blob: 0b32ef8437ac32a9739a02c2a1d458d4149e989b [file] [log] [blame]
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: system-windows
// REQUIRES: libcxx_gdb
//
// RUN: %cxx %flags %s -o %t.exe %compile_flags -g %link_flags
// Ensure locale-independence for unicode tests.
// RUN: %libcxx_gdb -nx -batch -iex "set autoload off" -ex "source %libcxx_src_root/utils/gdb/libcxx/printers.py" -ex "python register_libcxx_printer_loader()" -ex "source %libcxx_src_root/test/pretty_printers/gdb_pretty_printer_test.py" %t.exe
#include <bitset>
#include <deque>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
// To write a pretty-printer test:
//
// 1. Declare a variable of the type you want to test
//
// 2. Set its value to something which will test the pretty printer in an
// interesting way.
//
// 3. Call ComparePrettyPrintToChars with that variable, and a "const char*"
// value to compare to the printer's output.
//
// Or
//
// Call ComparePrettyPrintToChars with that variable, and a "const char*"
// *python* regular expression to match against the printer's output.
// The set of special characters in a Python regular expression overlaps
// with a lot of things the pretty printers print--brackets, for
// example--so take care to escape appropriately.
//
// Alternatively, construct a string that gdb can parse as an expression,
// so that printing the value of the expression will test the pretty printer
// in an interesting way. Then, call CompareExpressionPrettyPrintToChars or
// CompareExpressionPrettyPrintToRegex to compare the printer's output.
// Avoids setting a breakpoint in every-single instantiation of
// ComparePrettyPrintTo*. Also, make sure neither it, nor the
// variables we need present in the Compare functions are optimized
// away.
void StopForDebugger(void *value, void *check) __attribute__((optnone)) { }
// Prevents the compiler optimizing away the parameter in the caller function.
template <typename Type>
void MarkAsLive(Type &&t) __attribute__((optnone)) { }
// In all of the Compare(Expression)PrettyPrintTo(Regex/Chars) functions below,
// the python script sets a breakpoint just before the call to StopForDebugger,
// compares the result to the expectation.
//
// The expectation is a literal string to be matched exactly in
// *PrettyPrintToChars functions, and is a python regular expression in
// *PrettyPrintToRegex functions.
//
// In ComparePrettyPrint* functions, the value is a variable of any type. In
// CompareExpressionPrettyPrint functions, the value is a string expression that
// gdb will parse and print the result.
//
// The python script will print either "PASS", or a detailed failure explanation
// along with the line that has invoke the function. The testing will continue
// in either case.
template <typename TypeToPrint> void ComparePrettyPrintToChars(
TypeToPrint value,
const char *expectation) {
StopForDebugger(&value, &expectation);
}
template <typename TypeToPrint> void ComparePrettyPrintToRegex(
TypeToPrint value,
const char *expectation) {
StopForDebugger(&value, &expectation);
}
void CompareExpressionPrettyPrintToChars(
std::string value,
const char *expectation) {
StopForDebugger(&value, &expectation);
}
void CompareExpressionPrettyPrintToRegex(
std::string value,
const char *expectation) {
StopForDebugger(&value, &expectation);
}
namespace example {
struct example_struct {
int a = 0;
int arr[1000];
};
}
// If enabled, the self test will "fail"--because we want to be sure it properly
// diagnoses tests that *should* fail. Evaluate the output by hand.
void framework_self_test() {
#ifdef FRAMEWORK_SELF_TEST
// Use the most simple data structure we can.
const char a = 'a';
// Tests that should pass
ComparePrettyPrintToChars(a, "97 'a'");
ComparePrettyPrintToRegex(a, ".*");
// Tests that should fail.
ComparePrettyPrintToChars(a, "b");
ComparePrettyPrintToRegex(a, "b");
#endif
}
// A simple pass-through allocator to check that we handle CompressedPair
// correctly.
template <typename T> class UncompressibleAllocator : public std::allocator<T> {
public:
char X;
};
void string_test() {
std::string short_string("kdjflskdjf");
// The display_hint "string" adds quotes the printed result.
ComparePrettyPrintToChars(short_string, "\"kdjflskdjf\"");
std::basic_string<char, std::char_traits<char>, UncompressibleAllocator<char>>
long_string("mehmet bizim dostumuz agzi kirik testimiz");
ComparePrettyPrintToChars(long_string,
"\"mehmet bizim dostumuz agzi kirik testimiz\"");
}
void u16string_test() {
std::u16string test0 = u"Hello World";
ComparePrettyPrintToChars(test0, "u\"Hello World\"");
std::u16string test1 = u"\U00010196\u20AC\u00A3\u0024";
ComparePrettyPrintToChars(test1, "u\"\U00010196\u20AC\u00A3\u0024\"");
std::u16string test2 = u"\u0024\u0025\u0026\u0027";
ComparePrettyPrintToChars(test2, "u\"\u0024\u0025\u0026\u0027\"");
std::u16string test3 = u"mehmet bizim dostumuz agzi kirik testimiz";
ComparePrettyPrintToChars(test3,
("u\"mehmet bizim dostumuz agzi kirik testimiz\""));
}
void u32string_test() {
std::u32string test0 = U"Hello World";
ComparePrettyPrintToChars(test0, "U\"Hello World\"");
std::u32string test1 =
U"\U0001d552\U0001d553\U0001d554\U0001d555\U0001d556\U0001d557";
ComparePrettyPrintToChars(
test1,
("U\"\U0001d552\U0001d553\U0001d554\U0001d555\U0001d556\U0001d557\""));
std::u32string test2 = U"\U00004f60\U0000597d";
ComparePrettyPrintToChars(test2, ("U\"\U00004f60\U0000597d\""));
std::u32string test3 = U"mehmet bizim dostumuz agzi kirik testimiz";
ComparePrettyPrintToChars(test3, ("U\"mehmet bizim dostumuz agzi kirik testimiz\""));
}
void tuple_test() {
std::tuple<int, int, int> test0(2, 3, 4);
ComparePrettyPrintToChars(
test0,
"std::tuple containing = {[1] = 2, [2] = 3, [3] = 4}");
std::tuple<> test1;
ComparePrettyPrintToChars(
test1,
"empty std::tuple");
}
void unique_ptr_test() {
std::unique_ptr<std::string> matilda(new std::string("Matilda"));
ComparePrettyPrintToRegex(
std::move(matilda),
R"(std::unique_ptr<std::string> containing = {__ptr_ = 0x[a-f0-9]+})");
std::unique_ptr<int> forty_two(new int(42));
ComparePrettyPrintToRegex(std::move(forty_two),
R"(std::unique_ptr<int> containing = {__ptr_ = 0x[a-f0-9]+})");
std::unique_ptr<int> this_is_null;
ComparePrettyPrintToChars(std::move(this_is_null),
R"(std::unique_ptr is nullptr)");
}
void bitset_test() {
std::bitset<258> i_am_empty(0);
ComparePrettyPrintToChars(i_am_empty, "std::bitset<258>");
std::bitset<0> very_empty;
ComparePrettyPrintToChars(very_empty, "std::bitset<0>");
std::bitset<15> b_000001111111100(1020);
ComparePrettyPrintToChars(b_000001111111100,
"std::bitset<15> = {[2] = 1, [3] = 1, [4] = 1, [5] = 1, [6] = 1, "
"[7] = 1, [8] = 1, [9] = 1}");
std::bitset<258> b_0_129_132(0);
b_0_129_132[0] = true;
b_0_129_132[129] = true;
b_0_129_132[132] = true;
ComparePrettyPrintToChars(b_0_129_132,
"std::bitset<258> = {[0] = 1, [129] = 1, [132] = 1}");
}
void list_test() {
std::list<int> i_am_empty{};
ComparePrettyPrintToChars(i_am_empty, "std::list is empty");
std::list<int> one_two_three {1, 2, 3};
ComparePrettyPrintToChars(one_two_three,
"std::list with 3 elements = {1, 2, 3}");
std::list<std::string> colors {"red", "blue", "green"};
ComparePrettyPrintToChars(colors,
R"(std::list with 3 elements = {"red", "blue", "green"})");
}
void deque_test() {
std::deque<int> i_am_empty{};
ComparePrettyPrintToChars(i_am_empty, "std::deque is empty");
std::deque<int> one_two_three {1, 2, 3};
ComparePrettyPrintToChars(one_two_three,
"std::deque with 3 elements = {1, 2, 3}");
std::deque<example::example_struct> bfg;
for (int i = 0; i < 10; ++i) {
example::example_struct current;
current.a = i;
bfg.push_back(current);
}
for (int i = 0; i < 3; ++i) {
bfg.pop_front();
}
for (int i = 0; i < 3; ++i) {
bfg.pop_back();
}
ComparePrettyPrintToRegex(bfg,
"std::deque with 4 elements = {"
"{a = 3, arr = {[^}]+}}, "
"{a = 4, arr = {[^}]+}}, "
"{a = 5, arr = {[^}]+}}, "
"{a = 6, arr = {[^}]+}}}");
}
void map_test() {
std::map<int, int> i_am_empty{};
ComparePrettyPrintToChars(i_am_empty, "std::map is empty");
std::map<int, std::string> one_two_three;
one_two_three.insert({1, "one"});
one_two_three.insert({2, "two"});
one_two_three.insert({3, "three"});
ComparePrettyPrintToChars(one_two_three,
"std::map with 3 elements = "
R"({[1] = "one", [2] = "two", [3] = "three"})");
std::map<int, example::example_struct> bfg;
for (int i = 0; i < 4; ++i) {
example::example_struct current;
current.a = 17 * i;
bfg.insert({i, current});
}
ComparePrettyPrintToRegex(bfg,
R"(std::map with 4 elements = {)"
R"(\[0\] = {a = 0, arr = {[^}]+}}, )"
R"(\[1\] = {a = 17, arr = {[^}]+}}, )"
R"(\[2\] = {a = 34, arr = {[^}]+}}, )"
R"(\[3\] = {a = 51, arr = {[^}]+}}})");
}
void multimap_test() {
std::multimap<int, int> i_am_empty{};
ComparePrettyPrintToChars(i_am_empty, "std::multimap is empty");
std::multimap<int, std::string> one_two_three;
one_two_three.insert({1, "one"});
one_two_three.insert({3, "three"});
one_two_three.insert({1, "ein"});
one_two_three.insert({2, "two"});
one_two_three.insert({2, "zwei"});
one_two_three.insert({1, "bir"});
ComparePrettyPrintToChars(one_two_three,
"std::multimap with 6 elements = "
R"({[1] = "one", [1] = "ein", [1] = "bir", )"
R"([2] = "two", [2] = "zwei", [3] = "three"})");
}
void queue_test() {
std::queue<int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty,
"std::queue wrapping = {std::deque is empty}");
std::queue<int> one_two_three(std::deque<int>{1, 2, 3});
ComparePrettyPrintToChars(one_two_three,
"std::queue wrapping = {"
"std::deque with 3 elements = {1, 2, 3}}");
}
void priority_queue_test() {
std::priority_queue<int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty,
"std::priority_queue wrapping = {std::vector of length 0, capacity 0}");
std::priority_queue<int> one_two_three;
one_two_three.push(11111);
one_two_three.push(22222);
one_two_three.push(33333);
ComparePrettyPrintToRegex(one_two_three,
R"(std::priority_queue wrapping = )"
R"({std::vector of length 3, capacity 3 = {33333)");
ComparePrettyPrintToRegex(one_two_three, ".*11111.*");
ComparePrettyPrintToRegex(one_two_three, ".*22222.*");
}
void set_test() {
std::set<int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty, "std::set is empty");
std::set<int> one_two_three {3, 1, 2};
ComparePrettyPrintToChars(one_two_three,
"std::set with 3 elements = {1, 2, 3}");
std::set<std::pair<int, int>> prime_pairs {
std::make_pair(3, 5), std::make_pair(5, 7), std::make_pair(3, 5)};
ComparePrettyPrintToChars(prime_pairs,
"std::set with 2 elements = {"
"{first = 3, second = 5}, {first = 5, second = 7}}");
}
void stack_test() {
std::stack<int> test0;
ComparePrettyPrintToChars(test0,
"std::stack wrapping = {std::deque is empty}");
test0.push(5);
test0.push(6);
ComparePrettyPrintToChars(
test0, "std::stack wrapping = {std::deque with 2 elements = {5, 6}}");
std::stack<bool> test1;
test1.push(true);
test1.push(false);
ComparePrettyPrintToChars(
test1,
"std::stack wrapping = {std::deque with 2 elements = {true, false}}");
std::stack<std::string> test2;
test2.push("Hello");
test2.push("World");
ComparePrettyPrintToChars(test2,
"std::stack wrapping = {std::deque with 2 elements "
"= {\"Hello\", \"World\"}}");
}
void multiset_test() {
std::multiset<int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty, "std::multiset is empty");
std::multiset<std::string> one_two_three {"1:one", "2:two", "3:three", "1:one"};
ComparePrettyPrintToChars(one_two_three,
"std::multiset with 4 elements = {"
R"("1:one", "1:one", "2:two", "3:three"})");
}
void vector_test() {
std::vector<bool> test0 = {true, false};
ComparePrettyPrintToChars(test0,
"std::vector<bool> of "
"length 2, capacity 64 = {1, 0}");
for (int i = 0; i < 31; ++i) {
test0.push_back(true);
test0.push_back(false);
}
ComparePrettyPrintToRegex(
test0,
"std::vector<bool> of length 64, "
"capacity 64 = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, "
"0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, "
"0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}");
test0.push_back(true);
ComparePrettyPrintToRegex(
test0,
"std::vector<bool> of length 65, "
"capacity 128 = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, "
"1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, "
"1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}");
std::vector<int> test1;
ComparePrettyPrintToChars(test1, "std::vector of length 0, capacity 0");
std::vector<int> test2 = {5, 6, 7};
ComparePrettyPrintToChars(test2,
"std::vector of length "
"3, capacity 3 = {5, 6, 7}");
std::vector<int, UncompressibleAllocator<int>> test3({7, 8});
ComparePrettyPrintToChars(std::move(test3),
"std::vector of length "
"2, capacity 2 = {7, 8}");
}
void set_iterator_test() {
std::set<int> one_two_three {1111, 2222, 3333};
auto it = one_two_three.find(2222);
MarkAsLive(it);
CompareExpressionPrettyPrintToRegex("it",
R"(std::__tree_const_iterator = {\[0x[a-f0-9]+\] = 2222})");
auto not_found = one_two_three.find(1234);
MarkAsLive(not_found);
// Because the end_node is not easily detected, just be sure it doesn't crash.
CompareExpressionPrettyPrintToRegex("not_found",
R"(std::__tree_const_iterator = {\[0x[a-f0-9]+\] = .*})");
}
void map_iterator_test() {
std::map<int, std::string> one_two_three;
one_two_three.insert({1, "one"});
one_two_three.insert({2, "two"});
one_two_three.insert({3, "three"});
auto it = one_two_three.begin();
MarkAsLive(it);
CompareExpressionPrettyPrintToRegex("it",
R"(std::__map_iterator = )"
R"({\[0x[a-f0-9]+\] = {first = 1, second = "one"}})");
auto not_found = one_two_three.find(7);
MarkAsLive(not_found);
CompareExpressionPrettyPrintToRegex("not_found",
R"(std::__map_iterator = {\[0x[a-f0-9]+\] = end\(\)})");
}
void unordered_set_test() {
std::unordered_set<int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty, "std::unordered_set is empty");
std::unordered_set<int> numbers {12345, 67890, 222333, 12345};
numbers.erase(numbers.find(222333));
ComparePrettyPrintToRegex(numbers, "std::unordered_set with 2 elements = ");
ComparePrettyPrintToRegex(numbers, ".*12345.*");
ComparePrettyPrintToRegex(numbers, ".*67890.*");
std::unordered_set<std::string> colors {"red", "blue", "green"};
ComparePrettyPrintToRegex(colors, "std::unordered_set with 3 elements = ");
ComparePrettyPrintToRegex(colors, R"(.*"red".*)");
ComparePrettyPrintToRegex(colors, R"(.*"blue".*)");
ComparePrettyPrintToRegex(colors, R"(.*"green".*)");
}
void unordered_multiset_test() {
std::unordered_multiset<int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty, "std::unordered_multiset is empty");
std::unordered_multiset<int> numbers {12345, 67890, 222333, 12345};
ComparePrettyPrintToRegex(numbers,
"std::unordered_multiset with 4 elements = ");
ComparePrettyPrintToRegex(numbers, ".*12345.*12345.*");
ComparePrettyPrintToRegex(numbers, ".*67890.*");
ComparePrettyPrintToRegex(numbers, ".*222333.*");
std::unordered_multiset<std::string> colors {"red", "blue", "green", "red"};
ComparePrettyPrintToRegex(colors,
"std::unordered_multiset with 4 elements = ");
ComparePrettyPrintToRegex(colors, R"(.*"red".*"red".*)");
ComparePrettyPrintToRegex(colors, R"(.*"blue".*)");
ComparePrettyPrintToRegex(colors, R"(.*"green".*)");
}
void unordered_map_test() {
std::unordered_map<int, int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty, "std::unordered_map is empty");
std::unordered_map<int, std::string> one_two_three;
one_two_three.insert({1, "one"});
one_two_three.insert({2, "two"});
one_two_three.insert({3, "three"});
ComparePrettyPrintToRegex(one_two_three,
"std::unordered_map with 3 elements = ");
ComparePrettyPrintToRegex(one_two_three, R"(.*\[1\] = "one".*)");
ComparePrettyPrintToRegex(one_two_three, R"(.*\[2\] = "two".*)");
ComparePrettyPrintToRegex(one_two_three, R"(.*\[3\] = "three".*)");
}
void unordered_multimap_test() {
std::unordered_multimap<int, int> i_am_empty;
ComparePrettyPrintToChars(i_am_empty, "std::unordered_multimap is empty");
std::unordered_multimap<int, std::string> one_two_three;
one_two_three.insert({1, "one"});
one_two_three.insert({2, "two"});
one_two_three.insert({3, "three"});
one_two_three.insert({2, "two"});
ComparePrettyPrintToRegex(one_two_three,
"std::unordered_multimap with 4 elements = ");
ComparePrettyPrintToRegex(one_two_three, R"(.*\[1\] = "one".*)");
ComparePrettyPrintToRegex(one_two_three, R"(.*\[2\] = "two".*\[2\] = "two")");
ComparePrettyPrintToRegex(one_two_three, R"(.*\[3\] = "three".*)");
}
void unordered_map_iterator_test() {
std::unordered_map<int, int> ones_to_eights;
ones_to_eights.insert({1, 8});
ones_to_eights.insert({11, 88});
ones_to_eights.insert({111, 888});
auto ones_to_eights_begin = ones_to_eights.begin();
MarkAsLive(ones_to_eights_begin);
CompareExpressionPrettyPrintToRegex("ones_to_eights_begin",
R"(std::__hash_map_iterator = {\[1+\] = 8+})");
auto not_found = ones_to_eights.find(5);
MarkAsLive(not_found);
CompareExpressionPrettyPrintToRegex("not_found",
R"(std::__hash_map_iterator = end\(\))");
}
void unordered_set_iterator_test() {
std::unordered_set<int> ones;
ones.insert(111);
ones.insert(1111);
ones.insert(11111);
auto ones_begin = ones.begin();
MarkAsLive(ones_begin);
CompareExpressionPrettyPrintToRegex("ones_begin",
R"(std::__hash_const_iterator = {1+})");
auto not_found = ones.find(5);
MarkAsLive(not_found);
CompareExpressionPrettyPrintToRegex("not_found",
R"(std::__hash_const_iterator = end\(\))");
}
// Check that libc++ pretty printers do not handle pointers.
void pointer_negative_test() {
int abc = 123;
int *int_ptr = &abc;
// Check that the result is equivalent to "p/r int_ptr" command.
ComparePrettyPrintToRegex(int_ptr, R"(\(int \*\) 0x[a-f0-9]+)");
}
void shared_ptr_test() {
// Shared ptr tests while using test framework call another function
// due to which there is one more count for the pointer. Hence, all the
// following tests are testing with expected count plus 1.
std::shared_ptr<const int> test0 = std::make_shared<const int>(5);
ComparePrettyPrintToRegex(
test0,
R"(std::shared_ptr<int> count 2, weak 0 containing = {__ptr_ = 0x[a-f0-9]+})");
std::shared_ptr<const int> test1(test0);
ComparePrettyPrintToRegex(
test1,
R"(std::shared_ptr<int> count 3, weak 0 containing = {__ptr_ = 0x[a-f0-9]+})");
{
std::weak_ptr<const int> test2 = test1;
ComparePrettyPrintToRegex(
test0,
R"(std::shared_ptr<int> count 3, weak 1 containing = {__ptr_ = 0x[a-f0-9]+})");
}
ComparePrettyPrintToRegex(
test0,
R"(std::shared_ptr<int> count 3, weak 0 containing = {__ptr_ = 0x[a-f0-9]+})");
std::shared_ptr<const int> test3;
ComparePrettyPrintToChars(test3, "std::shared_ptr is nullptr");
}
void streampos_test() {
std::streampos test0 = 67;
ComparePrettyPrintToChars(
test0, "std::fpos with stream offset:67 with state: {count:0 value:0}");
std::istringstream input("testing the input stream here");
std::streampos test1 = input.tellg();
ComparePrettyPrintToChars(
test1, "std::fpos with stream offset:0 with state: {count:0 value:0}");
std::unique_ptr<char[]> buffer(new char[5]);
input.read(buffer.get(), 5);
test1 = input.tellg();
ComparePrettyPrintToChars(
test1, "std::fpos with stream offset:5 with state: {count:0 value:0}");
}
int main(int argc, char* argv[]) {
framework_self_test();
string_test();
u32string_test();
tuple_test();
unique_ptr_test();
shared_ptr_test();
bitset_test();
list_test();
deque_test();
map_test();
multimap_test();
queue_test();
priority_queue_test();
stack_test();
set_test();
multiset_test();
vector_test();
set_iterator_test();
map_iterator_test();
unordered_set_test();
unordered_multiset_test();
unordered_map_test();
unordered_multimap_test();
unordered_map_iterator_test();
unordered_set_iterator_test();
pointer_negative_test();
streampos_test();
return 0;
}