|  | /* Float.java -- object wrapper for float | 
|  | Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2005 | 
|  | Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GNU Classpath. | 
|  |  | 
|  | GNU Classpath is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2, or (at your option) | 
|  | any later version. | 
|  |  | 
|  | GNU Classpath is distributed in the hope that it will be useful, but | 
|  | WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with GNU Classpath; see the file COPYING.  If not, write to the | 
|  | Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | 02110-1301 USA. | 
|  |  | 
|  | Linking this library statically or dynamically with other modules is | 
|  | making a combined work based on this library.  Thus, the terms and | 
|  | conditions of the GNU General Public License cover the whole | 
|  | combination. | 
|  |  | 
|  | As a special exception, the copyright holders of this library give you | 
|  | permission to link this library with independent modules to produce an | 
|  | executable, regardless of the license terms of these independent | 
|  | modules, and to copy and distribute the resulting executable under | 
|  | terms of your choice, provided that you also meet, for each linked | 
|  | independent module, the terms and conditions of the license of that | 
|  | module.  An independent module is a module which is not derived from | 
|  | or based on this library.  If you modify this library, you may extend | 
|  | this exception to your version of the library, but you are not | 
|  | obligated to do so.  If you do not wish to do so, delete this | 
|  | exception statement from your version. */ | 
|  |  | 
|  |  | 
|  | package java.lang; | 
|  |  | 
|  | /** | 
|  | * Instances of class <code>Float</code> represent primitive | 
|  | * <code>float</code> values. | 
|  | * | 
|  | * Additionally, this class provides various helper functions and variables | 
|  | * related to floats. | 
|  | * | 
|  | * @author Paul Fisher | 
|  | * @author Andrew Haley (aph@cygnus.com) | 
|  | * @author Eric Blake (ebb9@email.byu.edu) | 
|  | * @since 1.0 | 
|  | * @status updated to 1.4 | 
|  | */ | 
|  | public final class Float extends Number implements Comparable | 
|  | { | 
|  | /** | 
|  | * Compatible with JDK 1.0+. | 
|  | */ | 
|  | private static final long serialVersionUID = -2671257302660747028L; | 
|  |  | 
|  | /** | 
|  | * The maximum positive value a <code>double</code> may represent | 
|  | * is 3.4028235e+38f. | 
|  | */ | 
|  | public static final float MAX_VALUE = 3.4028235e+38f; | 
|  |  | 
|  | /** | 
|  | * The minimum positive value a <code>float</code> may represent | 
|  | * is 1.4e-45. | 
|  | */ | 
|  | public static final float MIN_VALUE = 1.4e-45f; | 
|  |  | 
|  | /** | 
|  | * The value of a float representation -1.0/0.0, negative infinity. | 
|  | */ | 
|  | public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; | 
|  |  | 
|  | /** | 
|  | * The value of a float representation 1.0/0.0, positive infinity. | 
|  | */ | 
|  | public static final float POSITIVE_INFINITY = 1.0f / 0.0f; | 
|  |  | 
|  | /** | 
|  | * All IEEE 754 values of NaN have the same value in Java. | 
|  | */ | 
|  | public static final float NaN = 0.0f / 0.0f; | 
|  |  | 
|  | /** | 
|  | * The primitive type <code>float</code> is represented by this | 
|  | * <code>Class</code> object. | 
|  | * @since 1.1 | 
|  | */ | 
|  | public static final Class TYPE = VMClassLoader.getPrimitiveClass('F'); | 
|  |  | 
|  | /** | 
|  | * The number of bits needed to represent a <code>float</code>. | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static final int SIZE = 32; | 
|  |  | 
|  | /** | 
|  | * The immutable value of this Float. | 
|  | * | 
|  | * @serial the wrapped float | 
|  | */ | 
|  | private final float value; | 
|  |  | 
|  | /** | 
|  | * Create a <code>Float</code> from the primitive <code>float</code> | 
|  | * specified. | 
|  | * | 
|  | * @param value the <code>float</code> argument | 
|  | */ | 
|  | public Float(float value) | 
|  | { | 
|  | this.value = value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Create a <code>Float</code> from the primitive <code>double</code> | 
|  | * specified. | 
|  | * | 
|  | * @param value the <code>double</code> argument | 
|  | */ | 
|  | public Float(double value) | 
|  | { | 
|  | this.value = (float) value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Create a <code>Float</code> from the specified <code>String</code>. | 
|  | * This method calls <code>Float.parseFloat()</code>. | 
|  | * | 
|  | * @param s the <code>String</code> to convert | 
|  | * @throws NumberFormatException if <code>s</code> cannot be parsed as a | 
|  | *         <code>float</code> | 
|  | * @throws NullPointerException if <code>s</code> is null | 
|  | * @see #parseFloat(String) | 
|  | */ | 
|  | public Float(String s) | 
|  | { | 
|  | value = parseFloat(s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert the <code>float</code> to a <code>String</code>. | 
|  | * Floating-point string representation is fairly complex: here is a | 
|  | * rundown of the possible values.  "<code>[-]</code>" indicates that a | 
|  | * negative sign will be printed if the value (or exponent) is negative. | 
|  | * "<code><number></code>" means a string of digits ('0' to '9'). | 
|  | * "<code><digit></code>" means a single digit ('0' to '9').<br> | 
|  | * | 
|  | * <table border=1> | 
|  | * <tr><th>Value of Float</th><th>String Representation</th></tr> | 
|  | * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr> | 
|  | * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td> | 
|  | *     <td><code>[-]number.number</code></td></tr> | 
|  | * <tr><td>Other numeric value</td> | 
|  | *     <td><code>[-]<digit>.<number> | 
|  | *          E[-]<number></code></td></tr> | 
|  | * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr> | 
|  | * <tr><td>NaN</td> <td><code>NaN</code></td></tr> | 
|  | * </table> | 
|  | * | 
|  | * Yes, negative zero <em>is</em> a possible value.  Note that there is | 
|  | * <em>always</em> a <code>.</code> and at least one digit printed after | 
|  | * it: even if the number is 3, it will be printed as <code>3.0</code>. | 
|  | * After the ".", all digits will be printed except trailing zeros. The | 
|  | * result is rounded to the shortest decimal number which will parse back | 
|  | * to the same float. | 
|  | * | 
|  | * <p>To create other output formats, use {@link java.text.NumberFormat}. | 
|  | * | 
|  | * @XXX specify where we are not in accord with the spec. | 
|  | * | 
|  | * @param f the <code>float</code> to convert | 
|  | * @return the <code>String</code> representing the <code>float</code> | 
|  | */ | 
|  | public static String toString(float f) | 
|  | { | 
|  | return VMDouble.toString(f, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert a float value to a hexadecimal string.  This converts as | 
|  | * follows: | 
|  | * <ul> | 
|  | * <li> A NaN value is converted to the string "NaN". | 
|  | * <li> Positive infinity is converted to the string "Infinity". | 
|  | * <li> Negative infinity is converted to the string "-Infinity". | 
|  | * <li> For all other values, the first character of the result is '-' | 
|  | * if the value is negative.  This is followed by '0x1.' if the | 
|  | * value is normal, and '0x0.' if the value is denormal.  This is | 
|  | * then followed by a (lower-case) hexadecimal representation of the | 
|  | * mantissa, with leading zeros as required for denormal values. | 
|  | * The next character is a 'p', and this is followed by a decimal | 
|  | * representation of the unbiased exponent. | 
|  | * </ul> | 
|  | * @param f the float value | 
|  | * @return the hexadecimal string representation | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static String toHexString(float f) | 
|  | { | 
|  | if (isNaN(f)) | 
|  | return "NaN"; | 
|  | if (isInfinite(f)) | 
|  | return f < 0 ? "-Infinity" : "Infinity"; | 
|  |  | 
|  | int bits = floatToIntBits(f); | 
|  | StringBuilder result = new StringBuilder(); | 
|  |  | 
|  | if (bits < 0) | 
|  | result.append('-'); | 
|  | result.append("0x"); | 
|  |  | 
|  | final int mantissaBits = 23; | 
|  | final int exponentBits = 8; | 
|  | int mantMask = (1 << mantissaBits) - 1; | 
|  | int mantissa = bits & mantMask; | 
|  | int expMask = (1 << exponentBits) - 1; | 
|  | int exponent = (bits >>> mantissaBits) & expMask; | 
|  |  | 
|  | result.append(exponent == 0 ? '0' : '1'); | 
|  | result.append('.'); | 
|  | // For Float only, we have to adjust the mantissa. | 
|  | mantissa <<= 1; | 
|  | result.append(Integer.toHexString(mantissa)); | 
|  | if (exponent == 0 && mantissa != 0) | 
|  | { | 
|  | // Treat denormal specially by inserting '0's to make | 
|  | // the length come out right.  The constants here are | 
|  | // to account for things like the '0x'. | 
|  | int offset = 4 + ((bits < 0) ? 1 : 0); | 
|  | // The silly +3 is here to keep the code the same between | 
|  | // the Float and Double cases.  In Float the value is | 
|  | // not a multiple of 4. | 
|  | int desiredLength = offset + (mantissaBits + 3) / 4; | 
|  | while (result.length() < desiredLength) | 
|  | result.insert(offset, '0'); | 
|  | } | 
|  | result.append('p'); | 
|  | if (exponent == 0 && mantissa == 0) | 
|  | { | 
|  | // Zero, so do nothing special. | 
|  | } | 
|  | else | 
|  | { | 
|  | // Apply bias. | 
|  | boolean denormal = exponent == 0; | 
|  | exponent -= (1 << (exponentBits - 1)) - 1; | 
|  | // Handle denormal. | 
|  | if (denormal) | 
|  | ++exponent; | 
|  | } | 
|  |  | 
|  | result.append(Integer.toString(exponent)); | 
|  | return result.toString(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Creates a new <code>Float</code> object using the <code>String</code>. | 
|  | * | 
|  | * @param s the <code>String</code> to convert | 
|  | * @return the new <code>Float</code> | 
|  | * @throws NumberFormatException if <code>s</code> cannot be parsed as a | 
|  | *         <code>float</code> | 
|  | * @throws NullPointerException if <code>s</code> is null | 
|  | * @see #parseFloat(String) | 
|  | */ | 
|  | public static Float valueOf(String s) | 
|  | { | 
|  | return new Float(parseFloat(s)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a <code>Float</code> object wrapping the value. | 
|  | * In contrast to the <code>Float</code> constructor, this method | 
|  | * may cache some values.  It is used by boxing conversion. | 
|  | * | 
|  | * @param val the value to wrap | 
|  | * @return the <code>Float</code> | 
|  | * | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static Float valueOf(float val) | 
|  | { | 
|  | // We don't actually cache, but we could. | 
|  | return new Float(val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Parse the specified <code>String</code> as a <code>float</code>. The | 
|  | * extended BNF grammar is as follows:<br> | 
|  | * <pre> | 
|  | * <em>DecodableString</em>: | 
|  | *      ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> ) | 
|  | *    | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> ) | 
|  | *    | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em> | 
|  | *              [ <code>f</code> | <code>F</code> | <code>d</code> | 
|  | *                | <code>D</code>] ) | 
|  | * <em>FloatingPoint</em>: | 
|  | *      ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ] | 
|  | *              [ <em>Exponent</em> ] ) | 
|  | *    | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] ) | 
|  | * <em>Exponent</em>: | 
|  | *      ( ( <code>e</code> | <code>E</code> ) | 
|  | *              [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ ) | 
|  | * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em> | 
|  | * </pre> | 
|  | * | 
|  | * <p>NaN and infinity are special cases, to allow parsing of the output | 
|  | * of toString.  Otherwise, the result is determined by calculating | 
|  | * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding | 
|  | * to the nearest float. Remember that many numbers cannot be precisely | 
|  | * represented in floating point. In case of overflow, infinity is used, | 
|  | * and in case of underflow, signed zero is used. Unlike Integer.parseInt, | 
|  | * this does not accept Unicode digits outside the ASCII range. | 
|  | * | 
|  | * <p>If an unexpected character is found in the <code>String</code>, a | 
|  | * <code>NumberFormatException</code> will be thrown.  Leading and trailing | 
|  | * 'whitespace' is ignored via <code>String.trim()</code>, but spaces | 
|  | * internal to the actual number are not allowed. | 
|  | * | 
|  | * <p>To parse numbers according to another format, consider using | 
|  | * {@link java.text.NumberFormat}. | 
|  | * | 
|  | * @XXX specify where/how we are not in accord with the spec. | 
|  | * | 
|  | * @param str the <code>String</code> to convert | 
|  | * @return the <code>float</code> value of <code>s</code> | 
|  | * @throws NumberFormatException if <code>s</code> cannot be parsed as a | 
|  | *         <code>float</code> | 
|  | * @throws NullPointerException if <code>s</code> is null | 
|  | * @see #MIN_VALUE | 
|  | * @see #MAX_VALUE | 
|  | * @see #POSITIVE_INFINITY | 
|  | * @see #NEGATIVE_INFINITY | 
|  | * @since 1.2 | 
|  | */ | 
|  | public static float parseFloat(String str) | 
|  | { | 
|  | // XXX Rounding parseDouble() causes some errors greater than 1 ulp from | 
|  | // the infinitely precise decimal. | 
|  | return (float) Double.parseDouble(str); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return <code>true</code> if the <code>float</code> has the same | 
|  | * value as <code>NaN</code>, otherwise return <code>false</code>. | 
|  | * | 
|  | * @param v the <code>float</code> to compare | 
|  | * @return whether the argument is <code>NaN</code> | 
|  | */ | 
|  | public static boolean isNaN(float v) | 
|  | { | 
|  | // This works since NaN != NaN is the only reflexive inequality | 
|  | // comparison which returns true. | 
|  | return v != v; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return <code>true</code> if the <code>float</code> has a value | 
|  | * equal to either <code>NEGATIVE_INFINITY</code> or | 
|  | * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>. | 
|  | * | 
|  | * @param v the <code>float</code> to compare | 
|  | * @return whether the argument is (-/+) infinity | 
|  | */ | 
|  | public static boolean isInfinite(float v) | 
|  | { | 
|  | return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return <code>true</code> if the value of this <code>Float</code> | 
|  | * is the same as <code>NaN</code>, otherwise return <code>false</code>. | 
|  | * | 
|  | * @return whether this <code>Float</code> is <code>NaN</code> | 
|  | */ | 
|  | public boolean isNaN() | 
|  | { | 
|  | return isNaN(value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return <code>true</code> if the value of this <code>Float</code> | 
|  | * is the same as <code>NEGATIVE_INFINITY</code> or | 
|  | * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>. | 
|  | * | 
|  | * @return whether this <code>Float</code> is (-/+) infinity | 
|  | */ | 
|  | public boolean isInfinite() | 
|  | { | 
|  | return isInfinite(value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert the <code>float</code> value of this <code>Float</code> | 
|  | * to a <code>String</code>.  This method calls | 
|  | * <code>Float.toString(float)</code> to do its dirty work. | 
|  | * | 
|  | * @return the <code>String</code> representation | 
|  | * @see #toString(float) | 
|  | */ | 
|  | public String toString() | 
|  | { | 
|  | return toString(value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the value of this <code>Float</code> as a <code>byte</code>. | 
|  | * | 
|  | * @return the byte value | 
|  | * @since 1.1 | 
|  | */ | 
|  | public byte byteValue() | 
|  | { | 
|  | return (byte) value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the value of this <code>Float</code> as a <code>short</code>. | 
|  | * | 
|  | * @return the short value | 
|  | * @since 1.1 | 
|  | */ | 
|  | public short shortValue() | 
|  | { | 
|  | return (short) value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the value of this <code>Integer</code> as an <code>int</code>. | 
|  | * | 
|  | * @return the int value | 
|  | */ | 
|  | public int intValue() | 
|  | { | 
|  | return (int) value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the value of this <code>Integer</code> as a <code>long</code>. | 
|  | * | 
|  | * @return the long value | 
|  | */ | 
|  | public long longValue() | 
|  | { | 
|  | return (long) value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the value of this <code>Float</code>. | 
|  | * | 
|  | * @return the float value | 
|  | */ | 
|  | public float floatValue() | 
|  | { | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return the value of this <code>Float</code> as a <code>double</code> | 
|  | * | 
|  | * @return the double value | 
|  | */ | 
|  | public double doubleValue() | 
|  | { | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return a hashcode representing this Object. <code>Float</code>'s hash | 
|  | * code is calculated by calling <code>floatToIntBits(floatValue())</code>. | 
|  | * | 
|  | * @return this Object's hash code | 
|  | * @see #floatToIntBits(float) | 
|  | */ | 
|  | public int hashCode() | 
|  | { | 
|  | return floatToIntBits(value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns <code>true</code> if <code>obj</code> is an instance of | 
|  | * <code>Float</code> and represents the same float value. Unlike comparing | 
|  | * two floats with <code>==</code>, this treats two instances of | 
|  | * <code>Float.NaN</code> as equal, but treats <code>0.0</code> and | 
|  | * <code>-0.0</code> as unequal. | 
|  | * | 
|  | * <p>Note that <code>f1.equals(f2)</code> is identical to | 
|  | * <code>floatToIntBits(f1.floatValue()) == | 
|  | *    floatToIntBits(f2.floatValue())</code>. | 
|  | * | 
|  | * @param obj the object to compare | 
|  | * @return whether the objects are semantically equal | 
|  | */ | 
|  | public boolean equals(Object obj) | 
|  | { | 
|  | if (! (obj instanceof Float)) | 
|  | return false; | 
|  |  | 
|  | float f = ((Float) obj).value; | 
|  |  | 
|  | // Avoid call to native method. However, some implementations, like gcj, | 
|  | // are better off using floatToIntBits(value) == floatToIntBits(f). | 
|  | // Check common case first, then check NaN and 0. | 
|  | if (value == f) | 
|  | return (value != 0) || (1 / value == 1 / f); | 
|  | return isNaN(value) && isNaN(f); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert the float to the IEEE 754 floating-point "single format" bit | 
|  | * layout. Bit 31 (the most significant) is the sign bit, bits 30-23 | 
|  | * (masked by 0x7f800000) represent the exponent, and bits 22-0 | 
|  | * (masked by 0x007fffff) are the mantissa. This function collapses all | 
|  | * versions of NaN to 0x7fc00000. The result of this function can be used | 
|  | * as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the | 
|  | * original <code>float</code> value. | 
|  | * | 
|  | * @param value the <code>float</code> to convert | 
|  | * @return the bits of the <code>float</code> | 
|  | * @see #intBitsToFloat(int) | 
|  | */ | 
|  | public static int floatToIntBits(float value) | 
|  | { | 
|  | return VMFloat.floatToIntBits(value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert the float to the IEEE 754 floating-point "single format" bit | 
|  | * layout. Bit 31 (the most significant) is the sign bit, bits 30-23 | 
|  | * (masked by 0x7f800000) represent the exponent, and bits 22-0 | 
|  | * (masked by 0x007fffff) are the mantissa. This function leaves NaN alone, | 
|  | * rather than collapsing to a canonical value. The result of this function | 
|  | * can be used as the argument to <code>Float.intBitsToFloat(int)</code> to | 
|  | * obtain the original <code>float</code> value. | 
|  | * | 
|  | * @param value the <code>float</code> to convert | 
|  | * @return the bits of the <code>float</code> | 
|  | * @see #intBitsToFloat(int) | 
|  | */ | 
|  | public static int floatToRawIntBits(float value) | 
|  | { | 
|  | return VMFloat.floatToRawIntBits(value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert the argument in IEEE 754 floating-point "single format" bit | 
|  | * layout to the corresponding float. Bit 31 (the most significant) is the | 
|  | * sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and | 
|  | * bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves | 
|  | * NaN alone, so that you can recover the bit pattern with | 
|  | * <code>Float.floatToRawIntBits(float)</code>. | 
|  | * | 
|  | * @param bits the bits to convert | 
|  | * @return the <code>float</code> represented by the bits | 
|  | * @see #floatToIntBits(float) | 
|  | * @see #floatToRawIntBits(float) | 
|  | */ | 
|  | public static float intBitsToFloat(int bits) | 
|  | { | 
|  | return VMFloat.intBitsToFloat(bits); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Compare two Floats numerically by comparing their <code>float</code> | 
|  | * values. The result is positive if the first is greater, negative if the | 
|  | * second is greater, and 0 if the two are equal. However, this special | 
|  | * cases NaN and signed zero as follows: NaN is considered greater than | 
|  | * all other floats, including <code>POSITIVE_INFINITY</code>, and positive | 
|  | * zero is considered greater than negative zero. | 
|  | * | 
|  | * @param f the Float to compare | 
|  | * @return the comparison | 
|  | * @since 1.2 | 
|  | */ | 
|  | public int compareTo(Float f) | 
|  | { | 
|  | return compare(value, f.value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Behaves like <code>compareTo(Float)</code> unless the Object | 
|  | * is not an <code>Float</code>. | 
|  | * | 
|  | * @param o the object to compare | 
|  | * @return the comparison | 
|  | * @throws ClassCastException if the argument is not a <code>Float</code> | 
|  | * @see #compareTo(Float) | 
|  | * @see Comparable | 
|  | * @since 1.2 | 
|  | */ | 
|  | public int compareTo(Object o) | 
|  | { | 
|  | return compare(value, ((Float) o).value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in | 
|  | * other words this compares two floats, special casing NaN and zero, | 
|  | * without the overhead of objects. | 
|  | * | 
|  | * @param x the first float to compare | 
|  | * @param y the second float to compare | 
|  | * @return the comparison | 
|  | * @since 1.4 | 
|  | */ | 
|  | public static int compare(float x, float y) | 
|  | { | 
|  | if (isNaN(x)) | 
|  | return isNaN(y) ? 0 : 1; | 
|  | if (isNaN(y)) | 
|  | return -1; | 
|  | // recall that 0.0 == -0.0, so we convert to infinities and try again | 
|  | if (x == 0 && y == 0) | 
|  | return (int) (1 / x - 1 / y); | 
|  | if (x == y) | 
|  | return 0; | 
|  |  | 
|  | return x > y ? 1 : -1; | 
|  | } | 
|  | } |