| /* X86-64 specific support for ELF |
| Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, |
| 2010, 2011, 2012 |
| Free Software Foundation, Inc. |
| Contributed by Jan Hubicka <jh@suse.cz>. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf-nacl.h" |
| #include "bfd_stdint.h" |
| #include "objalloc.h" |
| #include "hashtab.h" |
| #include "dwarf2.h" |
| #include "libiberty.h" |
| |
| #include "elf/x86-64.h" |
| |
| #ifdef CORE_HEADER |
| #include <stdarg.h> |
| #include CORE_HEADER |
| #endif |
| |
| /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ |
| #define MINUS_ONE (~ (bfd_vma) 0) |
| |
| /* Since both 32-bit and 64-bit x86-64 encode relocation type in the |
| identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get |
| relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE |
| since they are the same. */ |
| |
| #define ABI_64_P(abfd) \ |
| (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
| |
| /* The relocation "howto" table. Order of fields: |
| type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow, |
| special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */ |
| static reloc_howto_type x86_64_elf_howto_table[] = |
| { |
| HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000, |
| FALSE), |
| HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE, |
| FALSE), |
| HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff, |
| TRUE), |
| HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff, |
| TRUE), |
| HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned, |
| bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE), |
| HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE), |
| HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE), |
| HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE), |
| HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff, |
| 0xffffffff, FALSE), |
| HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff, |
| 0xffffffff, FALSE), |
| HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE, |
| TRUE), |
| HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_GOTOFF64", |
| FALSE, MINUS_ONE, MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPC32", |
| FALSE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE, |
| FALSE), |
| HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE, |
| MINUS_ONE, TRUE), |
| HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPC64", |
| FALSE, MINUS_ONE, MINUS_ONE, TRUE), |
| HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| EMPTY_HOWTO (32), |
| EMPTY_HOWTO (33), |
| HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0, |
| complain_overflow_bitfield, bfd_elf_generic_reloc, |
| "R_X86_64_GOTPC32_TLSDESC", |
| FALSE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0, |
| complain_overflow_dont, bfd_elf_generic_reloc, |
| "R_X86_64_TLSDESC_CALL", |
| FALSE, 0, 0, FALSE), |
| HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0, |
| complain_overflow_bitfield, bfd_elf_generic_reloc, |
| "R_X86_64_TLSDESC", |
| FALSE, MINUS_ONE, MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| |
| /* We have a gap in the reloc numbers here. |
| R_X86_64_standard counts the number up to this point, and |
| R_X86_64_vt_offset is the value to subtract from a reloc type of |
| R_X86_64_GNU_VT* to form an index into this table. */ |
| #define R_X86_64_standard (R_X86_64_IRELATIVE + 1) |
| #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard) |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont, |
| NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE), |
| |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont, |
| _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0, |
| FALSE), |
| |
| /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */ |
| HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE) |
| }; |
| |
| #define IS_X86_64_PCREL_TYPE(TYPE) \ |
| ( ((TYPE) == R_X86_64_PC8) \ |
| || ((TYPE) == R_X86_64_PC16) \ |
| || ((TYPE) == R_X86_64_PC32) \ |
| || ((TYPE) == R_X86_64_PC64)) |
| |
| /* Map BFD relocs to the x86_64 elf relocs. */ |
| struct elf_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned char elf_reloc_val; |
| }; |
| |
| static const struct elf_reloc_map x86_64_reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_X86_64_NONE, }, |
| { BFD_RELOC_64, R_X86_64_64, }, |
| { BFD_RELOC_32_PCREL, R_X86_64_PC32, }, |
| { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,}, |
| { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,}, |
| { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, }, |
| { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, }, |
| { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, }, |
| { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, }, |
| { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, }, |
| { BFD_RELOC_32, R_X86_64_32, }, |
| { BFD_RELOC_X86_64_32S, R_X86_64_32S, }, |
| { BFD_RELOC_16, R_X86_64_16, }, |
| { BFD_RELOC_16_PCREL, R_X86_64_PC16, }, |
| { BFD_RELOC_8, R_X86_64_8, }, |
| { BFD_RELOC_8_PCREL, R_X86_64_PC8, }, |
| { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, }, |
| { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, }, |
| { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, }, |
| { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, }, |
| { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, }, |
| { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, }, |
| { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, }, |
| { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, }, |
| { BFD_RELOC_64_PCREL, R_X86_64_PC64, }, |
| { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, }, |
| { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, }, |
| { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, }, |
| { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, }, |
| { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, }, |
| { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, }, |
| { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, }, |
| { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, }, |
| { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, }, |
| { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, }, |
| { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, }, |
| { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, }, |
| { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, }, |
| }; |
| |
| static reloc_howto_type * |
| elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type) |
| { |
| unsigned i; |
| |
| if (r_type == (unsigned int) R_X86_64_32) |
| { |
| if (ABI_64_P (abfd)) |
| i = r_type; |
| else |
| i = ARRAY_SIZE (x86_64_elf_howto_table) - 1; |
| } |
| else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT |
| || r_type >= (unsigned int) R_X86_64_max) |
| { |
| if (r_type >= (unsigned int) R_X86_64_standard) |
| { |
| (*_bfd_error_handler) (_("%B: invalid relocation type %d"), |
| abfd, (int) r_type); |
| r_type = R_X86_64_NONE; |
| } |
| i = r_type; |
| } |
| else |
| i = r_type - (unsigned int) R_X86_64_vt_offset; |
| BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type); |
| return &x86_64_elf_howto_table[i]; |
| } |
| |
| /* Given a BFD reloc type, return a HOWTO structure. */ |
| static reloc_howto_type * |
| elf_x86_64_reloc_type_lookup (bfd *abfd, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map); |
| i++) |
| { |
| if (x86_64_reloc_map[i].bfd_reloc_val == code) |
| return elf_x86_64_rtype_to_howto (abfd, |
| x86_64_reloc_map[i].elf_reloc_val); |
| } |
| return 0; |
| } |
| |
| static reloc_howto_type * |
| elf_x86_64_reloc_name_lookup (bfd *abfd, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0) |
| { |
| /* Get x32 R_X86_64_32. */ |
| reloc_howto_type *reloc |
| = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1]; |
| BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32); |
| return reloc; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++) |
| if (x86_64_elf_howto_table[i].name != NULL |
| && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0) |
| return &x86_64_elf_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| /* Given an x86_64 ELF reloc type, fill in an arelent structure. */ |
| |
| static void |
| elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned r_type; |
| |
| r_type = ELF32_R_TYPE (dst->r_info); |
| cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type); |
| BFD_ASSERT (r_type == cache_ptr->howto->type); |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| static bfd_boolean |
| elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int offset; |
| size_t size; |
| |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 72; |
| size = 216; |
| |
| break; |
| |
| case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core_signal |
| = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core_lwpid |
| = bfd_get_32 (abfd, note->descdata + 32); |
| |
| /* pr_reg */ |
| offset = 112; |
| size = 216; |
| |
| break; |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bfd_boolean |
| elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */ |
| elf_tdata (abfd)->core_pid |
| = bfd_get_32 (abfd, note->descdata + 12); |
| elf_tdata (abfd)->core_program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| elf_tdata (abfd)->core_command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| break; |
| |
| case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */ |
| elf_tdata (abfd)->core_pid |
| = bfd_get_32 (abfd, note->descdata + 24); |
| elf_tdata (abfd)->core_program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); |
| elf_tdata (abfd)->core_command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| |
| { |
| char *command = elf_tdata (abfd)->core_command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return TRUE; |
| } |
| |
| #ifdef CORE_HEADER |
| static char * |
| elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz, |
| int note_type, ...) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| va_list ap; |
| const char *fname, *psargs; |
| long pid; |
| int cursig; |
| const void *gregs; |
| |
| switch (note_type) |
| { |
| default: |
| return NULL; |
| |
| case NT_PRPSINFO: |
| va_start (ap, note_type); |
| fname = va_arg (ap, const char *); |
| psargs = va_arg (ap, const char *); |
| va_end (ap); |
| |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| prpsinfo32_t data; |
| memset (&data, 0, sizeof (data)); |
| strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); |
| strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &data, sizeof (data)); |
| } |
| else |
| { |
| prpsinfo_t data; |
| memset (&data, 0, sizeof (data)); |
| strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); |
| strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &data, sizeof (data)); |
| } |
| /* NOTREACHED */ |
| |
| case NT_PRSTATUS: |
| va_start (ap, note_type); |
| pid = va_arg (ap, long); |
| cursig = va_arg (ap, int); |
| gregs = va_arg (ap, const void *); |
| va_end (ap); |
| |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| if (bed->elf_machine_code == EM_X86_64) |
| { |
| prstatusx32_t prstat; |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &prstat, sizeof (prstat)); |
| } |
| else |
| { |
| prstatus32_t prstat; |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &prstat, sizeof (prstat)); |
| } |
| } |
| else |
| { |
| prstatus_t prstat; |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &prstat, sizeof (prstat)); |
| } |
| } |
| /* NOTREACHED */ |
| } |
| #endif |
| |
| /* Functions for the x86-64 ELF linker. */ |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1" |
| #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1" |
| |
| /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
| copying dynamic variables from a shared lib into an app's dynbss |
| section, and instead use a dynamic relocation to point into the |
| shared lib. */ |
| #define ELIMINATE_COPY_RELOCS 1 |
| |
| /* The size in bytes of an entry in the global offset table. */ |
| |
| #define GOT_ENTRY_SIZE 8 |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define PLT_ENTRY_SIZE 16 |
| |
| /* The first entry in a procedure linkage table looks like this. See the |
| SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */ |
| |
| static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */ |
| 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */ |
| 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */ |
| }; |
| |
| /* Subsequent entries in a procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */ |
| 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */ |
| 0x68, /* pushq immediate */ |
| 0, 0, 0, 0, /* replaced with index into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt0. */ |
| }; |
| |
| /* .eh_frame covering the .plt section. */ |
| |
| static const bfd_byte elf_x86_64_eh_frame_plt[] = |
| { |
| #define PLT_CIE_LENGTH 20 |
| #define PLT_FDE_LENGTH 36 |
| #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8 |
| #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12 |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x78, /* Data alignment factor */ |
| 16, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */ |
| DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */ |
| 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */ |
| 0, 0, 0, 0, /* .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */ |
| DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */ |
| DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */ |
| DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */ |
| DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */ |
| 11, /* Block length */ |
| DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */ |
| DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */ |
| DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge, |
| DW_OP_lit3, DW_OP_shl, DW_OP_plus, |
| DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| /* Architecture-specific backend data for x86-64. */ |
| |
| struct elf_x86_64_backend_data |
| { |
| /* Templates for the initial PLT entry and for subsequent entries. */ |
| const bfd_byte *plt0_entry; |
| const bfd_byte *plt_entry; |
| unsigned int plt_entry_size; /* Size of each PLT entry. */ |
| |
| /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */ |
| unsigned int plt0_got1_offset; |
| unsigned int plt0_got2_offset; |
| |
| /* Offset of the end of the PC-relative instruction containing |
| plt0_got2_offset. */ |
| unsigned int plt0_got2_insn_end; |
| |
| /* Offsets into plt_entry that are to be replaced with... */ |
| unsigned int plt_got_offset; /* ... address of this symbol in .got. */ |
| unsigned int plt_reloc_offset; /* ... offset into relocation table. */ |
| unsigned int plt_plt_offset; /* ... offset to start of .plt. */ |
| |
| /* Length of the PC-relative instruction containing plt_got_offset. */ |
| unsigned int plt_got_insn_size; |
| |
| /* Offset of the end of the PC-relative jump to plt0_entry. */ |
| unsigned int plt_plt_insn_end; |
| |
| /* Offset into plt_entry where the initial value of the GOT entry points. */ |
| unsigned int plt_lazy_offset; |
| |
| /* .eh_frame covering the .plt section. */ |
| const bfd_byte *eh_frame_plt; |
| unsigned int eh_frame_plt_size; |
| }; |
| |
| #define get_elf_x86_64_backend_data(abfd) \ |
| ((const struct elf_x86_64_backend_data *) \ |
| get_elf_backend_data (abfd)->arch_data) |
| |
| #define GET_PLT_ENTRY_SIZE(abfd) \ |
| get_elf_x86_64_backend_data (abfd)->plt_entry_size |
| |
| /* These are the standard parameters. */ |
| static const struct elf_x86_64_backend_data elf_x86_64_arch_bed = |
| { |
| elf_x86_64_plt0_entry, /* plt0_entry */ |
| elf_x86_64_plt_entry, /* plt_entry */ |
| sizeof (elf_x86_64_plt_entry), /* plt_entry_size */ |
| 2, /* plt0_got1_offset */ |
| 8, /* plt0_got2_offset */ |
| 12, /* plt0_got2_insn_end */ |
| 2, /* plt_got_offset */ |
| 7, /* plt_reloc_offset */ |
| 12, /* plt_plt_offset */ |
| 6, /* plt_got_insn_size */ |
| PLT_ENTRY_SIZE, /* plt_plt_insn_end */ |
| 6, /* plt_lazy_offset */ |
| elf_x86_64_eh_frame_plt, /* eh_frame_plt */ |
| sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */ |
| }; |
| |
| #define elf_backend_arch_data &elf_x86_64_arch_bed |
| |
| /* x86-64 ELF linker hash entry. */ |
| |
| struct elf_x86_64_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| /* Track dynamic relocs copied for this symbol. */ |
| struct elf_dyn_relocs *dyn_relocs; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 3 |
| #define GOT_TLS_GDESC 4 |
| #define GOT_TLS_GD_BOTH_P(type) \ |
| ((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) |
| #define GOT_TLS_GD_P(type) \ |
| ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GDESC_P(type) \ |
| ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GD_ANY_P(type) \ |
| (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) |
| unsigned char tls_type; |
| |
| /* Offset of the GOTPLT entry reserved for the TLS descriptor, |
| starting at the end of the jump table. */ |
| bfd_vma tlsdesc_got; |
| }; |
| |
| #define elf_x86_64_hash_entry(ent) \ |
| ((struct elf_x86_64_link_hash_entry *)(ent)) |
| |
| struct elf_x86_64_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| |
| /* GOTPLT entries for TLS descriptors. */ |
| bfd_vma *local_tlsdesc_gotent; |
| }; |
| |
| #define elf_x86_64_tdata(abfd) \ |
| ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any) |
| |
| #define elf_x86_64_local_got_tls_type(abfd) \ |
| (elf_x86_64_tdata (abfd)->local_got_tls_type) |
| |
| #define elf_x86_64_local_tlsdesc_gotent(abfd) \ |
| (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent) |
| |
| #define is_x86_64_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == X86_64_ELF_DATA) |
| |
| static bfd_boolean |
| elf_x86_64_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata), |
| X86_64_ELF_DATA); |
| } |
| |
| /* x86-64 ELF linker hash table. */ |
| |
| struct elf_x86_64_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdynbss; |
| asection *srelbss; |
| asection *plt_eh_frame; |
| |
| union |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| } tls_ld_got; |
| |
| /* The amount of space used by the jump slots in the GOT. */ |
| bfd_vma sgotplt_jump_table_size; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| bfd_vma (*r_info) (bfd_vma, bfd_vma); |
| bfd_vma (*r_sym) (bfd_vma); |
| unsigned int pointer_r_type; |
| const char *dynamic_interpreter; |
| int dynamic_interpreter_size; |
| |
| /* _TLS_MODULE_BASE_ symbol. */ |
| struct bfd_link_hash_entry *tls_module_base; |
| |
| /* Used by local STT_GNU_IFUNC symbols. */ |
| htab_t loc_hash_table; |
| void * loc_hash_memory; |
| |
| /* The offset into splt of the PLT entry for the TLS descriptor |
| resolver. Special values are 0, if not necessary (or not found |
| to be necessary yet), and -1 if needed but not determined |
| yet. */ |
| bfd_vma tlsdesc_plt; |
| /* The offset into sgot of the GOT entry used by the PLT entry |
| above. */ |
| bfd_vma tlsdesc_got; |
| |
| /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */ |
| bfd_vma next_jump_slot_index; |
| /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */ |
| bfd_vma next_irelative_index; |
| }; |
| |
| /* Get the x86-64 ELF linker hash table from a link_info structure. */ |
| |
| #define elf_x86_64_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL) |
| |
| #define elf_x86_64_compute_jump_table_size(htab) \ |
| ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE) |
| |
| /* Create an entry in an x86-64 ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = (struct bfd_hash_entry *) |
| bfd_hash_allocate (table, |
| sizeof (struct elf_x86_64_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_x86_64_link_hash_entry *eh; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) entry; |
| eh->dyn_relocs = NULL; |
| eh->tls_type = GOT_UNKNOWN; |
| eh->tlsdesc_got = (bfd_vma) -1; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| static hashval_t |
| elf_x86_64_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| static int |
| elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 |
| = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 |
| = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| static struct elf_link_hash_entry * |
| elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bfd_boolean create) |
| { |
| struct elf_x86_64_link_hash_entry e, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| htab->r_sym (rel->r_info)); |
| void **slot; |
| |
| e.elf.indx = sec->id; |
| e.elf.dynstr_index = htab->r_sym (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct elf_x86_64_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct elf_x86_64_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct elf_x86_64_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = htab->r_sym (rel->r_info); |
| ret->elf.dynindx = -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Create an X86-64 ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elf_x86_64_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_x86_64_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table); |
| |
| ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
| elf_x86_64_link_hash_newfunc, |
| sizeof (struct elf_x86_64_link_hash_entry), |
| X86_64_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->sdynbss = NULL; |
| ret->srelbss = NULL; |
| ret->plt_eh_frame = NULL; |
| ret->sym_cache.abfd = NULL; |
| ret->tlsdesc_plt = 0; |
| ret->tlsdesc_got = 0; |
| ret->tls_ld_got.refcount = 0; |
| ret->sgotplt_jump_table_size = 0; |
| ret->tls_module_base = NULL; |
| ret->next_jump_slot_index = 0; |
| ret->next_irelative_index = 0; |
| |
| if (ABI_64_P (abfd)) |
| { |
| ret->r_info = elf64_r_info; |
| ret->r_sym = elf64_r_sym; |
| ret->pointer_r_type = R_X86_64_64; |
| ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; |
| } |
| else |
| { |
| ret->r_info = elf32_r_info; |
| ret->r_sym = elf32_r_sym; |
| ret->pointer_r_type = R_X86_64_32; |
| ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER; |
| } |
| |
| ret->loc_hash_table = htab_try_create (1024, |
| elf_x86_64_local_htab_hash, |
| elf_x86_64_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| return &ret->elf.root; |
| } |
| |
| /* Destroy an X86-64 ELF linker hash table. */ |
| |
| static void |
| elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash) |
| { |
| struct elf_x86_64_link_hash_table *htab |
| = (struct elf_x86_64_link_hash_table *) hash; |
| |
| if (htab->loc_hash_table) |
| htab_delete (htab->loc_hash_table); |
| if (htab->loc_hash_memory) |
| objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
| _bfd_generic_link_hash_table_free (hash); |
| } |
| |
| /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and |
| .rela.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bfd_boolean |
| elf_x86_64_create_dynamic_sections (bfd *dynobj, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return FALSE; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); |
| if (!info->shared) |
| htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss"); |
| |
| if (!htab->sdynbss |
| || (!info->shared && !htab->srelbss)) |
| abort (); |
| |
| if (!info->no_ld_generated_unwind_info |
| && htab->plt_eh_frame == NULL |
| && htab->elf.splt != NULL) |
| { |
| flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
| | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| htab->plt_eh_frame |
| = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags); |
| if (htab->plt_eh_frame == NULL |
| || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3)) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_x86_64_link_hash_entry *edir, *eind; |
| |
| edir = (struct elf_x86_64_link_hash_entry *) dir; |
| eind = (struct elf_x86_64_link_hash_entry *) ind; |
| |
| if (eind->dyn_relocs != NULL) |
| { |
| if (edir->dyn_relocs != NULL) |
| { |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| /* Add reloc counts against the indirect sym to the direct sym |
| list. Merge any entries against the same section. */ |
| for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| struct elf_dyn_relocs *q; |
| |
| for (q = edir->dyn_relocs; q != NULL; q = q->next) |
| if (q->sec == p->sec) |
| { |
| q->pc_count += p->pc_count; |
| q->count += p->count; |
| *pp = p->next; |
| break; |
| } |
| if (q == NULL) |
| pp = &p->next; |
| } |
| *pp = edir->dyn_relocs; |
| } |
| |
| edir->dyn_relocs = eind->dyn_relocs; |
| eind->dyn_relocs = NULL; |
| } |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| |
| if (ELIMINATE_COPY_RELOCS |
| && ind->root.type != bfd_link_hash_indirect |
| && dir->dynamic_adjusted) |
| { |
| /* If called to transfer flags for a weakdef during processing |
| of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
| We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
| dir->ref_dynamic |= ind->ref_dynamic; |
| dir->ref_regular |= ind->ref_regular; |
| dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| dir->needs_plt |= ind->needs_plt; |
| dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| } |
| else |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| static bfd_boolean |
| elf64_x86_64_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for an x86-64 elf64 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64); |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| elf32_x86_64_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for an x86-64 elf32 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32); |
| return TRUE; |
| } |
| |
| /* Return TRUE if the TLS access code sequence support transition |
| from R_TYPE. */ |
| |
| static bfd_boolean |
| elf_x86_64_check_tls_transition (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int r_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend) |
| { |
| unsigned int val; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| bfd_vma offset; |
| struct elf_x86_64_link_hash_table *htab; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| /* FIXME: How to better handle error condition? */ |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| return FALSE; |
| |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| htab = elf_x86_64_hash_table (info); |
| offset = rel->r_offset; |
| switch (r_type) |
| { |
| case R_X86_64_TLSGD: |
| case R_X86_64_TLSLD: |
| if ((rel + 1) >= relend) |
| return FALSE; |
| |
| if (r_type == R_X86_64_TLSGD) |
| { |
| /* Check transition from GD access model. For 64bit, only |
| .byte 0x66; leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr |
| can transit to different access model. For 32bit, only |
| leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr |
| can transit to different access model. */ |
| |
| static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 }; |
| static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d }; |
| |
| if ((offset + 12) > sec->size |
| || memcmp (contents + offset + 4, call, 4) != 0) |
| return FALSE; |
| |
| if (ABI_64_P (abfd)) |
| { |
| if (offset < 4 |
| || memcmp (contents + offset - 4, leaq, 4) != 0) |
| return FALSE; |
| } |
| else |
| { |
| if (offset < 3 |
| || memcmp (contents + offset - 3, leaq + 1, 3) != 0) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* Check transition from LD access model. Only |
| leaq foo@tlsld(%rip), %rdi; |
| call __tls_get_addr |
| can transit to different access model. */ |
| |
| static const unsigned char lea[] = { 0x48, 0x8d, 0x3d }; |
| |
| if (offset < 3 || (offset + 9) > sec->size) |
| return FALSE; |
| |
| if (memcmp (contents + offset - 3, lea, 3) != 0 |
| || 0xe8 != *(contents + offset + 4)) |
| return FALSE; |
| } |
| |
| r_symndx = htab->r_sym (rel[1].r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| return FALSE; |
| |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| /* Use strncmp to check __tls_get_addr since __tls_get_addr |
| may be versioned. */ |
| return (h != NULL |
| && h->root.root.string != NULL |
| && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32 |
| || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32) |
| && (strncmp (h->root.root.string, |
| "__tls_get_addr", 14) == 0)); |
| |
| case R_X86_64_GOTTPOFF: |
| /* Check transition from IE access model: |
| mov foo@gottpoff(%rip), %reg |
| add foo@gottpoff(%rip), %reg |
| */ |
| |
| /* Check REX prefix first. */ |
| if (offset >= 3 && (offset + 4) <= sec->size) |
| { |
| val = bfd_get_8 (abfd, contents + offset - 3); |
| if (val != 0x48 && val != 0x4c) |
| { |
| /* X32 may have 0x44 REX prefix or no REX prefix. */ |
| if (ABI_64_P (abfd)) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* X32 may not have any REX prefix. */ |
| if (ABI_64_P (abfd)) |
| return FALSE; |
| if (offset < 2 || (offset + 3) > sec->size) |
| return FALSE; |
| } |
| |
| val = bfd_get_8 (abfd, contents + offset - 2); |
| if (val != 0x8b && val != 0x03) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 5; |
| |
| case R_X86_64_GOTPC32_TLSDESC: |
| /* Check transition from GDesc access model: |
| leaq x@tlsdesc(%rip), %rax |
| |
| Make sure it's a leaq adding rip to a 32-bit offset |
| into any register, although it's probably almost always |
| going to be rax. */ |
| |
| if (offset < 3 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 3); |
| if ((val & 0xfb) != 0x48) |
| return FALSE; |
| |
| if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 0x05; |
| |
| case R_X86_64_TLSDESC_CALL: |
| /* Check transition from GDesc access model: |
| call *x@tlsdesc(%rax) |
| */ |
| if (offset + 2 <= sec->size) |
| { |
| /* Make sure that it's a call *x@tlsdesc(%rax). */ |
| static const unsigned char call[] = { 0xff, 0x10 }; |
| return memcmp (contents + offset, call, 2) == 0; |
| } |
| |
| return FALSE; |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Return TRUE if the TLS access transition is OK or no transition |
| will be performed. Update R_TYPE if there is a transition. */ |
| |
| static bfd_boolean |
| elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd, |
| asection *sec, bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int *r_type, int tls_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend, |
| struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| unsigned int from_type = *r_type; |
| unsigned int to_type = from_type; |
| bfd_boolean check = TRUE; |
| |
| /* Skip TLS transition for functions. */ |
| if (h != NULL |
| && (h->type == STT_FUNC |
| || h->type == STT_GNU_IFUNC)) |
| return TRUE; |
| |
| switch (from_type) |
| { |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| case R_X86_64_GOTTPOFF: |
| if (info->executable) |
| { |
| if (h == NULL) |
| to_type = R_X86_64_TPOFF32; |
| else |
| to_type = R_X86_64_GOTTPOFF; |
| } |
| |
| /* When we are called from elf_x86_64_relocate_section, |
| CONTENTS isn't NULL and there may be additional transitions |
| based on TLS_TYPE. */ |
| if (contents != NULL) |
| { |
| unsigned int new_to_type = to_type; |
| |
| if (info->executable |
| && h != NULL |
| && h->dynindx == -1 |
| && tls_type == GOT_TLS_IE) |
| new_to_type = R_X86_64_TPOFF32; |
| |
| if (to_type == R_X86_64_TLSGD |
| || to_type == R_X86_64_GOTPC32_TLSDESC |
| || to_type == R_X86_64_TLSDESC_CALL) |
| { |
| if (tls_type == GOT_TLS_IE) |
| new_to_type = R_X86_64_GOTTPOFF; |
| } |
| |
| /* We checked the transition before when we were called from |
| elf_x86_64_check_relocs. We only want to check the new |
| transition which hasn't been checked before. */ |
| check = new_to_type != to_type && from_type == to_type; |
| to_type = new_to_type; |
| } |
| |
| break; |
| |
| case R_X86_64_TLSLD: |
| if (info->executable) |
| to_type = R_X86_64_TPOFF32; |
| break; |
| |
| default: |
| return TRUE; |
| } |
| |
| /* Return TRUE if there is no transition. */ |
| if (from_type == to_type) |
| return TRUE; |
| |
| /* Check if the transition can be performed. */ |
| if (check |
| && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents, |
| symtab_hdr, sym_hashes, |
| from_type, rel, relend)) |
| { |
| reloc_howto_type *from, *to; |
| const char *name; |
| |
| from = elf_x86_64_rtype_to_howto (abfd, from_type); |
| to = elf_x86_64_rtype_to_howto (abfd, to_type); |
| |
| if (h) |
| name = h->root.root.string; |
| else |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| name = "*unknown*"; |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| } |
| } |
| |
| (*_bfd_error_handler) |
| (_("%B: TLS transition from %s to %s against `%s' at 0x%lx " |
| "in section `%A' failed"), |
| abfd, sec, from->name, to->name, name, |
| (unsigned long) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| *r_type = to_type; |
| return TRUE; |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| calculate needed space in the global offset table, procedure |
| linkage table, and dynamic reloc sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| |
| if (info->relocatable) |
| return TRUE; |
| |
| BFD_ASSERT (is_x86_64_elf (abfd)); |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| sreloc = NULL; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned int r_type; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *isym; |
| const char *name; |
| |
| r_symndx = htab->r_sym (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
| abfd, r_symndx); |
| return FALSE; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, |
| TRUE); |
| if (h == NULL) |
| return FALSE; |
| |
| /* Fake a STT_GNU_IFUNC symbol. */ |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| isym = NULL; |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| /* Check invalid x32 relocations. */ |
| if (!ABI_64_P (abfd)) |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_X86_64_DTPOFF64: |
| case R_X86_64_TPOFF64: |
| case R_X86_64_PC64: |
| case R_X86_64_GOTOFF64: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTPCREL64: |
| case R_X86_64_GOTPC64: |
| case R_X86_64_GOTPLT64: |
| case R_X86_64_PLTOFF64: |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against symbol `%s' isn't " |
| "supported in x32 mode"), abfd, |
| x86_64_elf_howto_table[r_type].name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| break; |
| } |
| |
| if (h != NULL) |
| { |
| /* Create the ifunc sections for static executables. If we |
| never see an indirect function symbol nor we are building |
| a static executable, those sections will be empty and |
| won't appear in output. */ |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_X86_64_32S: |
| case R_X86_64_32: |
| case R_X86_64_64: |
| case R_X86_64_PC32: |
| case R_X86_64_PC64: |
| case R_X86_64_PLT32: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCREL64: |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) |
| return FALSE; |
| break; |
| } |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| h->needs_plt = 1; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| h->plt.refcount += 1; |
| |
| /* STT_GNU_IFUNC needs dynamic sections. */ |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| switch (r_type) |
| { |
| default: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't handled by %s"), abfd, |
| x86_64_elf_howto_table[r_type].name, |
| name, __FUNCTION__); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| |
| case R_X86_64_32: |
| if (ABI_64_P (abfd)) |
| goto not_pointer; |
| case R_X86_64_64: |
| h->non_got_ref = 1; |
| h->pointer_equality_needed = 1; |
| if (info->shared) |
| { |
| /* We must copy these reloc types into the output |
| file. Create a reloc section in dynobj and |
| make room for this reloc. */ |
| sreloc = _bfd_elf_create_ifunc_dyn_reloc |
| (abfd, info, sec, sreloc, |
| &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs); |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| break; |
| |
| case R_X86_64_32S: |
| case R_X86_64_PC32: |
| case R_X86_64_PC64: |
| not_pointer: |
| h->non_got_ref = 1; |
| if (r_type != R_X86_64_PC32 |
| && r_type != R_X86_64_PC64) |
| h->pointer_equality_needed = 1; |
| break; |
| |
| case R_X86_64_PLT32: |
| break; |
| |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCREL64: |
| h->got.refcount += 1; |
| if (htab->elf.sgot == NULL |
| && !_bfd_elf_create_got_section (htab->elf.dynobj, |
| info)) |
| return FALSE; |
| break; |
| } |
| |
| continue; |
| } |
| } |
| |
| if (! elf_x86_64_tls_transition (info, abfd, sec, NULL, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, rel_end, h, r_symndx)) |
| return FALSE; |
| |
| switch (r_type) |
| { |
| case R_X86_64_TLSLD: |
| htab->tls_ld_got.refcount += 1; |
| goto create_got; |
| |
| case R_X86_64_TPOFF32: |
| if (!info->executable && ABI_64_P (abfd)) |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), |
| abfd, |
| x86_64_elf_howto_table[r_type].name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| break; |
| |
| case R_X86_64_GOTTPOFF: |
| if (!info->executable) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTPCREL64: |
| case R_X86_64_GOTPLT64: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| /* This symbol requires a global offset table entry. */ |
| { |
| int tls_type, old_tls_type; |
| |
| switch (r_type) |
| { |
| default: tls_type = GOT_NORMAL; break; |
| case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break; |
| case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break; |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| tls_type = GOT_TLS_GDESC; break; |
| } |
| |
| if (h != NULL) |
| { |
| if (r_type == R_X86_64_GOTPLT64) |
| { |
| /* This relocation indicates that we also need |
| a PLT entry, as this is a function. We don't need |
| a PLT entry for local symbols. */ |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| } |
| h->got.refcount += 1; |
| old_tls_type = elf_x86_64_hash_entry (h)->tls_type; |
| } |
| else |
| { |
| bfd_signed_vma *local_got_refcounts; |
| |
| /* This is a global offset table entry for a local symbol. */ |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| { |
| bfd_size_type size; |
| |
| size = symtab_hdr->sh_info; |
| size *= sizeof (bfd_signed_vma) |
| + sizeof (bfd_vma) + sizeof (char); |
| local_got_refcounts = ((bfd_signed_vma *) |
| bfd_zalloc (abfd, size)); |
| if (local_got_refcounts == NULL) |
| return FALSE; |
| elf_local_got_refcounts (abfd) = local_got_refcounts; |
| elf_x86_64_local_tlsdesc_gotent (abfd) |
| = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); |
| elf_x86_64_local_got_tls_type (abfd) |
| = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); |
| } |
| local_got_refcounts[r_symndx] += 1; |
| old_tls_type |
| = elf_x86_64_local_got_tls_type (abfd) [r_symndx]; |
| } |
| |
| /* If a TLS symbol is accessed using IE at least once, |
| there is no point to use dynamic model for it. */ |
| if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
| && (! GOT_TLS_GD_ANY_P (old_tls_type) |
| || tls_type != GOT_TLS_IE)) |
| { |
| if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type = old_tls_type; |
| else if (GOT_TLS_GD_ANY_P (old_tls_type) |
| && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type |= old_tls_type; |
| else |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, |
| isym, NULL); |
| (*_bfd_error_handler) |
| (_("%B: '%s' accessed both as normal and thread local symbol"), |
| abfd, name); |
| return FALSE; |
| } |
| } |
| |
| if (old_tls_type != tls_type) |
| { |
| if (h != NULL) |
| elf_x86_64_hash_entry (h)->tls_type = tls_type; |
| else |
| elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| } |
| /* Fall through */ |
| |
| case R_X86_64_GOTOFF64: |
| case R_X86_64_GOTPC32: |
| case R_X86_64_GOTPC64: |
| create_got: |
| if (htab->elf.sgot == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_got_section (htab->elf.dynobj, |
| info)) |
| return FALSE; |
| } |
| break; |
| |
| case R_X86_64_PLT32: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| break; |
| |
| case R_X86_64_PLTOFF64: |
| /* This tries to form the 'address' of a function relative |
| to GOT. For global symbols we need a PLT entry. */ |
| if (h != NULL) |
| { |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| } |
| goto create_got; |
| |
| case R_X86_64_32: |
| if (!ABI_64_P (abfd)) |
| goto pointer; |
| case R_X86_64_8: |
| case R_X86_64_16: |
| case R_X86_64_32S: |
| /* Let's help debug shared library creation. These relocs |
| cannot be used in shared libs. Don't error out for |
| sections we don't care about, such as debug sections or |
| non-constant sections. */ |
| if (info->shared |
| && (sec->flags & SEC_ALLOC) != 0 |
| && (sec->flags & SEC_READONLY) != 0) |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), |
| abfd, x86_64_elf_howto_table[r_type].name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| /* Fall through. */ |
| |
| case R_X86_64_PC8: |
| case R_X86_64_PC16: |
| case R_X86_64_PC32: |
| case R_X86_64_PC64: |
| case R_X86_64_64: |
| pointer: |
| if (h != NULL && info->executable) |
| { |
| /* If this reloc is in a read-only section, we might |
| need a copy reloc. We can't check reliably at this |
| stage whether the section is read-only, as input |
| sections have not yet been mapped to output sections. |
| Tentatively set the flag for now, and correct in |
| adjust_dynamic_symbol. */ |
| h->non_got_ref = 1; |
| |
| /* We may need a .plt entry if the function this reloc |
| refers to is in a shared lib. */ |
| h->plt.refcount += 1; |
| if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64) |
| h->pointer_equality_needed = 1; |
| } |
| |
| /* If we are creating a shared library, and this is a reloc |
| against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc |
| into the shared library. However, if we are linking with |
| -Bsymbolic, we do not need to copy a reloc against a |
| global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). At |
| this point we have not seen all the input files, so it is |
| possible that DEF_REGULAR is not set now but will be set |
| later (it is never cleared). In case of a weak definition, |
| DEF_REGULAR may be cleared later by a strong definition in |
| a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash |
| table entry. A similar situation occurs when creating |
| shared libraries and symbol visibility changes render the |
| symbol local. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. */ |
| if ((info->shared |
| && (sec->flags & SEC_ALLOC) != 0 |
| && (! IS_X86_64_PCREL_TYPE (r_type) |
| || (h != NULL |
| && (! SYMBOLIC_BIND (info, h) |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)))) |
| || (ELIMINATE_COPY_RELOCS |
| && !info->shared |
| && (sec->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defweak |
| || !h->def_regular))) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* We must copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2, |
| abfd, /*rela?*/ TRUE); |
| |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| { |
| head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| asection *s; |
| void **vpp; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| /* Beware of type punned pointers vs strict aliasing |
| rules. */ |
| vpp = &(elf_section_data (s)->local_dynrel); |
| head = (struct elf_dyn_relocs **)vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| bfd_size_type amt = sizeof *p; |
| |
| p = ((struct elf_dyn_relocs *) |
| bfd_alloc (htab->elf.dynobj, amt)); |
| if (p == NULL) |
| return FALSE; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| if (IS_X86_64_PCREL_TYPE (r_type)) |
| p->pc_count += 1; |
| } |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_X86_64_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_X86_64_GNU_VTENTRY: |
| BFD_ASSERT (h != NULL); |
| if (h != NULL |
| && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return FALSE; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| elf_x86_64_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_X86_64_GNU_VTINHERIT: |
| case R_X86_64_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Update the got entry reference counts for the section being removed. */ |
| |
| static bfd_boolean |
| elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_signed_vma *local_got_refcounts; |
| const Elf_Internal_Rela *rel, *relend; |
| |
| if (info->relocatable) |
| return TRUE; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| elf_section_data (sec)->local_dynrel = NULL; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| |
| htab = elf_x86_64_hash_table (info); |
| relend = relocs + sec->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| { |
| unsigned long r_symndx; |
| unsigned int r_type; |
| struct elf_link_hash_entry *h = NULL; |
| |
| r_symndx = htab->r_sym (rel->r_info); |
| if (r_symndx >= symtab_hdr->sh_info) |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| else |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (isym != NULL |
| && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE); |
| if (h == NULL) |
| abort (); |
| } |
| } |
| |
| if (h) |
| { |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) |
| if (p->sec == sec) |
| { |
| /* Everything must go for SEC. */ |
| *pp = p->next; |
| break; |
| } |
| } |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (! elf_x86_64_tls_transition (info, abfd, sec, NULL, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, relend, h, r_symndx)) |
| return FALSE; |
| |
| switch (r_type) |
| { |
| case R_X86_64_TLSLD: |
| if (htab->tls_ld_got.refcount > 0) |
| htab->tls_ld_got.refcount -= 1; |
| break; |
| |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| case R_X86_64_GOTTPOFF: |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTPCREL64: |
| case R_X86_64_GOTPLT64: |
| if (h != NULL) |
| { |
| if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| if (h->got.refcount > 0) |
| h->got.refcount -= 1; |
| if (h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| } |
| } |
| else if (local_got_refcounts != NULL) |
| { |
| if (local_got_refcounts[r_symndx] > 0) |
| local_got_refcounts[r_symndx] -= 1; |
| } |
| break; |
| |
| case R_X86_64_8: |
| case R_X86_64_16: |
| case R_X86_64_32: |
| case R_X86_64_64: |
| case R_X86_64_32S: |
| case R_X86_64_PC8: |
| case R_X86_64_PC16: |
| case R_X86_64_PC32: |
| case R_X86_64_PC64: |
| if (info->shared |
| && (h == NULL || h->type != STT_GNU_IFUNC)) |
| break; |
| /* Fall thru */ |
| |
| case R_X86_64_PLT32: |
| case R_X86_64_PLTOFF64: |
| if (h != NULL) |
| { |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| asection *s; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.refcount <= 0) |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| return TRUE; |
| } |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a PLT32 reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In |
| such a case, we don't actually need to build a procedure |
| linkage table, and we can just do a PC32 reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return TRUE; |
| } |
| else |
| /* It's possible that we incorrectly decided a .plt reloc was |
| needed for an R_X86_64_PC32 reloc to a non-function sym in |
| check_relocs. We can't decide accurately between function and |
| non-function syms in check-relocs; Objects loaded later in |
| the link may change h->type. So fix it now. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->u.weakdef != NULL) |
| { |
| BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| || h->u.weakdef->root.type == bfd_link_hash_defweak); |
| h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) |
| h->non_got_ref = h->u.weakdef->non_got_ref; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (info->shared) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return TRUE; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| if (ELIMINATE_COPY_RELOCS) |
| { |
| struct elf_x86_64_link_hash_entry * eh; |
| struct elf_dyn_relocs *p; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| s = p->sec->output_section; |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| break; |
| } |
| |
| /* If we didn't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (p == NULL) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker |
| to copy the initial value out of the dynamic object and into the |
| runtime process image. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| const struct elf_backend_data *bed; |
| bed = get_elf_backend_data (info->output_bfd); |
| htab->srelbss->size += bed->s->sizeof_rela; |
| h->needs_copy = 1; |
| } |
| |
| s = htab->sdynbss; |
| |
| return _bfd_elf_adjust_dynamic_copy (h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_x86_64_link_hash_table *htab; |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| const struct elf_backend_data *bed; |
| unsigned int plt_entry_size; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| bed = get_elf_backend_data (info->output_bfd); |
| plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd); |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, |
| &eh->dyn_relocs, |
| plt_entry_size, |
| GOT_ENTRY_SIZE); |
| else if (htab->elf.dynamic_sections_created |
| && h->plt.refcount > 0) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (info->shared |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->elf.splt; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->size == 0) |
| s->size += plt_entry_size; |
| |
| h->plt.offset = s->size; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! info->shared |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| |
| /* Make room for this entry. */ |
| s->size += plt_entry_size; |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| htab->elf.sgotplt->size += GOT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| htab->elf.srelplt->size += bed->s->sizeof_rela; |
| htab->elf.srelplt->reloc_count++; |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| eh->tlsdesc_got = (bfd_vma) -1; |
| |
| /* If R_X86_64_GOTTPOFF symbol is now local to the binary, |
| make it a R_X86_64_TPOFF32 requiring no GOT entry. */ |
| if (h->got.refcount > 0 |
| && info->executable |
| && h->dynindx == -1 |
| && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE) |
| { |
| h->got.offset = (bfd_vma) -1; |
| } |
| else if (h->got.refcount > 0) |
| { |
| asection *s; |
| bfd_boolean dyn; |
| int tls_type = elf_x86_64_hash_entry (h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| eh->tlsdesc_got = htab->elf.sgotplt->size |
| - elf_x86_64_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE; |
| h->got.offset = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (tls_type) |
| || GOT_TLS_GD_P (tls_type)) |
| { |
| s = htab->elf.sgot; |
| h->got.offset = s->size; |
| s->size += GOT_ENTRY_SIZE; |
| if (GOT_TLS_GD_P (tls_type)) |
| s->size += GOT_ENTRY_SIZE; |
| } |
| dyn = htab->elf.dynamic_sections_created; |
| /* R_X86_64_TLSGD needs one dynamic relocation if local symbol |
| and two if global. |
| R_X86_64_GOTTPOFF needs one dynamic relocation. */ |
| if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) |
| || tls_type == GOT_TLS_IE) |
| htab->elf.srelgot->size += bed->s->sizeof_rela; |
| else if (GOT_TLS_GD_P (tls_type)) |
| htab->elf.srelgot->size += 2 * bed->s->sizeof_rela; |
| else if (! GOT_TLS_GDESC_P (tls_type) |
| && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (info->shared |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| htab->elf.srelgot->size += bed->s->sizeof_rela; |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| htab->elf.srelplt->size += bed->s->sizeof_rela; |
| htab->tlsdesc_plt = (bfd_vma) -1; |
| } |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| if (eh->dyn_relocs == NULL) |
| return TRUE; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (info->shared) |
| { |
| /* Relocs that use pc_count are those that appear on a call |
| insn, or certain REL relocs that can generated via assembly. |
| We want calls to protected symbols to resolve directly to the |
| function rather than going via the plt. If people want |
| function pointer comparisons to work as expected then they |
| should avoid writing weird assembly. */ |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (eh->dyn_relocs != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| eh->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && ! h->forced_local |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| } |
| else if (ELIMINATE_COPY_RELOCS) |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && ! h->forced_local |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| eh->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection * sreloc; |
| |
| sreloc = elf_section_data (p->sec)->sreloc; |
| |
| BFD_ASSERT (sreloc != NULL); |
| |
| sreloc->size += p->count * bed->s->sizeof_rela; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| local dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| |
| if (h->type != STT_GNU_IFUNC |
| || !h->def_regular |
| || !h->ref_regular |
| || !h->forced_local |
| || h->root.type != bfd_link_hash_defined) |
| abort (); |
| |
| return elf_x86_64_allocate_dynrelocs (h, inf); |
| } |
| |
| /* Find any dynamic relocs that apply to read-only sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, |
| void * inf) |
| { |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| /* Skip local IFUNC symbols. */ |
| if (h->forced_local && h->type == STT_GNU_IFUNC) |
| return TRUE; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec->output_section; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| |
| info->flags |= DF_TEXTREL; |
| |
| if (info->warn_shared_textrel && info->shared) |
| info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"), |
| p->sec->owner, h->root.root.string, |
| p->sec); |
| |
| /* Not an error, just cut short the traversal. */ |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_size_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd_boolean relocs; |
| bfd *ibfd; |
| const struct elf_backend_data *bed; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| bed = get_elf_backend_data (output_bfd); |
| |
| dynobj = htab->elf.dynobj; |
| if (dynobj == NULL) |
| abort (); |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (info->executable) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| if (s == NULL) |
| abort (); |
| s->size = htab->dynamic_interpreter_size; |
| s->contents = (unsigned char *) htab->dynamic_interpreter; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_vma *local_tlsdesc_gotent; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_x86_64_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = (struct elf_dyn_relocs *) |
| (elf_section_data (s)->local_dynrel); |
| p != NULL; |
| p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * bed->s->sizeof_rela; |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0 |
| && (info->flags & DF_TEXTREL) == 0) |
| { |
| info->flags |= DF_TEXTREL; |
| if (info->warn_shared_textrel && info->shared) |
| info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"), |
| p->sec->owner, p->sec); |
| } |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = elf_x86_64_local_got_tls_type (ibfd); |
| local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; |
| ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) |
| { |
| *local_tlsdesc_gotent = (bfd_vma) -1; |
| if (*local_got > 0) |
| { |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| *local_tlsdesc_gotent = htab->elf.sgotplt->size |
| - elf_x86_64_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE; |
| *local_got = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (*local_tls_type) |
| || GOT_TLS_GD_P (*local_tls_type)) |
| { |
| *local_got = s->size; |
| s->size += GOT_ENTRY_SIZE; |
| if (GOT_TLS_GD_P (*local_tls_type)) |
| s->size += GOT_ENTRY_SIZE; |
| } |
| if (info->shared |
| || GOT_TLS_GD_ANY_P (*local_tls_type) |
| || *local_tls_type == GOT_TLS_IE) |
| { |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| htab->elf.srelplt->size |
| += bed->s->sizeof_rela; |
| htab->tlsdesc_plt = (bfd_vma) -1; |
| } |
| if (! GOT_TLS_GDESC_P (*local_tls_type) |
| || GOT_TLS_GD_P (*local_tls_type)) |
| srel->size += bed->s->sizeof_rela; |
| } |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| if (htab->tls_ld_got.refcount > 0) |
| { |
| /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD |
| relocs. */ |
| htab->tls_ld_got.offset = htab->elf.sgot->size; |
| htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE; |
| htab->elf.srelgot->size += bed->s->sizeof_rela; |
| } |
| else |
| htab->tls_ld_got.offset = -1; |
| |
| |