blob: 28c51eb0348e8cfd8ac630fa3ef1be5b3cd187a9 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <vector>
// template <class InputIter> vector(InputIter first, InputIter last);
#include <vector>
#include <cassert>
#include <cstddef>
#include "test_macros.h"
#include "test_iterators.h"
#include "test_allocator.h"
#include "min_allocator.h"
#include "asan_testing.h"
#if TEST_STD_VER >= 11
#include "emplace_constructible.h"
#include "container_test_types.h"
#endif
template <class C, class Iterator>
void test(Iterator first, Iterator last) {
C c(first, last);
LIBCPP_ASSERT(c.__invariants());
assert(c.size() == static_cast<std::size_t>(std::distance(first, last)));
LIBCPP_ASSERT(is_contiguous_container_asan_correct(c));
for (typename C::const_iterator i = c.cbegin(), e = c.cend(); i != e;
++i, ++first)
assert(*i == *first);
}
static void basic_test_cases() {
int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 1, 0};
int* an = a + sizeof(a) / sizeof(a[0]);
test<std::vector<int> >(input_iterator<const int*>(a),
input_iterator<const int*>(an));
test<std::vector<int> >(forward_iterator<const int*>(a),
forward_iterator<const int*>(an));
test<std::vector<int> >(bidirectional_iterator<const int*>(a),
bidirectional_iterator<const int*>(an));
test<std::vector<int> >(random_access_iterator<const int*>(a),
random_access_iterator<const int*>(an));
test<std::vector<int> >(a, an);
test<std::vector<int, limited_allocator<int, 63> > >(
input_iterator<const int*>(a), input_iterator<const int*>(an));
// Add 1 for implementations that dynamically allocate a container proxy.
test<std::vector<int, limited_allocator<int, 18 + 1> > >(
forward_iterator<const int*>(a), forward_iterator<const int*>(an));
test<std::vector<int, limited_allocator<int, 18 + 1> > >(
bidirectional_iterator<const int*>(a),
bidirectional_iterator<const int*>(an));
test<std::vector<int, limited_allocator<int, 18 + 1> > >(
random_access_iterator<const int*>(a),
random_access_iterator<const int*>(an));
test<std::vector<int, limited_allocator<int, 18 + 1> > >(a, an);
#if TEST_STD_VER >= 11
test<std::vector<int, min_allocator<int> > >(input_iterator<const int*>(a),
input_iterator<const int*>(an));
test<std::vector<int, min_allocator<int> > >(
forward_iterator<const int*>(a), forward_iterator<const int*>(an));
test<std::vector<int, min_allocator<int> > >(
bidirectional_iterator<const int*>(a),
bidirectional_iterator<const int*>(an));
test<std::vector<int, min_allocator<int> > >(
random_access_iterator<const int*>(a),
random_access_iterator<const int*>(an));
test<std::vector<int> >(a, an);
#endif
}
void emplaceable_concept_tests() {
#if TEST_STD_VER >= 11
int arr1[] = {42};
int arr2[] = {1, 101, 42};
{
using T = EmplaceConstructible<int>;
using It = forward_iterator<int*>;
{
std::vector<T> v(It(arr1), It(std::end(arr1)));
assert(v[0].value == 42);
}
{
std::vector<T> v(It(arr2), It(std::end(arr2)));
assert(v[0].value == 1);
assert(v[1].value == 101);
assert(v[2].value == 42);
}
}
{
using T = EmplaceConstructibleAndMoveInsertable<int>;
using It = input_iterator<int*>;
{
std::vector<T> v(It(arr1), It(std::end(arr1)));
assert(v[0].copied == 0);
assert(v[0].value == 42);
}
{
std::vector<T> v(It(arr2), It(std::end(arr2)));
//assert(v[0].copied == 0);
assert(v[0].value == 1);
//assert(v[1].copied == 0);
assert(v[1].value == 101);
assert(v[2].copied == 0);
assert(v[2].value == 42);
}
}
#endif
}
void test_ctor_under_alloc() {
#if TEST_STD_VER >= 11
int arr1[] = {42};
int arr2[] = {1, 101, 42};
{
using C = TCT::vector<>;
using It = forward_iterator<int*>;
{
ExpectConstructGuard<int&> G(1);
C v(It(arr1), It(std::end(arr1)));
}
{
ExpectConstructGuard<int&> G(3);
C v(It(arr2), It(std::end(arr2)));
}
}
{
using C = TCT::vector<>;
using It = input_iterator<int*>;
{
ExpectConstructGuard<int&> G(1);
C v(It(arr1), It(std::end(arr1)));
}
{
//ExpectConstructGuard<int&> G(3);
//C v(It(arr2), It(std::end(arr2)), a);
}
}
#endif
}
// In C++03, you can't instantiate a template with a local type.
struct B1 { int x; };
struct B2 { int y; };
struct Der : B1, B2 { int z; };
// Initialize a vector with a different value type.
void test_ctor_with_different_value_type() {
{
// Make sure initialization is performed with each element value, not with
// a memory blob.
float array[3] = {0.0f, 1.0f, 2.0f};
std::vector<int> v(array, array + 3);
assert(v[0] == 0);
assert(v[1] == 1);
assert(v[2] == 2);
}
{
Der z;
Der *array[1] = { &z };
// Though the types Der* and B2* are very similar, initialization still cannot
// be done with `memcpy`.
std::vector<B2*> v(array, array + 1);
assert(v[0] == &z);
}
{
// Though the types are different, initialization can be done with `memcpy`.
int32_t array[1] = { -1 };
std::vector<uint32_t> v(array, array + 1);
assert(v[0] == 4294967295);
}
}
int main(int, char**) {
basic_test_cases();
emplaceable_concept_tests(); // See PR34898
test_ctor_under_alloc();
test_ctor_with_different_value_type();
return 0;
}