| //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // A single header library providing an utility class to break up an array of |
| // bytes. Whenever run on the same input, provides the same output, as long as |
| // its methods are called in the same order, with the same arguments. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ |
| #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ |
| |
| #include <algorithm> |
| #include <array> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <initializer_list> |
| #include <limits> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| // In addition to the comments below, the API is also briefly documented at |
| // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider |
| class FuzzedDataProvider { |
| public: |
| // |data| is an array of length |size| that the FuzzedDataProvider wraps to |
| // provide more granular access. |data| must outlive the FuzzedDataProvider. |
| FuzzedDataProvider(const uint8_t *data, size_t size) |
| : data_ptr_(data), remaining_bytes_(size) {} |
| ~FuzzedDataProvider() = default; |
| |
| // See the implementation below (after the class definition) for more verbose |
| // comments for each of the methods. |
| |
| // Methods returning std::vector of bytes. These are the most popular choice |
| // when splitting fuzzing input into pieces, as every piece is put into a |
| // separate buffer (i.e. ASan would catch any under-/overflow) and the memory |
| // will be released automatically. |
| template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes); |
| template <typename T> |
| std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0); |
| template <typename T> std::vector<T> ConsumeRemainingBytes(); |
| |
| // Methods returning strings. Use only when you need a std::string or a null |
| // terminated C-string. Otherwise, prefer the methods returning std::vector. |
| std::string ConsumeBytesAsString(size_t num_bytes); |
| std::string ConsumeRandomLengthString(size_t max_length); |
| std::string ConsumeRandomLengthString(); |
| std::string ConsumeRemainingBytesAsString(); |
| |
| // Methods returning integer values. |
| template <typename T> T ConsumeIntegral(); |
| template <typename T> T ConsumeIntegralInRange(T min, T max); |
| |
| // Methods returning floating point values. |
| template <typename T> T ConsumeFloatingPoint(); |
| template <typename T> T ConsumeFloatingPointInRange(T min, T max); |
| |
| // 0 <= return value <= 1. |
| template <typename T> T ConsumeProbability(); |
| |
| bool ConsumeBool(); |
| |
| // Returns a value chosen from the given enum. |
| template <typename T> T ConsumeEnum(); |
| |
| // Returns a value from the given array. |
| template <typename T, size_t size> T PickValueInArray(const T (&array)[size]); |
| template <typename T, size_t size> |
| T PickValueInArray(const std::array<T, size> &array); |
| template <typename T> T PickValueInArray(std::initializer_list<const T> list); |
| |
| // Writes data to the given destination and returns number of bytes written. |
| size_t ConsumeData(void *destination, size_t num_bytes); |
| |
| // Reports the remaining bytes available for fuzzed input. |
| size_t remaining_bytes() { return remaining_bytes_; } |
| |
| private: |
| FuzzedDataProvider(const FuzzedDataProvider &) = delete; |
| FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete; |
| |
| void CopyAndAdvance(void *destination, size_t num_bytes); |
| |
| void Advance(size_t num_bytes); |
| |
| template <typename T> |
| std::vector<T> ConsumeBytes(size_t size, size_t num_bytes); |
| |
| template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value); |
| |
| const uint8_t *data_ptr_; |
| size_t remaining_bytes_; |
| }; |
| |
| // Returns a std::vector containing |num_bytes| of input data. If fewer than |
| // |num_bytes| of data remain, returns a shorter std::vector containing all |
| // of the data that's left. Can be used with any byte sized type, such as |
| // char, unsigned char, uint8_t, etc. |
| template <typename T> |
| std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) { |
| num_bytes = std::min(num_bytes, remaining_bytes_); |
| return ConsumeBytes<T>(num_bytes, num_bytes); |
| } |
| |
| // Similar to |ConsumeBytes|, but also appends the terminator value at the end |
| // of the resulting vector. Useful, when a mutable null-terminated C-string is |
| // needed, for example. But that is a rare case. Better avoid it, if possible, |
| // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods. |
| template <typename T> |
| std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes, |
| T terminator) { |
| num_bytes = std::min(num_bytes, remaining_bytes_); |
| std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes); |
| result.back() = terminator; |
| return result; |
| } |
| |
| // Returns a std::vector containing all remaining bytes of the input data. |
| template <typename T> |
| std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() { |
| return ConsumeBytes<T>(remaining_bytes_); |
| } |
| |
| // Returns a std::string containing |num_bytes| of input data. Using this and |
| // |.c_str()| on the resulting string is the best way to get an immutable |
| // null-terminated C string. If fewer than |num_bytes| of data remain, returns |
| // a shorter std::string containing all of the data that's left. |
| inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) { |
| static_assert(sizeof(std::string::value_type) == sizeof(uint8_t), |
| "ConsumeBytesAsString cannot convert the data to a string."); |
| |
| num_bytes = std::min(num_bytes, remaining_bytes_); |
| std::string result( |
| reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes); |
| Advance(num_bytes); |
| return result; |
| } |
| |
| // Returns a std::string of length from 0 to |max_length|. When it runs out of |
| // input data, returns what remains of the input. Designed to be more stable |
| // with respect to a fuzzer inserting characters than just picking a random |
| // length and then consuming that many bytes with |ConsumeBytes|. |
| inline std::string |
| FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) { |
| // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\" |
| // followed by anything else to the end of the string. As a result of this |
| // logic, a fuzzer can insert characters into the string, and the string |
| // will be lengthened to include those new characters, resulting in a more |
| // stable fuzzer than picking the length of a string independently from |
| // picking its contents. |
| std::string result; |
| |
| // Reserve the anticipated capacity to prevent several reallocations. |
| result.reserve(std::min(max_length, remaining_bytes_)); |
| for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) { |
| char next = ConvertUnsignedToSigned<char>(data_ptr_[0]); |
| Advance(1); |
| if (next == '\\' && remaining_bytes_ != 0) { |
| next = ConvertUnsignedToSigned<char>(data_ptr_[0]); |
| Advance(1); |
| if (next != '\\') |
| break; |
| } |
| result += next; |
| } |
| |
| result.shrink_to_fit(); |
| return result; |
| } |
| |
| // Returns a std::string of length from 0 to |remaining_bytes_|. |
| inline std::string FuzzedDataProvider::ConsumeRandomLengthString() { |
| return ConsumeRandomLengthString(remaining_bytes_); |
| } |
| |
| // Returns a std::string containing all remaining bytes of the input data. |
| // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string |
| // object. |
| inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() { |
| return ConsumeBytesAsString(remaining_bytes_); |
| } |
| |
| // Returns a number in the range [Type's min, Type's max]. The value might |
| // not be uniformly distributed in the given range. If there's no input data |
| // left, always returns |min|. |
| template <typename T> T FuzzedDataProvider::ConsumeIntegral() { |
| return ConsumeIntegralInRange(std::numeric_limits<T>::min(), |
| std::numeric_limits<T>::max()); |
| } |
| |
| // Returns a number in the range [min, max] by consuming bytes from the |
| // input data. The value might not be uniformly distributed in the given |
| // range. If there's no input data left, always returns |min|. |min| must |
| // be less than or equal to |max|. |
| template <typename T> |
| T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) { |
| static_assert(std::is_integral<T>::value, "An integral type is required."); |
| static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type."); |
| |
| if (min > max) |
| abort(); |
| |
| // Use the biggest type possible to hold the range and the result. |
| uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min); |
| uint64_t result = 0; |
| size_t offset = 0; |
| |
| while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 && |
| remaining_bytes_ != 0) { |
| // Pull bytes off the end of the seed data. Experimentally, this seems to |
| // allow the fuzzer to more easily explore the input space. This makes |
| // sense, since it works by modifying inputs that caused new code to run, |
| // and this data is often used to encode length of data read by |
| // |ConsumeBytes|. Separating out read lengths makes it easier modify the |
| // contents of the data that is actually read. |
| --remaining_bytes_; |
| result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_]; |
| offset += CHAR_BIT; |
| } |
| |
| // Avoid division by 0, in case |range + 1| results in overflow. |
| if (range != std::numeric_limits<decltype(range)>::max()) |
| result = result % (range + 1); |
| |
| return static_cast<T>(static_cast<uint64_t>(min) + result); |
| } |
| |
| // Returns a floating point value in the range [Type's lowest, Type's max] by |
| // consuming bytes from the input data. If there's no input data left, always |
| // returns approximately 0. |
| template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() { |
| return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(), |
| std::numeric_limits<T>::max()); |
| } |
| |
| // Returns a floating point value in the given range by consuming bytes from |
| // the input data. If there's no input data left, returns |min|. Note that |
| // |min| must be less than or equal to |max|. |
| template <typename T> |
| T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) { |
| if (min > max) |
| abort(); |
| |
| T range = .0; |
| T result = min; |
| constexpr T zero(.0); |
| if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) { |
| // The diff |max - min| would overflow the given floating point type. Use |
| // the half of the diff as the range and consume a bool to decide whether |
| // the result is in the first of the second part of the diff. |
| range = (max / 2.0) - (min / 2.0); |
| if (ConsumeBool()) { |
| result += range; |
| } |
| } else { |
| range = max - min; |
| } |
| |
| return result + range * ConsumeProbability<T>(); |
| } |
| |
| // Returns a floating point number in the range [0.0, 1.0]. If there's no |
| // input data left, always returns 0. |
| template <typename T> T FuzzedDataProvider::ConsumeProbability() { |
| static_assert(std::is_floating_point<T>::value, |
| "A floating point type is required."); |
| |
| // Use different integral types for different floating point types in order |
| // to provide better density of the resulting values. |
| using IntegralType = |
| typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t, |
| uint64_t>::type; |
| |
| T result = static_cast<T>(ConsumeIntegral<IntegralType>()); |
| result /= static_cast<T>(std::numeric_limits<IntegralType>::max()); |
| return result; |
| } |
| |
| // Reads one byte and returns a bool, or false when no data remains. |
| inline bool FuzzedDataProvider::ConsumeBool() { |
| return 1 & ConsumeIntegral<uint8_t>(); |
| } |
| |
| // Returns an enum value. The enum must start at 0 and be contiguous. It must |
| // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as: |
| // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue }; |
| template <typename T> T FuzzedDataProvider::ConsumeEnum() { |
| static_assert(std::is_enum<T>::value, "|T| must be an enum type."); |
| return static_cast<T>( |
| ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue))); |
| } |
| |
| // Returns a copy of the value selected from the given fixed-size |array|. |
| template <typename T, size_t size> |
| T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) { |
| static_assert(size > 0, "The array must be non empty."); |
| return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; |
| } |
| |
| template <typename T, size_t size> |
| T FuzzedDataProvider::PickValueInArray(const std::array<T, size> &array) { |
| static_assert(size > 0, "The array must be non empty."); |
| return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; |
| } |
| |
| template <typename T> |
| T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) { |
| // TODO(Dor1s): switch to static_assert once C++14 is allowed. |
| if (!list.size()) |
| abort(); |
| |
| return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1)); |
| } |
| |
| // Writes |num_bytes| of input data to the given destination pointer. If there |
| // is not enough data left, writes all remaining bytes. Return value is the |
| // number of bytes written. |
| // In general, it's better to avoid using this function, but it may be useful |
| // in cases when it's necessary to fill a certain buffer or object with |
| // fuzzing data. |
| inline size_t FuzzedDataProvider::ConsumeData(void *destination, |
| size_t num_bytes) { |
| num_bytes = std::min(num_bytes, remaining_bytes_); |
| CopyAndAdvance(destination, num_bytes); |
| return num_bytes; |
| } |
| |
| // Private methods. |
| inline void FuzzedDataProvider::CopyAndAdvance(void *destination, |
| size_t num_bytes) { |
| std::memcpy(destination, data_ptr_, num_bytes); |
| Advance(num_bytes); |
| } |
| |
| inline void FuzzedDataProvider::Advance(size_t num_bytes) { |
| if (num_bytes > remaining_bytes_) |
| abort(); |
| |
| data_ptr_ += num_bytes; |
| remaining_bytes_ -= num_bytes; |
| } |
| |
| template <typename T> |
| std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) { |
| static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type."); |
| |
| // The point of using the size-based constructor below is to increase the |
| // odds of having a vector object with capacity being equal to the length. |
| // That part is always implementation specific, but at least both libc++ and |
| // libstdc++ allocate the requested number of bytes in that constructor, |
| // which seems to be a natural choice for other implementations as well. |
| // To increase the odds even more, we also call |shrink_to_fit| below. |
| std::vector<T> result(size); |
| if (size == 0) { |
| if (num_bytes != 0) |
| abort(); |
| return result; |
| } |
| |
| CopyAndAdvance(result.data(), num_bytes); |
| |
| // Even though |shrink_to_fit| is also implementation specific, we expect it |
| // to provide an additional assurance in case vector's constructor allocated |
| // a buffer which is larger than the actual amount of data we put inside it. |
| result.shrink_to_fit(); |
| return result; |
| } |
| |
| template <typename TS, typename TU> |
| TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) { |
| static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types."); |
| static_assert(!std::numeric_limits<TU>::is_signed, |
| "Source type must be unsigned."); |
| |
| // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream. |
| if (std::numeric_limits<TS>::is_modulo) |
| return static_cast<TS>(value); |
| |
| // Avoid using implementation-defined unsigned to signed conversions. |
| // To learn more, see https://stackoverflow.com/questions/13150449. |
| if (value <= std::numeric_limits<TS>::max()) { |
| return static_cast<TS>(value); |
| } else { |
| constexpr auto TS_min = std::numeric_limits<TS>::min(); |
| return TS_min + static_cast<TS>(value - TS_min); |
| } |
| } |
| |
| #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ |