blob: c1efd7ef4e34b3e86b2c1166681145e61ae4fe34 [file] [log] [blame]
//===------------------------- ItaniumDemangle.h ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Generic itanium demangler library. This file has two byte-per-byte identical
// copies in the source tree, one in libcxxabi, and the other in llvm.
//
//===----------------------------------------------------------------------===//
#ifndef DEMANGLE_ITANIUMDEMANGLE_H
#define DEMANGLE_ITANIUMDEMANGLE_H
// FIXME: (possibly) incomplete list of features that clang mangles that this
// file does not yet support:
// - C++ modules TS
#include "DemangleConfig.h"
#include "StringView.h"
#include "Utility.h"
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <numeric>
#include <utility>
#define FOR_EACH_NODE_KIND(X) \
X(NodeArrayNode) \
X(DotSuffix) \
X(VendorExtQualType) \
X(QualType) \
X(ConversionOperatorType) \
X(PostfixQualifiedType) \
X(ElaboratedTypeSpefType) \
X(NameType) \
X(AbiTagAttr) \
X(EnableIfAttr) \
X(ObjCProtoName) \
X(PointerType) \
X(ReferenceType) \
X(PointerToMemberType) \
X(ArrayType) \
X(FunctionType) \
X(NoexceptSpec) \
X(DynamicExceptionSpec) \
X(FunctionEncoding) \
X(LiteralOperator) \
X(SpecialName) \
X(CtorVtableSpecialName) \
X(QualifiedName) \
X(NestedName) \
X(LocalName) \
X(VectorType) \
X(PixelVectorType) \
X(SyntheticTemplateParamName) \
X(TypeTemplateParamDecl) \
X(NonTypeTemplateParamDecl) \
X(TemplateTemplateParamDecl) \
X(TemplateParamPackDecl) \
X(ParameterPack) \
X(TemplateArgumentPack) \
X(ParameterPackExpansion) \
X(TemplateArgs) \
X(ForwardTemplateReference) \
X(NameWithTemplateArgs) \
X(GlobalQualifiedName) \
X(StdQualifiedName) \
X(ExpandedSpecialSubstitution) \
X(SpecialSubstitution) \
X(CtorDtorName) \
X(DtorName) \
X(UnnamedTypeName) \
X(ClosureTypeName) \
X(StructuredBindingName) \
X(BinaryExpr) \
X(ArraySubscriptExpr) \
X(PostfixExpr) \
X(ConditionalExpr) \
X(MemberExpr) \
X(EnclosingExpr) \
X(CastExpr) \
X(SizeofParamPackExpr) \
X(CallExpr) \
X(NewExpr) \
X(DeleteExpr) \
X(PrefixExpr) \
X(FunctionParam) \
X(ConversionExpr) \
X(InitListExpr) \
X(FoldExpr) \
X(ThrowExpr) \
X(UUIDOfExpr) \
X(BoolExpr) \
X(StringLiteral) \
X(LambdaExpr) \
X(IntegerCastExpr) \
X(IntegerLiteral) \
X(FloatLiteral) \
X(DoubleLiteral) \
X(LongDoubleLiteral) \
X(BracedExpr) \
X(BracedRangeExpr)
DEMANGLE_NAMESPACE_BEGIN
// Base class of all AST nodes. The AST is built by the parser, then is
// traversed by the printLeft/Right functions to produce a demangled string.
class Node {
public:
enum Kind : unsigned char {
#define ENUMERATOR(NodeKind) K ## NodeKind,
FOR_EACH_NODE_KIND(ENUMERATOR)
#undef ENUMERATOR
};
/// Three-way bool to track a cached value. Unknown is possible if this node
/// has an unexpanded parameter pack below it that may affect this cache.
enum class Cache : unsigned char { Yes, No, Unknown, };
private:
Kind K;
// FIXME: Make these protected.
public:
/// Tracks if this node has a component on its right side, in which case we
/// need to call printRight.
Cache RHSComponentCache;
/// Track if this node is a (possibly qualified) array type. This can affect
/// how we format the output string.
Cache ArrayCache;
/// Track if this node is a (possibly qualified) function type. This can
/// affect how we format the output string.
Cache FunctionCache;
public:
Node(Kind K_, Cache RHSComponentCache_ = Cache::No,
Cache ArrayCache_ = Cache::No, Cache FunctionCache_ = Cache::No)
: K(K_), RHSComponentCache(RHSComponentCache_), ArrayCache(ArrayCache_),
FunctionCache(FunctionCache_) {}
/// Visit the most-derived object corresponding to this object.
template<typename Fn> void visit(Fn F) const;
// The following function is provided by all derived classes:
//
// Call F with arguments that, when passed to the constructor of this node,
// would construct an equivalent node.
//template<typename Fn> void match(Fn F) const;
bool hasRHSComponent(OutputStream &S) const {
if (RHSComponentCache != Cache::Unknown)
return RHSComponentCache == Cache::Yes;
return hasRHSComponentSlow(S);
}
bool hasArray(OutputStream &S) const {
if (ArrayCache != Cache::Unknown)
return ArrayCache == Cache::Yes;
return hasArraySlow(S);
}
bool hasFunction(OutputStream &S) const {
if (FunctionCache != Cache::Unknown)
return FunctionCache == Cache::Yes;
return hasFunctionSlow(S);
}
Kind getKind() const { return K; }
virtual bool hasRHSComponentSlow(OutputStream &) const { return false; }
virtual bool hasArraySlow(OutputStream &) const { return false; }
virtual bool hasFunctionSlow(OutputStream &) const { return false; }
// Dig through "glue" nodes like ParameterPack and ForwardTemplateReference to
// get at a node that actually represents some concrete syntax.
virtual const Node *getSyntaxNode(OutputStream &) const {
return this;
}
void print(OutputStream &S) const {
printLeft(S);
if (RHSComponentCache != Cache::No)
printRight(S);
}
// Print the "left" side of this Node into OutputStream.
virtual void printLeft(OutputStream &) const = 0;
// Print the "right". This distinction is necessary to represent C++ types
// that appear on the RHS of their subtype, such as arrays or functions.
// Since most types don't have such a component, provide a default
// implementation.
virtual void printRight(OutputStream &) const {}
virtual StringView getBaseName() const { return StringView(); }
// Silence compiler warnings, this dtor will never be called.
virtual ~Node() = default;
#ifndef NDEBUG
DEMANGLE_DUMP_METHOD void dump() const;
#endif
};
class NodeArray {
Node **Elements;
size_t NumElements;
public:
NodeArray() : Elements(nullptr), NumElements(0) {}
NodeArray(Node **Elements_, size_t NumElements_)
: Elements(Elements_), NumElements(NumElements_) {}
bool empty() const { return NumElements == 0; }
size_t size() const { return NumElements; }
Node **begin() const { return Elements; }
Node **end() const { return Elements + NumElements; }
Node *operator[](size_t Idx) const { return Elements[Idx]; }
void printWithComma(OutputStream &S) const {
bool FirstElement = true;
for (size_t Idx = 0; Idx != NumElements; ++Idx) {
size_t BeforeComma = S.getCurrentPosition();
if (!FirstElement)
S += ", ";
size_t AfterComma = S.getCurrentPosition();
Elements[Idx]->print(S);
// Elements[Idx] is an empty parameter pack expansion, we should erase the
// comma we just printed.
if (AfterComma == S.getCurrentPosition()) {
S.setCurrentPosition(BeforeComma);
continue;
}
FirstElement = false;
}
}
};
struct NodeArrayNode : Node {
NodeArray Array;
NodeArrayNode(NodeArray Array_) : Node(KNodeArrayNode), Array(Array_) {}
template<typename Fn> void match(Fn F) const { F(Array); }
void printLeft(OutputStream &S) const override {
Array.printWithComma(S);
}
};
class DotSuffix final : public Node {
const Node *Prefix;
const StringView Suffix;
public:
DotSuffix(const Node *Prefix_, StringView Suffix_)
: Node(KDotSuffix), Prefix(Prefix_), Suffix(Suffix_) {}
template<typename Fn> void match(Fn F) const { F(Prefix, Suffix); }
void printLeft(OutputStream &s) const override {
Prefix->print(s);
s += " (";
s += Suffix;
s += ")";
}
};
class VendorExtQualType final : public Node {
const Node *Ty;
StringView Ext;
public:
VendorExtQualType(const Node *Ty_, StringView Ext_)
: Node(KVendorExtQualType), Ty(Ty_), Ext(Ext_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Ext); }
void printLeft(OutputStream &S) const override {
Ty->print(S);
S += " ";
S += Ext;
}
};
enum FunctionRefQual : unsigned char {
FrefQualNone,
FrefQualLValue,
FrefQualRValue,
};
enum Qualifiers {
QualNone = 0,
QualConst = 0x1,
QualVolatile = 0x2,
QualRestrict = 0x4,
};
inline Qualifiers operator|=(Qualifiers &Q1, Qualifiers Q2) {
return Q1 = static_cast<Qualifiers>(Q1 | Q2);
}
class QualType final : public Node {
protected:
const Qualifiers Quals;
const Node *Child;
void printQuals(OutputStream &S) const {
if (Quals & QualConst)
S += " const";
if (Quals & QualVolatile)
S += " volatile";
if (Quals & QualRestrict)
S += " restrict";
}
public:
QualType(const Node *Child_, Qualifiers Quals_)
: Node(KQualType, Child_->RHSComponentCache,
Child_->ArrayCache, Child_->FunctionCache),
Quals(Quals_), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Child, Quals); }
bool hasRHSComponentSlow(OutputStream &S) const override {
return Child->hasRHSComponent(S);
}
bool hasArraySlow(OutputStream &S) const override {
return Child->hasArray(S);
}
bool hasFunctionSlow(OutputStream &S) const override {
return Child->hasFunction(S);
}
void printLeft(OutputStream &S) const override {
Child->printLeft(S);
printQuals(S);
}
void printRight(OutputStream &S) const override { Child->printRight(S); }
};
class ConversionOperatorType final : public Node {
const Node *Ty;
public:
ConversionOperatorType(const Node *Ty_)
: Node(KConversionOperatorType), Ty(Ty_) {}
template<typename Fn> void match(Fn F) const { F(Ty); }
void printLeft(OutputStream &S) const override {
S += "operator ";
Ty->print(S);
}
};
class PostfixQualifiedType final : public Node {
const Node *Ty;
const StringView Postfix;
public:
PostfixQualifiedType(Node *Ty_, StringView Postfix_)
: Node(KPostfixQualifiedType), Ty(Ty_), Postfix(Postfix_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Postfix); }
void printLeft(OutputStream &s) const override {
Ty->printLeft(s);
s += Postfix;
}
};
class NameType final : public Node {
const StringView Name;
public:
NameType(StringView Name_) : Node(KNameType), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Name); }
StringView getName() const { return Name; }
StringView getBaseName() const override { return Name; }
void printLeft(OutputStream &s) const override { s += Name; }
};
class ElaboratedTypeSpefType : public Node {
StringView Kind;
Node *Child;
public:
ElaboratedTypeSpefType(StringView Kind_, Node *Child_)
: Node(KElaboratedTypeSpefType), Kind(Kind_), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Kind, Child); }
void printLeft(OutputStream &S) const override {
S += Kind;
S += ' ';
Child->print(S);
}
};
struct AbiTagAttr : Node {
Node *Base;
StringView Tag;
AbiTagAttr(Node* Base_, StringView Tag_)
: Node(KAbiTagAttr, Base_->RHSComponentCache,
Base_->ArrayCache, Base_->FunctionCache),
Base(Base_), Tag(Tag_) {}
template<typename Fn> void match(Fn F) const { F(Base, Tag); }
void printLeft(OutputStream &S) const override {
Base->printLeft(S);
S += "[abi:";
S += Tag;
S += "]";
}
};
class EnableIfAttr : public Node {
NodeArray Conditions;
public:
EnableIfAttr(NodeArray Conditions_)
: Node(KEnableIfAttr), Conditions(Conditions_) {}
template<typename Fn> void match(Fn F) const { F(Conditions); }
void printLeft(OutputStream &S) const override {
S += " [enable_if:";
Conditions.printWithComma(S);
S += ']';
}
};
class ObjCProtoName : public Node {
const Node *Ty;
StringView Protocol;
friend class PointerType;
public:
ObjCProtoName(const Node *Ty_, StringView Protocol_)
: Node(KObjCProtoName), Ty(Ty_), Protocol(Protocol_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Protocol); }
bool isObjCObject() const {
return Ty->getKind() == KNameType &&
static_cast<const NameType *>(Ty)->getName() == "objc_object";
}
void printLeft(OutputStream &S) const override {
Ty->print(S);
S += "<";
S += Protocol;
S += ">";
}
};
class PointerType final : public Node {
const Node *Pointee;
public:
PointerType(const Node *Pointee_)
: Node(KPointerType, Pointee_->RHSComponentCache),
Pointee(Pointee_) {}
template<typename Fn> void match(Fn F) const { F(Pointee); }
bool hasRHSComponentSlow(OutputStream &S) const override {
return Pointee->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
// We rewrite objc_object<SomeProtocol>* into id<SomeProtocol>.
if (Pointee->getKind() != KObjCProtoName ||
!static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
Pointee->printLeft(s);
if (Pointee->hasArray(s))
s += " ";
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += "(";
s += "*";
} else {
const auto *objcProto = static_cast<const ObjCProtoName *>(Pointee);
s += "id<";
s += objcProto->Protocol;
s += ">";
}
}
void printRight(OutputStream &s) const override {
if (Pointee->getKind() != KObjCProtoName ||
!static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += ")";
Pointee->printRight(s);
}
}
};
enum class ReferenceKind {
LValue,
RValue,
};
// Represents either a LValue or an RValue reference type.
class ReferenceType : public Node {
const Node *Pointee;
ReferenceKind RK;
mutable bool Printing = false;
// Dig through any refs to refs, collapsing the ReferenceTypes as we go. The
// rule here is rvalue ref to rvalue ref collapses to a rvalue ref, and any
// other combination collapses to a lvalue ref.
std::pair<ReferenceKind, const Node *> collapse(OutputStream &S) const {
auto SoFar = std::make_pair(RK, Pointee);
for (;;) {
const Node *SN = SoFar.second->getSyntaxNode(S);
if (SN->getKind() != KReferenceType)
break;
auto *RT = static_cast<const ReferenceType *>(SN);
SoFar.second = RT->Pointee;
SoFar.first = std::min(SoFar.first, RT->RK);
}
return SoFar;
}
public:
ReferenceType(const Node *Pointee_, ReferenceKind RK_)
: Node(KReferenceType, Pointee_->RHSComponentCache),
Pointee(Pointee_), RK(RK_) {}
template<typename Fn> void match(Fn F) const { F(Pointee, RK); }
bool hasRHSComponentSlow(OutputStream &S) const override {
return Pointee->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
if (Printing)
return;
SwapAndRestore<bool> SavePrinting(Printing, true);
std::pair<ReferenceKind, const Node *> Collapsed = collapse(s);
Collapsed.second->printLeft(s);
if (Collapsed.second->hasArray(s))
s += " ";
if (Collapsed.second->hasArray(s) || Collapsed.second->hasFunction(s))
s += "(";
s += (Collapsed.first == ReferenceKind::LValue ? "&" : "&&");
}
void printRight(OutputStream &s) const override {
if (Printing)
return;
SwapAndRestore<bool> SavePrinting(Printing, true);
std::pair<ReferenceKind, const Node *> Collapsed = collapse(s);
if (Collapsed.second->hasArray(s) || Collapsed.second->hasFunction(s))
s += ")";
Collapsed.second->printRight(s);
}
};
class PointerToMemberType final : public Node {
const Node *ClassType;
const Node *MemberType;
public:
PointerToMemberType(const Node *ClassType_, const Node *MemberType_)
: Node(KPointerToMemberType, MemberType_->RHSComponentCache),
ClassType(ClassType_), MemberType(MemberType_) {}
template<typename Fn> void match(Fn F) const { F(ClassType, MemberType); }
bool hasRHSComponentSlow(OutputStream &S) const override {
return MemberType->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
MemberType->printLeft(s);
if (MemberType->hasArray(s) || MemberType->hasFunction(s))
s += "(";
else
s += " ";
ClassType->print(s);
s += "::*";
}
void printRight(OutputStream &s) const override {
if (MemberType->hasArray(s) || MemberType->hasFunction(s))
s += ")";
MemberType->printRight(s);
}
};
class NodeOrString {
const void *First;
const void *Second;
public:
/* implicit */ NodeOrString(StringView Str) {
const char *FirstChar = Str.begin();
const char *SecondChar = Str.end();
if (SecondChar == nullptr) {
assert(FirstChar == SecondChar);
++FirstChar, ++SecondChar;
}
First = static_cast<const void *>(FirstChar);
Second = static_cast<const void *>(SecondChar);
}
/* implicit */ NodeOrString(Node *N)
: First(static_cast<const void *>(N)), Second(nullptr) {}
NodeOrString() : First(nullptr), Second(nullptr) {}
bool isString() const { return Second && First; }
bool isNode() const { return First && !Second; }
bool isEmpty() const { return !First && !Second; }
StringView asString() const {
assert(isString());
return StringView(static_cast<const char *>(First),
static_cast<const char *>(Second));
}
const Node *asNode() const {
assert(isNode());
return static_cast<const Node *>(First);
}
};
class ArrayType final : public Node {
const Node *Base;
NodeOrString Dimension;
public:
ArrayType(const Node *Base_, NodeOrString Dimension_)
: Node(KArrayType,
/*RHSComponentCache=*/Cache::Yes,
/*ArrayCache=*/Cache::Yes),
Base(Base_), Dimension(Dimension_) {}
template<typename Fn> void match(Fn F) const { F(Base, Dimension); }
bool hasRHSComponentSlow(OutputStream &) const override { return true; }
bool hasArraySlow(OutputStream &) const override { return true; }
void printLeft(OutputStream &S) const override { Base->printLeft(S); }
void printRight(OutputStream &S) const override {
if (S.back() != ']')
S += " ";
S += "[";
if (Dimension.isString())
S += Dimension.asString();
else if (Dimension.isNode())
Dimension.asNode()->print(S);
S += "]";
Base->printRight(S);
}
};
class FunctionType final : public Node {
const Node *Ret;
NodeArray Params;
Qualifiers CVQuals;
FunctionRefQual RefQual;
const Node *ExceptionSpec;
public:
FunctionType(const Node *Ret_, NodeArray Params_, Qualifiers CVQuals_,
FunctionRefQual RefQual_, const Node *ExceptionSpec_)
: Node(KFunctionType,
/*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
/*FunctionCache=*/Cache::Yes),
Ret(Ret_), Params(Params_), CVQuals(CVQuals_), RefQual(RefQual_),
ExceptionSpec(ExceptionSpec_) {}
template<typename Fn> void match(Fn F) const {
F(Ret, Params, CVQuals, RefQual, ExceptionSpec);
}
bool hasRHSComponentSlow(OutputStream &) const override { return true; }
bool hasFunctionSlow(OutputStream &) const override { return true; }
// Handle C++'s ... quirky decl grammar by using the left & right
// distinction. Consider:
// int (*f(float))(char) {}
// f is a function that takes a float and returns a pointer to a function
// that takes a char and returns an int. If we're trying to print f, start
// by printing out the return types's left, then print our parameters, then
// finally print right of the return type.
void printLeft(OutputStream &S) const override {
Ret->printLeft(S);
S += " ";
}
void printRight(OutputStream &S) const override {
S += "(";
Params.printWithComma(S);
S += ")";
Ret->printRight(S);
if (CVQuals & QualConst)
S += " const";
if (CVQuals & QualVolatile)
S += " volatile";
if (CVQuals & QualRestrict)
S += " restrict";
if (RefQual == FrefQualLValue)
S += " &";
else if (RefQual == FrefQualRValue)
S += " &&";
if (ExceptionSpec != nullptr) {
S += ' ';
ExceptionSpec->print(S);
}
}
};
class NoexceptSpec : public Node {
const Node *E;
public:
NoexceptSpec(const Node *E_) : Node(KNoexceptSpec), E(E_) {}
template<typename Fn> void match(Fn F) const { F(E); }
void printLeft(OutputStream &S) const override {
S += "noexcept(";
E->print(S);
S += ")";
}
};
class DynamicExceptionSpec : public Node {
NodeArray Types;
public:
DynamicExceptionSpec(NodeArray Types_)
: Node(KDynamicExceptionSpec), Types(Types_) {}
template<typename Fn> void match(Fn F) const { F(Types); }
void printLeft(OutputStream &S) const override {
S += "throw(";
Types.printWithComma(S);
S += ')';
}
};
class FunctionEncoding final : public Node {
const Node *Ret;
const Node *Name;
NodeArray Params;
const Node *Attrs;
Qualifiers CVQuals;
FunctionRefQual RefQual;
public:
FunctionEncoding(const Node *Ret_, const Node *Name_, NodeArray Params_,
const Node *Attrs_, Qualifiers CVQuals_,
FunctionRefQual RefQual_)
: Node(KFunctionEncoding,
/*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
/*FunctionCache=*/Cache::Yes),
Ret(Ret_), Name(Name_), Params(Params_), Attrs(Attrs_),
CVQuals(CVQuals_), RefQual(RefQual_) {}
template<typename Fn> void match(Fn F) const {
F(Ret, Name, Params, Attrs, CVQuals, RefQual);
}
Qualifiers getCVQuals() const { return CVQuals; }
FunctionRefQual getRefQual() const { return RefQual; }
NodeArray getParams() const { return Params; }
const Node *getReturnType() const { return Ret; }
bool hasRHSComponentSlow(OutputStream &) const override { return true; }
bool hasFunctionSlow(OutputStream &) const override { return true; }
const Node *getName() const { return Name; }
void printLeft(OutputStream &S) const override {
if (Ret) {
Ret->printLeft(S);
if (!Ret->hasRHSComponent(S))
S += " ";
}
Name->print(S);
}
void printRight(OutputStream &S) const override {
S += "(";
Params.printWithComma(S);
S += ")";
if (Ret)
Ret->printRight(S);
if (CVQuals & QualConst)
S += " const";
if (CVQuals & QualVolatile)
S += " volatile";
if (CVQuals & QualRestrict)
S += " restrict";
if (RefQual == FrefQualLValue)
S += " &";
else if (RefQual == FrefQualRValue)
S += " &&";
if (Attrs != nullptr)
Attrs->print(S);
}
};
class LiteralOperator : public Node {
const Node *OpName;
public:
LiteralOperator(const Node *OpName_)
: Node(KLiteralOperator), OpName(OpName_) {}
template<typename Fn> void match(Fn F) const { F(OpName); }
void printLeft(OutputStream &S) const override {
S += "operator\"\" ";
OpName->print(S);
}
};
class SpecialName final : public Node {
const StringView Special;
const Node *Child;
public:
SpecialName(StringView Special_, const Node *Child_)
: Node(KSpecialName), Special(Special_), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Special, Child); }
void printLeft(OutputStream &S) const override {
S += Special;
Child->print(S);
}
};
class CtorVtableSpecialName final : public Node {
const Node *FirstType;
const Node *SecondType;
public:
CtorVtableSpecialName(const Node *FirstType_, const Node *SecondType_)
: Node(KCtorVtableSpecialName),
FirstType(FirstType_), SecondType(SecondType_) {}
template<typename Fn> void match(Fn F) const { F(FirstType, SecondType); }
void printLeft(OutputStream &S) const override {
S += "construction vtable for ";
FirstType->print(S);
S += "-in-";
SecondType->print(S);
}
};
struct NestedName : Node {
Node *Qual;
Node *Name;
NestedName(Node *Qual_, Node *Name_)
: Node(KNestedName), Qual(Qual_), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Qual, Name); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputStream &S) const override {
Qual->print(S);
S += "::";
Name->print(S);
}
};
struct LocalName : Node {
Node *Encoding;
Node *Entity;
LocalName(Node *Encoding_, Node *Entity_)
: Node(KLocalName), Encoding(Encoding_), Entity(Entity_) {}
template<typename Fn> void match(Fn F) const { F(Encoding, Entity); }
void printLeft(OutputStream &S) const override {
Encoding->print(S);
S += "::";
Entity->print(S);
}
};
class QualifiedName final : public Node {
// qualifier::name
const Node *Qualifier;
const Node *Name;
public:
QualifiedName(const Node *Qualifier_, const Node *Name_)
: Node(KQualifiedName), Qualifier(Qualifier_), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Qualifier, Name); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputStream &S) const override {
Qualifier->print(S);
S += "::";
Name->print(S);
}
};
class VectorType final : public Node {
const Node *BaseType;
const NodeOrString Dimension;
public:
VectorType(const Node *BaseType_, NodeOrString Dimension_)
: Node(KVectorType), BaseType(BaseType_),
Dimension(Dimension_) {}
template<typename Fn> void match(Fn F) const { F(BaseType, Dimension); }
void printLeft(OutputStream &S) const override {
BaseType->print(S);
S += " vector[";
if (Dimension.isNode())
Dimension.asNode()->print(S);
else if (Dimension.isString())
S += Dimension.asString();
S += "]";
}
};
class PixelVectorType final : public Node {
const NodeOrString Dimension;
public:
PixelVectorType(NodeOrString Dimension_)
: Node(KPixelVectorType), Dimension(Dimension_) {}
template<typename Fn> void match(Fn F) const { F(Dimension); }
void printLeft(OutputStream &S) const override {
// FIXME: This should demangle as "vector pixel".
S += "pixel vector[";
S += Dimension.asString();
S += "]";
}
};
enum class TemplateParamKind { Type, NonType, Template };
/// An invented name for a template parameter for which we don't have a
/// corresponding template argument.
///
/// This node is created when parsing the <lambda-sig> for a lambda with
/// explicit template arguments, which might be referenced in the parameter
/// types appearing later in the <lambda-sig>.
class SyntheticTemplateParamName final : public Node {
TemplateParamKind Kind;
unsigned Index;
public:
SyntheticTemplateParamName(TemplateParamKind Kind_, unsigned Index_)
: Node(KSyntheticTemplateParamName), Kind(Kind_), Index(Index_) {}
template<typename Fn> void match(Fn F) const { F(Kind, Index); }
void printLeft(OutputStream &S) const override {
switch (Kind) {
case TemplateParamKind::Type:
S += "$T";
break;
case TemplateParamKind::NonType:
S += "$N";
break;
case TemplateParamKind::Template:
S += "$TT";
break;
}
if (Index > 0)
S << Index - 1;
}
};
/// A template type parameter declaration, 'typename T'.
class TypeTemplateParamDecl final : public Node {
Node *Name;
public:
TypeTemplateParamDecl(Node *Name_)
: Node(KTypeTemplateParamDecl, Cache::Yes), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Name); }
void printLeft(OutputStream &S) const override {
S += "typename ";
}
void printRight(OutputStream &S) const override {
Name->print(S);
}
};
/// A non-type template parameter declaration, 'int N'.
class NonTypeTemplateParamDecl final : public Node {
Node *Name;
Node *Type;
public:
NonTypeTemplateParamDecl(Node *Name_, Node *Type_)
: Node(KNonTypeTemplateParamDecl, Cache::Yes), Name(Name_), Type(Type_) {}
template<typename Fn> void match(Fn F) const { F(Name, Type); }
void printLeft(OutputStream &S) const override {
Type->printLeft(S);
if (!Type->hasRHSComponent(S))
S += " ";
}
void printRight(OutputStream &S) const override {
Name->print(S);
Type->printRight(S);
}
};
/// A template template parameter declaration,
/// 'template<typename T> typename N'.
class TemplateTemplateParamDecl final : public Node {
Node *Name;
NodeArray Params;
public:
TemplateTemplateParamDecl(Node *Name_, NodeArray Params_)
: Node(KTemplateTemplateParamDecl, Cache::Yes), Name(Name_),
Params(Params_) {}
template<typename Fn> void match(Fn F) const { F(Name, Params); }
void printLeft(OutputStream &S) const override {
S += "template<";
Params.printWithComma(S);
S += "> typename ";
}
void printRight(OutputStream &S) const override {
Name->print(S);
}
};
/// A template parameter pack declaration, 'typename ...T'.
class TemplateParamPackDecl final : public Node {
Node *Param;
public:
TemplateParamPackDecl(Node *Param_)
: Node(KTemplateParamPackDecl, Cache::Yes), Param(Param_) {}
template<typename Fn> void match(Fn F) const { F(Param); }
void printLeft(OutputStream &S) const override {
Param->printLeft(S);
S += "...";
}
void printRight(OutputStream &S) const override {
Param->printRight(S);
}
};
/// An unexpanded parameter pack (either in the expression or type context). If
/// this AST is correct, this node will have a ParameterPackExpansion node above
/// it.
///
/// This node is created when some <template-args> are found that apply to an
/// <encoding>, and is stored in the TemplateParams table. In order for this to
/// appear in the final AST, it has to referenced via a <template-param> (ie,
/// T_).
class ParameterPack final : public Node {
NodeArray Data;
// Setup OutputStream for a pack expansion unless we're already expanding one.
void initializePackExpansion(OutputStream &S) const {
if (S.CurrentPackMax == std::numeric_limits<unsigned>::max()) {
S.CurrentPackMax = static_cast<unsigned>(Data.size());
S.CurrentPackIndex = 0;
}
}
public:
ParameterPack(NodeArray Data_) : Node(KParameterPack), Data(Data_) {
ArrayCache = FunctionCache = RHSComponentCache = Cache::Unknown;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->ArrayCache == Cache::No;
}))
ArrayCache = Cache::No;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->FunctionCache == Cache::No;
}))
FunctionCache = Cache::No;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->RHSComponentCache == Cache::No;
}))
RHSComponentCache = Cache::No;
}
template<typename Fn> void match(Fn F) const { F(Data); }
bool hasRHSComponentSlow(OutputStream &S) const override {
initializePackExpansion(S);
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasRHSComponent(S);
}
bool hasArraySlow(OutputStream &S) const override {
initializePackExpansion(S);
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasArray(S);
}
bool hasFunctionSlow(OutputStream &S) const override {
initializePackExpansion(S);
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasFunction(S);
}
const Node *getSyntaxNode(OutputStream &S) const override {
initializePackExpansion(S);
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() ? Data[Idx]->getSyntaxNode(S) : this;
}
void printLeft(OutputStream &S) const override {
initializePackExpansion(S);
size_t Idx = S.CurrentPackIndex;
if (Idx < Data.size())
Data[Idx]->printLeft(S);
}
void printRight(OutputStream &S) const override {
initializePackExpansion(S);
size_t Idx = S.CurrentPackIndex;
if (Idx < Data.size())
Data[Idx]->printRight(S);
}
};
/// A variadic template argument. This node represents an occurrence of
/// J<something>E in some <template-args>. It isn't itself unexpanded, unless
/// one of it's Elements is. The parser inserts a ParameterPack into the
/// TemplateParams table if the <template-args> this pack belongs to apply to an
/// <encoding>.
class TemplateArgumentPack final : public Node {
NodeArray Elements;
public:
TemplateArgumentPack(NodeArray Elements_)
: Node(KTemplateArgumentPack), Elements(Elements_) {}
template<typename Fn> void match(Fn F) const { F(Elements); }
NodeArray getElements() const { return Elements; }
void printLeft(OutputStream &S) const override {
Elements.printWithComma(S);
}
};
/// A pack expansion. Below this node, there are some unexpanded ParameterPacks
/// which each have Child->ParameterPackSize elements.
class ParameterPackExpansion final : public Node {
const Node *Child;
public:
ParameterPackExpansion(const Node *Child_)
: Node(KParameterPackExpansion), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Child); }
const Node *getChild() const { return Child; }
void printLeft(OutputStream &S) const override {
constexpr unsigned Max = std::numeric_limits<unsigned>::max();
SwapAndRestore<unsigned> SavePackIdx(S.CurrentPackIndex, Max);
SwapAndRestore<unsigned> SavePackMax(S.CurrentPackMax, Max);
size_t StreamPos = S.getCurrentPosition();
// Print the first element in the pack. If Child contains a ParameterPack,
// it will set up S.CurrentPackMax and print the first element.
Child->print(S);
// No ParameterPack was found in Child. This can occur if we've found a pack
// expansion on a <function-param>.
if (S.CurrentPackMax == Max) {
S += "...";
return;
}
// We found a ParameterPack, but it has no elements. Erase whatever we may
// of printed.
if (S.CurrentPackMax == 0) {
S.setCurrentPosition(StreamPos);
return;
}
// Else, iterate through the rest of the elements in the pack.
for (unsigned I = 1, E = S.CurrentPackMax; I < E; ++I) {
S += ", ";
S.CurrentPackIndex = I;
Child->print(S);
}
}
};
class TemplateArgs final : public Node {
NodeArray Params;
public:
TemplateArgs(NodeArray Params_) : Node(KTemplateArgs), Params(Params_) {}
template<typename Fn> void match(Fn F) const { F(Params); }
NodeArray getParams() { return Params; }
void printLeft(OutputStream &S) const override {
S += "<";
Params.printWithComma(S);
if (S.back() == '>')
S += " ";
S += ">";
}
};
/// A forward-reference to a template argument that was not known at the point
/// where the template parameter name was parsed in a mangling.
///
/// This is created when demangling the name of a specialization of a
/// conversion function template:
///
/// \code
/// struct A {
/// template<typename T> operator T*();
/// };
/// \endcode
///
/// When demangling a specialization of the conversion function template, we
/// encounter the name of the template (including the \c T) before we reach
/// the template argument list, so we cannot substitute the parameter name
/// for the corresponding argument while parsing. Instead, we create a
/// \c ForwardTemplateReference node that is resolved after we parse the
/// template arguments.
struct ForwardTemplateReference : Node {
size_t Index;
Node *Ref = nullptr;
// If we're currently printing this node. It is possible (though invalid) for
// a forward template reference to refer to itself via a substitution. This
// creates a cyclic AST, which will stack overflow printing. To fix this, bail
// out if more than one print* function is active.
mutable bool Printing = false;
ForwardTemplateReference(size_t Index_)
: Node(KForwardTemplateReference, Cache::Unknown, Cache::Unknown,
Cache::Unknown),
Index(Index_) {}
// We don't provide a matcher for these, because the value of the node is
// not determined by its construction parameters, and it generally needs
// special handling.
template<typename Fn> void match(Fn F) const = delete;
bool hasRHSComponentSlow(OutputStream &S) const override {
if (Printing)
return false;
SwapAndRestore<bool> SavePrinting(Printing, true);
return Ref->hasRHSComponent(S);
}
bool hasArraySlow(OutputStream &S) const override {
if (Printing)
return false;
SwapAndRestore<bool> SavePrinting(Printing, true);
return Ref->hasArray(S);
}
bool hasFunctionSlow(OutputStream &S) const override {
if (Printing)
return false;
SwapAndRestore<bool> SavePrinting(Printing, true);
return Ref->hasFunction(S);
}
const Node *getSyntaxNode(OutputStream &S) const override {
if (Printing)
return this;
SwapAndRestore<bool> SavePrinting(Printing, true);
return Ref->getSyntaxNode(S);
}
void printLeft(OutputStream &S) const override {
if (Printing)
return;
SwapAndRestore<bool> SavePrinting(Printing, true);
Ref->printLeft(S);
}
void printRight(OutputStream &S) const override {
if (Printing)
return;
SwapAndRestore<bool> SavePrinting(Printing, true);
Ref->printRight(S);
}
};
struct NameWithTemplateArgs : Node {
// name<template_args>
Node *Name;
Node *TemplateArgs;
NameWithTemplateArgs(Node *Name_, Node *TemplateArgs_)
: Node(KNameWithTemplateArgs), Name(Name_), TemplateArgs(TemplateArgs_) {}
template<typename Fn> void match(Fn F) const { F(Name, TemplateArgs); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputStream &S) const override {
Name->print(S);
TemplateArgs->print(S);
}
};
class GlobalQualifiedName final : public Node {
Node *Child;
public:
GlobalQualifiedName(Node* Child_)
: Node(KGlobalQualifiedName), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Child); }
StringView getBaseName() const override { return Child->getBaseName(); }
void printLeft(OutputStream &S) const override {
S += "::";
Child->print(S);
}
};
struct StdQualifiedName : Node {
Node *Child;
StdQualifiedName(Node *Child_) : Node(KStdQualifiedName), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Child); }
StringView getBaseName() const override { return Child->getBaseName(); }
void printLeft(OutputStream &S) const override {
S += "std::";
Child->print(S);
}
};
enum class SpecialSubKind {
allocator,
basic_string,
string,
istream,
ostream,
iostream,
};
class ExpandedSpecialSubstitution final : public Node {
SpecialSubKind SSK;
public:
ExpandedSpecialSubstitution(SpecialSubKind SSK_)
: Node(KExpandedSpecialSubstitution), SSK(SSK_) {}
template<typename Fn> void match(Fn F) const { F(SSK); }
StringView getBaseName() const override {
switch (SSK) {
case SpecialSubKind::allocator:
return StringView("allocator");
case SpecialSubKind::basic_string:
return StringView("basic_string");
case SpecialSubKind::string:
return StringView("basic_string");
case SpecialSubKind::istream:
return StringView("basic_istream");
case SpecialSubKind::ostream:
return StringView("basic_ostream");
case SpecialSubKind::iostream:
return StringView("basic_iostream");
}
DEMANGLE_UNREACHABLE;
}
void printLeft(OutputStream &S) const override {
switch (SSK) {
case SpecialSubKind::allocator:
S += "std::allocator";
break;
case SpecialSubKind::basic_string:
S += "std::basic_string";
break;
case SpecialSubKind::string:
S += "std::basic_string<char, std::char_traits<char>, "
"std::allocator<char> >";
break;
case SpecialSubKind::istream:
S += "std::basic_istream<char, std::char_traits<char> >";
break;
case SpecialSubKind::ostream:
S += "std::basic_ostream<char, std::char_traits<char> >";
break;
case SpecialSubKind::iostream:
S += "std::basic_iostream<char, std::char_traits<char> >";
break;
}
}
};
class SpecialSubstitution final : public Node {
public:
SpecialSubKind SSK;
SpecialSubstitution(SpecialSubKind SSK_)
: Node(KSpecialSubstitution), SSK(SSK_) {}
template<typename Fn> void match(Fn F) const { F(SSK); }
StringView getBaseName() const override {
switch (SSK) {
case SpecialSubKind::allocator:
return StringView("allocator");
case SpecialSubKind::basic_string:
return StringView("basic_string");
case SpecialSubKind::string:
return StringView("string");
case SpecialSubKind::istream:
return StringView("istream");
case SpecialSubKind::ostream:
return StringView("ostream");
case SpecialSubKind::iostream:
return StringView("iostream");
}
DEMANGLE_UNREACHABLE;
}
void printLeft(OutputStream &S) const override {
switch (SSK) {
case SpecialSubKind::allocator:
S += "std::allocator";
break;
case SpecialSubKind::basic_string:
S += "std::basic_string";
break;
case SpecialSubKind::string:
S += "std::string";
break;
case SpecialSubKind::istream:
S += "std::istream";
break;
case SpecialSubKind::ostream:
S += "std::ostream";
break;
case SpecialSubKind::iostream:
S += "std::iostream";
break;
}
}
};
class CtorDtorName final : public Node {
const Node *Basename;
const bool IsDtor;
const int Variant;
public:
CtorDtorName(const Node *Basename_, bool IsDtor_, int Variant_)
: Node(KCtorDtorName), Basename(Basename_), IsDtor(IsDtor_),
Variant(Variant_) {}
template<typename Fn> void match(Fn F) const { F(Basename, IsDtor, Variant); }
void printLeft(OutputStream &S) const override {
if (IsDtor)
S += "~";
S += Basename->getBaseName();
}
};
class DtorName : public Node {
const Node *Base;
public:
DtorName(const Node *Base_) : Node(KDtorName), Base(Base_) {}
template<typename Fn> void match(Fn F) const { F(Base); }
void printLeft(OutputStream &S) const override {
S += "~";
Base->printLeft(S);
}
};
class UnnamedTypeName : public Node {
const StringView Count;
public:
UnnamedTypeName(StringView Count_) : Node(KUnnamedTypeName), Count(Count_) {}
template<typename Fn> void match(Fn F) const { F(Count); }
void printLeft(OutputStream &S) const override {
S += "'unnamed";
S += Count;
S += "\'";
}
};
class ClosureTypeName : public Node {
NodeArray TemplateParams;
NodeArray Params;
StringView Count;
public:
ClosureTypeName(NodeArray TemplateParams_, NodeArray Params_,
StringView Count_)
: Node(KClosureTypeName), TemplateParams(TemplateParams_),
Params(Params_), Count(Count_) {}
template<typename Fn> void match(Fn F) const {
F(TemplateParams, Params, Count);
}
void printDeclarator(OutputStream &S) const {
if (!TemplateParams.empty()) {
S += "<";
TemplateParams.printWithComma(S);
S += ">";
}
S += "(";
Params.printWithComma(S);
S += ")";
}
void printLeft(OutputStream &S) const override {
S += "\'lambda";
S += Count;
S += "\'";
printDeclarator(S);
}
};
class StructuredBindingName : public Node {
NodeArray Bindings;
public:
StructuredBindingName(NodeArray Bindings_)
: Node(KStructuredBindingName), Bindings(Bindings_) {}
template<typename Fn> void match(Fn F) const { F(Bindings); }
void printLeft(OutputStream &S) const override {
S += '[';
Bindings.printWithComma(S);
S += ']';
}
};
// -- Expression Nodes --
class BinaryExpr : public Node {
const Node *LHS;
const StringView InfixOperator;
const Node *RHS;
public:
BinaryExpr(const Node *LHS_, StringView InfixOperator_, const Node *RHS_)
: Node(KBinaryExpr), LHS(LHS_), InfixOperator(InfixOperator_), RHS(RHS_) {
}
template<typename Fn> void match(Fn F) const { F(LHS, InfixOperator, RHS); }
void printLeft(OutputStream &S) const override {
// might be a template argument expression, then we need to disambiguate
// with parens.
if (InfixOperator == ">")
S += "(";
S += "(";
LHS->print(S);
S += ") ";
S += InfixOperator;
S += " (";
RHS->print(S);
S += ")";
if (InfixOperator == ">")
S += ")";
}
};
class ArraySubscriptExpr : public Node {
const Node *Op1;
const Node *Op2;
public:
ArraySubscriptExpr(const Node *Op1_, const Node *Op2_)
: Node(KArraySubscriptExpr), Op1(Op1_), Op2(Op2_) {}
template<typename Fn> void match(Fn F) const { F(Op1, Op2); }
void printLeft(OutputStream &S) const override {
S += "(";
Op1->print(S);
S += ")[";
Op2->print(S);
S += "]";
}
};
class PostfixExpr : public Node {
const Node *Child;
const StringView Operator;
public:
PostfixExpr(const Node *Child_, StringView Operator_)
: Node(KPostfixExpr), Child(Child_), Operator(Operator_) {}
template<typename Fn> void match(Fn F) const { F(Child, Operator); }
void printLeft(OutputStream &S) const override {
S += "(";
Child->print(S);
S += ")";
S += Operator;
}
};
class ConditionalExpr : public Node {
const Node *Cond;
const Node *Then;
const Node *Else;
public:
ConditionalExpr(const Node *Cond_, const Node *Then_, const Node *Else_)
: Node(KConditionalExpr), Cond(Cond_), Then(Then_), Else(Else_) {}
template<typename Fn> void match(Fn F) const { F(Cond, Then, Else); }
void printLeft(OutputStream &S) const override {
S += "(";
Cond->print(S);
S += ") ? (";
Then->print(S);
S += ") : (";
Else->print(S);
S += ")";
}
};
class MemberExpr : public Node {
const Node *LHS;
const StringView Kind;
const Node *RHS;
public:
MemberExpr(const Node *LHS_, StringView Kind_, const Node *RHS_)
: Node(KMemberExpr), LHS(LHS_), Kind(Kind_), RHS(RHS_) {}
template<typename Fn> void match(Fn F) const { F(LHS, Kind, RHS); }
void printLeft(OutputStream &S) const override {
LHS->print(S);
S += Kind;
RHS->print(S);
}
};
class EnclosingExpr : public Node {
const StringView Prefix;
const Node *Infix;
const StringView Postfix;
public:
EnclosingExpr(StringView Prefix_, Node *Infix_, StringView Postfix_)
: Node(KEnclosingExpr), Prefix(Prefix_), Infix(Infix_),
Postfix(Postfix_) {}
template<typename Fn> void match(Fn F) const { F(Prefix, Infix, Postfix); }
void printLeft(OutputStream &S) const override {
S += Prefix;
Infix->print(S);
S += Postfix;
}
};
class CastExpr : public Node {
// cast_kind<to>(from)
const StringView CastKind;
const Node *To;
const Node *From;
public:
CastExpr(StringView CastKind_, const Node *To_, const Node *From_)
: Node(KCastExpr), CastKind(CastKind_), To(To_), From(From_) {}
template<typename Fn> void match(Fn F) const { F(CastKind, To, From); }
void printLeft(OutputStream &S) const override {
S += CastKind;
S += "<";
To->printLeft(S);
S += ">(";
From->printLeft(S);
S += ")";
}
};
class SizeofParamPackExpr : public Node {
const Node *Pack;
public:
SizeofParamPackExpr(const Node *Pack_)
: Node(KSizeofParamPackExpr), Pack(Pack_) {}
template<typename Fn> void match(Fn F) const { F(Pack); }
void printLeft(OutputStream &S) const override {
S += "sizeof...(";
ParameterPackExpansion PPE(Pack);
PPE.printLeft(S);
S += ")";
}
};
class CallExpr : public Node {
const Node *Callee;
NodeArray Args;
public:
CallExpr(const Node *Callee_, NodeArray Args_)
: Node(KCallExpr), Callee(Callee_), Args(Args_) {}
template<typename Fn> void match(Fn F) const { F(Callee, Args); }
void printLeft(OutputStream &S) const override {
Callee->print(S);
S += "(";
Args.printWithComma(S);
S += ")";
}
};
class NewExpr : public Node {
// new (expr_list) type(init_list)
NodeArray ExprList;
Node *Type;
NodeArray InitList;
bool IsGlobal; // ::operator new ?
bool IsArray; // new[] ?
public:
NewExpr(NodeArray ExprList_, Node *Type_, NodeArray InitList_, bool IsGlobal_,
bool IsArray_)
: Node(KNewExpr), ExprList(ExprList_), Type(Type_), InitList(InitList_),
IsGlobal(IsGlobal_), IsArray(IsArray_) {}
template<typename Fn> void match(Fn F) const {
F(ExprList, Type, InitList, IsGlobal, IsArray);
}
void printLeft(OutputStream &S) const override {
if (IsGlobal)
S += "::operator ";
S += "new";
if (IsArray)
S += "[]";
S += ' ';
if (!ExprList.empty()) {
S += "(";
ExprList.printWithComma(S);
S += ")";
}
Type->print(S);
if (!InitList.empty()) {
S += "(";
InitList.printWithComma(S);
S += ")";
}
}
};
class DeleteExpr : public Node {
Node *Op;
bool IsGlobal;
bool IsArray;
public:
DeleteExpr(Node *Op_, bool IsGlobal_, bool IsArray_)
: Node(KDeleteExpr), Op(Op_), IsGlobal(IsGlobal_), IsArray(IsArray_) {}
template<typename Fn> void match(Fn F) const { F(Op, IsGlobal, IsArray); }
void printLeft(OutputStream &S) const override {
if (IsGlobal)
S += "::";
S += "delete";
if (IsArray)
S += "[] ";
Op->print(S);
}
};
class PrefixExpr : public Node {
StringView Prefix;
Node *Child;
public:
PrefixExpr(StringView Prefix_, Node *Child_)
: Node(KPrefixExpr), Prefix(Prefix_), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Prefix, Child); }
void printLeft(OutputStream &S) const override {
S += Prefix;
S += "(";
Child->print(S);
S += ")";
}
};
class FunctionParam : public Node {
StringView Number;
public:
FunctionParam(StringView Number_) : Node(KFunctionParam), Number(Number_) {}
template<typename Fn> void match(Fn F) const { F(Number); }
void printLeft(OutputStream &S) const override {
S += "fp";
S += Number;
}
};
class ConversionExpr : public Node {
const Node *Type;
NodeArray Expressions;
public:
ConversionExpr(const Node *Type_, NodeArray Expressions_)
: Node(KConversionExpr), Type(Type_), Expressions(Expressions_) {}
template<typename Fn> void match(Fn F) const { F(Type, Expressions); }
void printLeft(OutputStream &S) const override {
S += "(";
Type->print(S);
S += ")(";
Expressions.printWithComma(S);
S += ")";
}
};
class InitListExpr : public Node {
const Node *Ty;
NodeArray Inits;
public:
InitListExpr(const Node *Ty_, NodeArray Inits_)
: Node(KInitListExpr), Ty(Ty_), Inits(Inits_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Inits); }
void printLeft(OutputStream &S) const override {
if (Ty)
Ty->print(S);
S += '{';
Inits.printWithComma(S);
S += '}';
}
};
class BracedExpr : public Node {
const Node *Elem;
const Node *Init;
bool IsArray;
public:
BracedExpr(const Node *Elem_, const Node *Init_, bool IsArray_)
: Node(KBracedExpr), Elem(Elem_), Init(Init_), IsArray(IsArray_) {}
template<typename Fn> void match(Fn F) const { F(Elem, Init, IsArray); }
void printLeft(OutputStream &S) const override {
if (IsArray) {
S += '[';
Elem->print(S);
S += ']';
} else {
S += '.';
Elem->print(S);
}
if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
S += " = ";
Init->print(S);
}
};
class BracedRangeExpr : public Node {
const Node *First;
const Node *Last;
const Node *Init;
public:
BracedRangeExpr(const Node *First_, const Node *Last_, const Node *Init_)
: Node(KBracedRangeExpr), First(First_), Last(Last_), Init(Init_) {}
template<typename Fn> void match(Fn F) const { F(First, Last, Init); }
void printLeft(OutputStream &S) const override {
S += '[';
First->print(S);
S += " ... ";
Last->print(S);
S += ']';
if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
S += " = ";
Init->print(S);
}
};
class FoldExpr : public Node {
const Node *Pack, *Init;
StringView OperatorName;
bool IsLeftFold;
public:
FoldExpr(bool IsLeftFold_, StringView OperatorName_, const Node *Pack_,
const Node *Init_)
: Node(KFoldExpr), Pack(Pack_), Init(Init_), OperatorName(OperatorName_),
IsLeftFold(IsLeftFold_) {}
template<typename Fn> void match(Fn F) const {
F(IsLeftFold, OperatorName, Pack, Init);
}
void printLeft(OutputStream &S) const override {
auto PrintPack = [&] {
S += '(';
ParameterPackExpansion(Pack).print(S);
S += ')';
};
S += '(';
if (IsLeftFold) {
// init op ... op pack
if (Init != nullptr) {
Init->print(S);
S += ' ';
S += OperatorName;
S += ' ';
}
// ... op pack
S += "... ";
S += OperatorName;
S += ' ';
PrintPack();
} else { // !IsLeftFold
// pack op ...
PrintPack();
S += ' ';
S += OperatorName;
S += " ...";
// pack op ... op init
if (Init != nullptr) {
S += ' ';
S += OperatorName;
S += ' ';
Init->print(S);
}
}
S += ')';
}
};
class ThrowExpr : public Node {
const Node *Op;
public:
ThrowExpr(const Node *Op_) : Node(KThrowExpr), Op(Op_) {}
template<typename Fn> void match(Fn F) const { F(Op); }
void printLeft(OutputStream &S) const override {
S += "throw ";
Op->print(S);
}
};
// MSVC __uuidof extension, generated by clang in -fms-extensions mode.
class UUIDOfExpr : public Node {
Node *Operand;
public:
UUIDOfExpr(Node *Operand_) : Node(KUUIDOfExpr), Operand(Operand_) {}
template<typename Fn> void match(Fn F) const { F(Operand); }
void printLeft(OutputStream &S) const override {
S << "__uuidof(";
Operand->print(S);
S << ")";
}
};
class BoolExpr : public Node {
bool Value;
public:
BoolExpr(bool Value_) : Node(KBoolExpr), Value(Value_) {}
template<typename Fn> void match(Fn F) const { F(Value); }
void printLeft(OutputStream &S) const override {
S += Value ? StringView("true") : StringView("false");
}
};
class StringLiteral : public Node {
const Node *Type;
public:
StringLiteral(const Node *Type_) : Node(KStringLiteral), Type(Type_) {}
template<typename Fn> void match(Fn F) const { F(Type); }
void printLeft(OutputStream &S) const override {
S += "\"<";
Type->print(S);
S += ">\"";
}
};
class LambdaExpr : public Node {
const Node *Type;
void printLambdaDeclarator(OutputStream &S) const;
public:
LambdaExpr(const Node *Type_) : Node(KLambdaExpr), Type(Type_) {}
template<typename Fn> void match(Fn F) const { F(Type); }
void printLeft(OutputStream &S) const override {
S += "[]";
printLambdaDeclarator(S);
S += "{...}";
}
};
class IntegerCastExpr : public Node {
// ty(integer)
const Node *Ty;
StringView Integer;
public:
IntegerCastExpr(const Node *Ty_, StringView Integer_)
: Node(KIntegerCastExpr), Ty(Ty_), Integer(Integer_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Integer); }
void printLeft(OutputStream &S) const override {
S += "(";
Ty->print(S);
S += ")";
S += Integer;
}
};
class IntegerLiteral : public Node {
StringView Type;
StringView Value;
public:
IntegerLiteral(StringView Type_, StringView Value_)
: Node(KIntegerLiteral), Type(Type_), Value(Value_) {}
template<typename Fn> void match(Fn F) const { F(Type, Value); }
void printLeft(OutputStream &S) const override {
if (Type.size() > 3) {
S += "(";
S += Type;
S += ")";
}
if (Value[0] == 'n') {
S += "-";
S += Value.dropFront(1);
} else
S += Value;
if (Type.size() <= 3)
S += Type;
}
};
template <class Float> struct FloatData;
namespace float_literal_impl {
constexpr Node::Kind getFloatLiteralKind(float *) {
return Node::KFloatLiteral;
}
constexpr Node::Kind getFloatLiteralKind(double *) {
return Node::KDoubleLiteral;
}
constexpr Node::Kind getFloatLiteralKind(long double *) {
return Node::KLongDoubleLiteral;
}
}
template <class Float> class FloatLiteralImpl : public Node {
const StringView Contents;
static constexpr Kind KindForClass =
float_literal_impl::getFloatLiteralKind((Float *)nullptr);
public:
FloatLiteralImpl(StringView Contents_)
: Node(KindForClass), Contents(Contents_) {}
template<typename Fn> void match(Fn F) const { F(Contents); }
void printLeft(OutputStream &s) const override {
const char *first = Contents.begin();
const char *last = Contents.end() + 1;
const size_t N = FloatData<Float>::mangled_size;
if (static_cast<std::size_t>(last - first) > N) {
last = first + N;
union {
Float value;
char buf[sizeof(Float)];
};
const char *t = first;
char *e = buf;
for (; t != last; ++t, ++e) {
unsigned d1 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
: static_cast<unsigned>(*t - 'a' + 10);
++t;
unsigned d0 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
: static_cast<unsigned>(*t - 'a' + 10);
*e = static_cast<char>((d1 << 4) + d0);
}
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
std::reverse(buf, e);
#endif
char num[FloatData<Float>::max_demangled_size] = {0};
int n = snprintf(num, sizeof(num), FloatData<Float>::spec, value);
s += StringView(num, num + n);
}
}
};
using FloatLiteral = FloatLiteralImpl<float>;
using DoubleLiteral = FloatLiteralImpl<double>;
using LongDoubleLiteral = FloatLiteralImpl<long double>;
/// Visit the node. Calls \c F(P), where \c P is the node cast to the
/// appropriate derived class.
template<typename Fn>
void Node::visit(Fn F) const {
switch (K) {
#define CASE(X) case K ## X: return F(static_cast<const X*>(this));
FOR_EACH_NODE_KIND(CASE)
#undef CASE
}
assert(0 && "unknown mangling node kind");
}
/// Determine the kind of a node from its type.
template<typename NodeT> struct NodeKind;
#define SPECIALIZATION(X) \
template<> struct NodeKind<X> { \
static constexpr Node::Kind Kind = Node::K##X; \
static constexpr const char *name() { return #X; } \
};
FOR_EACH_NODE_KIND(SPECIALIZATION)
#undef SPECIALIZATION
#undef FOR_EACH_NODE_KIND
inline void LambdaExpr::printLambdaDeclarator(OutputStream &S) const {
struct LambdaDeclaratorPrinter {
OutputStream &S;
void operator()(const ClosureTypeName *LambdaType) {
LambdaType->printDeclarator(S);
}
// Walk through any qualifiers to find the lambda-expression.
void operator()(const SpecialName *Name) {
Name->match([&](StringView, const Node *Name) { Name->visit(*this); });
}
void operator()(const NestedName *Name) {
Name->match([&](const Node *, const Node *Name) { Name->visit(*this); });
}
void operator()(const LocalName *Name) {
Name->match([&](const Node *, const Node *Name) { Name->visit(*this); });
}
void operator()(const QualifiedName *Name) {
Name->match([&](const Node *, const Node *Name) { Name->visit(*this); });
}
void operator()(const GlobalQualifiedName *Name) {
Name->match([&](const Node *Child) { Child->visit(*this); });
}
void operator()(const StdQualifiedName *Name) {
Name->match([&](const Node *Child) { Child->visit(*this); });
}
void operator()(const Node *) {
// If we can't find the lambda type, just print '[]{...}'.
}
};
return Type->visit(LambdaDeclaratorPrinter{S});
}
template <class T, size_t N>
class PODSmallVector {
static_assert(std::is_pod<T>::value,
"T is required to be a plain old data type");
T* First;
T* Last;
T* Cap;
T Inline[N];
bool isInline() const { return First == Inline; }
void clearInline() {
First = Inline;
Last = Inline;
Cap = Inline + N;
}
void reserve(size_t NewCap) {
size_t S = size();
if (isInline()) {
auto* Tmp = static_cast<T*>(std::malloc(NewCap * sizeof(T)));
if (Tmp == nullptr)
std::terminate();
std::copy(First, Last, Tmp);
First = Tmp;
} else {
First = static_cast<T*>(std::realloc(First, NewCap * sizeof(T)));
if (First == nullptr)
std::terminate();
}
Last = First + S;
Cap = First + NewCap;
}
public:
PODSmallVector() : First(Inline), Last(First), Cap(Inline + N) {}
PODSmallVector(const PODSmallVector&) = delete;
PODSmallVector& operator=(const PODSmallVector&) = delete;
PODSmallVector(PODSmallVector&& Other) : PODSmallVector() {
if (Other.isInline()) {
std::copy(Other.begin(), Other.end(), First);
Last = First + Other.size();
Other.clear();
return;
}
First = Other.First;
Last = Other.Last;
Cap = Other.Cap;
Other.clearInline();
}
PODSmallVector& operator=(PODSmallVector&& Other) {
if (Other.isInline()) {
if (!isInline()) {
std::free(First);
clearInline();
}
std::copy(Other.begin(), Other.end(), First);
Last = First + Other.size();
Other.clear();
return *this;
}
if (isInline()) {
First = Other.First;
Last = Other.Last;
Cap = Other.Cap;
Other.clearInline();
return *this;
}
std::swap(First, Other.First);
std::swap(Last, Other.Last);
std::swap(Cap, Other.Cap);
Other.clear();
return *this;
}
void push_back(const T& Elem) {
if (Last == Cap)
reserve(size() * 2);
*Last++ = Elem;
}
void pop_back() {
assert(Last != First && "Popping empty vector!");
--Last;
}
void dropBack(size_t Index) {
assert(Index <= size() && "dropBack() can't expand!");
Last = First + Index;
}
T* begin() { return First; }
T* end() { return Last; }
bool empty() const { return First == Last; }
size_t size() const { return static_cast<size_t>(Last - First); }
T& back() {
assert(Last != First && "Calling back() on empty vector!");
return *(Last - 1);
}
T& operator[](size_t Index) {
assert(Index < size() && "Invalid access!");
return *(begin() + Index);
}
void clear() { Last = First; }
~PODSmallVector() {
if (!isInline())
std::free(First);
}
};
template <typename Derived, typename Alloc> struct AbstractManglingParser {
const char *First;
const char *Last;
// Name stack, this is used by the parser to hold temporary names that were
// parsed. The parser collapses multiple names into new nodes to construct
// the AST. Once the parser is finished, names.size() == 1.
PODSmallVector<Node *, 32> Names;
// Substitution table. Itanium supports name substitutions as a means of
// compression. The string "S42_" refers to the 44nd entry (base-36) in this
// table.
PODSmallVector<Node *, 32> Subs;
using TemplateParamList = PODSmallVector<Node *, 8>;
class ScopedTemplateParamList {
AbstractManglingParser *Parser;
size_t OldNumTemplateParamLists;
TemplateParamList Params;
public:
ScopedTemplateParamList(AbstractManglingParser *Parser)
: Parser(Parser),
OldNumTemplateParamLists(Parser->TemplateParams.size()) {
Parser->TemplateParams.push_back(&Params);
}
~ScopedTemplateParamList() {
assert(Parser->TemplateParams.size() >= OldNumTemplateParamLists);
Parser->TemplateParams.dropBack(OldNumTemplateParamLists);
}
void push_back(Node *Param) {
Params.push_back(Param);
}
};
// Template parameter table. Like the above, but referenced like "T42_".
// This has a smaller size compared to Subs and Names because it can be
// stored on the stack.
TemplateParamList OuterTemplateParams;
// Lists of template parameters indexed by template parameter depth,
// referenced like "TL2_4_". If nonempty, element 0 is always
// OuterTemplateParams; inner elements are always template parameter lists of
// lambda expressions. For a generic lambda with no explicit template
// parameter list, the corresponding parameter list pointer will be null.
PODSmallVector<TemplateParamList *, 4> TemplateParams;
// Set of unresolved forward <template-param> references. These can occur in a
// conversion operator's type, and are resolved in the enclosing <encoding>.
PODSmallVector<ForwardTemplateReference *, 4> ForwardTemplateRefs;
bool TryToParseTemplateArgs = true;
bool PermitForwardTemplateReferences = false;
size_t ParsingLambdaParamsAtLevel = (size_t)-1;
unsigned NumSyntheticTemplateParameters[3] = {};
Alloc ASTAllocator;
AbstractManglingParser(const char *First_, const char *Last_)
: First(First_), Last(Last_) {}
Derived &getDerived() { return static_cast<Derived &>(*this); }
void reset(const char *First_, const char *Last_) {
First = First_;
Last = Last_;
Names.clear();
Subs.clear();
TemplateParams.clear();
ParsingLambdaParamsAtLevel = (size_t)-1;
TryToParseTemplateArgs = true;
PermitForwardTemplateReferences = false;
for (int I = 0; I != 3; ++I)
NumSyntheticTemplateParameters[I] = 0;
ASTAllocator.reset();
}
template <class T, class... Args> Node *make(Args &&... args) {
return ASTAllocator.template makeNode<T>(std::forward<Args>(args)...);
}
template <class It> NodeArray makeNodeArray(It begin, It end) {
size_t sz = static_cast<size_t>(end - begin);
void *mem = ASTAllocator.allocateNodeArray(sz);
Node **data = new (mem) Node *[sz];
std::copy(begin, end, data);
return NodeArray(data, sz);
}
NodeArray popTrailingNodeArray(size_t FromPosition) {
assert(FromPosition <= Names.size());
NodeArray res =
makeNodeArray(Names.begin() + (long)FromPosition, Names.end());
Names.dropBack(FromPosition);
return res;
}
bool consumeIf(StringView S) {
if (StringView(First, Last).startsWith(S)) {
First += S.size();
return true;
}
return false;
}
bool consumeIf(char C) {
if (First != Last && *First == C) {
++First;
return true;
}
return false;
}
char consume() { return First != Last ? *First++ : '\0'; }
char look(unsigned Lookahead = 0) {
if (static_cast<size_t>(Last - First) <= Lookahead)
return '\0';
return First[Lookahead];
}
size_t numLeft() const { return static_cast<size_t>(Last - First); }
StringView parseNumber(bool AllowNegative = false);
Qualifiers parseCVQualifiers();
bool parsePositiveInteger(size_t *Out);
StringView parseBareSourceName();
bool parseSeqId(size_t *Out);
Node *parseSubstitution();
Node *parseTemplateParam();
Node *parseTemplateParamDecl();
Node *parseTemplateArgs(bool TagTemplates = false);
Node *parseTemplateArg();
/// Parse the <expr> production.
Node *parseExpr();
Node *parsePrefixExpr(StringView Kind);
Node *parseBinaryExpr(StringView Kind);
Node *parseIntegerLiteral(StringView Lit);
Node *parseExprPrimary();
template <class Float> Node *parseFloatingLiteral();
Node *parseFunctionParam();
Node *parseNewExpr();
Node *parseConversionExpr();
Node *parseBracedExpr();
Node *parseFoldExpr();
/// Parse the <type> production.
Node *parseType();
Node *parseFunctionType();
Node *parseVectorType();
Node *parseDecltype();
Node *parseArrayType();
Node *parsePointerToMemberType();
Node *parseClassEnumType();
Node *parseQualifiedType();
Node *parseEncoding();
bool parseCallOffset();
Node *parseSpecialName();
/// Holds some extra information about a <name> that is being parsed. This
/// information is only pertinent if the <name> refers to an <encoding>.
struct NameState {
bool CtorDtorConversion = false;
bool EndsWithTemplateArgs = false;
Qualifiers CVQualifiers = QualNone;
FunctionRefQual ReferenceQualifier = FrefQualNone;
size_t ForwardTemplateRefsBegin;
NameState(AbstractManglingParser *Enclosing)
: ForwardTemplateRefsBegin(Enclosing->ForwardTemplateRefs.size()) {}
};
bool resolveForwardTemplateRefs(NameState &State) {
size_t I = State.ForwardTemplateRefsBegin;
size_t E = ForwardTemplateRefs.size();
for (; I < E; ++I) {
size_t Idx = ForwardTemplateRefs[I]->Index;
if (TemplateParams.empty() || !TemplateParams[0] ||
Idx >= TemplateParams[0]->size())
return true;
ForwardTemplateRefs[I]->Ref = (*TemplateParams[0])[Idx];
}
ForwardTemplateRefs.dropBack(State.ForwardTemplateRefsBegin);
return false;
}
/// Parse the <name> production>
Node *parseName(NameState *State = nullptr);
Node *parseLocalName(NameState *State);
Node *parseOperatorName(NameState *State);
Node *parseUnqualifiedName(NameState *State);
Node *parseUnnamedTypeName(NameState *State);
Node *parseSourceName(NameState *State);
Node *parseUnscopedName(NameState *State);
Node *parseNestedName(NameState *State);
Node *parseCtorDtorName(Node *&SoFar, NameState *State);
Node *parseAbiTags(Node *N);
/// Parse the <unresolved-name> production.
Node *parseUnresolvedName();
Node *parseSimpleId();
Node *parseBaseUnresolvedName();
Node *parseUnresolvedType();
Node *parseDestructorName();
/// Top-level entry point into the parser.
Node *parse();
};
const char* parse_discriminator(const char* first, const char* last);
// <name> ::= <nested-name> // N
// ::= <local-name> # See Scope Encoding below // Z
// ::= <unscoped-template-name> <template-args>
// ::= <unscoped-name>
//
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseName(NameState *State) {
consumeIf('L'); // extension
if (look() == 'N')
return getDerived().parseNestedName(State);
if (look() == 'Z')
return getDerived().parseLocalName(State);
// ::= <unscoped-template-name> <template-args>
if (look() == 'S' && look(1) != 't') {
Node *S = getDerived().parseSubstitution();
if (S == nullptr)
return nullptr;
if (look() != 'I')
return nullptr;
Node *TA = getDerived().parseTemplateArgs(State != nullptr);
if (TA == nullptr)
return nullptr;
if (State) State->EndsWithTemplateArgs = true;
return make<NameWithTemplateArgs>(S, TA);
}
Node *N = getDerived().parseUnscopedName(State);
if (N == nullptr)
return nullptr;
// ::= <unscoped-template-name> <template-args>
if (look() == 'I') {
Subs.push_back(N);
Node *TA = getDerived().parseTemplateArgs(State != nullptr);
if (TA == nullptr)
return nullptr;
if (State) State->EndsWithTemplateArgs = true;
return make<NameWithTemplateArgs>(N, TA);
}
// ::= <unscoped-name>
return N;
}
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// := Z <function encoding> Ed [ <parameter number> ] _ <entity name>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseLocalName(NameState *State) {
if (!consumeIf('Z'))
return nullptr;
Node *Encoding = getDerived().parseEncoding();
if (Encoding == nullptr || !consumeIf('E'))
return nullptr;
if (consumeIf('s')) {
First = parse_discriminator(First, Last);
auto *StringLitName = make<NameType>("string literal");
if (!StringLitName)
return nullptr;
return make<LocalName>(Encoding, StringLitName);
}
if (consumeIf('d')) {
parseNumber(true);
if (!consumeIf('_'))
return nullptr;
Node *N = getDerived().parseName(State);
if (N == nullptr)
return nullptr;
return make<LocalName>(Encoding, N);
}
Node *Entity = getDerived().parseName(State);
if (Entity == nullptr)
return nullptr;
First = parse_discriminator(First, Last);
return make<LocalName>(Encoding, Entity);
}
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
// extension ::= StL<unqualified-name>
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseUnscopedName(NameState *State) {
if (consumeIf("StL") || consumeIf("St")) {
Node *R = getDerived().parseUnqualifiedName(State);
if (R == nullptr)
return nullptr;
return make<StdQualifiedName>(R);
}
return getDerived().parseUnqualifiedName(State);
}
// <unqualified-name> ::= <operator-name> [abi-tags]
// ::= <ctor-dtor-name>
// ::= <source-name>
// ::= <unnamed-type-name>
// ::= DC <source-name>+ E # structured binding declaration
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseUnqualifiedName(NameState *State) {
// <ctor-dtor-name>s are special-cased in parseNestedName().
Node *Result;
if (look() == 'U')
Result = getDerived().parseUnnamedTypeName(State);
else if (look() >= '1' && look() <= '9')
Result = getDerived().parseSourceName(State);
else if (consumeIf("DC")) {
size_t BindingsBegin = Names.size();
do {
Node *Binding = getDerived().parseSourceName(State);
if (Binding == nullptr)
return nullptr;
Names.push_back(Binding);
} while (!consumeIf('E'));
Result = make<StructuredBindingName>(popTrailingNodeArray(BindingsBegin));
} else
Result = getDerived().parseOperatorName(State);
if (Result != nullptr)