation of the MINVAL intrinsic |
| Copyright 2002 Free Software Foundation, Inc. |
| Contributed by Paul Brook <paul@nowt.org> |
| |
| This file is part of the GNU Fortran 95 runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 2 of the License, or (at your option) any later version. |
| |
| In addition to the permissions in the GNU General Public License, the |
| Free Software Foundation gives you unlimited permission to link the |
| compiled version of this file into combinations with other programs, |
| and to distribute those combinations without any restriction coming |
| from the use of this file. (The General Public License restrictions |
| do apply in other respects; for example, they cover modification of |
| the file, and distribution when not linked into a combine |
| executable.) |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public |
| License along with libgfortran; see the file COPYING. If not, |
| write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| Boston, MA 02110-1301, USA. */ |
| |
| #include "config.h" |
| #include <stdlib.h> |
| #include <assert.h> |
| #include <float.h> |
| #include "libgfortran.h" |
| |
| |
| #if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_1) |
| |
| |
| extern void minval_i1 (gfc_array_i1 * const restrict, |
| gfc_array_i1 * const restrict, const index_type * const restrict); |
| export_proto(minval_i1); |
| |
| void |
| minval_i1 (gfc_array_i1 * const restrict retarray, |
| gfc_array_i1 * const restrict array, |
| const index_type * const restrict pdim) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type dstride[GFC_MAX_DIMENSIONS]; |
| const GFC_INTEGER_1 * restrict base; |
| GFC_INTEGER_1 * restrict dest; |
| index_type rank; |
| index_type n; |
| index_type len; |
| index_type delta; |
| index_type dim; |
| |
| /* Make dim zero based to avoid confusion. */ |
| dim = (*pdim) - 1; |
| rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| |
| len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; |
| delta = array->dim[dim].stride; |
| |
| for (n = 0; n < dim; n++) |
| { |
| sstride[n] = array->dim[n].stride; |
| extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| } |
| for (n = dim; n < rank; n++) |
| { |
| sstride[n] = array->dim[n + 1].stride; |
| extent[n] = |
| array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| } |
| |
| if (retarray->data == NULL) |
| { |
| size_t alloc_size; |
| |
| for (n = 0; n < rank; n++) |
| { |
| retarray->dim[n].lbound = 0; |
| retarray->dim[n].ubound = extent[n]-1; |
| if (n == 0) |
| retarray->dim[n].stride = 1; |
| else |
| retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; |
| } |
| |
| retarray->offset = 0; |
| retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; |
| |
| alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride |
| * extent[rank-1]; |
| |
| if (alloc_size == 0) |
| { |
| /* Make sure we have a zero-sized array. */ |
| retarray->dim[0].lbound = 0; |
| retarray->dim[0].ubound = -1; |
| return; |
| } |
| else |
| retarray->data = internal_malloc_size (alloc_size); |
| } |
| else |
| { |
| if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| runtime_error ("rank of return array incorrect"); |
| } |
| |
| for (n = 0; n < rank; n++) |
| { |
| count[n] = 0; |
| dstride[n] = retarray->dim[n].stride; |
| if (extent[n] <= 0) |
| len = 0; |
| } |
| |
| base = array->data; |
| dest = retarray->data; |
| |
| while (base) |
| { |
| const GFC_INTEGER_1 * restrict src; |
| GFC_INTEGER_1 result; |
| src = base; |
| { |
| |
| result = GFC_INTEGER_1_HUGE; |
| if (len <= 0) |
| *dest = GFC_INTEGER_1_HUGE; |
| else |
| { |
| for (n = 0; n < len; n++, src += delta) |
| { |
| |
| if (*src < result) |
| result = *src; |
| } |
| *dest = result; |
| } |
| } |
| /* Advance to the next element. */ |
| count[0]++; |
| base += sstride[0]; |
| dest += dstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| dest -= dstride[n] * extent[n]; |
| n++; |
| if (n == rank) |
| { |
| /* Break out of the look. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| dest += dstride[n]; |
| } |
| } |
| } |
| } |
| |
| |
| extern void mminval_i1 (gfc_array_i1 * const restrict, |
| gfc_array_i1 * const restrict, const index_type * const restrict, |
| gfc_array_l4 * const restrict); |
| export_proto(mminval_i1); |
| |
| void |
| mminval_i1 (gfc_array_i1 * const restrict retarray, |
| gfc_array_i1 * const restrict array, |
| const index_type * const restrict pdim, |
| gfc_array_l4 * const restrict mask) |
| { |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type dstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| GFC_INTEGER_1 * restrict dest; |
| const GFC_INTEGER_1 * restrict base; |
| const GFC_LOGICAL_4 * restrict mbase; |
| int rank; |
| int dim; |
| index_type n; |
| index_type len; |
| index_type delta; |
| index_type mdelta; |
| |
| dim = (*pdim) - 1; |
| rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| |
| len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; |
| if (len <= 0) |
| return; |
| delta = array->dim[dim].stride; |
| mdelta = mask->dim[dim].stride; |
| |
| for (n = 0; n < dim; n++) |
| { |
| sstride[n] = array->dim[n].stride; |
| mstride[n] = mask->dim[n].stride; |
| extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| |
| } |
| for (n = dim; n < rank; n++) |
| { |
| sstride[n] = array->dim[n + 1].stride; |
| mstride[n] = mask->dim[n + 1].stride; |
| extent[n] = |
| array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; |
| |
| if (extent[n] < 0) |
| extent[n] = 0; |
| } |
| |
| if (retarray->data == NULL) |
| { |
| size_t alloc_size; |
| |
| for (n = 0; n < rank; n++) |
| { |
| retarray->dim[n].lbound = 0; |
| retarray->dim[n].ubound = extent[n]-1; |
| if (n == 0) |
| retarray->dim[n].stride = 1; |
| else |
| retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; |
| } |
| |
| alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride |
| * extent[rank-1]; |
| |
| retarray->offset = 0; |
| retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; |
| |
| if (alloc_size == 0) |
| { |
| /* Make sure we have a zero-sized array. */ |
| retarray->dim[0].lbound = 0; |
| retarray->dim[0].ubound = -1; |
| return; |
| } |
| else |
| retarray->data = internal_malloc_size (alloc_size); |
| |
| } |
| else |
| { |
| if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| runtime_error ("rank of return array incorrect"); |
| } |
| |
| for (n = 0; n < rank; n++) |
| { |
| count[n] = 0; |
| dstride[n] = retarray->dim[n].stride; |
| if (extent[n] <= 0) |
| return; |
| } |
| |
| dest = retarray->data; |
| base = array->data; |
| mbase = mask->data; |
| |
| if (GFC_DESCRIPTOR_SIZE (mask) != 4) |
| { |
| /* This allows the same loop to be used for all logical types. */ |
| assert (GFC_DESCRIPTOR_SIZE (mask) == 8); |
| for (n = 0; n < rank; n++) |
| mstride[n] <<= 1; |
| mdelta <<= 1; |
| mbase = (GFOR_POINTER_L8_TO_L4 (mbase)); |
| } |
| |
| while (base) |
| { |
| const GFC_INTEGER_1 * restrict src; |
| const GFC_LOGICAL_4 * restrict msrc; |
| GFC_INTEGER_1 result; |
| src = base; |
| msrc = mbase; |
| { |
| |
| result = GFC_INTEGER_1_HUGE; |
| if (len <= 0) |
| *dest = GFC_INTEGER_1_HUGE; |
| else |
| { |
| for (n = 0; n < len; n++, src += delta, msrc += mdelta) |
| { |
| |
| if (*msrc && *src < result) |
| result = *src; |
| } |
| *dest = result; |
| } |
| } |
| /* Advance to the next element. */ |
| count[0]++; |
| base += sstride[0]; |
| mbase += mstride[0]; |
| dest += dstride[0]; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| base -= sstride[n] * extent[n]; |
| mbase -= mstride[n] * extent[n]; |
| dest -= dstride[n] * extent[n]; |
| n++; |
| if (n == rank) |
| { |
| /* Break out of the look. */ |
| base = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| base += sstride[n]; |
| mbase += mstride[n]; |
| dest += dstride[n]; |
| } |
| } |
| } |
| } |
| |
| |
| extern void sminval_i1 (gfc_array_i1 * const restrict, |
| gfc_array_i1 * const restrict, const index_type * const restrict, |
| GFC_LOGICAL_4 *); |
| export_proto(sminval_i1); |
| |
| void |
| sminval_i1 (gfc_array_i1 * const restrict retarray, |
| gfc_array_i1 * const restrict array, |
| const index_type * const restrict pdim, |
| GFC_LOGICAL_4 * mask) |
| { |
| index_type rank; |
| index_type n; |
| index_type dstride; |
| GFC_INTEGER_1 *dest; |
| |
| if (*mask) |
| { |
| minval_i1 (retarray, array, pdim); |
| return; |
| } |
| rank = GFC_DESCRIPTOR_RANK (array); |
| if (rank <= 0) |
| runtime_error ("Rank of array needs to be > 0"); |
| |
| if (retarray->data == NULL) |
| { |
| retarray->dim[0].lbound = 0; |
| retarray->dim[0].ubound = rank-1; |
| retarray->dim[0].stride = 1; |
| retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; |
| retarray->offset = 0; |
| retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank); |
| } |
| else |
| { |
| if (GFC_DESCRIPTOR_RANK (retarray) != 1) |
| runtime_error ("rank of return array does not equal 1"); |
| |
| if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank) |
| runtime_error ("dimension of return array incorrect"); |
| } |
| |
| dstride = retarray->dim[0].stride; |
| dest = retarray->data; |
| |
| for (n = 0; n < rank; n++) |
| dest[n * dstride] = GFC_INTEGER_1_HUGE ; |
| } |
| |
| #endif |