blob: 93bf817a857b46e248b61a801f1f3ff737c3a74b [file] [log] [blame]
//===- FuzzerDataFlowTrace.cpp - DataFlowTrace ---*- C++ -* ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// fuzzer::DataFlowTrace
//===----------------------------------------------------------------------===//
#include "FuzzerDataFlowTrace.h"
#include "FuzzerCommand.h"
#include "FuzzerIO.h"
#include "FuzzerRandom.h"
#include "FuzzerSHA1.h"
#include "FuzzerUtil.h"
#include <cstdlib>
#include <fstream>
#include <numeric>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace fuzzer {
static const char *kFunctionsTxt = "functions.txt";
bool BlockCoverage::AppendCoverage(const std::string &S) {
std::stringstream SS(S);
return AppendCoverage(SS);
}
// Coverage lines have this form:
// CN X Y Z T
// where N is the number of the function, T is the total number of instrumented
// BBs, and X,Y,Z, if present, are the indices of covered BB.
// BB #0, which is the entry block, is not explicitly listed.
bool BlockCoverage::AppendCoverage(std::istream &IN) {
std::string L;
while (std::getline(IN, L, '\n')) {
if (L.empty())
continue;
std::stringstream SS(L.c_str() + 1);
size_t FunctionId = 0;
SS >> FunctionId;
if (L[0] == 'F') {
FunctionsWithDFT.insert(FunctionId);
continue;
}
if (L[0] != 'C') continue;
std::vector<uint32_t> CoveredBlocks;
while (true) {
uint32_t BB = 0;
SS >> BB;
if (!SS) break;
CoveredBlocks.push_back(BB);
}
if (CoveredBlocks.empty()) return false;
// Ensures no CoverageVector is longer than UINT32_MAX.
uint32_t NumBlocks = CoveredBlocks.back();
CoveredBlocks.pop_back();
for (auto BB : CoveredBlocks)
if (BB >= NumBlocks) return false;
auto It = Functions.find(FunctionId);
auto &Counters =
It == Functions.end()
? Functions.insert({FunctionId, std::vector<uint32_t>(NumBlocks)})
.first->second
: It->second;
if (Counters.size() != NumBlocks) return false; // wrong number of blocks.
Counters[0]++;
for (auto BB : CoveredBlocks)
Counters[BB]++;
}
return true;
}
// Assign weights to each function.
// General principles:
// * any uncovered function gets weight 0.
// * a function with lots of uncovered blocks gets bigger weight.
// * a function with a less frequently executed code gets bigger weight.
std::vector<double> BlockCoverage::FunctionWeights(size_t NumFunctions) const {
std::vector<double> Res(NumFunctions);
for (const auto &It : Functions) {
auto FunctionID = It.first;
auto Counters = It.second;
assert(FunctionID < NumFunctions);
auto &Weight = Res[FunctionID];
// Give higher weight if the function has a DFT.
Weight = FunctionsWithDFT.count(FunctionID) ? 1000. : 1;
// Give higher weight to functions with less frequently seen basic blocks.
Weight /= SmallestNonZeroCounter(Counters);
// Give higher weight to functions with the most uncovered basic blocks.
Weight *= NumberOfUncoveredBlocks(Counters) + 1;
}
return Res;
}
void DataFlowTrace::ReadCoverage(const std::string &DirPath) {
std::vector<SizedFile> Files;
GetSizedFilesFromDir(DirPath, &Files);
for (auto &SF : Files) {
auto Name = Basename(SF.File);
if (Name == kFunctionsTxt) continue;
if (!CorporaHashes.count(Name)) continue;
std::ifstream IF(SF.File);
Coverage.AppendCoverage(IF);
}
}
static void DFTStringAppendToVector(std::vector<uint8_t> *DFT,
const std::string &DFTString) {
assert(DFT->size() == DFTString.size());
for (size_t I = 0, Len = DFT->size(); I < Len; I++)
(*DFT)[I] = DFTString[I] == '1';
}
// converts a string of '0' and '1' into a std::vector<uint8_t>
static std::vector<uint8_t> DFTStringToVector(const std::string &DFTString) {
std::vector<uint8_t> DFT(DFTString.size());
DFTStringAppendToVector(&DFT, DFTString);
return DFT;
}
static bool ParseError(const char *Err, const std::string &Line) {
Printf("DataFlowTrace: parse error: %s: Line: %s\n", Err, Line.c_str());
return false;
}
// TODO(metzman): replace std::string with std::string_view for
// better performance. Need to figure our how to use string_view on Windows.
static bool ParseDFTLine(const std::string &Line, size_t *FunctionNum,
std::string *DFTString) {
if (!Line.empty() && Line[0] != 'F')
return false; // Ignore coverage.
size_t SpacePos = Line.find(' ');
if (SpacePos == std::string::npos)
return ParseError("no space in the trace line", Line);
if (Line.empty() || Line[0] != 'F')
return ParseError("the trace line doesn't start with 'F'", Line);
*FunctionNum = std::atol(Line.c_str() + 1);
const char *Beg = Line.c_str() + SpacePos + 1;
const char *End = Line.c_str() + Line.size();
assert(Beg < End);
size_t Len = End - Beg;
for (size_t I = 0; I < Len; I++) {
if (Beg[I] != '0' && Beg[I] != '1')
return ParseError("the trace should contain only 0 or 1", Line);
}
*DFTString = Beg;
return true;
}
bool DataFlowTrace::Init(const std::string &DirPath, std::string *FocusFunction,
std::vector<SizedFile> &CorporaFiles, Random &Rand) {
if (DirPath.empty()) return false;
Printf("INFO: DataFlowTrace: reading from '%s'\n", DirPath.c_str());
std::vector<SizedFile> Files;
GetSizedFilesFromDir(DirPath, &Files);
std::string L;
size_t FocusFuncIdx = SIZE_MAX;
std::vector<std::string> FunctionNames;
// Collect the hashes of the corpus files.
for (auto &SF : CorporaFiles)
CorporaHashes.insert(Hash(FileToVector(SF.File)));
// Read functions.txt
std::ifstream IF(DirPlusFile(DirPath, kFunctionsTxt));
size_t NumFunctions = 0;
while (std::getline(IF, L, '\n')) {
FunctionNames.push_back(L);
NumFunctions++;
if (*FocusFunction == L)
FocusFuncIdx = NumFunctions - 1;
}
if (!NumFunctions)
return false;
if (*FocusFunction == "auto") {
// AUTOFOCUS works like this:
// * reads the coverage data from the DFT files.
// * assigns weights to functions based on coverage.
// * chooses a random function according to the weights.
ReadCoverage(DirPath);
auto Weights = Coverage.FunctionWeights(NumFunctions);
std::vector<double> Intervals(NumFunctions + 1);
std::iota(Intervals.begin(), Intervals.end(), 0);
auto Distribution = std::piecewise_constant_distribution<double>(
Intervals.begin(), Intervals.end(), Weights.begin());
FocusFuncIdx = static_cast<size_t>(Distribution(Rand));
*FocusFunction = FunctionNames[FocusFuncIdx];
assert(FocusFuncIdx < NumFunctions);
Printf("INFO: AUTOFOCUS: %zd %s\n", FocusFuncIdx,
FunctionNames[FocusFuncIdx].c_str());
for (size_t i = 0; i < NumFunctions; i++) {
if (Weights[i] == 0.0)
continue;
Printf(" [%zd] W %g\tBB-tot %u\tBB-cov %u\tEntryFreq %u:\t%s\n", i,
Weights[i], Coverage.GetNumberOfBlocks(i),
Coverage.GetNumberOfCoveredBlocks(i), Coverage.GetCounter(i, 0),
FunctionNames[i].c_str());
}
}
if (!NumFunctions || FocusFuncIdx == SIZE_MAX || Files.size() <= 1)
return false;
// Read traces.
size_t NumTraceFiles = 0;
size_t NumTracesWithFocusFunction = 0;
for (auto &SF : Files) {
auto Name = Basename(SF.File);
if (Name == kFunctionsTxt) continue;
if (!CorporaHashes.count(Name)) continue; // not in the corpus.
NumTraceFiles++;
// Printf("=== %s\n", Name.c_str());
std::ifstream IF(SF.File);
while (std::getline(IF, L, '\n')) {
size_t FunctionNum = 0;
std::string DFTString;
if (ParseDFTLine(L, &FunctionNum, &DFTString) &&
FunctionNum == FocusFuncIdx) {
NumTracesWithFocusFunction++;
if (FunctionNum >= NumFunctions)
return ParseError("N is greater than the number of functions", L);
Traces[Name] = DFTStringToVector(DFTString);
// Print just a few small traces.
if (NumTracesWithFocusFunction <= 3 && DFTString.size() <= 16)
Printf("%s => |%s|\n", Name.c_str(), std::string(DFTString).c_str());
break; // No need to parse the following lines.
}
}
}
Printf("INFO: DataFlowTrace: %zd trace files, %zd functions, "
"%zd traces with focus function\n",
NumTraceFiles, NumFunctions, NumTracesWithFocusFunction);
return NumTraceFiles > 0;
}
int CollectDataFlow(const std::string &DFTBinary, const std::string &DirPath,
const std::vector<SizedFile> &CorporaFiles) {
Printf("INFO: collecting data flow: bin: %s dir: %s files: %zd\n",
DFTBinary.c_str(), DirPath.c_str(), CorporaFiles.size());
if (CorporaFiles.empty()) {
Printf("ERROR: can't collect data flow without corpus provided.");
return 1;
}
static char DFSanEnv[] = "DFSAN_OPTIONS=warn_unimplemented=0";
putenv(DFSanEnv);
MkDir(DirPath);
for (auto &F : CorporaFiles) {
// For every input F we need to collect the data flow and the coverage.
// Data flow collection may fail if we request too many DFSan tags at once.
// So, we start from requesting all tags in range [0,Size) and if that fails
// we then request tags in [0,Size/2) and [Size/2, Size), and so on.
// Function number => DFT.
auto OutPath = DirPlusFile(DirPath, Hash(FileToVector(F.File)));
std::unordered_map<size_t, std::vector<uint8_t>> DFTMap;
std::unordered_set<std::string> Cov;
Command Cmd;
Cmd.addArgument(DFTBinary);
Cmd.addArgument(F.File);
Cmd.addArgument(OutPath);
Printf("CMD: %s\n", Cmd.toString().c_str());
ExecuteCommand(Cmd);
}
// Write functions.txt if it's currently empty or doesn't exist.
auto FunctionsTxtPath = DirPlusFile(DirPath, kFunctionsTxt);
if (FileToString(FunctionsTxtPath).empty()) {
Command Cmd;
Cmd.addArgument(DFTBinary);
Cmd.setOutputFile(FunctionsTxtPath);
ExecuteCommand(Cmd);
}
return 0;
}
} // namespace fuzzer