blob: 97dff0d8bb65c6a28fd784b1d80867407e5aa71b [file] [log] [blame]
//===-- sanitizer_fuchsia.cc ---------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and other sanitizer
// run-time libraries and implements Fuchsia-specific functions from
// sanitizer_common.h.
//===---------------------------------------------------------------------===//
#include "sanitizer_fuchsia.h"
#if SANITIZER_FUCHSIA
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_stacktrace.h"
#include <limits.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <unwind.h>
#include <zircon/errors.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
namespace __sanitizer {
void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
uptr internal_sched_yield() {
zx_status_t status = _zx_nanosleep(0);
CHECK_EQ(status, ZX_OK);
return 0; // Why doesn't this return void?
}
static void internal_nanosleep(zx_time_t ns) {
zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns));
CHECK_EQ(status, ZX_OK);
}
unsigned int internal_sleep(unsigned int seconds) {
internal_nanosleep(ZX_SEC(seconds));
return 0;
}
u64 NanoTime() { return _zx_time_get(ZX_CLOCK_UTC); }
uptr internal_getpid() {
zx_info_handle_basic_t info;
zx_status_t status =
_zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
sizeof(info), NULL, NULL);
CHECK_EQ(status, ZX_OK);
uptr pid = static_cast<uptr>(info.koid);
CHECK_EQ(pid, info.koid);
return pid;
}
uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
uptr GetTid() { return GetThreadSelf(); }
void Abort() { abort(); }
int Atexit(void (*function)(void)) { return atexit(function); }
void SleepForSeconds(int seconds) { internal_sleep(seconds); }
void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); }
void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
pthread_attr_t attr;
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
void *base;
size_t size;
CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
CHECK_EQ(pthread_attr_destroy(&attr), 0);
*stack_bottom = reinterpret_cast<uptr>(base);
*stack_top = *stack_bottom + size;
}
void MaybeReexec() {}
void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
void DisableCoreDumperIfNecessary() {}
void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
void StartReportDeadlySignal() {}
void ReportDeadlySignal(const SignalContext &sig, u32 tid,
UnwindSignalStackCallbackType unwind,
const void *unwind_context) {}
void SetAlternateSignalStack() {}
void UnsetAlternateSignalStack() {}
void InitTlsSize() {}
void PrintModuleMap() {}
bool SignalContext::IsStackOverflow() const { return false; }
void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
struct UnwindTraceArg {
BufferedStackTrace *stack;
u32 max_depth;
};
_Unwind_Reason_Code Unwind_Trace(struct _Unwind_Context *ctx, void *param) {
UnwindTraceArg *arg = static_cast<UnwindTraceArg *>(param);
CHECK_LT(arg->stack->size, arg->max_depth);
uptr pc = _Unwind_GetIP(ctx);
if (pc < PAGE_SIZE) return _URC_NORMAL_STOP;
arg->stack->trace_buffer[arg->stack->size++] = pc;
return (arg->stack->size == arg->max_depth ? _URC_NORMAL_STOP
: _URC_NO_REASON);
}
void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) {
CHECK_GE(max_depth, 2);
size = 0;
UnwindTraceArg arg = {this, Min(max_depth + 1, kStackTraceMax)};
_Unwind_Backtrace(Unwind_Trace, &arg);
CHECK_GT(size, 0);
// We need to pop a few frames so that pc is on top.
uptr to_pop = LocatePcInTrace(pc);
// trace_buffer[0] belongs to the current function so we always pop it,
// unless there is only 1 frame in the stack trace (1 frame is always better
// than 0!).
PopStackFrames(Min(to_pop, static_cast<uptr>(1)));
trace_buffer[0] = pc;
}
void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context,
u32 max_depth) {
CHECK_NE(context, nullptr);
UNREACHABLE("signal context doesn't exist");
}
enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 };
BlockingMutex::BlockingMutex() {
// NOTE! It's important that this use internal_memset, because plain
// memset might be intercepted (e.g., actually be __asan_memset).
// Defining this so the compiler initializes each field, e.g.:
// BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {}
// might result in the compiler generating a call to memset, which would
// have the same problem.
internal_memset(this, 0, sizeof(*this));
}
void BlockingMutex::Lock() {
CHECK_EQ(owner_, 0);
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked)
return;
while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) {
zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m),
MtxSleeping, ZX_TIME_INFINITE);
if (status != ZX_ERR_BAD_STATE) // Normal race.
CHECK_EQ(status, ZX_OK);
}
}
void BlockingMutex::Unlock() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release);
CHECK_NE(v, MtxUnlocked);
if (v == MtxSleeping) {
zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1);
CHECK_EQ(status, ZX_OK);
}
}
void BlockingMutex::CheckLocked() {
atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_);
CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed));
}
uptr GetPageSize() { return PAGE_SIZE; }
uptr GetMmapGranularity() { return PAGE_SIZE; }
sanitizer_shadow_bounds_t ShadowBounds;
uptr GetMaxUserVirtualAddress() {
ShadowBounds = __sanitizer_shadow_bounds();
return ShadowBounds.memory_limit - 1;
}
static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
bool raw_report, bool die_for_nomem) {
size = RoundUpTo(size, PAGE_SIZE);
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
raw_report);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
// TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
uintptr_t addr;
status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, size,
ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
raw_report);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
return DoAnonymousMmapOrDie(size, mem_type, false, false);
}
uptr ReservedAddressRange::Init(uptr init_size, const char* name,
uptr fixed_addr) {
base_ = MmapNoAccess(init_size);
size_ = init_size;
name_ = name;
return reinterpret_cast<uptr>(base_);
}
// Uses fixed_addr for now.
// Will use offset instead once we've implemented this function for real.
uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size) {
return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr,
map_size));
}
uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size) {
return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, map_size));
}
void ReservedAddressRange::Unmap(uptr addr, uptr size) {
void* addr_as_void = reinterpret_cast<void*>(addr);
uptr base_as_uptr = reinterpret_cast<uptr>(base_);
// Only unmap at the beginning or end of the range.
CHECK((addr_as_void == base_) || (addr + size == base_as_uptr + size_));
CHECK_LE(size, size_);
UnmapOrDie(reinterpret_cast<void*>(addr), size);
}
// MmapNoAccess and MmapFixedOrDie are used only by sanitizer_allocator.
// Instead of doing exactly what they say, we make MmapNoAccess actually
// just allocate a VMAR to reserve the address space. Then MmapFixedOrDie
// uses that VMAR instead of the root.
zx_handle_t allocator_vmar = ZX_HANDLE_INVALID;
uintptr_t allocator_vmar_base;
size_t allocator_vmar_size;
void *MmapNoAccess(uptr size) {
size = RoundUpTo(size, PAGE_SIZE);
CHECK_EQ(allocator_vmar, ZX_HANDLE_INVALID);
uintptr_t base;
zx_status_t status =
_zx_vmar_allocate(_zx_vmar_root_self(), 0, size,
ZX_VM_FLAG_CAN_MAP_READ | ZX_VM_FLAG_CAN_MAP_WRITE |
ZX_VM_FLAG_CAN_MAP_SPECIFIC,
&allocator_vmar, &base);
if (status != ZX_OK)
ReportMmapFailureAndDie(size, "sanitizer allocator address space",
"zx_vmar_allocate", status);
allocator_vmar_base = base;
allocator_vmar_size = size;
return reinterpret_cast<void *>(base);
}
constexpr const char kAllocatorVmoName[] = "sanitizer_allocator";
static void *DoMmapFixedOrDie(uptr fixed_addr, uptr size, bool die_for_nomem) {
size = RoundUpTo(size, PAGE_SIZE);
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, kAllocatorVmoName, "zx_vmo_create", status);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, kAllocatorVmoName,
sizeof(kAllocatorVmoName) - 1);
DCHECK_GE(fixed_addr, allocator_vmar_base);
uintptr_t offset = fixed_addr - allocator_vmar_base;
DCHECK_LE(size, allocator_vmar_size);
DCHECK_GE(allocator_vmar_size - offset, size);
uintptr_t addr;
status = _zx_vmar_map(
allocator_vmar, offset, vmo, 0, size,
ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE | ZX_VM_FLAG_SPECIFIC,
&addr);
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
ReportMmapFailureAndDie(size, kAllocatorVmoName, "zx_vmar_map", status);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return DoMmapFixedOrDie(fixed_addr, size, true);
}
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
return DoMmapFixedOrDie(fixed_addr, size, false);
}
// This should never be called.
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
UNIMPLEMENTED();
}
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK_GE(size, PAGE_SIZE);
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
return nullptr;
}
_zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
internal_strlen(mem_type));
// TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
// Map a larger size to get a chunk of address space big enough that
// it surely contains an aligned region of the requested size. Then
// overwrite the aligned middle portion with a mapping from the
// beginning of the VMO, and unmap the excess before and after.
size_t map_size = size + alignment;
uintptr_t addr;
status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, map_size,
ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE, &addr);
if (status == ZX_OK) {
uintptr_t map_addr = addr;
uintptr_t map_end = map_addr + map_size;
addr = RoundUpTo(map_addr, alignment);
uintptr_t end = addr + size;
if (addr != map_addr) {
zx_info_vmar_t info;
status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
sizeof(info), NULL, NULL);
if (status == ZX_OK) {
uintptr_t new_addr;
status =
_zx_vmar_map(_zx_vmar_root_self(), addr - info.base, vmo, 0, size,
ZX_VM_FLAG_PERM_READ | ZX_VM_FLAG_PERM_WRITE |
ZX_VM_FLAG_SPECIFIC_OVERWRITE,
&new_addr);
if (status == ZX_OK) CHECK_EQ(new_addr, addr);
}
}
if (status == ZX_OK && addr != map_addr)
status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
if (status == ZX_OK && end != map_end)
status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
}
_zx_handle_close(vmo);
if (status != ZX_OK) {
if (status != ZX_ERR_NO_MEMORY)
ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
return nullptr;
}
IncreaseTotalMmap(size);
return reinterpret_cast<void *>(addr);
}
void UnmapOrDie(void *addr, uptr size) {
if (!addr || !size) return;
size = RoundUpTo(size, PAGE_SIZE);
zx_status_t status = _zx_vmar_unmap(_zx_vmar_root_self(),
reinterpret_cast<uintptr_t>(addr), size);
if (status != ZX_OK) {
Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
SanitizerToolName, size, size, addr);
CHECK("unable to unmap" && 0);
}
DecreaseTotalMmap(size);
}
// This is used on the shadow mapping, which cannot be changed.
// Zircon doesn't have anything like MADV_DONTNEED.
void ReleaseMemoryPagesToOS(uptr beg, uptr end) {}
void DumpProcessMap() {
UNIMPLEMENTED(); // TODO(mcgrathr): write it
}
bool IsAccessibleMemoryRange(uptr beg, uptr size) {
// TODO(mcgrathr): Figure out a better way.
zx_handle_t vmo;
zx_status_t status = _zx_vmo_create(size, 0, &vmo);
if (status == ZX_OK) {
while (size > 0) {
size_t wrote;
status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size,
&wrote);
if (status != ZX_OK) break;
CHECK_GT(wrote, 0);
CHECK_LE(wrote, size);
beg += wrote;
size -= wrote;
}
_zx_handle_close(vmo);
}
return status == ZX_OK;
}
// FIXME implement on this platform.
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {}
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
uptr *read_len, uptr max_len, error_t *errno_p) {
zx_handle_t vmo;
zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
if (status == ZX_OK) {
uint64_t vmo_size;
status = _zx_vmo_get_size(vmo, &vmo_size);
if (status == ZX_OK) {
if (vmo_size < max_len) max_len = vmo_size;
size_t map_size = RoundUpTo(max_len, PAGE_SIZE);
uintptr_t addr;
status = _zx_vmar_map(_zx_vmar_root_self(), 0, vmo, 0, map_size,
ZX_VM_FLAG_PERM_READ, &addr);
if (status == ZX_OK) {
*buff = reinterpret_cast<char *>(addr);
*buff_size = map_size;
*read_len = max_len;
}
}
_zx_handle_close(vmo);
}
if (status != ZX_OK && errno_p) *errno_p = status;
return status == ZX_OK;
}
void RawWrite(const char *buffer) {
__sanitizer_log_write(buffer, internal_strlen(buffer));
}
void CatastrophicErrorWrite(const char *buffer, uptr length) {
__sanitizer_log_write(buffer, length);
}
char **StoredArgv;
char **StoredEnviron;
char **GetArgv() { return StoredArgv; }
const char *GetEnv(const char *name) {
if (StoredEnviron) {
uptr NameLen = internal_strlen(name);
for (char **Env = StoredEnviron; *Env != 0; Env++) {
if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
return (*Env) + NameLen + 1;
}
}
return nullptr;
}
uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
const char *argv0 = StoredArgv[0];
if (!argv0) argv0 = "<UNKNOWN>";
internal_strncpy(buf, argv0, buf_len);
return internal_strlen(buf);
}
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
return ReadBinaryName(buf, buf_len);
}
uptr MainThreadStackBase, MainThreadStackSize;
bool GetRandom(void *buffer, uptr length, bool blocking) {
CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
size_t size;
CHECK_EQ(_zx_cprng_draw(buffer, length, &size), ZX_OK);
CHECK_EQ(size, length);
return true;
}
} // namespace __sanitizer
using namespace __sanitizer; // NOLINT
extern "C" {
void __sanitizer_startup_hook(int argc, char **argv, char **envp,
void *stack_base, size_t stack_size) {
__sanitizer::StoredArgv = argv;
__sanitizer::StoredEnviron = envp;
__sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
__sanitizer::MainThreadStackSize = stack_size;
}
void __sanitizer_set_report_path(const char *path) {
// Handle the initialization code in each sanitizer, but no other calls.
// This setting is never consulted on Fuchsia.
DCHECK_EQ(path, common_flags()->log_path);
}
void __sanitizer_set_report_fd(void *fd) {
UNREACHABLE("not available on Fuchsia");
}
} // extern "C"
#endif // SANITIZER_FUCHSIA