blob: 472017dff7e36e5012bc73d7a41e8d631a871546 [file] [log] [blame]
//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// Scudo Hardened Allocator implementation.
/// It uses the sanitizer_common allocator as a base and aims at mitigating
/// heap corruption vulnerabilities. It provides a checksum-guarded chunk
/// header, a delayed free list, and additional sanity checks.
///
//===----------------------------------------------------------------------===//
#include "scudo_allocator.h"
#include "scudo_crc32.h"
#include "scudo_flags.h"
#include "scudo_tsd.h"
#include "scudo_utils.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_quarantine.h"
#include <errno.h>
#include <string.h>
namespace __scudo {
// Global static cookie, initialized at start-up.
static uptr Cookie;
// We default to software CRC32 if the alternatives are not supported, either
// at compilation or at runtime.
static atomic_uint8_t HashAlgorithm = { CRC32Software };
INLINE u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
// If the hardware CRC32 feature is defined here, it was enabled everywhere,
// as opposed to only for scudo_crc32.cpp. This means that other hardware
// specific instructions were likely emitted at other places, and as a
// result there is no reason to not use it here.
#if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
Crc = CRC32_INTRINSIC(Crc, Value);
for (uptr i = 0; i < ArraySize; i++)
Crc = CRC32_INTRINSIC(Crc, Array[i]);
return Crc;
#else
if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
Crc = computeHardwareCRC32(Crc, Value);
for (uptr i = 0; i < ArraySize; i++)
Crc = computeHardwareCRC32(Crc, Array[i]);
return Crc;
}
Crc = computeSoftwareCRC32(Crc, Value);
for (uptr i = 0; i < ArraySize; i++)
Crc = computeSoftwareCRC32(Crc, Array[i]);
return Crc;
#endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
}
static ScudoBackendAllocator &getBackendAllocator();
struct ScudoChunk : UnpackedHeader {
// We can't use the offset member of the chunk itself, as we would double
// fetch it without any warranty that it wouldn't have been tampered. To
// prevent this, we work with a local copy of the header.
void *getAllocBeg(UnpackedHeader *Header) {
return reinterpret_cast<void *>(
reinterpret_cast<uptr>(this) - (Header->Offset << MinAlignmentLog));
}
// Returns the usable size for a chunk, meaning the amount of bytes from the
// beginning of the user data to the end of the backend allocated chunk.
uptr getUsableSize(UnpackedHeader *Header) {
uptr Size =
getBackendAllocator().getActuallyAllocatedSize(getAllocBeg(Header),
Header->FromPrimary);
if (Size == 0)
return 0;
return Size - AlignedChunkHeaderSize - (Header->Offset << MinAlignmentLog);
}
// Compute the checksum of the Chunk pointer and its ChunkHeader.
u16 computeChecksum(UnpackedHeader *Header) const {
UnpackedHeader ZeroChecksumHeader = *Header;
ZeroChecksumHeader.Checksum = 0;
uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
u32 Crc = computeCRC32(static_cast<u32>(Cookie),
reinterpret_cast<uptr>(this), HeaderHolder,
ARRAY_SIZE(HeaderHolder));
return static_cast<u16>(Crc);
}
// Checks the validity of a chunk by verifying its checksum. It doesn't
// incur termination in the event of an invalid chunk.
bool isValid() {
UnpackedHeader NewUnpackedHeader;
const AtomicPackedHeader *AtomicHeader =
reinterpret_cast<const AtomicPackedHeader *>(this);
PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader);
NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
return (NewUnpackedHeader.Checksum == computeChecksum(&NewUnpackedHeader));
}
// Nulls out a chunk header. When returning the chunk to the backend, there
// is no need to store a valid ChunkAvailable header, as this would be
// computationally expensive. Zeroing out serves the same purpose by making
// the header invalid. In the extremely rare event where 0 would be a valid
// checksum for the chunk, the state of the chunk is ChunkAvailable anyway.
COMPILER_CHECK(ChunkAvailable == 0);
void eraseHeader() {
PackedHeader NullPackedHeader = 0;
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
atomic_store_relaxed(AtomicHeader, NullPackedHeader);
}
// Loads and unpacks the header, verifying the checksum in the process.
void loadHeader(UnpackedHeader *NewUnpackedHeader) const {
const AtomicPackedHeader *AtomicHeader =
reinterpret_cast<const AtomicPackedHeader *>(this);
PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader);
*NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
if (UNLIKELY(NewUnpackedHeader->Checksum !=
computeChecksum(NewUnpackedHeader))) {
dieWithMessage("ERROR: corrupted chunk header at address %p\n", this);
}
}
// Packs and stores the header, computing the checksum in the process.
void storeHeader(UnpackedHeader *NewUnpackedHeader) {
NewUnpackedHeader->Checksum = computeChecksum(NewUnpackedHeader);
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
atomic_store_relaxed(AtomicHeader, NewPackedHeader);
}
// Packs and stores the header, computing the checksum in the process. We
// compare the current header with the expected provided one to ensure that
// we are not being raced by a corruption occurring in another thread.
void compareExchangeHeader(UnpackedHeader *NewUnpackedHeader,
UnpackedHeader *OldUnpackedHeader) {
NewUnpackedHeader->Checksum = computeChecksum(NewUnpackedHeader);
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
if (UNLIKELY(!atomic_compare_exchange_strong(AtomicHeader,
&OldPackedHeader,
NewPackedHeader,
memory_order_relaxed))) {
dieWithMessage("ERROR: race on chunk header at address %p\n", this);
}
}
};
ScudoChunk *getScudoChunk(uptr UserBeg) {
return reinterpret_cast<ScudoChunk *>(UserBeg - AlignedChunkHeaderSize);
}
struct AllocatorOptions {
u32 QuarantineSizeKb;
u32 ThreadLocalQuarantineSizeKb;
u32 QuarantineChunksUpToSize;
bool MayReturnNull;
s32 ReleaseToOSIntervalMs;
bool DeallocationTypeMismatch;
bool DeleteSizeMismatch;
bool ZeroContents;
void setFrom(const Flags *f, const CommonFlags *cf);
};
void AllocatorOptions::setFrom(const Flags *f, const CommonFlags *cf) {
MayReturnNull = cf->allocator_may_return_null;
ReleaseToOSIntervalMs = cf->allocator_release_to_os_interval_ms;
QuarantineSizeKb = f->QuarantineSizeKb;
ThreadLocalQuarantineSizeKb = f->ThreadLocalQuarantineSizeKb;
QuarantineChunksUpToSize = f->QuarantineChunksUpToSize;
DeallocationTypeMismatch = f->DeallocationTypeMismatch;
DeleteSizeMismatch = f->DeleteSizeMismatch;
ZeroContents = f->ZeroContents;
}
static void initScudoInternal(const AllocatorOptions &Options);
static bool ScudoInitIsRunning = false;
void initScudo() {
SanitizerToolName = "Scudo";
CHECK(!ScudoInitIsRunning && "Scudo init calls itself!");
ScudoInitIsRunning = true;
// Check if hardware CRC32 is supported in the binary and by the platform, if
// so, opt for the CRC32 hardware version of the checksum.
if (computeHardwareCRC32 && testCPUFeature(CRC32CPUFeature))
atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
initFlags();
AllocatorOptions Options;
Options.setFrom(getFlags(), common_flags());
initScudoInternal(Options);
// TODO(kostyak): determine if MaybeStartBackgroudThread could be of some use.
ScudoInitIsRunning = false;
}
struct QuarantineCallback {
explicit QuarantineCallback(AllocatorCache *Cache)
: Cache_(Cache) {}
// Chunk recycling function, returns a quarantined chunk to the backend,
// first making sure it hasn't been tampered with.
void Recycle(ScudoChunk *Chunk) {
UnpackedHeader Header;
Chunk->loadHeader(&Header);
if (UNLIKELY(Header.State != ChunkQuarantine)) {
dieWithMessage("ERROR: invalid chunk state when recycling address %p\n",
Chunk);
}
Chunk->eraseHeader();
void *Ptr = Chunk->getAllocBeg(&Header);
if (Header.FromPrimary)
getBackendAllocator().deallocatePrimary(Cache_, Ptr);
else
getBackendAllocator().deallocateSecondary(Ptr);
}
// Internal quarantine allocation and deallocation functions. We first check
// that the batches are indeed serviced by the Primary.
// TODO(kostyak): figure out the best way to protect the batches.
COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
void *Allocate(uptr Size) {
return getBackendAllocator().allocatePrimary(Cache_, Size);
}
void Deallocate(void *Ptr) {
getBackendAllocator().deallocatePrimary(Cache_, Ptr);
}
AllocatorCache *Cache_;
};
typedef Quarantine<QuarantineCallback, ScudoChunk> ScudoQuarantine;
typedef ScudoQuarantine::Cache ScudoQuarantineCache;
COMPILER_CHECK(sizeof(ScudoQuarantineCache) <=
sizeof(ScudoTSD::QuarantineCachePlaceHolder));
ScudoQuarantineCache *getQuarantineCache(ScudoTSD *TSD) {
return reinterpret_cast<ScudoQuarantineCache *>(
TSD->QuarantineCachePlaceHolder);
}
struct ScudoAllocator {
static const uptr MaxAllowedMallocSize =
FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
typedef ReturnNullOrDieOnFailure FailureHandler;
ScudoBackendAllocator BackendAllocator;
ScudoQuarantine AllocatorQuarantine;
StaticSpinMutex GlobalPrngMutex;
ScudoPrng GlobalPrng;
u32 QuarantineChunksUpToSize;
bool DeallocationTypeMismatch;
bool ZeroContents;
bool DeleteSizeMismatch;
explicit ScudoAllocator(LinkerInitialized)
: AllocatorQuarantine(LINKER_INITIALIZED) {}
void init(const AllocatorOptions &Options) {
// Verify that the header offset field can hold the maximum offset. In the
// case of the Secondary allocator, it takes care of alignment and the
// offset will always be 0. In the case of the Primary, the worst case
// scenario happens in the last size class, when the backend allocation
// would already be aligned on the requested alignment, which would happen
// to be the maximum alignment that would fit in that size class. As a
// result, the maximum offset will be at most the maximum alignment for the
// last size class minus the header size, in multiples of MinAlignment.
UnpackedHeader Header = {};
uptr MaxPrimaryAlignment =
1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
uptr MaxOffset =
(MaxPrimaryAlignment - AlignedChunkHeaderSize) >> MinAlignmentLog;
Header.Offset = MaxOffset;
if (Header.Offset != MaxOffset) {
dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
"header\n");
}
// Verify that we can fit the maximum size or amount of unused bytes in the
// header. Given that the Secondary fits the allocation to a page, the worst
// case scenario happens in the Primary. It will depend on the second to
// last and last class sizes, as well as the dynamic base for the Primary.
// The following is an over-approximation that works for our needs.
uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes) {
dieWithMessage("ERROR: the maximum possible unused bytes doesn't fit in "
"the header\n");
}
DeallocationTypeMismatch = Options.DeallocationTypeMismatch;
DeleteSizeMismatch = Options.DeleteSizeMismatch;
ZeroContents = Options.ZeroContents;
SetAllocatorMayReturnNull(Options.MayReturnNull);
BackendAllocator.init(Options.ReleaseToOSIntervalMs);
AllocatorQuarantine.Init(
static_cast<uptr>(Options.QuarantineSizeKb) << 10,
static_cast<uptr>(Options.ThreadLocalQuarantineSizeKb) << 10);
QuarantineChunksUpToSize = Options.QuarantineChunksUpToSize;
GlobalPrng.init();
Cookie = GlobalPrng.getU64();
}
// Helper function that checks for a valid Scudo chunk. nullptr isn't.
bool isValidPointer(const void *UserPtr) {
initThreadMaybe();
if (UNLIKELY(!UserPtr))
return false;
uptr UserBeg = reinterpret_cast<uptr>(UserPtr);
if (!IsAligned(UserBeg, MinAlignment))
return false;
return getScudoChunk(UserBeg)->isValid();
}
// Allocates a chunk.
void *allocate(uptr Size, uptr Alignment, AllocType Type,
bool ForceZeroContents = false) {
initThreadMaybe();
if (UNLIKELY(Alignment > MaxAlignment))
return FailureHandler::OnBadRequest();
if (UNLIKELY(Alignment < MinAlignment))
Alignment = MinAlignment;
if (UNLIKELY(Size >= MaxAllowedMallocSize))
return FailureHandler::OnBadRequest();
if (UNLIKELY(Size == 0))
Size = 1;
uptr NeededSize = RoundUpTo(Size, MinAlignment) + AlignedChunkHeaderSize;
uptr AlignedSize = (Alignment > MinAlignment) ?
NeededSize + (Alignment - AlignedChunkHeaderSize) : NeededSize;
if (UNLIKELY(AlignedSize >= MaxAllowedMallocSize))
return FailureHandler::OnBadRequest();
// Primary and Secondary backed allocations have a different treatment. We
// deal with alignment requirements of Primary serviced allocations here,
// but the Secondary will take care of its own alignment needs.
bool FromPrimary = PrimaryAllocator::CanAllocate(AlignedSize, MinAlignment);
void *Ptr;
u8 Salt;
uptr AllocSize;
if (FromPrimary) {
AllocSize = AlignedSize;
ScudoTSD *TSD = getTSDAndLock();
Salt = TSD->Prng.getU8();
Ptr = BackendAllocator.allocatePrimary(&TSD->Cache, AllocSize);
TSD->unlock();
} else {
{
SpinMutexLock l(&GlobalPrngMutex);
Salt = GlobalPrng.getU8();
}
AllocSize = NeededSize;
Ptr = BackendAllocator.allocateSecondary(AllocSize, Alignment);
}
if (UNLIKELY(!Ptr))
return FailureHandler::OnOOM();
// If requested, we will zero out the entire contents of the returned chunk.
if ((ForceZeroContents || ZeroContents) && FromPrimary)
memset(Ptr, 0, BackendAllocator.getActuallyAllocatedSize(
Ptr, /*FromPrimary=*/true));
UnpackedHeader Header = {};
uptr AllocBeg = reinterpret_cast<uptr>(Ptr);
uptr UserBeg = AllocBeg + AlignedChunkHeaderSize;
if (UNLIKELY(!IsAligned(UserBeg, Alignment))) {
// Since the Secondary takes care of alignment, a non-aligned pointer
// means it is from the Primary. It is also the only case where the offset
// field of the header would be non-zero.
CHECK(FromPrimary);
UserBeg = RoundUpTo(UserBeg, Alignment);
uptr Offset = UserBeg - AlignedChunkHeaderSize - AllocBeg;
Header.Offset = Offset >> MinAlignmentLog;
}
CHECK_LE(UserBeg + Size, AllocBeg + AllocSize);
Header.State = ChunkAllocated;
Header.AllocType = Type;
if (FromPrimary) {
Header.FromPrimary = 1;
Header.SizeOrUnusedBytes = Size;
} else {
// The secondary fits the allocations to a page, so the amount of unused
// bytes is the difference between the end of the user allocation and the
// next page boundary.
uptr PageSize = GetPageSizeCached();
uptr TrailingBytes = (UserBeg + Size) & (PageSize - 1);
if (TrailingBytes)
Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
}
Header.Salt = Salt;
getScudoChunk(UserBeg)->storeHeader(&Header);
void *UserPtr = reinterpret_cast<void *>(UserBeg);
// if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(UserPtr, Size);
return UserPtr;
}
// Place a chunk in the quarantine or directly deallocate it in the event of
// a zero-sized quarantine, or if the size of the chunk is greater than the
// quarantine chunk size threshold.
void quarantineOrDeallocateChunk(ScudoChunk *Chunk, UnpackedHeader *Header,
uptr Size) {
const bool BypassQuarantine = (AllocatorQuarantine.GetCacheSize() == 0) ||
(Size > QuarantineChunksUpToSize);
if (BypassQuarantine) {
Chunk->eraseHeader();
void *Ptr = Chunk->getAllocBeg(Header);
if (Header->FromPrimary) {
ScudoTSD *TSD = getTSDAndLock();
getBackendAllocator().deallocatePrimary(&TSD->Cache, Ptr);
TSD->unlock();
} else {
getBackendAllocator().deallocateSecondary(Ptr);
}
} else {
// If a small memory amount was allocated with a larger alignment, we want
// to take that into account. Otherwise the Quarantine would be filled
// with tiny chunks, taking a lot of VA memory. This is an approximation
// of the usable size, that allows us to not call
// GetActuallyAllocatedSize.
uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
UnpackedHeader NewHeader = *Header;
NewHeader.State = ChunkQuarantine;
Chunk->compareExchangeHeader(&NewHeader, Header);
ScudoTSD *TSD = getTSDAndLock();
AllocatorQuarantine.Put(getQuarantineCache(TSD),
QuarantineCallback(&TSD->Cache),
Chunk, EstimatedSize);
TSD->unlock();
}
}
// Deallocates a Chunk, which means adding it to the delayed free list (or
// Quarantine).
void deallocate(void *UserPtr, uptr DeleteSize, AllocType Type) {
// For a deallocation, we only ensure minimal initialization, meaning thread
// local data will be left uninitialized for now (when using ELF TLS). The
// fallback cache will be used instead. This is a workaround for a situation
// where the only heap operation performed in a thread would be a free past
// the TLS destructors, ending up in initialized thread specific data never
// being destroyed properly. Any other heap operation will do a full init.
initThreadMaybe(/*MinimalInit=*/true);
// if (&__sanitizer_free_hook) __sanitizer_free_hook(UserPtr);
if (UNLIKELY(!UserPtr))
return;
uptr UserBeg = reinterpret_cast<uptr>(UserPtr);
if (UNLIKELY(!IsAligned(UserBeg, MinAlignment))) {
dieWithMessage("ERROR: attempted to deallocate a chunk not properly "
"aligned at address %p\n", UserPtr);
}
ScudoChunk *Chunk = getScudoChunk(UserBeg);
UnpackedHeader Header;
Chunk->loadHeader(&Header);
if (UNLIKELY(Header.State != ChunkAllocated)) {
dieWithMessage("ERROR: invalid chunk state when deallocating address "
"%p\n", UserPtr);
}
if (DeallocationTypeMismatch) {
// The deallocation type has to match the allocation one.
if (Header.AllocType != Type) {
// With the exception of memalign'd Chunks, that can be still be free'd.
if (Header.AllocType != FromMemalign || Type != FromMalloc) {
dieWithMessage("ERROR: allocation type mismatch when deallocating "
"address %p\n", UserPtr);
}
}
}
uptr Size = Header.FromPrimary ? Header.SizeOrUnusedBytes :
Chunk->getUsableSize(&Header) - Header.SizeOrUnusedBytes;
if (DeleteSizeMismatch) {
if (DeleteSize && DeleteSize != Size) {
dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n",
UserPtr);
}
}
quarantineOrDeallocateChunk(Chunk, &Header, Size);
}
// Reallocates a chunk. We can save on a new allocation if the new requested
// size still fits in the chunk.
void *reallocate(void *OldPtr, uptr NewSize) {
initThreadMaybe();
uptr UserBeg = reinterpret_cast<uptr>(OldPtr);
if (UNLIKELY(!IsAligned(UserBeg, MinAlignment))) {
dieWithMessage("ERROR: attempted to reallocate a chunk not properly "
"aligned at address %p\n", OldPtr);
}
ScudoChunk *Chunk = getScudoChunk(UserBeg);
UnpackedHeader OldHeader;
Chunk->loadHeader(&OldHeader);
if (UNLIKELY(OldHeader.State != ChunkAllocated)) {
dieWithMessage("ERROR: invalid chunk state when reallocating address "
"%p\n", OldPtr);
}
if (DeallocationTypeMismatch) {
if (UNLIKELY(OldHeader.AllocType != FromMalloc)) {
dieWithMessage("ERROR: allocation type mismatch when reallocating "
"address %p\n", OldPtr);
}
}
uptr UsableSize = Chunk->getUsableSize(&OldHeader);
// The new size still fits in the current chunk, and the size difference
// is reasonable.
if (NewSize <= UsableSize &&
(UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
UnpackedHeader NewHeader = OldHeader;
NewHeader.SizeOrUnusedBytes =
OldHeader.FromPrimary ? NewSize : UsableSize - NewSize;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
return OldPtr;
}
// Otherwise, we have to allocate a new chunk and copy the contents of the
// old one.
void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
if (NewPtr) {
uptr OldSize = OldHeader.FromPrimary ? OldHeader.SizeOrUnusedBytes :
UsableSize - OldHeader.SizeOrUnusedBytes;
memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
quarantineOrDeallocateChunk(Chunk, &OldHeader, OldSize);
}
return NewPtr;
}
// Helper function that returns the actual usable size of a chunk.
uptr getUsableSize(const void *Ptr) {
initThreadMaybe();
if (UNLIKELY(!Ptr))
return 0;
uptr UserBeg = reinterpret_cast<uptr>(Ptr);
ScudoChunk *Chunk = getScudoChunk(UserBeg);
UnpackedHeader Header;
Chunk->loadHeader(&Header);
// Getting the usable size of a chunk only makes sense if it's allocated.
if (UNLIKELY(Header.State != ChunkAllocated)) {
dieWithMessage("ERROR: invalid chunk state when sizing address %p\n",
Ptr);
}
return Chunk->getUsableSize(&Header);
}
void *calloc(uptr NMemB, uptr Size) {
initThreadMaybe();
if (UNLIKELY(CheckForCallocOverflow(NMemB, Size)))
return FailureHandler::OnBadRequest();
return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
}
void commitBack(ScudoTSD *TSD) {
AllocatorQuarantine.Drain(getQuarantineCache(TSD),
QuarantineCallback(&TSD->Cache));
BackendAllocator.destroyCache(&TSD->Cache);
}
uptr getStats(AllocatorStat StatType) {
initThreadMaybe();
uptr stats[AllocatorStatCount];
BackendAllocator.getStats(stats);
return stats[StatType];
}
void *handleBadRequest() {
initThreadMaybe();
return FailureHandler::OnBadRequest();
}
};
static ScudoAllocator Instance(LINKER_INITIALIZED);
static ScudoBackendAllocator &getBackendAllocator() {
return Instance.BackendAllocator;
}
static void initScudoInternal(const AllocatorOptions &Options) {
Instance.init(Options);
}
void ScudoTSD::init(bool Shared) {
UnlockRequired = Shared;
getBackendAllocator().initCache(&Cache);
Prng.init();
memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
}
void ScudoTSD::commitBack() {
Instance.commitBack(this);
}
void *scudoMalloc(uptr Size, AllocType Type) {
return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, Type));
}
void scudoFree(void *Ptr, AllocType Type) {
Instance.deallocate(Ptr, 0, Type);
}
void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
Instance.deallocate(Ptr, Size, Type);
}
void *scudoRealloc(void *Ptr, uptr Size) {
if (!Ptr)
return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
if (Size == 0) {
Instance.deallocate(Ptr, 0, FromMalloc);
return nullptr;
}
return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
}
void *scudoCalloc(uptr NMemB, uptr Size) {
return SetErrnoOnNull(Instance.calloc(NMemB, Size));
}
void *scudoValloc(uptr Size) {
return SetErrnoOnNull(
Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
}
void *scudoPvalloc(uptr Size) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
errno = ENOMEM;
return Instance.handleBadRequest();
}
// pvalloc(0) should allocate one page.
Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
}
void *scudoMemalign(uptr Alignment, uptr Size) {
if (UNLIKELY(!IsPowerOfTwo(Alignment))) {
errno = EINVAL;
return Instance.handleBadRequest();
}
return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMemalign));
}
int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
Instance.handleBadRequest();
return EINVAL;
}
void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
if (UNLIKELY(!Ptr))
return ENOMEM;
*MemPtr = Ptr;
return 0;
}
void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
errno = EINVAL;
return Instance.handleBadRequest();
}
return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
}
uptr scudoMallocUsableSize(void *Ptr) {
return Instance.getUsableSize(Ptr);
}
} // namespace __scudo
using namespace __scudo;
// MallocExtension helper functions
uptr __sanitizer_get_current_allocated_bytes() {
return Instance.getStats(AllocatorStatAllocated);
}
uptr __sanitizer_get_heap_size() {
return Instance.getStats(AllocatorStatMapped);
}
uptr __sanitizer_get_free_bytes() {
return 1;
}
uptr __sanitizer_get_unmapped_bytes() {
return 1;
}
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
return size;
}
int __sanitizer_get_ownership(const void *Ptr) {
return Instance.isValidPointer(Ptr);
}
uptr __sanitizer_get_allocated_size(const void *Ptr) {
return Instance.getUsableSize(Ptr);
}