blob: 8cf9ad45a2c779ec29bc24d7faacc1a5d04aa63c [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "math32.h"
// Algorithm:
//
// e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64)
//
// x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer
// n = 64*m + j, 0 <= j < 64
//
// e^x = 2^((64*m + j + f)/64)
// = (2^m) * (2^(j/64)) * 2^(f/64)
// = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64))
//
// f = x*(64/ln(2)) - n
// r = f*(ln(2)/64) = x - n*(ln(2)/64)
//
// e^x = (2^m) * (2^(j/64)) * e^r
//
// (2^(j/64)) is precomputed
//
// e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
// e^r = 1 + q
//
// q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
//
// e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) )
__attribute__((overloadable, weak)) float
#if defined(COMPILING_EXP2)
exp2(float x)
#elif defined(COMPILING_EXP10)
exp10(float x)
#else
exp(float x)
#endif
{
USE_TABLE(float, p_tbl, EXP_TBL);
#if defined(COMPILING_EXP2)
const float X_MAX = 0x1.fffffep+6f; // 128
const float X_MIN = -0x1.2a0000p+7f; // -149
#elif defined(COMPILING_EXP10)
const float X_MAX = 0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959
const float X_MIN = -0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332
#else
const float X_MAX = 0x1.62e42ep+6f; // 128*log2 : 88.722839111673
const float X_MIN = -0x1.9d1da0p+6f; // -149*log2 : -103.27892990343184
#endif
#if defined(COMPILING_EXP2)
const float R_64 = 0x1.000000p+6f; // 2^6
const float R_1_BY_64 = 0x1.000000p-6f; // 2^-6
const float R_LN2 = 0x1.62e430p-1f; // 0.6931471805599453
#elif defined(COMPILING_EXP10)
const float R_64_BY_LOG10_2 = 0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912
const float R_LOG10_2_BY_64_LD = 0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707
const float R_LOG10_2_BY_64_TL = 0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057
const float R_LN10 = 0x1.26bb1cp+1f;
#else
const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657
const float R_LOG2_BY_64_LD = 0x1.620000p-7f; /* log2/64 lead: 0.0108032227 */
const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; /* log2/64 tail: 0.0000272020388 */
#endif
int return_nan = isnan(x);
int return_inf = x > X_MAX;
int return_zero = x < X_MIN;
#if defined(COMPILING_EXP2)
int n = convert_int(x * R_64);
#elif defined(COMPILING_EXP10)
int n = convert_int(x * R_64_BY_LOG10_2);
#else
int n = convert_int(x * R_64_BY_LOG2);
#endif
float fn = (float)n;
int j = n & 0x3f;
int m = n >> 6;
int m2 = m << EXPSHIFTBITS_SP32;
float r;
#if defined(COMPILING_EXP2)
r = R_LN2 * mad(-R_1_BY_64, fn, x);
#elif defined(COMPILING_EXP10)
r = R_LN10 * mad(fn, -R_LOG10_2_BY_64_TL, mad(fn, -R_LOG10_2_BY_64_LD, x));
#else
r = mad(fn, -R_LOG2_BY_64_TL, mad(fn, -R_LOG2_BY_64_LD, x));
#endif
// Truncated Taylor series for e^r
float z2 = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
float two_to_jby64 = p_tbl[j];
z2 = mad(two_to_jby64, z2, two_to_jby64);
float z2s = z2 * as_float(0x1 << (m + 149));
float z2n = as_float(as_int(z2) + m2);
z2 = m <= -126 ? z2s : z2n;
z2 = return_inf ? as_float(PINFBITPATT_SP32) : z2;
z2 = return_zero ? 0.0f : z2;
z2 = return_nan ? x : z2;
return z2;
}