| //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implements C++ name mangling according to the Itanium C++ ABI, |
| // which is used in GCC 3.2 and newer (and many compilers that are |
| // ABI-compatible with GCC): |
| // |
| // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #define MANGLE_CHECKER 0 |
| |
| #if MANGLE_CHECKER |
| #include <cxxabi.h> |
| #endif |
| |
| using namespace clang; |
| |
| namespace { |
| |
| /// Retrieve the declaration context that should be used when mangling the given |
| /// declaration. |
| static const DeclContext *getEffectiveDeclContext(const Decl *D) { |
| // The ABI assumes that lambda closure types that occur within |
| // default arguments live in the context of the function. However, due to |
| // the way in which Clang parses and creates function declarations, this is |
| // not the case: the lambda closure type ends up living in the context |
| // where the function itself resides, because the function declaration itself |
| // had not yet been created. Fix the context here. |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { |
| if (RD->isLambda()) |
| if (ParmVarDecl *ContextParam |
| = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) |
| return ContextParam->getDeclContext(); |
| } |
| |
| // Perform the same check for block literals. |
| if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| if (ParmVarDecl *ContextParam |
| = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) |
| return ContextParam->getDeclContext(); |
| } |
| |
| const DeclContext *DC = D->getDeclContext(); |
| if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| if (VD->isExternC()) |
| return VD->getASTContext().getTranslationUnitDecl(); |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| if (FD->isExternC()) |
| return FD->getASTContext().getTranslationUnitDecl(); |
| |
| return DC->getRedeclContext(); |
| } |
| |
| static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| static bool isLocalContainerContext(const DeclContext *DC) { |
| return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); |
| } |
| |
| static const RecordDecl *GetLocalClassDecl(const Decl *D) { |
| const DeclContext *DC = getEffectiveDeclContext(D); |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
| if (isLocalContainerContext(DC)) |
| return dyn_cast<RecordDecl>(D); |
| D = cast<Decl>(DC); |
| DC = getEffectiveDeclContext(D); |
| } |
| return nullptr; |
| } |
| |
| static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
| if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
| return ftd->getTemplatedDecl(); |
| |
| return fn; |
| } |
| |
| static const NamedDecl *getStructor(const NamedDecl *decl) { |
| const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); |
| return (fn ? getStructor(fn) : decl); |
| } |
| |
| static bool isLambda(const NamedDecl *ND) { |
| const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); |
| if (!Record) |
| return false; |
| |
| return Record->isLambda(); |
| } |
| |
| static const unsigned UnknownArity = ~0U; |
| |
| class ItaniumMangleContextImpl : public ItaniumMangleContext { |
| typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; |
| llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
| llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
| |
| public: |
| explicit ItaniumMangleContextImpl(ASTContext &Context, |
| DiagnosticsEngine &Diags) |
| : ItaniumMangleContext(Context, Diags) {} |
| |
| /// @name Mangler Entry Points |
| /// @{ |
| |
| bool shouldMangleCXXName(const NamedDecl *D) override; |
| bool shouldMangleStringLiteral(const StringLiteral *) override { |
| return false; |
| } |
| void mangleCXXName(const NamedDecl *D, raw_ostream &) override; |
| void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, |
| raw_ostream &) override; |
| void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, |
| raw_ostream &) override; |
| void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, |
| raw_ostream &) override; |
| void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; |
| void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; |
| void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
| const CXXRecordDecl *Type, raw_ostream &) override; |
| void mangleCXXRTTI(QualType T, raw_ostream &) override; |
| void mangleCXXRTTIName(QualType T, raw_ostream &) override; |
| void mangleTypeName(QualType T, raw_ostream &) override; |
| void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, |
| raw_ostream &) override; |
| void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, |
| raw_ostream &) override; |
| |
| void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; |
| void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; |
| void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; |
| void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
| void mangleDynamicAtExitDestructor(const VarDecl *D, |
| raw_ostream &Out) override; |
| void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, |
| raw_ostream &Out) override; |
| void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, |
| raw_ostream &Out) override; |
| void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; |
| void mangleItaniumThreadLocalWrapper(const VarDecl *D, |
| raw_ostream &) override; |
| |
| void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; |
| |
| bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
| // Lambda closure types are already numbered. |
| if (isLambda(ND)) |
| return false; |
| |
| // Anonymous tags are already numbered. |
| if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { |
| if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) |
| return false; |
| } |
| |
| // Use the canonical number for externally visible decls. |
| if (ND->isExternallyVisible()) { |
| unsigned discriminator = getASTContext().getManglingNumber(ND); |
| if (discriminator == 1) |
| return false; |
| disc = discriminator - 2; |
| return true; |
| } |
| |
| // Make up a reasonable number for internal decls. |
| unsigned &discriminator = Uniquifier[ND]; |
| if (!discriminator) { |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; |
| } |
| if (discriminator == 1) |
| return false; |
| disc = discriminator-2; |
| return true; |
| } |
| /// @} |
| }; |
| |
| /// Manage the mangling of a single name. |
| class CXXNameMangler { |
| ItaniumMangleContextImpl &Context; |
| raw_ostream &Out; |
| bool NullOut = false; |
| /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. |
| /// This mode is used when mangler creates another mangler recursively to |
| /// calculate ABI tags for the function return value or the variable type. |
| /// Also it is required to avoid infinite recursion in some cases. |
| bool DisableDerivedAbiTags = false; |
| |
| /// The "structor" is the top-level declaration being mangled, if |
| /// that's not a template specialization; otherwise it's the pattern |
| /// for that specialization. |
| const NamedDecl *Structor; |
| unsigned StructorType; |
| |
| /// The next substitution sequence number. |
| unsigned SeqID; |
| |
| class FunctionTypeDepthState { |
| unsigned Bits; |
| |
| enum { InResultTypeMask = 1 }; |
| |
| public: |
| FunctionTypeDepthState() : Bits(0) {} |
| |
| /// The number of function types we're inside. |
| unsigned getDepth() const { |
| return Bits >> 1; |
| } |
| |
| /// True if we're in the return type of the innermost function type. |
| bool isInResultType() const { |
| return Bits & InResultTypeMask; |
| } |
| |
| FunctionTypeDepthState push() { |
| FunctionTypeDepthState tmp = *this; |
| Bits = (Bits & ~InResultTypeMask) + 2; |
| return tmp; |
| } |
| |
| void enterResultType() { |
| Bits |= InResultTypeMask; |
| } |
| |
| void leaveResultType() { |
| Bits &= ~InResultTypeMask; |
| } |
| |
| void pop(FunctionTypeDepthState saved) { |
| assert(getDepth() == saved.getDepth() + 1); |
| Bits = saved.Bits; |
| } |
| |
| } FunctionTypeDepth; |
| |
| // abi_tag is a gcc attribute, taking one or more strings called "tags". |
| // The goal is to annotate against which version of a library an object was |
| // built and to be able to provide backwards compatibility ("dual abi"). |
| // For more information see docs/ItaniumMangleAbiTags.rst. |
| typedef SmallVector<StringRef, 4> AbiTagList; |
| |
| // State to gather all implicit and explicit tags used in a mangled name. |
| // Must always have an instance of this while emitting any name to keep |
| // track. |
| class AbiTagState final { |
| public: |
| explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { |
| Parent = LinkHead; |
| LinkHead = this; |
| } |
| |
| // No copy, no move. |
| AbiTagState(const AbiTagState &) = delete; |
| AbiTagState &operator=(const AbiTagState &) = delete; |
| |
| ~AbiTagState() { pop(); } |
| |
| void write(raw_ostream &Out, const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { |
| assert( |
| !AdditionalAbiTags && |
| "only function and variables need a list of additional abi tags"); |
| if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { |
| UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), |
| AbiTag->tags().end()); |
| } |
| // Don't emit abi tags for namespaces. |
| return; |
| } |
| } |
| |
| AbiTagList TagList; |
| if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { |
| UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), |
| AbiTag->tags().end()); |
| TagList.insert(TagList.end(), AbiTag->tags().begin(), |
| AbiTag->tags().end()); |
| } |
| |
| if (AdditionalAbiTags) { |
| UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), |
| AdditionalAbiTags->end()); |
| TagList.insert(TagList.end(), AdditionalAbiTags->begin(), |
| AdditionalAbiTags->end()); |
| } |
| |
| std::sort(TagList.begin(), TagList.end()); |
| TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); |
| |
| writeSortedUniqueAbiTags(Out, TagList); |
| } |
| |
| const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } |
| void setUsedAbiTags(const AbiTagList &AbiTags) { |
| UsedAbiTags = AbiTags; |
| } |
| |
| const AbiTagList &getEmittedAbiTags() const { |
| return EmittedAbiTags; |
| } |
| |
| const AbiTagList &getSortedUniqueUsedAbiTags() { |
| std::sort(UsedAbiTags.begin(), UsedAbiTags.end()); |
| UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), |
| UsedAbiTags.end()); |
| return UsedAbiTags; |
| } |
| |
| private: |
| //! All abi tags used implicitly or explicitly. |
| AbiTagList UsedAbiTags; |
| //! All explicit abi tags (i.e. not from namespace). |
| AbiTagList EmittedAbiTags; |
| |
| AbiTagState *&LinkHead; |
| AbiTagState *Parent = nullptr; |
| |
| void pop() { |
| assert(LinkHead == this && |
| "abi tag link head must point to us on destruction"); |
| if (Parent) { |
| Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), |
| UsedAbiTags.begin(), UsedAbiTags.end()); |
| Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), |
| EmittedAbiTags.begin(), |
| EmittedAbiTags.end()); |
| } |
| LinkHead = Parent; |
| } |
| |
| void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { |
| for (const auto &Tag : AbiTags) { |
| EmittedAbiTags.push_back(Tag); |
| Out << "B"; |
| Out << Tag.size(); |
| Out << Tag; |
| } |
| } |
| }; |
| |
| AbiTagState *AbiTags = nullptr; |
| AbiTagState AbiTagsRoot; |
| |
| llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
| llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; |
| |
| ASTContext &getASTContext() const { return Context.getASTContext(); } |
| |
| public: |
| CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| const NamedDecl *D = nullptr, bool NullOut_ = false) |
| : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), |
| StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { |
| // These can't be mangled without a ctor type or dtor type. |
| assert(!D || (!isa<CXXDestructorDecl>(D) && |
| !isa<CXXConstructorDecl>(D))); |
| } |
| CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| const CXXConstructorDecl *D, CXXCtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| SeqID(0), AbiTagsRoot(AbiTags) { } |
| CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| const CXXDestructorDecl *D, CXXDtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| SeqID(0), AbiTagsRoot(AbiTags) { } |
| |
| CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) |
| : Context(Outer.Context), Out(Out_), NullOut(false), |
| Structor(Outer.Structor), StructorType(Outer.StructorType), |
| SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), |
| AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} |
| |
| CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) |
| : Context(Outer.Context), Out(Out_), NullOut(true), |
| Structor(Outer.Structor), StructorType(Outer.StructorType), |
| SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), |
| AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} |
| |
| #if MANGLE_CHECKER |
| ~CXXNameMangler() { |
| if (Out.str()[0] == '\01') |
| return; |
| |
| int status = 0; |
| char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); |
| assert(status == 0 && "Could not demangle mangled name!"); |
| free(result); |
| } |
| #endif |
| raw_ostream &getStream() { return Out; } |
| |
| void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } |
| static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); |
| |
| void mangle(const NamedDecl *D); |
| void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
| void mangleNumber(const llvm::APSInt &I); |
| void mangleNumber(int64_t Number); |
| void mangleFloat(const llvm::APFloat &F); |
| void mangleFunctionEncoding(const FunctionDecl *FD); |
| void mangleSeqID(unsigned SeqID); |
| void mangleName(const NamedDecl *ND); |
| void mangleType(QualType T); |
| void mangleNameOrStandardSubstitution(const NamedDecl *ND); |
| |
| private: |
| |
| bool mangleSubstitution(const NamedDecl *ND); |
| bool mangleSubstitution(QualType T); |
| bool mangleSubstitution(TemplateName Template); |
| bool mangleSubstitution(uintptr_t Ptr); |
| |
| void mangleExistingSubstitution(TemplateName name); |
| |
| bool mangleStandardSubstitution(const NamedDecl *ND); |
| |
| void addSubstitution(const NamedDecl *ND) { |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| |
| addSubstitution(reinterpret_cast<uintptr_t>(ND)); |
| } |
| void addSubstitution(QualType T); |
| void addSubstitution(TemplateName Template); |
| void addSubstitution(uintptr_t Ptr); |
| // Destructive copy substitutions from other mangler. |
| void extendSubstitutions(CXXNameMangler* Other); |
| |
| void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| bool recursive = false); |
| void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
| DeclarationName name, |
| const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs, |
| unsigned KnownArity = UnknownArity); |
| |
| void mangleFunctionEncodingBareType(const FunctionDecl *FD); |
| |
| void mangleNameWithAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleModuleName(const Module *M); |
| void mangleModuleNamePrefix(StringRef Name); |
| void mangleTemplateName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleUnqualifiedName(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity, |
| AdditionalAbiTags); |
| } |
| void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, |
| unsigned KnownArity, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleUnscopedName(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleUnscopedTemplateName(const TemplateDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleUnscopedTemplateName(TemplateName, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleSourceName(const IdentifierInfo *II); |
| void mangleRegCallName(const IdentifierInfo *II); |
| void mangleSourceNameWithAbiTags( |
| const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); |
| void mangleLocalName(const Decl *D, |
| const AbiTagList *AdditionalAbiTags); |
| void mangleBlockForPrefix(const BlockDecl *Block); |
| void mangleUnqualifiedBlock(const BlockDecl *Block); |
| void mangleLambda(const CXXRecordDecl *Lambda); |
| void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, |
| const AbiTagList *AdditionalAbiTags, |
| bool NoFunction=false); |
| void mangleNestedName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void manglePrefix(NestedNameSpecifier *qualifier); |
| void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
| void manglePrefix(QualType type); |
| void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false); |
| void mangleTemplatePrefix(TemplateName Template); |
| bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, |
| StringRef Prefix = ""); |
| void mangleOperatorName(DeclarationName Name, unsigned Arity); |
| void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
| void mangleVendorQualifier(StringRef qualifier); |
| void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); |
| void mangleRefQualifier(RefQualifierKind RefQualifier); |
| |
| void mangleObjCMethodName(const ObjCMethodDecl *MD); |
| |
| // Declare manglers for every type class. |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) |
| #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
| #include "clang/AST/TypeNodes.def" |
| |
| void mangleType(const TagType*); |
| void mangleType(TemplateName); |
| static StringRef getCallingConvQualifierName(CallingConv CC); |
| void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); |
| void mangleExtFunctionInfo(const FunctionType *T); |
| void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, |
| const FunctionDecl *FD = nullptr); |
| void mangleNeonVectorType(const VectorType *T); |
| void mangleAArch64NeonVectorType(const VectorType *T); |
| |
| void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
| void mangleMemberExprBase(const Expr *base, bool isArrow); |
| void mangleMemberExpr(const Expr *base, bool isArrow, |
| NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName name, |
| const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs, |
| unsigned knownArity); |
| void mangleCastExpression(const Expr *E, StringRef CastEncoding); |
| void mangleInitListElements(const InitListExpr *InitList); |
| void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); |
| void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); |
| void mangleCXXDtorType(CXXDtorType T); |
| |
| void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleTemplateArgs(const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleTemplateArgs(const TemplateArgumentList &AL); |
| void mangleTemplateArg(TemplateArgument A); |
| |
| void mangleTemplateParameter(unsigned Index); |
| |
| void mangleFunctionParam(const ParmVarDecl *parm); |
| |
| void writeAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags); |
| |
| // Returns sorted unique list of ABI tags. |
| AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); |
| // Returns sorted unique list of ABI tags. |
| AbiTagList makeVariableTypeTags(const VarDecl *VD); |
| }; |
| |
| } |
| |
| bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
| const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); |
| if (FD) { |
| LanguageLinkage L = FD->getLanguageLinkage(); |
| // Overloadable functions need mangling. |
| if (FD->hasAttr<OverloadableAttr>()) |
| return true; |
| |
| // "main" is not mangled. |
| if (FD->isMain()) |
| return false; |
| |
| // C++ functions and those whose names are not a simple identifier need |
| // mangling. |
| if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
| return true; |
| |
| // C functions are not mangled. |
| if (L == CLanguageLinkage) |
| return false; |
| } |
| |
| // Otherwise, no mangling is done outside C++ mode. |
| if (!getASTContext().getLangOpts().CPlusPlus) |
| return false; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (VD && !isa<DecompositionDecl>(D)) { |
| // C variables are not mangled. |
| if (VD->isExternC()) |
| return false; |
| |
| // Variables at global scope with non-internal linkage are not mangled |
| const DeclContext *DC = getEffectiveDeclContext(D); |
| // Check for extern variable declared locally. |
| if (DC->isFunctionOrMethod() && D->hasLinkage()) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && |
| !CXXNameMangler::shouldHaveAbiTags(*this, VD) && |
| !isa<VarTemplateSpecializationDecl>(D)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void CXXNameMangler::writeAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| assert(AbiTags && "require AbiTagState"); |
| AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangleSourceNameWithAbiTags( |
| const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { |
| mangleSourceName(ND->getIdentifier()); |
| writeAbiTags(ND, AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangle(const NamedDecl *D) { |
| // <mangled-name> ::= _Z <encoding> |
| // ::= <data name> |
| // ::= <special-name> |
| Out << "_Z"; |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| mangleFunctionEncoding(FD); |
| else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| mangleName(VD); |
| else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) |
| mangleName(IFD->getAnonField()); |
| else |
| mangleName(cast<FieldDecl>(D)); |
| } |
| |
| void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { |
| // <encoding> ::= <function name> <bare-function-type> |
| |
| // Don't mangle in the type if this isn't a decl we should typically mangle. |
| if (!Context.shouldMangleDeclName(FD)) { |
| mangleName(FD); |
| return; |
| } |
| |
| AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); |
| if (ReturnTypeAbiTags.empty()) { |
| // There are no tags for return type, the simplest case. |
| mangleName(FD); |
| mangleFunctionEncodingBareType(FD); |
| return; |
| } |
| |
| // Mangle function name and encoding to temporary buffer. |
| // We have to output name and encoding to the same mangler to get the same |
| // substitution as it will be in final mangling. |
| SmallString<256> FunctionEncodingBuf; |
| llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); |
| CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); |
| // Output name of the function. |
| FunctionEncodingMangler.disableDerivedAbiTags(); |
| FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); |
| |
| // Remember length of the function name in the buffer. |
| size_t EncodingPositionStart = FunctionEncodingStream.str().size(); |
| FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); |
| |
| // Get tags from return type that are not present in function name or |
| // encoding. |
| const AbiTagList &UsedAbiTags = |
| FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); |
| AdditionalAbiTags.erase( |
| std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), |
| UsedAbiTags.begin(), UsedAbiTags.end(), |
| AdditionalAbiTags.begin()), |
| AdditionalAbiTags.end()); |
| |
| // Output name with implicit tags and function encoding from temporary buffer. |
| mangleNameWithAbiTags(FD, &AdditionalAbiTags); |
| Out << FunctionEncodingStream.str().substr(EncodingPositionStart); |
| |
| // Function encoding could create new substitutions so we have to add |
| // temp mangled substitutions to main mangler. |
| extendSubstitutions(&FunctionEncodingMangler); |
| } |
| |
| void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { |
| if (FD->hasAttr<EnableIfAttr>()) { |
| FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
| Out << "Ua9enable_ifI"; |
| // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use |
| // it here. |
| for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(), |
| E = FD->getAttrs().rend(); |
| I != E; ++I) { |
| EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); |
| if (!EIA) |
| continue; |
| Out << 'X'; |
| mangleExpression(EIA->getCond()); |
| Out << 'E'; |
| } |
| Out << 'E'; |
| FunctionTypeDepth.pop(Saved); |
| } |
| |
| // When mangling an inheriting constructor, the bare function type used is |
| // that of the inherited constructor. |
| if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) |
| if (auto Inherited = CD->getInheritedConstructor()) |
| FD = Inherited.getConstructor(); |
| |
| // Whether the mangling of a function type includes the return type depends on |
| // the context and the nature of the function. The rules for deciding whether |
| // the return type is included are: |
| // |
| // 1. Template functions (names or types) have return types encoded, with |
| // the exceptions listed below. |
| // 2. Function types not appearing as part of a function name mangling, |
| // e.g. parameters, pointer types, etc., have return type encoded, with the |
| // exceptions listed below. |
| // 3. Non-template function names do not have return types encoded. |
| // |
| // The exceptions mentioned in (1) and (2) above, for which the return type is |
| // never included, are |
| // 1. Constructors. |
| // 2. Destructors. |
| // 3. Conversion operator functions, e.g. operator int. |
| bool MangleReturnType = false; |
| if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
| if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || |
| isa<CXXConversionDecl>(FD))) |
| MangleReturnType = true; |
| |
| // Mangle the type of the primary template. |
| FD = PrimaryTemplate->getTemplatedDecl(); |
| } |
| |
| mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), |
| MangleReturnType, FD); |
| } |
| |
| static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { |
| while (isa<LinkageSpecDecl>(DC)) { |
| DC = getEffectiveParentContext(DC); |
| } |
| |
| return DC; |
| } |
| |
| /// Return whether a given namespace is the 'std' namespace. |
| static bool isStd(const NamespaceDecl *NS) { |
| if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) |
| ->isTranslationUnit()) |
| return false; |
| |
| const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); |
| return II && II->isStr("std"); |
| } |
| |
| // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
| // namespace. |
| static bool isStdNamespace(const DeclContext *DC) { |
| if (!DC->isNamespace()) |
| return false; |
| |
| return isStd(cast<NamespaceDecl>(DC)); |
| } |
| |
| static const TemplateDecl * |
| isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { |
| // Check if we have a function template. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { |
| if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
| TemplateArgs = FD->getTemplateSpecializationArgs(); |
| return TD; |
| } |
| } |
| |
| // Check if we have a class template. |
| if (const ClassTemplateSpecializationDecl *Spec = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| // Check if we have a variable template. |
| if (const VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| return nullptr; |
| } |
| |
| void CXXNameMangler::mangleName(const NamedDecl *ND) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { |
| // Variables should have implicit tags from its type. |
| AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); |
| if (VariableTypeAbiTags.empty()) { |
| // Simple case no variable type tags. |
| mangleNameWithAbiTags(VD, nullptr); |
| return; |
| } |
| |
| // Mangle variable name to null stream to collect tags. |
| llvm::raw_null_ostream NullOutStream; |
| CXXNameMangler VariableNameMangler(*this, NullOutStream); |
| VariableNameMangler.disableDerivedAbiTags(); |
| VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); |
| |
| // Get tags from variable type that are not present in its name. |
| const AbiTagList &UsedAbiTags = |
| VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); |
| AdditionalAbiTags.erase( |
| std::set_difference(VariableTypeAbiTags.begin(), |
| VariableTypeAbiTags.end(), UsedAbiTags.begin(), |
| UsedAbiTags.end(), AdditionalAbiTags.begin()), |
| AdditionalAbiTags.end()); |
| |
| // Output name with implicit tags. |
| mangleNameWithAbiTags(VD, &AdditionalAbiTags); |
| } else { |
| mangleNameWithAbiTags(ND, nullptr); |
| } |
| } |
| |
| void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| // <name> ::= [<module-name>] <nested-name> |
| // ::= [<module-name>] <unscoped-name> |
| // ::= [<module-name>] <unscoped-template-name> <template-args> |
| // ::= <local-name> |
| // |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| |
| // If this is an extern variable declared locally, the relevant DeclContext |
| // is that of the containing namespace, or the translation unit. |
| // FIXME: This is a hack; extern variables declared locally should have |
| // a proper semantic declaration context! |
| if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| else if (GetLocalClassDecl(ND)) { |
| mangleLocalName(ND, AdditionalAbiTags); |
| return; |
| } |
| |
| DC = IgnoreLinkageSpecDecls(DC); |
| |
| if (isLocalContainerContext(DC)) { |
| mangleLocalName(ND, AdditionalAbiTags); |
| return; |
| } |
| |
| // Do not mangle the owning module for an external linkage declaration. |
| // This enables backwards-compatibility with non-modular code, and is |
| // a valid choice since conflicts are not permitted by C++ Modules TS |
| // [basic.def.odr]/6.2. |
| if (!ND->hasExternalFormalLinkage()) |
| if (Module *M = ND->getOwningModuleForLinkage()) |
| mangleModuleName(M); |
| |
| if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleUnscopedTemplateName(TD, AdditionalAbiTags); |
| mangleTemplateArgs(*TemplateArgs); |
| return; |
| } |
| |
| mangleUnscopedName(ND, AdditionalAbiTags); |
| return; |
| } |
| |
| mangleNestedName(ND, DC, AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangleModuleName(const Module *M) { |
| // Implement the C++ Modules TS name mangling proposal; see |
| // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile |
| // |
| // <module-name> ::= W <unscoped-name>+ E |
| // ::= W <module-subst> <unscoped-name>* E |
| Out << 'W'; |
| mangleModuleNamePrefix(M->Name); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { |
| // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 |
| // ::= W <seq-id - 10> _ # otherwise |
| auto It = ModuleSubstitutions.find(Name); |
| if (It != ModuleSubstitutions.end()) { |
| if (It->second < 10) |
| Out << '_' << static_cast<char>('0' + It->second); |
| else |
| Out << 'W' << (It->second - 10) << '_'; |
| return; |
| } |
| |
| // FIXME: Preserve hierarchy in module names rather than flattening |
| // them to strings; use Module*s as substitution keys. |
| auto Parts = Name.rsplit('.'); |
| if (Parts.second.empty()) |
| Parts.second = Parts.first; |
| else |
| mangleModuleNamePrefix(Parts.first); |
| |
| Out << Parts.second.size() << Parts.second; |
| ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); |
| } |
| |
| void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); |
| |
| if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| mangleUnscopedTemplateName(TD, nullptr); |
| mangleTemplateArgs(TemplateArgs, NumTemplateArgs); |
| } else { |
| mangleNestedName(TD, TemplateArgs, NumTemplateArgs); |
| } |
| } |
| |
| void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND, |
| const AbiTagList *AdditionalAbiTags) { |
| // <unscoped-name> ::= <unqualified-name> |
| // ::= St <unqualified-name> # ::std:: |
| |
| if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) |
| Out << "St"; |
| |
| mangleUnqualifiedName(ND, AdditionalAbiTags); |
| } |
| |
| void CXXNameMangler::mangleUnscopedTemplateName( |
| const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) { |
| // <unscoped-template-name> ::= <unscoped-name> |
| // ::= <substitution> |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // <template-template-param> ::= <template-param> |
| if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { |
| assert(!AdditionalAbiTags && |
| "template template param cannot have abi tags"); |
| mangleTemplateParameter(TTP->getIndex()); |
| } else if (isa<BuiltinTemplateDecl>(ND)) { |
| mangleUnscopedName(ND, AdditionalAbiTags); |
| } else { |
| mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| void CXXNameMangler::mangleUnscopedTemplateName( |
| TemplateName Template, const AbiTagList *AdditionalAbiTags) { |
| // <unscoped-template-name> ::= <unscoped-name> |
| // ::= <substitution> |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleUnscopedTemplateName(TD, AdditionalAbiTags); |
| |
| if (mangleSubstitution(Template)) |
| return; |
| |
| assert(!AdditionalAbiTags && |
| "dependent template name cannot have abi tags"); |
| |
| DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| assert(Dependent && "Not a dependent template name?"); |
| if (const IdentifierInfo *Id = Dependent->getIdentifier()) |
| mangleSourceName(Id); |
| else |
| mangleOperatorName(Dependent->getOperator(), UnknownArity); |
| |
| addSubstitution(Template); |
| } |
| |
| void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
| // ABI: |
| // Floating-point literals are encoded using a fixed-length |
| // lowercase hexadecimal string corresponding to the internal |
| // representation (IEEE on Itanium), high-order bytes first, |
| // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
| // on Itanium. |
| // The 'without leading zeroes' thing seems to be an editorial |
| // mistake; see the discussion on cxx-abi-dev beginning on |
| // 2012-01-16. |
| |
| // Our requirements here are just barely weird enough to justify |
| // using a custom algorithm instead of post-processing APInt::toString(). |
| |
| llvm::APInt valueBits = f.bitcastToAPInt(); |
| unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
| assert(numCharacters != 0); |
| |
| // Allocate a buffer of the right number of characters. |
| SmallVector<char, 20> buffer(numCharacters); |
| |
| // Fill the buffer left-to-right. |
| for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
| // The bit-index of the next hex digit. |
| unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
| |
| // Project out 4 bits starting at 'digitIndex'. |
| uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; |
| hexDigit >>= (digitBitIndex % 64); |
| hexDigit &= 0xF; |
| |
| // Map that over to a lowercase hex digit. |
| static const char charForHex[16] = { |
| '0', '1', '2', '3', '4', '5', '6', '7', |
| '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
| }; |
| buffer[stringIndex] = charForHex[hexDigit]; |
| } |
| |
| Out.write(buffer.data(), numCharacters); |
| } |
| |
| void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
| if (Value.isSigned() && Value.isNegative()) { |
| Out << 'n'; |
| Value.abs().print(Out, /*signed*/ false); |
| } else { |
| Value.print(Out, /*signed*/ false); |
| } |
| } |
| |
| void CXXNameMangler::mangleNumber(int64_t Number) { |
| // <number> ::= [n] <non-negative decimal integer> |
| if (Number < 0) { |
| Out << 'n'; |
| Number = -Number; |
| } |
| |
| Out << Number; |
| } |
| |
| void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
| // <call-offset> ::= h <nv-offset> _ |
| // ::= v <v-offset> _ |
| // <nv-offset> ::= <offset number> # non-virtual base override |
| // <v-offset> ::= <offset number> _ <virtual offset number> |
| // # virtual base override, with vcall offset |
| if (!Virtual) { |
| Out << 'h'; |
| mangleNumber(NonVirtual); |
| Out << '_'; |
| return; |
| } |
| |
| Out << 'v'; |
| mangleNumber(NonVirtual); |
| Out << '_'; |
| mangleNumber(Virtual); |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::manglePrefix(QualType type) { |
| if (const auto *TST = type->getAs<TemplateSpecializationType>()) { |
| if (!mangleSubstitution(QualType(TST, 0))) { |
| mangleTemplatePrefix(TST->getTemplateName()); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); |
| addSubstitution(QualType(TST, 0)); |
| } |
| } else if (const auto *DTST = |
| type->getAs<DependentTemplateSpecializationType>()) { |
| if (!mangleSubstitution(QualType(DTST, 0))) { |
| TemplateName Template = getASTContext().getDependentTemplateName( |
| DTST->getQualifier(), DTST->getIdentifier()); |
| mangleTemplatePrefix(Template); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); |
| addSubstitution(QualType(DTST, 0)); |
| } |
| } else { |
| // We use the QualType mangle type variant here because it handles |
| // substitutions. |
| mangleType(type); |
| } |
| } |
| |
| /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
| /// |
| /// \param recursive - true if this is being called recursively, |
| /// i.e. if there is more prefix "to the right". |
| void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| bool recursive) { |
| |
| // x, ::x |
| // <unresolved-name> ::= [gs] <base-unresolved-name> |
| |
| // T::x / decltype(p)::x |
| // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
| |
| // T::N::x /decltype(p)::N::x |
| // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| |
| // A::x, N::y, A<T>::z; "gs" means leading "::" |
| // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| |
| switch (qualifier->getKind()) { |
| case NestedNameSpecifier::Global: |
| Out << "gs"; |
| |
| // We want an 'sr' unless this is the entire NNS. |
| if (recursive) |
| Out << "sr"; |
| |
| // We never want an 'E' here. |
| return; |
| |
| case NestedNameSpecifier::Super: |
| llvm_unreachable("Can't mangle __super specifier"); |
| |
| case NestedNameSpecifier::Namespace: |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); |
| break; |
| case NestedNameSpecifier::NamespaceAlias: |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); |
| break; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: { |
| const Type *type = qualifier->getAsType(); |
| |
| // We only want to use an unresolved-type encoding if this is one of: |
| // - a decltype |
| // - a template type parameter |
| // - a template template parameter with arguments |
| // In all of these cases, we should have no prefix. |
| if (qualifier->getPrefix()) { |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| } else { |
| // Otherwise, all the cases want this. |
| Out << "sr"; |
| } |
| |
| if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) |
| return; |
| |
| break; |
| } |
| |
| case NestedNameSpecifier::Identifier: |
| // Member expressions can have these without prefixes. |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| |
| mangleSourceName(qualifier->getAsIdentifier()); |
| // An Identifier has no type information, so we can't emit abi tags for it. |
| break; |
| } |
| |
| // If this was the innermost part of the NNS, and we fell out to |
| // here, append an 'E'. |
| if (!recursive) |
| Out << 'E'; |
| } |
| |
| /// Mangle an unresolved-name, which is generally used for names which |
| /// weren't resolved to specific entities. |
| void CXXNameMangler::mangleUnresolvedName( |
| NestedNameSpecifier *qualifier, DeclarationName name, |
| const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, |
| unsigned knownArity) { |
| if (qualifier) mangleUnresolvedPrefix(qualifier); |
| switch (name.getNameKind()) { |
| // <base-unresolved-name> ::= <simple-id> |
| case DeclarationName::Identifier: |
| mangleSourceName(name.getAsIdentifierInfo()); |
| break; |
| // <base-unresolved-name> ::= dn <destructor-name> |
| case DeclarationName::CXXDestructorName: |
| Out << "dn"; |
| mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); |
| break; |
| // <base-unresolved-name> ::= on <operator-name> |
| case DeclarationName::CXXConversionFunctionName: |
| case DeclarationName::CXXLiteralOperatorName: |
| case DeclarationName::CXXOperatorName: |
| Out << "on"; |
| mangleOperatorName(name, knownArity); |
| break; |
| case DeclarationName::CXXConstructorName: |
| llvm_unreachable("Can't mangle a constructor name!"); |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| case DeclarationName::CXXDeductionGuideName: |
| llvm_unreachable("Can't mangle a deduction guide name!"); |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCZeroArgSelector: |
| llvm_unreachable("Can't mangle Objective-C selector names here!"); |
| } |
| |
| // The <simple-id> and on <operator-name> productions end in an optional |
| // <template-args>. |
| if (TemplateArgs) |
| mangleTemplateArgs(TemplateArgs, NumTemplateArgs); |
| } |
| |
| void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, |
| DeclarationName Name, |
| unsigned KnownArity, |
| const AbiTagList *AdditionalAbiTags) { |
| unsigned Arity = KnownArity; |
| // <unqualified-name> ::= <operator-name> |
| // ::= <ctor-dtor-name> |
| // ::= <source-name> |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: { |
| const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| |
| // We mangle decomposition declarations as the names of their bindings. |
| if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { |
| // FIXME: Non-standard mangling for decomposition declarations: |
| // |
| // <unqualified-name> ::= DC <source-name>* E |
| // |
| // These can never be referenced across translation units, so we do |
| // not need a cross-vendor mangling for anything other than demanglers. |
| // Proposed on cxx-abi-dev on 2016-08-12 |
| Out << "DC"; |
| for (auto *BD : DD->bindings()) |
| mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); |
| Out << 'E'; |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| } |
| |
| if (II) { |
| // Match GCC's naming convention for internal linkage symbols, for |
| // symbols that are not actually visible outside of this TU. GCC |
| // distinguishes between internal and external linkage symbols in |
| // its mangling, to support cases like this that were valid C++ prior |
| // to DR426: |
| // |
| // void test() { extern void foo(); } |
| // static void foo(); |
| // |
| // Don't bother with the L marker for names in anonymous namespaces; the |
| // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better |
| // matches GCC anyway, because GCC does not treat anonymous namespaces as |
| // implying internal linkage. |
| if (ND && ND->getFormalLinkage() == InternalLinkage && |
| !ND->isExternallyVisible() && |
| getEffectiveDeclContext(ND)->isFileContext() && |
| !ND->isInAnonymousNamespace()) |
| Out << 'L'; |
| |
| auto *FD = dyn_cast<FunctionDecl>(ND); |
| bool IsRegCall = FD && |
| FD->getType()->castAs<FunctionType>()->getCallConv() == |
| clang::CC_X86RegCall; |
| if (IsRegCall) |
| mangleRegCallName(II); |
| else |
| mangleSourceName(II); |
| |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| } |
| |
| // Otherwise, an anonymous entity. We must have a declaration. |
| assert(ND && "mangling empty name without declaration"); |
| |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (NS->isAnonymousNamespace()) { |
| // This is how gcc mangles these names. |
| Out << "12_GLOBAL__N_1"; |
| break; |
| } |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { |
| // We must have an anonymous union or struct declaration. |
| const RecordDecl *RD = |
| cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl()); |
| |
| // Itanium C++ ABI 5.1.2: |
| // |
| // For the purposes of mangling, the name of an anonymous union is |
| // considered to be the name of the first named data member found by a |
| // pre-order, depth-first, declaration-order walk of the data members of |
| // the anonymous union. If there is no such data member (i.e., if all of |
| // the data members in the union are unnamed), then there is no way for |
| // a program to refer to the anonymous union, and there is therefore no |
| // need to mangle its name. |
| assert(RD->isAnonymousStructOrUnion() |
| && "Expected anonymous struct or union!"); |
| const FieldDecl *FD = RD->findFirstNamedDataMember(); |
| |
| // It's actually possible for various reasons for us to get here |
| // with an empty anonymous struct / union. Fortunately, it |
| // doesn't really matter what name we generate. |
| if (!FD) break; |
| assert(FD->getIdentifier() && "Data member name isn't an identifier!"); |
| |
| mangleSourceName(FD->getIdentifier()); |
| // Not emitting abi tags: internal name anyway. |
| break; |
| } |
| |
| // Class extensions have no name as a category, and it's possible |
| // for them to be the semantic parent of certain declarations |
| // (primarily, tag decls defined within declarations). Such |
| // declarations will always have internal linkage, so the name |
| // doesn't really matter, but we shouldn't crash on them. For |
| // safety, just handle all ObjC containers here. |
| if (isa<ObjCContainerDecl>(ND)) |
| break; |
| |
| // We must have an anonymous struct. |
| const TagDecl *TD = cast<TagDecl>(ND); |
| if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
| assert(TD->getDeclContext() == D->getDeclContext() && |
| "Typedef should not be in another decl context!"); |
| assert(D->getDeclName().getAsIdentifierInfo() && |
| "Typedef was not named!"); |
| mangleSourceName(D->getDeclName().getAsIdentifierInfo()); |
| assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); |
| // Explicit abi tags are still possible; take from underlying type, not |
| // from typedef. |
| writeAbiTags(TD, nullptr); |
| break; |
| } |
| |
| // <unnamed-type-name> ::= <closure-type-name> |
| // |
| // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
| // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'. |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { |
| if (Record->isLambda() && Record->getLambdaManglingNumber()) { |
| assert(!AdditionalAbiTags && |
| "Lambda type cannot have additional abi tags"); |
| mangleLambda(Record); |
| break; |
| } |
| } |
| |
| if (TD->isExternallyVisible()) { |
| unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); |
| Out << "Ut"; |
| if (UnnamedMangle > 1) |
| Out << UnnamedMangle - 2; |
| Out << '_'; |
| writeAbiTags(TD, AdditionalAbiTags); |
| break; |
| } |
| |
| // Get a unique id for the anonymous struct. If it is not a real output |
| // ID doesn't matter so use fake one. |
| unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); |
| |
| // Mangle it as a source name in the form |
| // [n] $_<id> |
| // where n is the length of the string. |
| SmallString<8> Str; |
| Str += "$_"; |
| Str += llvm::utostr(AnonStructId); |
| |
| Out << Str.size(); |
| Out << Str; |
| break; |
| } |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| llvm_unreachable("Can't mangle Objective-C selector names here!"); |
| |
| case DeclarationName::CXXConstructorName: { |
| const CXXRecordDecl *InheritedFrom = nullptr; |
| const TemplateArgumentList *InheritedTemplateArgs = nullptr; |
| if (auto Inherited = |
| cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { |
| InheritedFrom = Inherited.getConstructor()->getParent(); |
| InheritedTemplateArgs = |
| Inherited.getConstructor()->getTemplateSpecializationArgs(); |
| } |
| |
| if (ND == Structor) |
| // If the named decl is the C++ constructor we're mangling, use the type |
| // we were given. |
| mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); |
| else |
| // Otherwise, use the complete constructor name. This is relevant if a |
| // class with a constructor is declared within a constructor. |
| mangleCXXCtorType(Ctor_Complete, InheritedFrom); |
| |
| // FIXME: The template arguments are part of the enclosing prefix or |
| // nested-name, but it's more convenient to mangle them here. |
| if (InheritedTemplateArgs) |
| mangleTemplateArgs(*InheritedTemplateArgs); |
| |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| } |
| |
| case DeclarationName::CXXDestructorName: |
| if (ND == Structor) |
| // If the named decl is the C++ destructor we're mangling, use the type we |
| // were given. |
| mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); |
| else |
| // Otherwise, use the complete destructor name. This is relevant if a |
| // class with a destructor is declared within a destructor. |
| mangleCXXDtorType(Dtor_Complete); |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| |
| case DeclarationName::CXXOperatorName: |
| if (ND && Arity == UnknownArity) { |
| Arity = cast<FunctionDecl>(ND)->getNumParams(); |
| |
| // If we have a member function, we need to include the 'this' pointer. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) |
| if (!MD->isStatic()) |
| Arity++; |
| } |
| LLVM_FALLTHROUGH; |
| case DeclarationName::CXXConversionFunctionName: |
| case DeclarationName::CXXLiteralOperatorName: |
| mangleOperatorName(Name, Arity); |
| writeAbiTags(ND, AdditionalAbiTags); |
| break; |
| |
| case DeclarationName::CXXDeductionGuideName: |
| llvm_unreachable("Can't mangle a deduction guide name!"); |
| |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| } |
| } |
| |
| void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { |
| // <source-name> ::= <positive length number> __regcall3__ <identifier> |
| // <number> ::= [n] <non-negative decimal integer> |
| // <identifier> ::= <unqualified source code identifier> |
| Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" |
| << II->getName(); |
| } |
| |
| void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
| // <source-name> ::= <positive length number> <identifier> |
| // <number> ::= [n] <non-negative decimal integer> |
| // <identifier> ::= <unqualified source code identifier> |
| Out << II->getLength() << II->getName(); |
| } |
| |
| void CXXNameMangler::mangleNestedName(const NamedDecl *ND, |
| const DeclContext *DC, |
| const AbiTagList *AdditionalAbiTags, |
| bool NoFunction) { |
| // <nested-name> |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
| // <template-args> E |
| |
| Out << 'N'; |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { |
| Qualifiers MethodQuals = |
| Qualifiers::fromCVRUMask(Method->getTypeQualifiers()); |
| // We do not consider restrict a distinguishing attribute for overloading |
| // purposes so we must not mangle it. |
| MethodQuals.removeRestrict(); |
| mangleQualifiers(MethodQuals); |
| mangleRefQualifier(Method->getRefQualifier()); |
| } |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleTemplatePrefix(TD, NoFunction); |
| mangleTemplateArgs(*TemplateArgs); |
| } |
| else { |
| manglePrefix(DC, NoFunction); |
| mangleUnqualifiedName(ND, AdditionalAbiTags); |
| } |
| |
| Out << 'E'; |
| } |
| void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
| |
| Out << 'N'; |
| |
| mangleTemplatePrefix(TD); |
| mangleTemplateArgs(TemplateArgs, NumTemplateArgs); |
| |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleLocalName(const Decl *D, |
| const AbiTagList *AdditionalAbiTags) { |
| // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
| // := Z <function encoding> E s [<discriminator>] |
| // <local-name> := Z <function encoding> E d [ <parameter number> ] |
| // _ <entity name> |
| // <discriminator> := _ <non-negative number> |
| assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); |
| const RecordDecl *RD = GetLocalClassDecl(D); |
| const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); |
| |
| Out << 'Z'; |
| |
| { |
| AbiTagState LocalAbiTags(AbiTags); |
| |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) |
| mangleObjCMethodName(MD); |
| else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) |
| mangleBlockForPrefix(BD); |
| else |
| mangleFunctionEncoding(cast<FunctionDecl>(DC)); |
| |
| // Implicit ABI tags (from namespace) are not available in the following |
| // entity; reset to actually emitted tags, which are available. |
| LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); |
| } |
| |
| Out << 'E'; |
| |
| // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
| // be a bug that is fixed in trunk. |
| |
| if (RD) { |
| // The parameter number is omitted for the last parameter, 0 for the |
| // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
| // <entity name> will of course contain a <closure-type-name>: Its |
| // numbering will be local to the particular argument in which it appears |
| // -- other default arguments do not affect its encoding. |
| const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
| if (CXXRD && CXXRD->isLambda()) { |
| if (const ParmVarDecl *Parm |
| = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { |
| if (const FunctionDecl *Func |
| = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
| Out << 'd'; |
| unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| if (Num > 1) |
| mangleNumber(Num - 2); |
| Out << '_'; |
| } |
| } |
| } |
| |
| // Mangle the name relative to the closest enclosing function. |
| // equality ok because RD derived from ND above |
| if (D == RD) { |
| mangleUnqualifiedName(RD, AdditionalAbiTags); |
| } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); |
| assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); |
| mangleUnqualifiedBlock(BD); |
| } else { |
| const NamedDecl *ND = cast<NamedDecl>(D); |
| mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags, |
| true /*NoFunction*/); |
| } |
| } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| // Mangle a block in a default parameter; see above explanation for |
| // lambdas. |
| if (const ParmVarDecl *Parm |
| = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { |
| if (const FunctionDecl *Func |
| = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
| Out << 'd'; |
| unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| if (Num > 1) |
| mangleNumber(Num - 2); |
| Out << '_'; |
| } |
| } |
| |
| assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); |
| mangleUnqualifiedBlock(BD); |
| } else { |
| mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags); |
| } |
| |
| if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { |
| unsigned disc; |
| if (Context.getNextDiscriminator(ND, disc)) { |
| if (disc < 10) |
| Out << '_' << disc; |
| else |
| Out << "__" << disc << '_'; |
| } |
| } |
| } |
| |
| void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { |
| if (GetLocalClassDecl(Block)) { |
| mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); |
| return; |
| } |
| const DeclContext *DC = getEffectiveDeclContext(Block); |
| if (isLocalContainerContext(DC)) { |
| mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); |
| return; |
| } |
| manglePrefix(getEffectiveDeclContext(Block)); |
| mangleUnqualifiedBlock(Block); |
| } |
| |
| void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { |
| if (Decl *Context = Block->getBlockManglingContextDecl()) { |
| if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && |
| Context->getDeclContext()->isRecord()) { |
| const auto *ND = cast<NamedDecl>(Context); |
| if (ND->getIdentifier()) { |
| mangleSourceNameWithAbiTags(ND); |
| Out << 'M'; |
| } |
| } |
| } |
| |
| // If we have a block mangling number, use it. |
| unsigned Number = Block->getBlockManglingNumber(); |
| // Otherwise, just make up a number. It doesn't matter what it is because |
| // the symbol in question isn't externally visible. |
| if (!Number) |
| Number = Context.getBlockId(Block, false); |
| else { |
| // Stored mangling numbers are 1-based. |
| --Number; |
| } |
| Out << "Ub"; |
| if (Number > 0) |
| Out << Number - 1; |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
| // If the context of a closure type is an initializer for a class member |
| // (static or nonstatic), it is encoded in a qualified name with a final |
| // <prefix> of the form: |
| // |
| // <data-member-prefix> := <member source-name> M |
| // |
| // Technically, the data-member-prefix is part of the <prefix>. However, |
| // since a closure type will always be mangled with a prefix, it's easier |
| // to emit that last part of the prefix here. |
| if (Decl *Context = Lambda->getLambdaContextDecl()) { |
| if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && |
| !isa<ParmVarDecl>(Context)) { |
| // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a |
| // reasonable mangling here. |
| if (const IdentifierInfo *Name |
| = cast<NamedDecl>(Context)->getIdentifier()) { |
| mangleSourceName(Name); |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (isTemplate(cast<NamedDecl>(Context), TemplateArgs)) |
| mangleTemplateArgs(*TemplateArgs); |
| Out << 'M'; |
| } |
| } |
| } |
| |
| Out << "Ul"; |
| const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> |
| getAs<FunctionProtoType>(); |
| mangleBareFunctionType(Proto, /*MangleReturnType=*/false, |
| Lambda->getLambdaStaticInvoker()); |
| Out << "E"; |
| |
| // The number is omitted for the first closure type with a given |
| // <lambda-sig> in a given context; it is n-2 for the nth closure type |
| // (in lexical order) with that same <lambda-sig> and context. |
| // |
| // The AST keeps track of the number for us. |
| unsigned Number = Lambda->getLambdaManglingNumber(); |
| assert(Number > 0 && "Lambda should be mangled as an unnamed class"); |
| if (Number > 1) |
| mangleNumber(Number - 2); |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
| switch (qualifier->getKind()) { |
| case NestedNameSpecifier::Global: |
| // nothing |
| return; |
| |
| case NestedNameSpecifier::Super: |
| llvm_unreachable("Can't mangle __super specifier"); |
| |
| case NestedNameSpecifier::Namespace: |
| mangleName(qualifier->getAsNamespace()); |
| return; |
| |
| case NestedNameSpecifier::NamespaceAlias: |
| mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); |
| return; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| manglePrefix(QualType(qualifier->getAsType(), 0)); |
| return; |
| |
| case NestedNameSpecifier::Identifier: |
| // Member expressions can have these without prefixes, but that |
| // should end up in mangleUnresolvedPrefix instead. |
| assert(qualifier->getPrefix()); |
| manglePrefix(qualifier->getPrefix()); |
| |
| mangleSourceName(qualifier->getAsIdentifier()); |
| return; |
| } |
| |
| llvm_unreachable("unexpected nested name specifier"); |
| } |
| |
| void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
| // <prefix> ::= <prefix> <unqualified-name> |
| // ::= <template-prefix> <template-args> |
| // ::= <template-param> |
| // ::= # empty |
| // ::= <substitution> |
| |
| DC = IgnoreLinkageSpecDecls(DC); |
| |
| if (DC->isTranslationUnit()) |
| return; |
| |
| if (NoFunction && isLocalContainerContext(DC)) |
| return; |
| |
| assert(!isLocalContainerContext(DC)); |
| |
| const NamedDecl *ND = cast<NamedDecl>(DC); |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleTemplatePrefix(TD); |
| mangleTemplateArgs(*TemplateArgs); |
| } else { |
| manglePrefix(getEffectiveDeclContext(ND), NoFunction); |
| mangleUnqualifiedName(ND, nullptr); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
| // <template-prefix> ::= <prefix> <template unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleTemplatePrefix(TD); |
| |
| if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) |
| manglePrefix(Qualified->getQualifier()); |
| |
| if (OverloadedTemplateStorage *Overloaded |
| = Template.getAsOverloadedTemplate()) { |
| mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(), |
| UnknownArity, nullptr); |
| return; |
| } |
| |
| DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| assert(Dependent && "Unknown template name kind?"); |
| if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) |
| manglePrefix(Qualifier); |
| mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr); |
| } |
| |
| void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND, |
| bool NoFunction) { |
| // <template-prefix> ::= <prefix> <template unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| // <template-template-param> ::= <template-param> |
| // <substitution> |
| |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // <template-template-param> ::= <template-param> |
| if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { |
| mangleTemplateParameter(TTP->getIndex()); |
| } else { |
| manglePrefix(getEffectiveDeclContext(ND), NoFunction); |
| if (isa<BuiltinTemplateDecl>(ND)) |
| mangleUnqualifiedName(ND, nullptr); |
| else |
| mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| /// Mangles a template name under the production <type>. Required for |
| /// template template arguments. |
| /// <type> ::= <class-enum-type> |
| /// ::= <template-param> |
| /// ::= <substitution> |
| void CXXNameMangler::mangleType(TemplateName TN) { |
| if (mangleSubstitution(TN)) |
| return; |
| |
| TemplateDecl *TD = nullptr; |
| |
| switch (TN.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); |
| goto HaveDecl; |
| |
| case TemplateName::Template: |
| TD = TN.getAsTemplateDecl(); |
| goto HaveDecl; |
| |
| HaveDecl: |
| if (isa<TemplateTemplateParmDecl>(TD)) |
| mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); |
| else |
| mangleName(TD); |
| break; |
| |
| case TemplateName::OverloadedTemplate: |
| llvm_unreachable("can't mangle an overloaded template name as a <type>"); |
| |
| case TemplateName::DependentTemplate: { |
| const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
| assert(Dependent->isIdentifier()); |
| |
| // <class-enum-type> ::= <name> |
| // <name> ::= <nested-name> |
| mangleUnresolvedPrefix(Dependent->getQualifier()); |
| mangleSourceName(Dependent->getIdentifier()); |
| break; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| // Substituted template parameters are mangled as the substituted |
| // template. This will check for the substitution twice, which is |
| // fine, but we have to return early so that we don't try to *add* |
| // the substitution twice. |
| SubstTemplateTemplateParmStorage *subst |
| = TN.getAsSubstTemplateTemplateParm(); |
| mangleType(subst->getReplacement()); |
| return; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| // FIXME: not clear how to mangle this! |
| // template <template <class> class T...> class A { |
| // template <template <class> class U...> void foo(B<T,U> x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| } |
| } |
| |
| addSubstitution(TN); |
| } |
| |
| bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, |
| StringRef Prefix) { |
| // Only certain other types are valid as prefixes; enumerate them. |
| switch (Ty->getTypeClass()) { |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Adjusted: |
| case Type::Decayed: |
| case Type::Pointer: |
| case Type::BlockPointer: |
| case Type::LValueReference: |
| case Type::RValueReference: |
| case Type::MemberPointer: |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| case Type::DependentAddressSpace: |
| case Type::DependentSizedExtVector: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| case Type::Paren: |
| case Type::Attributed: |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| case Type::PackExpansion: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::ObjCTypeParam: |
| case Type::Atomic: |
| case Type::Pipe: |
| llvm_unreachable("type is illegal as a nested name specifier"); |
| |
| case Type::SubstTemplateTypeParmPack: |
| // FIXME: not clear how to mangle this! |
| // template <class T...> class A { |
| // template <class U...> void foo(decltype(T::foo(U())) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| |
| // <unresolved-type> ::= <template-param> |
| // ::= <decltype> |
| // ::= <template-template-param> <template-args> |
| // (this last is not official yet) |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::Decltype: |
| case Type::TemplateTypeParm: |
| case Type::UnaryTransform: |
| case Type::SubstTemplateTypeParm: |
| unresolvedType: |
| // Some callers want a prefix before the mangled type. |
| Out << Prefix; |
| |
| // This seems to do everything we want. It's not really |
| // sanctioned for a substituted template parameter, though. |
| mangleType(Ty); |
| |
| // We never want to print 'E' directly after an unresolved-type, |
| // so we return directly. |
| return true; |
| |
| case Type::Typedef: |
| mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); |
| break; |
| |
| case Type::UnresolvedUsing: |
| mangleSourceNameWithAbiTags( |
| cast<UnresolvedUsingType>(Ty)->getDecl()); |
| break; |
| |
| case Type::Enum: |
| case Type::Record: |
| mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); |
| break; |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *TST = |
| cast<TemplateSpecializationType>(Ty); |
| TemplateName TN = TST->getTemplateName(); |
| switch (TN.getKind()) { |
| case TemplateName::Template: |
| case TemplateName::QualifiedTemplate: { |
| TemplateDecl *TD = TN.getAsTemplateDecl(); |
| |
| // If the base is a template template parameter, this is an |
| // unresolved type. |
| assert(TD && "no template for template specialization type"); |
| if (isa<TemplateTemplateParmDecl>(TD)) |
| goto unresolvedType; |
| |
| mangleSourceNameWithAbiTags(TD); |
| break; |
| } |
| |
| case TemplateName::OverloadedTemplate: |
| case TemplateName::DependentTemplate: |
| llvm_unreachable("invalid base for a template specialization type"); |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst = |
| TN.getAsSubstTemplateTemplateParm(); |
| mangleExistingSubstitution(subst->getReplacement()); |
| break; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| // FIXME: not clear how to mangle this! |
| // template <template <class U> class T...> class A { |
| // template <class U...> void foo(decltype(T<U>::foo) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| } |
| } |
| |
| mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); |
| break; |
| } |
| |
| case Type::InjectedClassName: |
| mangleSourceNameWithAbiTags( |
| cast<InjectedClassNameType>(Ty)->getDecl()); |
| break; |
| |
| case Type::DependentName: |
| mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); |
| break; |
| |
| case Type::DependentTemplateSpecialization: { |
| const DependentTemplateSpecializationType *DTST = |
| cast<DependentTemplateSpecializationType>(Ty); |
| mangleSourceName(DTST->getIdentifier()); |
| mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); |
| break; |
| } |
| |
| case Type::Elaborated: |
| return mangleUnresolvedTypeOrSimpleId( |
| cast<ElaboratedType>(Ty)->getNamedType(), Prefix); |
| } |
| |
| return false; |
| } |
| |
| void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { |
| switch (Name.getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXDeductionGuideName: |
| case DeclarationName::CXXUsingDirective: |
| case DeclarationName::Identifier: |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCZeroArgSelector: |
| llvm_unreachable("Not an operator name"); |
| |
| case DeclarationName::CXXConversionFunctionName: |
| // <operator-name> ::= cv <type> # (cast) |
| Out << "cv"; |
| mangleType(Name.getCXXNameType()); |
| break; |
| |
| case DeclarationName::CXXLiteralOperatorName: |
| Out << "li"; |
| mangleSourceName(Name.getCXXLiteralIdentifier()); |
| return; |
| |
| case DeclarationName::CXXOperatorName: |
| mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); |
| break; |
| } |
| } |
| |
| void |
| CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
| switch (OO) { |
| // <operator-name> ::= nw # new |
| case OO_New: Out << "nw"; break; |
| // ::= na # new[] |
| case OO_Array_New: Out << "na"; break; |
| // ::= dl # delete |
| case OO_Delete: Out << "dl"; break; |
| // ::= da # delete[] |
| case OO_Array_Delete: Out << "da"; break; |
| // ::= ps # + (unary) |
| // ::= pl # + (binary or unknown) |
| case OO_Plus: |
| Out << (Arity == 1? "ps" : "pl"); break; |
| // ::= ng # - (unary) |
| // ::= mi # - (binary or unknown) |
| case OO_Minus: |
| Out << (Arity == 1? "ng" : "mi"); break; |
| // ::= ad # & (unary) |
| // ::= an # & (binary or unknown) |
| case OO_Amp: |
| Out << (Arity == 1? "ad" : "an"); break; |
| // ::= de # * (unary) |
| // ::= ml # * (binary or unknown) |
| case OO_Star: |
| // Use binary when unknown. |
| Out << (Arity == 1? "de" : "ml"); break; |
| // ::= co # ~ |
| case OO_Tilde: Out << "co"; break; |
| // ::= dv # / |
| case OO_Slash: Out << "dv"; break; |
| // ::= rm # % |
| case OO_Percent: Out << "rm"; break; |
| // ::= or # | |
| case OO_Pipe: Out << "or"; break; |
| // ::= eo # ^ |
| case OO_Caret: Out << "eo"; break; |
| // ::= aS # = |
| case OO_Equal: Out << "aS"; break; |
| // ::= pL # += |
| case OO_PlusEqual: Out << "pL"; break; |
| // ::= mI # -= |
| case OO_MinusEqual: Out << "mI"; break; |
| // ::= mL # *= |
| case OO_StarEqual: Out << "mL"; break; |
| // ::= dV # /= |
| case OO_SlashEqual: Out << "dV"; break; |
| // ::= rM # %= |
| case OO_PercentEqual: Out << "rM"; break; |
| // ::= aN # &= |
| case OO_AmpEqual: Out << "aN"; break; |
| // ::= oR # |= |
| case OO_PipeEqual: Out << "oR"; break; |
| // ::= eO # ^= |
| case OO_CaretEqual: Out << "eO"; break; |
| // ::= ls # << |
| case OO_LessLess: Out << "ls"; break; |
| // ::= rs # >> |
| case OO_GreaterGreater: Out << "rs"; break; |
| // ::= lS # <<= |
| case OO_LessLessEqual: Out << "lS"; break; |
| // ::= rS # >>= |
| case OO_GreaterGreaterEqual: Out << "rS"; break; |
| // ::= eq # == |
| case OO_EqualEqual: Out << "eq"; break; |
| // ::= ne # != |
| case OO_ExclaimEqual: Out << "ne"; break; |
| // ::= lt # < |
| case OO_Less: Out << "lt"; break; |
| // ::= gt # > |
| case OO_Greater: Out << "gt"; break; |
| // ::= le # <= |
| case OO_LessEqual: Out << "le"; break; |
| // ::= ge # >= |
| case OO_GreaterEqual: Out << "ge"; break; |
| // ::= nt # ! |
| case OO_Exclaim: Out << "nt"; break; |
| // ::= aa # && |
| case OO_AmpAmp: Out << "aa"; break; |
| // ::= oo # || |
| case OO_PipePipe: Out << "oo"; break; |
| // ::= pp # ++ |
| case OO_PlusPlus: Out << "pp"; break; |
| // ::= mm # -- |
| case OO_MinusMinus: Out << "mm"; break; |
| // ::= cm # , |
| case OO_Comma: Out << "cm"; break; |
| // ::= pm # ->* |
| case OO_ArrowStar: Out << "pm"; break; |
| // ::= pt # -> |
| case OO_Arrow: Out << "pt"; break; |
| // ::= cl # () |
| case OO_Call: Out << "cl"; break; |
| // ::= ix # [] |
| case OO_Subscript: Out << "ix"; break; |
| |
| // ::= qu # ? |
| // The conditional operator can't be overloaded, but we still handle it when |
| // mangling expressions. |
| case OO_Conditional: Out << "qu"; break; |
| // Proposal on cxx-abi-dev, 2015-10-21. |
| // ::= aw # co_await |
| case OO_Coawait: Out << "aw"; break; |
| // Proposed in cxx-abi github issue 43. |
| // ::= ss # <=> |
| case OO_Spaceship: Out << "ss"; break; |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("Not an overloaded operator"); |
| } |
| } |
| |
| void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { |
| // Vendor qualifiers come first and if they are order-insensitive they must |
| // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. |
| |
| // <type> ::= U <addrspace-expr> |
| if (DAST) { |
| Out << "U2ASI"; |
| mangleExpression(DAST->getAddrSpaceExpr()); |
| Out << "E"; |
| } |
| |
| // Address space qualifiers start with an ordinary letter. |
| if (Quals.hasAddressSpace()) { |
| // Address space extension: |
| // |
| // <type> ::= U <target-addrspace> |
| // <type> ::= U <OpenCL-addrspace> |
| // <type> ::= U <CUDA-addrspace> |
| |
| SmallString<64> ASString; |
| LangAS AS = Quals.getAddressSpace(); |
| |
| if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
| // <target-addrspace> ::= "AS" <address-space-number> |
| unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
| if (TargetAS != 0) |
| ASString = "AS" + llvm::utostr(TargetAS); |
| } else { |
| switch (AS) { |
| default: llvm_unreachable("Not a language specific address space"); |
| // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
| // "private"| "generic" ] |
| case LangAS::opencl_global: ASString = "CLglobal"; break; |
| case LangAS::opencl_local: ASString = "CLlocal"; break; |
| case LangAS::opencl_constant: ASString = "CLconstant"; break; |
| case LangAS::opencl_private: ASString = "CLprivate"; break; |
| case LangAS::opencl_generic: ASString = "CLgeneric"; break; |
| // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
| case LangAS::cuda_device: ASString = "CUdevice"; break; |
| case LangAS::cuda_constant: ASString = "CUconstant"; break; |
| case LangAS::cuda_shared: ASString = "CUshared"; break; |
| } |
| } |
| if (!ASString.empty()) |
| mangleVendorQualifier(ASString); |
| } |
| |
| // The ARC ownership qualifiers start with underscores. |
| // Objective-C ARC Extension: |
| // |
| // <type> ::= U "__strong" |
| // <type> ::= U "__weak" |
| // <type> ::= U "__autoreleasing" |
| // |
| // Note: we emit __weak first to preserve the order as |
| // required by the Itanium ABI. |
| if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) |
| mangleVendorQualifier("__weak"); |
| |
| // __unaligned (from -fms-extensions) |
| if (Quals.hasUnaligned()) |
| mangleVendorQualifier("__unaligned"); |
| |
| // Remaining ARC ownership qualifiers. |
| switch (Quals.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| // Do nothing as we already handled this case above. |
| break; |
| |
| case Qualifiers::OCL_Strong: |
| mangleVendorQualifier("__strong"); |
| break; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| mangleVendorQualifier("__autoreleasing"); |
| break; |
| |
| case Qualifiers::OCL_ExplicitNone: |
| // The __unsafe_unretained qualifier is *not* mangled, so that |
| // __unsafe_unretained types in ARC produce the same manglings as the |
| // equivalent (but, naturally, unqualified) types in non-ARC, providing |
| // better ABI compatibility. |
| // |
| // It's safe to do this because unqualified 'id' won't show up |
| // in any type signatures that need to be mangled. |
| break; |
| } |
| |
| // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
| if (Quals.hasRestrict()) |
| Out << 'r'; |
| if (Quals.hasVolatile()) |
| Out << 'V'; |
| if (Quals.hasConst()) |
| Out << 'K'; |
| } |
| |
| void CXXNameMangler::mangleVendorQualifier(StringRef name) { |
| Out << 'U' << name.size() << name; |
| } |
| |
| void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
| // <ref-qualifier> ::= R # lvalue reference |
| // ::= O # rvalue-reference |
| switch (RefQualifier) { |
| case RQ_None: |
| break; |
| |
| case RQ_LValue: |
| Out << 'R'; |
| break; |
| |
| case RQ_RValue: |
| Out << 'O'; |
| break; |
| } |
| } |
| |
| void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
| Context.mangleObjCMethodName(MD, Out); |
| } |
| |
| static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) { |
| if (Quals) |
| return true; |
| if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) |
| return true; |
| if (Ty->isOpenCLSpecificType()) |
| return true; |
| if (Ty->isBuiltinType()) |
| return false; |
| |
| return true; |
| } |
| |
| void CXXNameMangler::mangleType(QualType T) { |
| // If our type is instantiation-dependent but not dependent, we mangle |
| // it as it was written in the source, removing any top-level sugar. |
| // Otherwise, use the canonical type. |
| // |
| // FIXME: This is an approximation of the instantiation-dependent name |
| // mangling rules, since we should really be using the type as written and |
| // augmented via semantic analysis (i.e., with implicit conversions and |
| // default template arguments) for any instantiation-dependent type. |
| // Unfortunately, that requires several changes to our AST: |
| // - Instantiation-dependent TemplateSpecializationTypes will need to be |
| // uniqued, so that we can handle substitutions properly |
| // - Default template arguments will need to be represented in the |
| // TemplateSpecializationType, since they need to be mangled even though |
| // they aren't written. |
| // - Conversions on non-type template arguments need to be expressed, since |
| // they can affect the mangling of sizeof/alignof. |
| // |
| // FIXME: This is wrong when mapping to the canonical type for a dependent |
| // type discards instantiation-dependent portions of the type, such as for: |
| // |
| // template<typename T, int N> void f(T (&)[sizeof(N)]); |
| // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) |
| // |
| // It's also wrong in the opposite direction when instantiation-dependent, |
| // canonically-equivalent types differ in some irrelevant portion of inner |
| // type sugar. In such cases, we fail to form correct substitutions, eg: |
| // |
| // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); |
| // |
| // We should instead canonicalize the non-instantiation-dependent parts, |
| // regardless of whether the type as a whole is dependent or instantiation |
| // dependent. |
| if (!T->isInstantiationDependentType() || T->isDependentType()) |
| T = T.getCanonicalType(); |
| else { |
| // Desugar any types that are purely sugar. |
| do { |
| // Don't desugar through template specialization types that aren't |
| // type aliases. We need to mangle the template arguments as written. |
| if (const TemplateSpecializationType *TST |
| = dyn_cast<TemplateSpecializationType>(T)) |
| if (!TST->isTypeAlias()) |
| break; |
| |
| QualType Desugared |
| = T.getSingleStepDesugaredType(Context.getASTContext()); |
| if (Desugared == T) |
| break; |
| |
| T = Desugared; |
| } while (true); |
| } |
| SplitQualType split = T.split(); |
| Qualifiers quals = split.Quals; |
| const Type *ty = split.Ty; |
| |
| bool isSubstitutable = isTypeSubstitutable(quals, ty); |
| if (isSubstitutable && mangleSubstitution(T)) |
| return; |
| |
| // If we're mangling a qualified array type, push the qualifiers to |
| // the element type. |
| if (quals && isa<ArrayType>(T)) { |
| ty = Context.getASTContext().getAsArrayType(T); |
| quals = Qualifiers(); |
| |
| // Note that we don't update T: we want to add the |
| // substitution at the original type. |
| } |
| |
| if (quals || ty->isDependentAddressSpaceType()) { |
| if (const DependentAddressSpaceType *DAST = |
| dyn_cast<DependentAddressSpaceType>(ty)) { |
| SplitQualType splitDAST = DAST->getPointeeType().split(); |
| mangleQualifiers(splitDAST.Quals, DAST); |
| mangleType(QualType(splitDAST.Ty, 0)); |
| } else { |
| mangleQualifiers(quals); |
| |
| // Recurse: even if the qualified type isn't yet substitutable, |
| // the unqualified type might be. |
| mangleType(QualType(ty, 0)); |
| } |
| } else { |
| switch (ty->getTypeClass()) { |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
| return; |
| #define TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| mangleType(static_cast<const CLASS##Type*>(ty)); \ |
| break; |
| #include "clang/AST/TypeNodes.def" |
| } |
| } |
| |
| // Add the substitution. |
| if (isSubstitutable) |
| addSubstitution(T); |
| } |
| |
| void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { |
| if (!mangleStandardSubstitution(ND)) |
| mangleName(ND); |
| } |
| |
| void CXXNameMangler::mangleType(const BuiltinType *T) { |
| // <type> ::= <builtin-type> |
| // <builtin-type> ::= v # void |
| // ::= w # wchar_t |
| // ::= b # bool |
| // ::= c # char |
| // ::= a # signed char |
| // ::= h # unsigned char |
| // ::= s # short |
| // ::= t # unsigned short |
| // ::= i # int |
| // ::= j # unsigned int |
| // ::= l # long |
| // ::= m # unsigned long |
| // ::= x # long long, __int64 |
| // ::= y # unsigned long long, __int64 |
| // ::= n # __int128 |
| // ::= o # unsigned __int128 |
| // ::= f # float |
| // ::= d # double |
| // ::= e # long double, __float80 |
| // ::= g # __float128 |
| // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
| // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
| // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
| // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
| // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); |
| // ::= Di # char32_t |
| // ::= Ds # char16_t |
| // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
| // ::= u <source-name> # vendor extended type |
| std::string type_name; |
| switch (T->getKind()) { |
| case BuiltinType::Void: |
| Out << 'v'; |
| break; |
| case BuiltinType::Bool: |
| Out << 'b'; |
| break; |
| case BuiltinType::Char_U: |
| case BuiltinType::Char_S: |
| Out << 'c'; |
| break; |
| case BuiltinType::UChar: |
| Out << 'h'; |
| break; |
| case BuiltinType::UShort: |
| Out << 't'; |
| break; |
| case BuiltinType::UInt: |
| Out << 'j'; |
| break; |
| case BuiltinType::ULong: |
| Out << 'm'; |
| break; |
| case BuiltinType::ULongLong: |
| Out << 'y'; |
| break; |
| case BuiltinType::UInt128: |
| Out << 'o'; |
| break; |
| case BuiltinType::SChar: |
| Out << 'a'; |
| break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| Out << 'w'; |
| break; |
| case BuiltinType::Char16: |
| Out << "Ds"; |
| break; |
| case BuiltinType::Char32: |
| Out << "Di"; |
| break; |
| case BuiltinType::Short: |
| Out << 's'; |
| break; |
| case BuiltinType::Int: |
| Out << 'i'; |
| break; |
| case BuiltinType::Long: |
| Out << 'l'; |
| break; |
| case BuiltinType::LongLong: |
| Out << 'x'; |
| break; |
| case BuiltinType::Int128: |
| Out << 'n'; |
| break; |
| case BuiltinType::Float16: |
| Out << "DF16_"; |
| break; |
| case BuiltinType::Half: |
| Out << "Dh"; |
| break; |
| case BuiltinType::Float: |
| Out << 'f'; |
| break; |
| case BuiltinType::Double: |
| Out << 'd'; |
| break; |
| case BuiltinType::LongDouble: |
| Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble() |
| ? 'g' |
| : 'e'); |
| break; |
| case BuiltinType::Float128: |
| if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()) |
| Out << "U10__float128"; // Match the GCC mangling |
| else |
| Out << 'g'; |
| break; |
| case BuiltinType::NullPtr: |
| Out << "Dn"; |
| break; |
| |
| #define BUILTIN_TYPE(Id, SingletonId) |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Dependent: |
| if (!NullOut) |
| llvm_unreachable("mangling a placeholder type"); |
| break; |
| case BuiltinType::ObjCId: |
| Out << "11objc_object"; |
| break; |
| case BuiltinType::ObjCClass: |
| Out << "10objc_class"; |
| break; |
| case BuiltinType::ObjCSel: |
| Out << "13objc_selector"; |
| break; |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: \ |
| type_name = "ocl_" #ImgType "_" #Suffix; \ |
| Out << type_name.size() << type_name; \ |
| break; |
| #include "clang/Basic/OpenCLImageTypes.def" |
| case BuiltinType::OCLSampler: |
| Out << "11ocl_sampler"; |
| break; |
| case BuiltinType::OCLEvent: |
| Out << "9ocl_event"; |
| break; |
| case BuiltinType::OCLClkEvent: |
| Out << "12ocl_clkevent"; |
| break; |
| case BuiltinType::OCLQueue: |
| Out << "9ocl_queue"; |
| break; |
| case BuiltinType::OCLReserveID: |
| Out << "13ocl_reserveid"; |
| break; |
| } |
| } |
| |
| StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { |
| switch (CC) { |
| case CC_C: |
| return ""; |
| |
| case CC_X86StdCall: |
| case CC_X86FastCall: |
| case CC_X86ThisCall: |
| case CC_X86VectorCall: |
| case CC_X86Pascal: |
| case CC_Win64: |
| case CC_X86_64SysV: |
| case CC_X86RegCall: |
| case CC_AAPCS: |
| case CC_AAPCS_VFP: |
| case CC_IntelOclBicc: |
| case CC_SpirFunction: |
| case CC_OpenCLKernel: |
| case CC_PreserveMost: |
| case CC_PreserveAll: |
| // FIXME: we should be mangling all of the above. |
| return ""; |
| |
| case CC_Swift: |
| return "swiftcall"; |
| } |
| llvm_unreachable("bad calling convention"); |
| } |
| |
| void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { |
| // Fast path. |
| if (T->getExtInfo() == FunctionType::ExtInfo()) |
| return; |
| |
| // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
| // This will get more complicated in the future if we mangle other |
| // things here; but for now, since we mangle ns_returns_retained as |
| // a qualifier on the result type, we can get away with this: |
| StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); |
| if (!CCQualifier.empty()) |
| mangleVendorQualifier(CCQualifier); |
| |
| // FIXME: regparm |
| // FIXME: noreturn |
| } |
| |
| void |
| CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { |
| // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
| |
| // Note that these are *not* substitution candidates. Demanglers might |
| // have trouble with this if the parameter type is fully substituted. |
| |
| switch (PI.getABI()) { |
| case ParameterABI::Ordinary: |
| break; |
| |
| // All of these start with "swift", so they come before "ns_consumed". |
| case ParameterABI::SwiftContext: |
| case ParameterABI::SwiftErrorResult: |
| case ParameterABI::SwiftIndirectResult: |
| mangleVendorQualifier(getParameterABISpelling(PI.getABI())); |
| break; |
| } |
| |
| if (PI.isConsumed()) |
| mangleVendorQualifier("ns_consumed"); |
| |
| if (PI.isNoEscape()) |
| mangleVendorQualifier("noescape"); |
| } |
| |
| // <type> ::= <function-type> |
| // <function-type> ::= [<CV-qualifiers>] F [Y] |
| // <bare-function-type> [<ref-qualifier>] E |
| void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
| mangleExtFunctionInfo(T); |
| |
| // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
| // e.g. "const" in "int (A::*)() const". |
| mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals())); |
| |
| // Mangle instantiation-dependent exception-specification, if present, |
| // per cxx-abi-dev proposal on 2016-10-11. |
| if (T->hasInstantiationDependentExceptionSpec()) { |
| if (T->getExceptionSpecType() == EST_ComputedNoexcept) { |
| Out << "DO"; |
| mangleExpression(T->getNoexceptExpr()); |
| Out << "E"; |
| } else { |
| assert(T->getExceptionSpecType() == EST_Dynamic); |
| Out << "Dw"; |
| for (auto ExceptTy : T->exceptions()) |
| mangleType(ExceptTy); |
| Out << "E"; |
| } |
| } else if (T->isNothrow(getASTContext())) { |
| Out << "Do"; |
| } |
| |
| Out << 'F'; |
| |
| // FIXME: We don't have enough information in the AST to produce the 'Y' |
| // encoding for extern "C" function types. |
| mangleBareFunctionType(T, /*MangleReturnType=*/true); |
| |
| // Mangle the ref-qualifier, if present. |
| mangleRefQualifier(T->getRefQualifier()); |
| |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
| // Function types without prototypes can arise when mangling a function type |
| // within an overloadable function in C. We mangle these as the absence of any |
| // parameter types (not even an empty parameter list). |
| Out << 'F'; |
| |
| FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| |
| FunctionTypeDepth.enterResultType(); |
| mangleType(T->getReturnType()); |
| FunctionTypeDepth.leaveResultType(); |
| |
| FunctionTypeDepth.pop(saved); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, |
| bool MangleReturnType, |
| const FunctionDecl *FD) { |
| // Record that we're in a function type. See mangleFunctionParam |
| // for details on what we're trying to achieve here. |
| FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| |
| // <bare-function-type> ::= <signature type>+ |
| if (MangleReturnType) { |
| FunctionTypeDepth.enterResultType(); |
| |
| // Mangle ns_returns_retained as an order-sensitive qualifier here. |
| if (Proto->getExtInfo().getProducesResult() && FD == nullptr) |
| mangleVendorQualifier("ns_returns_retained"); |
| |
| // Mangle the return type without any direct ARC ownership qualifiers. |
| QualType ReturnTy = Proto->getReturnType(); |
| if (ReturnTy.getObjCLifetime()) { |
| auto SplitReturnTy = ReturnTy.split(); |
| SplitReturnTy.Quals.removeObjCLifetime(); |
| ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); |
| } |
| mangleType(ReturnTy); |
| |
| FunctionTypeDepth.leaveResultType(); |
| } |
| |
| if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
| // <builtin-type> ::= v # void |
| Out << 'v'; |
| |
| FunctionTypeDepth.pop(saved); |
| return; |
| } |
| |
| assert(!FD || FD->getNumParams() == Proto->getNumParams()); |
| for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
| // Mangle extended parameter info as order-sensitive qualifiers here. |
| if (Proto->hasExtParameterInfos() && FD == nullptr) { |
| mangleExtParameterInfo(Proto->getExtParameterInfo(I)); |
| } |
| |
| // Mangle the type. |
| QualType ParamTy = Proto->getParamType(I); |
| mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); |
| |
| if (FD) { |
| if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { |
| // Attr can only take 1 character, so we can hardcode the length below. |
| assert(Attr->getType() <= 9 && Attr->getType() >= 0); |
| Out << "U17pass_object_size" << Attr->getType(); |
| } |
| } |
| } |
| |
| FunctionTypeDepth.pop(saved); |
| |
| // <builtin-type> ::= z # ellipsis |
| if (Proto->isVariadic()) |
| Out << 'z'; |
| } |
| |
| // <type> ::= <class-enum-type> |
| // <class-enum-type> ::= <name> |
| void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <class-enum-type> |
| // <class-enum-type> ::= <name> |
| void CXXNameMangler::mangleType(const EnumType *T) { |
| mangleType(static_cast<const TagType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const RecordType *T) { |
| mangleType(static_cast<const TagType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const TagType *T) { |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <array-type> |
| // <array-type> ::= A <positive dimension number> _ <element type> |
| // ::= A [<dimension expression>] _ <element type> |
| void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
| Out << 'A' << T->getSize() << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const VariableArrayType *T) { |
| Out << 'A'; |
| // decayed vla types (size 0) will just be skipped. |
| if (T->getSizeExpr()) |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
| Out << 'A'; |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
| Out << "A_"; |
| mangleType(T->getElementType()); |
| } |
| |
| // <type> ::= <pointer-to-member-type> |
| // <pointer-to-member-type> ::= M <class type> <member type> |
| void CXXNameMangler::mangleType(const MemberPointerType *T) { |
| Out << 'M'; |
| mangleType(QualType(T->getClass(), 0)); |
| QualType PointeeType = T->getPointeeType(); |
| if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { |
| mangleType(FPT); |
| |
| // Itanium C++ ABI 5.1.8: |
| // |
|
|