blob: 48130becf3b5b6fd11540a3809f206f3b557f0fe [file] [log] [blame]
//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr interface and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_EXPR_H
#define LLVM_CLANG_AST_EXPR_H
#include "clang/AST/APValue.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/AST/DeclAccessPair.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ASTVector.h"
#include "clang/AST/UsuallyTinyPtrVector.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include <vector>
namespace clang {
class ASTContext;
class APValue;
class Decl;
class IdentifierInfo;
class ParmVarDecl;
class NamedDecl;
class ValueDecl;
class BlockDecl;
class CXXBaseSpecifier;
class CXXOperatorCallExpr;
class CXXMemberCallExpr;
class TemplateArgumentLoc;
class TemplateArgumentListInfo;
/// \brief A simple array of base specifiers.
typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
/// Expr - This represents one expression. Note that Expr's are subclasses of
/// Stmt. This allows an expression to be transparently used any place a Stmt
/// is required.
///
class Expr : public Stmt {
QualType TR;
virtual void ANCHOR(); // key function.
protected:
/// TypeDependent - Whether this expression is type-dependent
/// (C++ [temp.dep.expr]).
bool TypeDependent : 1;
/// ValueDependent - Whether this expression is value-dependent
/// (C++ [temp.dep.constexpr]).
bool ValueDependent : 1;
/// ValueKind - The value classification of this expression.
/// Only actually used by certain subclasses.
unsigned ValueKind : 2;
enum { BitsRemaining = 28 };
Expr(StmtClass SC, QualType T, bool TD, bool VD)
: Stmt(SC), TypeDependent(TD), ValueDependent(VD), ValueKind(0) {
setType(T);
}
/// \brief Construct an empty expression.
explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
public:
/// \brief Increases the reference count for this expression.
///
/// Invoke the Retain() operation when this expression
/// is being shared by another owner.
Expr *Retain() {
Stmt::Retain();
return this;
}
QualType getType() const { return TR; }
void setType(QualType t) {
// In C++, the type of an expression is always adjusted so that it
// will not have reference type an expression will never have
// reference type (C++ [expr]p6). Use
// QualType::getNonReferenceType() to retrieve the non-reference
// type. Additionally, inspect Expr::isLvalue to determine whether
// an expression that is adjusted in this manner should be
// considered an lvalue.
assert((t.isNull() || !t->isReferenceType()) &&
"Expressions can't have reference type");
TR = t;
}
/// isValueDependent - Determines whether this expression is
/// value-dependent (C++ [temp.dep.constexpr]). For example, the
/// array bound of "Chars" in the following example is
/// value-dependent.
/// @code
/// template<int Size, char (&Chars)[Size]> struct meta_string;
/// @endcode
bool isValueDependent() const { return ValueDependent; }
/// \brief Set whether this expression is value-dependent or not.
void setValueDependent(bool VD) { ValueDependent = VD; }
/// isTypeDependent - Determines whether this expression is
/// type-dependent (C++ [temp.dep.expr]), which means that its type
/// could change from one template instantiation to the next. For
/// example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// @code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// @endcode
bool isTypeDependent() const { return TypeDependent; }
/// \brief Set whether this expression is type-dependent or not.
void setTypeDependent(bool TD) { TypeDependent = TD; }
/// SourceLocation tokens are not useful in isolation - they are low level
/// value objects created/interpreted by SourceManager. We assume AST
/// clients will have a pointer to the respective SourceManager.
virtual SourceRange getSourceRange() const = 0;
/// getExprLoc - Return the preferred location for the arrow when diagnosing
/// a problem with a generic expression.
virtual SourceLocation getExprLoc() const { return getLocStart(); }
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
SourceRange &R2, ASTContext &Ctx) const;
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
/// incomplete type other than void. Nonarray expressions that can be lvalues:
/// - name, where name must be a variable
/// - e[i]
/// - (e), where e must be an lvalue
/// - e.name, where e must be an lvalue
/// - e->name
/// - *e, the type of e cannot be a function type
/// - string-constant
/// - reference type [C++ [expr]]
/// - b ? x : y, where x and y are lvalues of suitable types [C++]
///
enum isLvalueResult {
LV_Valid,
LV_NotObjectType,
LV_IncompleteVoidType,
LV_DuplicateVectorComponents,
LV_InvalidExpression,
LV_MemberFunction,
LV_SubObjCPropertySetting,
LV_ClassTemporary
};
isLvalueResult isLvalue(ASTContext &Ctx) const;
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
/// does not have an incomplete type, does not have a const-qualified type,
/// and if it is a structure or union, does not have any member (including,
/// recursively, any member or element of all contained aggregates or unions)
/// with a const-qualified type.
///
/// \param Loc [in] [out] - A source location which *may* be filled
/// in with the location of the expression making this a
/// non-modifiable lvalue, if specified.
enum isModifiableLvalueResult {
MLV_Valid,
MLV_NotObjectType,
MLV_IncompleteVoidType,
MLV_DuplicateVectorComponents,
MLV_InvalidExpression,
MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
MLV_IncompleteType,
MLV_ConstQualified,
MLV_ArrayType,
MLV_NotBlockQualified,
MLV_ReadonlyProperty,
MLV_NoSetterProperty,
MLV_MemberFunction,
MLV_SubObjCPropertySetting,
MLV_ClassTemporary
};
isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
SourceLocation *Loc = 0) const;
/// \brief The return type of classify(). Represents the C++0x expression
/// taxonomy.
class Classification {
public:
/// \brief The various classification results. Most of these mean prvalue.
enum Kinds {
CL_LValue,
CL_XValue,
CL_Function, // Functions cannot be lvalues in C.
CL_Void, // Void cannot be an lvalue in C.
CL_DuplicateVectorComponents, // A vector shuffle with dupes.
CL_MemberFunction, // An expression referring to a member function
CL_SubObjCPropertySetting,
CL_ClassTemporary, // A prvalue of class type
CL_PRValue // A prvalue for any other reason, of any other type
};
/// \brief The results of modification testing.
enum ModifiableType {
CM_Untested, // testModifiable was false.
CM_Modifiable,
CM_RValue, // Not modifiable because it's an rvalue
CM_Function, // Not modifiable because it's a function; C++ only
CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
CM_NotBlockQualified, // Not captured in the closure
CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
CM_ConstQualified,
CM_ArrayType,
CM_IncompleteType
};
private:
friend class Expr;
unsigned short Kind;
unsigned short Modifiable;
explicit Classification(Kinds k, ModifiableType m)
: Kind(k), Modifiable(m)
{}
public:
Classification() {}
Kinds getKind() const { return static_cast<Kinds>(Kind); }
ModifiableType getModifiable() const {
assert(Modifiable != CM_Untested && "Did not test for modifiability.");
return static_cast<ModifiableType>(Modifiable);
}
bool isLValue() const { return Kind == CL_LValue; }
bool isXValue() const { return Kind == CL_XValue; }
bool isGLValue() const { return Kind <= CL_XValue; }
bool isPRValue() const { return Kind >= CL_Function; }
bool isRValue() const { return Kind >= CL_XValue; }
bool isModifiable() const { return getModifiable() == CM_Modifiable; }
};
/// \brief classify - Classify this expression according to the C++0x
/// expression taxonomy.
///
/// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
/// old lvalue vs rvalue. This function determines the type of expression this
/// is. There are three expression types:
/// - lvalues are classical lvalues as in C++03.
/// - prvalues are equivalent to rvalues in C++03.
/// - xvalues are expressions yielding unnamed rvalue references, e.g. a
/// function returning an rvalue reference.
/// lvalues and xvalues are collectively referred to as glvalues, while
/// prvalues and xvalues together form rvalues.
Classification Classify(ASTContext &Ctx) const {
return ClassifyImpl(Ctx, 0);
}
/// \brief classifyModifiable - Classify this expression according to the
/// C++0x expression taxonomy, and see if it is valid on the left side
/// of an assignment.
///
/// This function extends classify in that it also tests whether the
/// expression is modifiable (C99 6.3.2.1p1).
/// \param Loc A source location that might be filled with a relevant location
/// if the expression is not modifiable.
Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
return ClassifyImpl(Ctx, &Loc);
}
private:
Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
public:
/// \brief If this expression refers to a bit-field, retrieve the
/// declaration of that bit-field.
FieldDecl *getBitField();
const FieldDecl *getBitField() const {
return const_cast<Expr*>(this)->getBitField();
}
/// \brief Returns whether this expression refers to a vector element.
bool refersToVectorElement() const;
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool isKnownToHaveBooleanValue() const;
/// isIntegerConstantExpr - Return true if this expression is a valid integer
/// constant expression, and, if so, return its value in Result. If not a
/// valid i-c-e, return false and fill in Loc (if specified) with the location
/// of the invalid expression.
bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
SourceLocation *Loc = 0,
bool isEvaluated = true) const;
bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
llvm::APSInt X;
return isIntegerConstantExpr(X, Ctx, Loc);
}
/// isConstantInitializer - Returns true if this expression is a constant
/// initializer, which can be emitted at compile-time.
bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
/// EvalResult is a struct with detailed info about an evaluated expression.
struct EvalResult {
/// Val - This is the value the expression can be folded to.
APValue Val;
/// HasSideEffects - Whether the evaluated expression has side effects.
/// For example, (f() && 0) can be folded, but it still has side effects.
bool HasSideEffects;
/// Diag - If the expression is unfoldable, then Diag contains a note
/// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
/// position for the error, and DiagExpr is the expression that caused
/// the error.
/// If the expression is foldable, but not an integer constant expression,
/// Diag contains a note diagnostic that describes why it isn't an integer
/// constant expression. If the expression *is* an integer constant
/// expression, then Diag will be zero.
unsigned Diag;
const Expr *DiagExpr;
SourceLocation DiagLoc;
EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
// isGlobalLValue - Return true if the evaluated lvalue expression
// is global.
bool isGlobalLValue() const;
// hasSideEffects - Return true if the evaluated expression has
// side effects.
bool hasSideEffects() const {
return HasSideEffects;
}
};
/// Evaluate - Return true if this is a constant which we can fold using
/// any crazy technique (that has nothing to do with language standards) that
/// we want to. If this function returns true, it returns the folded constant
/// in Result.
bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
/// EvaluateAsBooleanCondition - Return true if this is a constant
/// which we we can fold and convert to a boolean condition using
/// any crazy technique that we want to.
bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
/// isEvaluatable - Call Evaluate to see if this expression can be constant
/// folded, but discard the result.
bool isEvaluatable(ASTContext &Ctx) const;
/// HasSideEffects - This routine returns true for all those expressions
/// which must be evaluated each time and must not be optimization away
/// or evaluated at compile time. Example is a function call, volatile
/// variable read.
bool HasSideEffects(ASTContext &Ctx) const;
/// EvaluateAsInt - Call Evaluate and return the folded integer. This
/// must be called on an expression that constant folds to an integer.
llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
/// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
/// with link time known address.
bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
/// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
/// \brief Enumeration used to describe how \c isNullPointerConstant()
/// should cope with value-dependent expressions.
enum NullPointerConstantValueDependence {
/// \brief Specifies that the expression should never be value-dependent.
NPC_NeverValueDependent = 0,
/// \brief Specifies that a value-dependent expression of integral or
/// dependent type should be considered a null pointer constant.
NPC_ValueDependentIsNull,
/// \brief Specifies that a value-dependent expression should be considered
/// to never be a null pointer constant.
NPC_ValueDependentIsNotNull
};
/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
/// integer constant expression with the value zero, or if this is one that is
/// cast to void*.
bool isNullPointerConstant(ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const;
/// isOBJCGCCandidate - Return true if this expression may be used in a read/
/// write barrier.
bool isOBJCGCCandidate(ASTContext &Ctx) const;
/// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
/// its subexpression. If that subexpression is also a ParenExpr,
/// then this method recursively returns its subexpression, and so forth.
/// Otherwise, the method returns the current Expr.
Expr *IgnoreParens();
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
/// or CastExprs, returning their operand.
Expr *IgnoreParenCasts();
/// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off any
/// ParenExpr or ImplicitCastExprs, returning their operand.
Expr *IgnoreParenImpCasts();
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size). Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
/// \brief Determine whether this expression is a default function argument.
///
/// Default arguments are implicitly generated in the abstract syntax tree
/// by semantic analysis for function calls, object constructions, etc. in
/// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
/// this routine also looks through any implicit casts to determine whether
/// the expression is a default argument.
bool isDefaultArgument() const;
/// \brief Determine whether this expression directly creates a
/// temporary object (of class type).
bool isTemporaryObject() const { return getTemporaryObject() != 0; }
/// \brief If this expression directly creates a temporary object of
/// class type, return the expression that actually constructs that
/// temporary object.
const Expr *getTemporaryObject() const;
const Expr *IgnoreParens() const {
return const_cast<Expr*>(this)->IgnoreParens();
}
const Expr *IgnoreParenCasts() const {
return const_cast<Expr*>(this)->IgnoreParenCasts();
}
const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
}
static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExprConstant &&
T->getStmtClass() <= lastExprConstant;
}
static bool classof(const Expr *) { return true; }
};
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// \brief Represents the qualifier that may precede a C++ name, e.g., the
/// "std::" in "std::sort".
struct NameQualifier {
/// \brief The nested name specifier.
NestedNameSpecifier *NNS;
/// \brief The source range covered by the nested name specifier.
SourceRange Range;
};
/// \brief Represents an explicit template argument list in C++, e.g.,
/// the "<int>" in "sort<int>".
struct ExplicitTemplateArgumentList {
/// \brief The source location of the left angle bracket ('<');
SourceLocation LAngleLoc;
/// \brief The source location of the right angle bracket ('>');
SourceLocation RAngleLoc;
/// \brief The number of template arguments in TemplateArgs.
/// The actual template arguments (if any) are stored after the
/// ExplicitTemplateArgumentList structure.
unsigned NumTemplateArgs;
/// \brief Retrieve the template arguments
TemplateArgumentLoc *getTemplateArgs() {
return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
}
/// \brief Retrieve the template arguments
const TemplateArgumentLoc *getTemplateArgs() const {
return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
}
void initializeFrom(const TemplateArgumentListInfo &List);
void copyInto(TemplateArgumentListInfo &List) const;
static std::size_t sizeFor(unsigned NumTemplateArgs);
static std::size_t sizeFor(const TemplateArgumentListInfo &List);
};
/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
/// enum, etc.
class DeclRefExpr : public Expr {
enum {
// Flag on DecoratedD that specifies when this declaration reference
// expression has a C++ nested-name-specifier.
HasQualifierFlag = 0x01,
// Flag on DecoratedD that specifies when this declaration reference
// expression has an explicit C++ template argument list.
HasExplicitTemplateArgumentListFlag = 0x02
};
// DecoratedD - The declaration that we are referencing, plus two bits to
// indicate whether (1) the declaration's name was explicitly qualified and
// (2) the declaration's name was followed by an explicit template
// argument list.
llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
// Loc - The location of the declaration name itself.
SourceLocation Loc;
/// DNLoc - Provides source/type location info for the
/// declaration name embedded in DecoratedD.
DeclarationNameLoc DNLoc;
/// \brief Retrieve the qualifier that preceded the declaration name, if any.
NameQualifier *getNameQualifier() {
if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
return 0;
return reinterpret_cast<NameQualifier *> (this + 1);
}
/// \brief Retrieve the qualifier that preceded the member name, if any.
const NameQualifier *getNameQualifier() const {
return const_cast<DeclRefExpr *>(this)->getNameQualifier();
}
DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
ValueDecl *D, SourceLocation NameLoc,
const TemplateArgumentListInfo *TemplateArgs,
QualType T);
DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
ValueDecl *D, const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
QualType T);
/// \brief Construct an empty declaration reference expression.
explicit DeclRefExpr(EmptyShell Empty)
: Expr(DeclRefExprClass, Empty) { }
/// \brief Computes the type- and value-dependence flags for this
/// declaration reference expression.
void computeDependence();
public:
DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
computeDependence();
}
static DeclRefExpr *Create(ASTContext &Context,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
ValueDecl *D,
SourceLocation NameLoc,
QualType T,
const TemplateArgumentListInfo *TemplateArgs = 0);
static DeclRefExpr *Create(ASTContext &Context,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
ValueDecl *D,
const DeclarationNameInfo &NameInfo,
QualType T,
const TemplateArgumentListInfo *TemplateArgs = 0);
/// \brief Construct an empty declaration reference expression.
static DeclRefExpr *CreateEmpty(ASTContext &Context,
bool HasQualifier, unsigned NumTemplateArgs);
ValueDecl *getDecl() { return DecoratedD.getPointer(); }
const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
}
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
virtual SourceRange getSourceRange() const;
/// \brief Determine whether this declaration reference was preceded by a
/// C++ nested-name-specifier, e.g., \c N::foo.
bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
/// \brief If the name was qualified, retrieves the source range of
/// the nested-name-specifier that precedes the name. Otherwise,
/// returns an empty source range.
SourceRange getQualifierRange() const {
if (!hasQualifier())
return SourceRange();
return getNameQualifier()->Range;
}
/// \brief If the name was qualified, retrieves the nested-name-specifier
/// that precedes the name. Otherwise, returns NULL.
NestedNameSpecifier *getQualifier() const {
if (!hasQualifier())
return 0;
return getNameQualifier()->NNS;
}
bool hasExplicitTemplateArgs() const {
return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name.
ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
assert(hasExplicitTemplateArgs());
if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
return *reinterpret_cast<ExplicitTemplateArgumentList *>(
getNameQualifier() + 1);
}
/// \brief Retrieve the explicit template argument list that followed the
/// member template name.
const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
if (!hasExplicitTemplateArgs()) return 0;
return &getExplicitTemplateArgs();
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieve the location of the left angle bracket following the
/// member name ('<'), if any.
SourceLocation getLAngleLoc() const {
if (!hasExplicitTemplateArgs())
return SourceLocation();
return getExplicitTemplateArgs().LAngleLoc;
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!hasExplicitTemplateArgs())
return 0;
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// \brief Retrieve the location of the right angle bracket following the
/// template arguments ('>').
SourceLocation getRAngleLoc() const {
if (!hasExplicitTemplateArgs())
return SourceLocation();
return getExplicitTemplateArgs().RAngleLoc;
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == DeclRefExprClass;
}
static bool classof(const DeclRefExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
class PredefinedExpr : public Expr {
public:
enum IdentType {
Func,
Function,
PrettyFunction,
/// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
/// 'virtual' keyword is omitted for virtual member functions.
PrettyFunctionNoVirtual
};
private:
SourceLocation Loc;
IdentType Type;
public:
PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
: Expr(PredefinedExprClass, type, type->isDependentType(),
type->isDependentType()), Loc(l), Type(IT) {}
/// \brief Construct an empty predefined expression.
explicit PredefinedExpr(EmptyShell Empty)
: Expr(PredefinedExprClass, Empty) { }
IdentType getIdentType() const { return Type; }
void setIdentType(IdentType IT) { Type = IT; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == PredefinedExprClass;
}
static bool classof(const PredefinedExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
/// leaking memory.
///
/// For large floats/integers, APFloat/APInt will allocate memory from the heap
/// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
/// the APFloat/APInt values will never get freed. APNumericStorage uses
/// ASTContext's allocator for memory allocation.
class APNumericStorage {
unsigned BitWidth;
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
APNumericStorage(const APNumericStorage&); // do not implement
APNumericStorage& operator=(const APNumericStorage&); // do not implement
protected:
APNumericStorage() : BitWidth(0), VAL(0) { }
llvm::APInt getIntValue() const {
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
if (NumWords > 1)
return llvm::APInt(BitWidth, NumWords, pVal);
else
return llvm::APInt(BitWidth, VAL);
}
void setIntValue(ASTContext &C, const llvm::APInt &Val);
};
class APIntStorage : public APNumericStorage {
public:
llvm::APInt getValue() const { return getIntValue(); }
void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
};
class APFloatStorage : public APNumericStorage {
public:
llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
void setValue(ASTContext &C, const llvm::APFloat &Val) {
setIntValue(C, Val.bitcastToAPInt());
}
};
class IntegerLiteral : public Expr {
APIntStorage Num;
SourceLocation Loc;
/// \brief Construct an empty integer literal.
explicit IntegerLiteral(EmptyShell Empty)
: Expr(IntegerLiteralClass, Empty) { }
public:
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
IntegerLiteral(ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l)
: Expr(IntegerLiteralClass, type, false, false), Loc(l) {
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
setValue(C, V);
}
// type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
// or UnsignedLongLongTy
static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l);
static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
llvm::APInt getValue() const { return Num.getValue(); }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
/// \brief Retrieve the location of the literal.
SourceLocation getLocation() const { return Loc; }
void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
void setLocation(SourceLocation Location) { Loc = Location; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == IntegerLiteralClass;
}
static bool classof(const IntegerLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class CharacterLiteral : public Expr {
unsigned Value;
SourceLocation Loc;
bool IsWide;
public:
// type should be IntTy
CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
: Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
IsWide(iswide) {
}
/// \brief Construct an empty character literal.
CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
SourceLocation getLocation() const { return Loc; }
bool isWide() const { return IsWide; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
unsigned getValue() const { return Value; }
void setLocation(SourceLocation Location) { Loc = Location; }
void setWide(bool W) { IsWide = W; }
void setValue(unsigned Val) { Value = Val; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == CharacterLiteralClass;
}
static bool classof(const CharacterLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class FloatingLiteral : public Expr {
APFloatStorage Num;
bool IsExact : 1;
SourceLocation Loc;
FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
QualType Type, SourceLocation L)
: Expr(FloatingLiteralClass, Type, false, false),
IsExact(isexact), Loc(L) {
setValue(C, V);
}
/// \brief Construct an empty floating-point literal.
explicit FloatingLiteral(EmptyShell Empty)
: Expr(FloatingLiteralClass, Empty), IsExact(false) { }
public:
static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L);
static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
llvm::APFloat getValue() const { return Num.getValue(); }
void setValue(ASTContext &C, const llvm::APFloat &Val) {
Num.setValue(C, Val);
}
bool isExact() const { return IsExact; }
void setExact(bool E) { IsExact = E; }
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double getValueAsApproximateDouble() const;
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == FloatingLiteralClass;
}
static bool classof(const FloatingLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ImaginaryLiteral - We support imaginary integer and floating point literals,
/// like "1.0i". We represent these as a wrapper around FloatingLiteral and
/// IntegerLiteral classes. Instances of this class always have a Complex type
/// whose element type matches the subexpression.
///
class ImaginaryLiteral : public Expr {
Stmt *Val;
public:
ImaginaryLiteral(Expr *val, QualType Ty)
: Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
/// \brief Build an empty imaginary literal.
explicit ImaginaryLiteral(EmptyShell Empty)
: Expr(ImaginaryLiteralClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImaginaryLiteralClass;
}
static bool classof(const ImaginaryLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// StringLiteral - This represents a string literal expression, e.g. "foo"
/// or L"bar" (wide strings). The actual string is returned by getStrData()
/// is NOT null-terminated, and the length of the string is determined by
/// calling getByteLength(). The C type for a string is always a
/// ConstantArrayType. In C++, the char type is const qualified, in C it is
/// not.
///
/// Note that strings in C can be formed by concatenation of multiple string
/// literal pptokens in translation phase #6. This keeps track of the locations
/// of each of these pieces.
///
/// Strings in C can also be truncated and extended by assigning into arrays,
/// e.g. with constructs like:
/// char X[2] = "foobar";
/// In this case, getByteLength() will return 6, but the string literal will
/// have type "char[2]".
class StringLiteral : public Expr {
const char *StrData;
unsigned ByteLength;
bool IsWide;
unsigned NumConcatenated;
SourceLocation TokLocs[1];
StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
public:
/// This is the "fully general" constructor that allows representation of
/// strings formed from multiple concatenated tokens.
static StringLiteral *Create(ASTContext &C, const char *StrData,
unsigned ByteLength, bool Wide, QualType Ty,
const SourceLocation *Loc, unsigned NumStrs);
/// Simple constructor for string literals made from one token.
static StringLiteral *Create(ASTContext &C, const char *StrData,
unsigned ByteLength,
bool Wide, QualType Ty, SourceLocation Loc) {
return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
}
/// \brief Construct an empty string literal.
static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
llvm::StringRef getString() const {
return llvm::StringRef(StrData, ByteLength);
}
unsigned getByteLength() const { return ByteLength; }
/// \brief Sets the string data to the given string data.
void setString(ASTContext &C, llvm::StringRef Str);
bool isWide() const { return IsWide; }
void setWide(bool W) { IsWide = W; }
bool containsNonAsciiOrNull() const {
llvm::StringRef Str = getString();
for (unsigned i = 0, e = Str.size(); i != e; ++i)
if (!isascii(Str[i]) || !Str[i])
return true;
return false;
}
/// getNumConcatenated - Get the number of string literal tokens that were
/// concatenated in translation phase #6 to form this string literal.
unsigned getNumConcatenated() const { return NumConcatenated; }
SourceLocation getStrTokenLoc(unsigned TokNum) const {
assert(TokNum < NumConcatenated && "Invalid tok number");
return TokLocs[TokNum];
}
void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
assert(TokNum < NumConcatenated && "Invalid tok number");
TokLocs[TokNum] = L;
}
typedef const SourceLocation *tokloc_iterator;
tokloc_iterator tokloc_begin() const { return TokLocs; }
tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
virtual SourceRange getSourceRange() const {
return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == StringLiteralClass;
}
static bool classof(const StringLiteral *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
/// AST node is only formed if full location information is requested.
class ParenExpr : public Expr {
SourceLocation L, R;
Stmt *Val;
public:
ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
: Expr(ParenExprClass, val->getType(),
val->isTypeDependent(), val->isValueDependent()),
L(l), R(r), Val(val) {}
/// \brief Construct an empty parenthesized expression.
explicit ParenExpr(EmptyShell Empty)
: Expr(ParenExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
/// \brief Get the location of the left parentheses '('.
SourceLocation getLParen() const { return L; }
void setLParen(SourceLocation Loc) { L = Loc; }
/// \brief Get the location of the right parentheses ')'.
SourceLocation getRParen() const { return R; }
void setRParen(SourceLocation Loc) { R = Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenExprClass;
}
static bool classof(const ParenExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// UnaryOperator - This represents the unary-expression's (except sizeof and
/// alignof), the postinc/postdec operators from postfix-expression, and various
/// extensions.
///
/// Notes on various nodes:
///
/// Real/Imag - These return the real/imag part of a complex operand. If
/// applied to a non-complex value, the former returns its operand and the
/// later returns zero in the type of the operand.
///
class UnaryOperator : public Expr {
public:
typedef UnaryOperatorKind Opcode;
private:
unsigned Opc : 5;
SourceLocation Loc;
Stmt *Val;
public:
UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
: Expr(UnaryOperatorClass, type,
input->isTypeDependent() || type->isDependentType(),
input->isValueDependent()),
Opc(opc), Loc(l), Val(input) {}
/// \brief Build an empty unary operator.
explicit UnaryOperator(EmptyShell Empty)
: Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
void setOpcode(Opcode O) { Opc = O; }
Expr *getSubExpr() const { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return Loc; }
void setOperatorLoc(SourceLocation L) { Loc = L; }
/// isPostfix - Return true if this is a postfix operation, like x++.
static bool isPostfix(Opcode Op) {
return Op == UO_PostInc || Op == UO_PostDec;
}
/// isPostfix - Return true if this is a prefix operation, like --x.
static bool isPrefix(Opcode Op) {
return Op == UO_PreInc || Op == UO_PreDec;
}
bool isPrefix() const { return isPrefix(getOpcode()); }
bool isPostfix() const { return isPostfix(getOpcode()); }
bool isIncrementOp() const {
return Opc == UO_PreInc || Opc == UO_PostInc;
}
bool isIncrementDecrementOp() const {
return Opc <= UO_PreDec;
}
static bool isArithmeticOp(Opcode Op) {
return Op >= UO_Plus && Op <= UO_LNot;
}
bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++"
static const char *getOpcodeStr(Opcode Op);
/// \brief Retrieve the unary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
/// \brief Retrieve the overloaded operator kind that corresponds to
/// the given unary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
virtual SourceRange getSourceRange() const {
if (isPostfix())
return SourceRange(Val->getLocStart(), Loc);
else
return SourceRange(Loc, Val->getLocEnd());
}
virtual SourceLocation getExprLoc() const { return Loc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == UnaryOperatorClass;
}
static bool classof(const UnaryOperator *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
/// offsetof(record-type, member-designator). For example, given:
/// @code
/// struct S {
/// float f;
/// double d;
/// };
/// struct T {
/// int i;
/// struct S s[10];
/// };
/// @endcode
/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
class OffsetOfExpr : public Expr {
public:
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
class OffsetOfNode {
public:
/// \brief The kind of offsetof node we have.
enum Kind {
/// \brief An index into an array.
Array = 0x00,
/// \brief A field.
Field = 0x01,
/// \brief A field in a dependent type, known only by its name.
Identifier = 0x02,
/// \brief An implicit indirection through a C++ base class, when the
/// field found is in a base class.
Base = 0x03
};
private:
enum { MaskBits = 2, Mask = 0x03 };
/// \brief The source range that covers this part of the designator.
SourceRange Range;
/// \brief The data describing the designator, which comes in three
/// different forms, depending on the lower two bits.
/// - An unsigned index into the array of Expr*'s stored after this node
/// in memory, for [constant-expression] designators.
/// - A FieldDecl*, for references to a known field.
/// - An IdentifierInfo*, for references to a field with a given name
/// when the class type is dependent.
/// - A CXXBaseSpecifier*, for references that look at a field in a
/// base class.
uintptr_t Data;
public:
/// \brief Create an offsetof node that refers to an array element.
OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
SourceLocation RBracketLoc)
: Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
/// \brief Create an offsetof node that refers to a field.
OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
SourceLocation NameLoc)
: Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
/// \brief Create an offsetof node that refers to an identifier.
OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
SourceLocation NameLoc)
: Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
/// \brief Create an offsetof node that refers into a C++ base class.
explicit OffsetOfNode(const CXXBaseSpecifier *Base)
: Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
/// \brief Determine what kind of offsetof node this is.
Kind getKind() const {
return static_cast<Kind>(Data & Mask);
}
/// \brief For an array element node, returns the index into the array
/// of expressions.
unsigned getArrayExprIndex() const {
assert(getKind() == Array);
return Data >> 2;
}
/// \brief For a field offsetof node, returns the field.
FieldDecl *getField() const {
assert(getKind() == Field);
return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
}
/// \brief For a field or identifier offsetof node, returns the name of
/// the field.
IdentifierInfo *getFieldName() const;
/// \brief For a base class node, returns the base specifier.
CXXBaseSpecifier *getBase() const {
assert(getKind() == Base);
return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
}
/// \brief Retrieve the source range that covers this offsetof node.
///
/// For an array element node, the source range contains the locations of
/// the square brackets. For a field or identifier node, the source range
/// contains the location of the period (if there is one) and the
/// identifier.
SourceRange getRange() const { return Range; }
};
private:
SourceLocation OperatorLoc, RParenLoc;
// Base type;
TypeSourceInfo *TSInfo;
// Number of sub-components (i.e. instances of OffsetOfNode).
unsigned NumComps;
// Number of sub-expressions (i.e. array subscript expressions).
unsigned NumExprs;
OffsetOfExpr(ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
OffsetOfNode* compsPtr, unsigned numComps,
Expr** exprsPtr, unsigned numExprs,
SourceLocation RParenLoc);
explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
: Expr(OffsetOfExprClass, EmptyShell()),
TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
public:
static OffsetOfExpr *Create(ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
OffsetOfNode* compsPtr, unsigned numComps,
Expr** exprsPtr, unsigned numExprs,
SourceLocation RParenLoc);
static OffsetOfExpr *CreateEmpty(ASTContext &C,
unsigned NumComps, unsigned NumExprs);
/// getOperatorLoc - Return the location of the operator.
SourceLocation getOperatorLoc() const { return OperatorLoc; }
void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
/// \brief Return the location of the right parentheses.
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation R) { RParenLoc = R; }
TypeSourceInfo *getTypeSourceInfo() const {
return TSInfo;
}
void setTypeSourceInfo(TypeSourceInfo *tsi) {
TSInfo = tsi;
}
const OffsetOfNode &getComponent(unsigned Idx) {
assert(Idx < NumComps && "Subscript out of range");
return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
}
void setComponent(unsigned Idx, OffsetOfNode ON) {
assert(Idx < NumComps && "Subscript out of range");
reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
}
unsigned getNumComponents() const {
return NumComps;
}
Expr* getIndexExpr(unsigned Idx) {
assert(Idx < NumExprs && "Subscript out of range");
return reinterpret_cast<Expr **>(
reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
}
void setIndexExpr(unsigned Idx, Expr* E) {
assert(Idx < NumComps && "Subscript out of range");
reinterpret_cast<Expr **>(
reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
}
unsigned getNumExpressions() const {
return NumExprs;
}
virtual SourceRange getSourceRange() const {
return SourceRange(OperatorLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == OffsetOfExprClass;
}
static bool classof(const OffsetOfExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
/// types and expressions.
class SizeOfAlignOfExpr : public Expr {
bool isSizeof : 1; // true if sizeof, false if alignof.
bool isType : 1; // true if operand is a type, false if an expression
union {
TypeSourceInfo *Ty;
Stmt *Ex;
} Argument;
SourceLocation OpLoc, RParenLoc;
public:
SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
QualType resultType, SourceLocation op,
SourceLocation rp) :
Expr(SizeOfAlignOfExprClass, resultType,
false, // Never type-dependent (C++ [temp.dep.expr]p3).
// Value-dependent if the argument is type-dependent.
TInfo->getType()->isDependentType()),
isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
Argument.Ty = TInfo;
}
SizeOfAlignOfExpr(bool issizeof, Expr *E,
QualType resultType, SourceLocation op,
SourceLocation rp) :
Expr(SizeOfAlignOfExprClass, resultType,
false, // Never type-dependent (C++ [temp.dep.expr]p3).
// Value-dependent if the argument is type-dependent.
E->isTypeDependent()),
isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
Argument.Ex = E;
}
/// \brief Construct an empty sizeof/alignof expression.
explicit SizeOfAlignOfExpr(EmptyShell Empty)
: Expr(SizeOfAlignOfExprClass, Empty) { }
bool isSizeOf() const { return isSizeof; }
void setSizeof(bool S) { isSizeof = S; }
bool isArgumentType() const { return isType; }
QualType getArgumentType() const {
return getArgumentTypeInfo()->getType();
}
TypeSourceInfo *getArgumentTypeInfo() const {
assert(isArgumentType() && "calling getArgumentType() when arg is expr");
return Argument.Ty;
}
Expr *getArgumentExpr() {
assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
return static_cast<Expr*>(Argument.Ex);
}
const Expr *getArgumentExpr() const {
return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
}
void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
void setArgument(TypeSourceInfo *TInfo) {
Argument.Ty = TInfo;
isType = true;
}
/// Gets the argument type, or the type of the argument expression, whichever
/// is appropriate.
QualType getTypeOfArgument() const {
return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
}
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(OpLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == SizeOfAlignOfExprClass;
}
static bool classof(const SizeOfAlignOfExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
class ArraySubscriptExpr : public Expr {
enum { LHS, RHS, END_EXPR=2 };
Stmt* SubExprs[END_EXPR];
SourceLocation RBracketLoc;
public:
ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
SourceLocation rbracketloc)
: Expr(ArraySubscriptExprClass, t,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent()),
RBracketLoc(rbracketloc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// \brief Create an empty array subscript expression.
explicit ArraySubscriptExpr(EmptyShell Shell)
: Expr(ArraySubscriptExprClass, Shell) { }
/// An array access can be written A[4] or 4[A] (both are equivalent).
/// - getBase() and getIdx() always present the normalized view: A[4].
/// In this case getBase() returns "A" and getIdx() returns "4".
/// - getLHS() and getRHS() present the syntactic view. e.g. for
/// 4[A] getLHS() returns "4".
/// Note: Because vector element access is also written A[4] we must
/// predicate the format conversion in getBase and getIdx only on the
/// the type of the RHS, as it is possible for the LHS to be a vector of
/// integer type
Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
Expr *getBase() {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
}
const Expr *getBase() const {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
}
Expr *getIdx() {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
}
const Expr *getIdx() const {
return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
}
virtual SourceRange getSourceRange() const {
return SourceRange(getLHS()->getLocStart(), RBracketLoc);
}
SourceLocation getRBracketLoc() const { return RBracketLoc; }
void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ArraySubscriptExprClass;
}
static bool classof(const ArraySubscriptExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
/// while its subclasses may represent alternative syntax that (semantically)
/// results in a function call. For example, CXXOperatorCallExpr is
/// a subclass for overloaded operator calls that use operator syntax, e.g.,
/// "str1 + str2" to resolve to a function call.
class CallExpr : public Expr {
enum { FN=0, ARGS_START=1 };
Stmt **SubExprs;
unsigned NumArgs;
SourceLocation RParenLoc;
protected:
// This version of the constructor is for derived classes.
CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
QualType t, SourceLocation rparenloc);
public:
CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
SourceLocation rparenloc);
/// \brief Build an empty call expression.
CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
void setCallee(Expr *F) { SubExprs[FN] = F; }
Decl *getCalleeDecl();
const Decl *getCalleeDecl() const {
return const_cast<CallExpr*>(this)->getCalleeDecl();
}
/// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
FunctionDecl *getDirectCallee();
const FunctionDecl *getDirectCallee() const {
return const_cast<CallExpr*>(this)->getDirectCallee();
}
/// getNumArgs - Return the number of actual arguments to this call.
///
unsigned getNumArgs() const { return NumArgs; }
/// getArg - Return the specified argument.
Expr *getArg(unsigned Arg) {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(SubExprs[Arg+ARGS_START]);
}
const Expr *getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return cast<Expr>(SubExprs[Arg+ARGS_START]);
}
/// setArg - Set the specified argument.
void setArg(unsigned Arg, Expr *ArgExpr) {
assert(Arg < NumArgs && "Arg access out of range!");
SubExprs[Arg+ARGS_START] = ArgExpr;
}
/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void setNumArgs(ASTContext& C, unsigned NumArgs);
typedef ExprIterator arg_iterator;
typedef ConstExprIterator const_arg_iterator;
arg_iterator arg_begin() { return SubExprs+ARGS_START; }
arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
/// getNumCommas - Return the number of commas that must have been present in
/// this function call.
unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
/// not, return 0.
unsigned isBuiltinCall(ASTContext &Context) const;
/// getCallReturnType - Get the return type of the call expr. This is not
/// always the type of the expr itself, if the return type is a reference
/// type.
QualType getCallReturnType() const;
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(getCallee()->getLocStart(), RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCallExprConstant &&
T->getStmtClass() <= lastCallExprConstant;
}
static bool classof(const CallExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
///
class MemberExpr : public Expr {
/// Extra data stored in some member expressions.
struct MemberNameQualifier : public NameQualifier {
DeclAccessPair FoundDecl;
};
/// Base - the expression for the base pointer or structure references. In
/// X.F, this is "X".
Stmt *Base;
/// MemberDecl - This is the decl being referenced by the field/member name.
/// In X.F, this is the decl referenced by F.
ValueDecl *MemberDecl;
/// MemberLoc - This is the location of the member name.
SourceLocation MemberLoc;
/// MemberDNLoc - Provides source/type location info for the
/// declaration name embedded in MemberDecl.
DeclarationNameLoc MemberDNLoc;
/// IsArrow - True if this is "X->F", false if this is "X.F".
bool IsArrow : 1;
/// \brief True if this member expression used a nested-name-specifier to
/// refer to the member, e.g., "x->Base::f", or found its member via a using
/// declaration. When true, a MemberNameQualifier
/// structure is allocated immediately after the MemberExpr.
bool HasQualifierOrFoundDecl : 1;
/// \brief True if this member expression specified a template argument list
/// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
/// structure (and its TemplateArguments) are allocated immediately after
/// the MemberExpr or, if the member expression also has a qualifier, after
/// the MemberNameQualifier structure.
bool HasExplicitTemplateArgumentList : 1;
/// \brief Retrieve the qualifier that preceded the member name, if any.
MemberNameQualifier *getMemberQualifier() {
assert(HasQualifierOrFoundDecl);
return reinterpret_cast<MemberNameQualifier *> (this + 1);
}
/// \brief Retrieve the qualifier that preceded the member name, if any.
const MemberNameQualifier *getMemberQualifier() const {
return const_cast<MemberExpr *>(this)->getMemberQualifier();
}
public:
MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
const DeclarationNameInfo &NameInfo, QualType ty)
: Expr(MemberExprClass, ty,
base->isTypeDependent(), base->isValueDependent()),
Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
assert(memberdecl->getDeclName() == NameInfo.getName());
}
// NOTE: this constructor should be used only when it is known that
// the member name can not provide additional syntactic info
// (i.e., source locations for C++ operator names or type source info
// for constructors, destructors and conversion oeprators).
MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
SourceLocation l, QualType ty)
: Expr(MemberExprClass, ty,
base->isTypeDependent(), base->isValueDependent()),
Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
IsArrow(isarrow),
HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
NestedNameSpecifier *qual, SourceRange qualrange,
ValueDecl *memberdecl, DeclAccessPair founddecl,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *targs,
QualType ty);
void setBase(Expr *E) { Base = E; }
Expr *getBase() const { return cast<Expr>(Base); }
/// \brief Retrieve the member declaration to which this expression refers.
///
/// The returned declaration will either be a FieldDecl or (in C++)
/// a CXXMethodDecl.
ValueDecl *getMemberDecl() const { return MemberDecl; }
void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
/// \brief Retrieves the declaration found by lookup.
DeclAccessPair getFoundDecl() const {
if (!HasQualifierOrFoundDecl)
return DeclAccessPair::make(getMemberDecl(),
getMemberDecl()->getAccess());
return getMemberQualifier()->FoundDecl;
}
/// \brief Determines whether this member expression actually had
/// a C++ nested-name-specifier prior to the name of the member, e.g.,
/// x->Base::foo.
bool hasQualifier() const { return getQualifier() != 0; }
/// \brief If the member name was qualified, retrieves the source range of
/// the nested-name-specifier that precedes the member name. Otherwise,
/// returns an empty source range.
SourceRange getQualifierRange() const {
if (!HasQualifierOrFoundDecl)
return SourceRange();
return getMemberQualifier()->Range;
}
/// \brief If the member name was qualified, retrieves the
/// nested-name-specifier that precedes the member name. Otherwise, returns
/// NULL.
NestedNameSpecifier *getQualifier() const {
if (!HasQualifierOrFoundDecl)
return 0;
return getMemberQualifier()->NNS;
}
/// \brief Determines whether this member expression actually had a C++
/// template argument list explicitly specified, e.g., x.f<int>.
bool hasExplicitTemplateArgs() const {
return HasExplicitTemplateArgumentList;
}
/// \brief Copies the template arguments (if present) into the given
/// structure.
void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
if (hasExplicitTemplateArgs())
getExplicitTemplateArgs().copyInto(List);
}
/// \brief Retrieve the explicit template argument list that
/// follow the member template name. This must only be called on an
/// expression with explicit template arguments.
ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
assert(HasExplicitTemplateArgumentList);
if (!HasQualifierOrFoundDecl)
return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
return *reinterpret_cast<ExplicitTemplateArgumentList *>(
getMemberQualifier() + 1);
}
/// \brief Retrieve the explicit template argument list that
/// followed the member template name. This must only be called on
/// an expression with explicit template arguments.
const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
}
/// \brief Retrieves the optional explicit template arguments.
/// This points to the same data as getExplicitTemplateArgs(), but
/// returns null if there are no explicit template arguments.
const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
if (!hasExplicitTemplateArgs()) return 0;
return &getExplicitTemplateArgs();
}
/// \brief Retrieve the location of the left angle bracket following the
/// member name ('<'), if any.
SourceLocation getLAngleLoc() const {
if (!HasExplicitTemplateArgumentList)
return SourceLocation();
return getExplicitTemplateArgs().LAngleLoc;
}
/// \brief Retrieve the template arguments provided as part of this
/// template-id.
const TemplateArgumentLoc *getTemplateArgs() const {
if (!HasExplicitTemplateArgumentList)
return 0;
return getExplicitTemplateArgs().getTemplateArgs();
}
/// \brief Retrieve the number of template arguments provided as part of this
/// template-id.
unsigned getNumTemplateArgs() const {
if (!HasExplicitTemplateArgumentList)
return 0;
return getExplicitTemplateArgs().NumTemplateArgs;
}
/// \brief Retrieve the location of the right angle bracket following the
/// template arguments ('>').
SourceLocation getRAngleLoc() const {
if (!HasExplicitTemplateArgumentList)
return SourceLocation();
return getExplicitTemplateArgs().RAngleLoc;
}
/// \brief Retrieve the member declaration name info.
DeclarationNameInfo getMemberNameInfo() const {
return DeclarationNameInfo(MemberDecl->getDeclName(),
MemberLoc, MemberDNLoc);
}
bool isArrow() const { return IsArrow; }
void setArrow(bool A) { IsArrow = A; }
/// getMemberLoc - Return the location of the "member", in X->F, it is the
/// location of 'F'.
SourceLocation getMemberLoc() const { return MemberLoc; }
void setMemberLoc(SourceLocation L) { MemberLoc = L; }
virtual SourceRange getSourceRange() const {
// If we have an implicit base (like a C++ implicit this),
// make sure not to return its location
SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
? getRAngleLoc() : getMemberNameInfo().getEndLoc();
SourceLocation BaseLoc = getBase()->getLocStart();
if (BaseLoc.isInvalid())
return SourceRange(MemberLoc, EndLoc);
return SourceRange(BaseLoc, EndLoc);
}
virtual SourceLocation getExprLoc() const { return MemberLoc; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == MemberExprClass;
}
static bool classof(const MemberExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CompoundLiteralExpr - [C99 6.5.2.5]
///
class CompoundLiteralExpr : public Expr {
/// LParenLoc - If non-null, this is the location of the left paren in a
/// compound literal like "(int){4}". This can be null if this is a
/// synthesized compound expression.
SourceLocation LParenLoc;
/// The type as written. This can be an incomplete array type, in
/// which case the actual expression type will be different.
TypeSourceInfo *TInfo;
Stmt *Init;
bool FileScope;
public:
// FIXME: Can compound literals be value-dependent?
CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
QualType T, Expr *init, bool fileScope)
: Expr(CompoundLiteralExprClass, T,
tinfo->getType()->isDependentType(), false),
LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
/// \brief Construct an empty compound literal.
explicit CompoundLiteralExpr(EmptyShell Empty)
: Expr(CompoundLiteralExprClass, Empty) { }
const Expr *getInitializer() const { return cast<Expr>(Init); }
Expr *getInitializer() { return cast<Expr>(Init); }
void setInitializer(Expr *E) { Init = E; }
bool isFileScope() const { return FileScope; }
void setFileScope(bool FS) { FileScope = FS; }
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
virtual SourceRange getSourceRange() const {
// FIXME: Init should never be null.
if (!Init)
return SourceRange();
if (LParenLoc.isInvalid())
return Init->getSourceRange();
return SourceRange(LParenLoc, Init->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CompoundLiteralExprClass;
}
static bool classof(const CompoundLiteralExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// CastExpr - Base class for type casts, including both implicit
/// casts (ImplicitCastExpr) and explicit casts that have some
/// representation in the source code (ExplicitCastExpr's derived
/// classes).
class CastExpr : public Expr {
public:
typedef clang::CastKind CastKind;
private:
unsigned Kind : 5;
unsigned BasePathSize : BitsRemaining - 5;
Stmt *Op;
void CheckBasePath() const {
#ifndef NDEBUG
switch (getCastKind()) {
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_DerivedToBaseMemberPointer:
case CK_BaseToDerived:
case CK_BaseToDerivedMemberPointer:
assert(!path_empty() && "Cast kind should have a base path!");
break;
// These should not have an inheritance path.
case CK_Unknown:
case CK_BitCast:
case CK_LValueBitCast:
case CK_NoOp:
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
case CK_NullToMemberPointer:
case CK_UserDefinedConversion:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingCast:
case CK_MemberPointerToBoolean:
case CK_AnyPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast:
assert(path_empty() && "Cast kind should not have a base path!");
break;
}
#endif
}
const CXXBaseSpecifier * const *path_buffer() const {
return const_cast<CastExpr*>(this)->path_buffer();
}
CXXBaseSpecifier **path_buffer();
protected:
CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
unsigned BasePathSize) :
Expr(SC, ty,
// Cast expressions are type-dependent if the type is
// dependent (C++ [temp.dep.expr]p3).
ty->isDependentType(),
// Cast expressions are value-dependent if the type is
// dependent or if the subexpression is value-dependent.
ty->isDependentType() || (op && op->isValueDependent())),
Kind(kind), BasePathSize(BasePathSize), Op(op) {
CheckBasePath();
}
/// \brief Construct an empty cast.
CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
: Expr(SC, Empty), BasePathSize(BasePathSize) { }
public:
CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
void setCastKind(CastKind K) { Kind = K; }
const char *getCastKindName() const;
Expr *getSubExpr() { return cast<Expr>(Op); }
const Expr *getSubExpr() const { return cast<Expr>(Op); }
void setSubExpr(Expr *E) { Op = E; }
/// \brief Retrieve the cast subexpression as it was written in the source
/// code, looking through any implicit casts or other intermediate nodes
/// introduced by semantic analysis.
Expr *getSubExprAsWritten();
const Expr *getSubExprAsWritten() const {
return const_cast<CastExpr *>(this)->getSubExprAsWritten();
}
typedef CXXBaseSpecifier **path_iterator;
typedef const CXXBaseSpecifier * const *path_const_iterator;
bool path_empty() const { return BasePathSize == 0; }
unsigned path_size() const { return BasePathSize; }
path_iterator path_begin() { return path_buffer(); }
path_iterator path_end() { return path_buffer() + path_size(); }
path_const_iterator path_begin() const { return path_buffer(); }
path_const_iterator path_end() const { return path_buffer() + path_size(); }
void setCastPath(const CXXCastPath &Path);
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstCastExprConstant &&
T->getStmtClass() <= lastCastExprConstant;
}
static bool classof(const CastExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ImplicitCastExpr - Allows us to explicitly represent implicit type
/// conversions, which have no direct representation in the original
/// source code. For example: converting T[]->T*, void f()->void
/// (*f)(), float->double, short->int, etc.
///
/// In C, implicit casts always produce rvalues. However, in C++, an
/// implicit cast whose result is being bound to a reference will be
/// an lvalue or xvalue. For example:
///
/// @code
/// class Base { };
/// class Derived : public Base { };
/// Derived &&ref();
/// void f(Derived d) {
/// Base& b = d; // initializer is an ImplicitCastExpr
/// // to an lvalue of type Base
/// Base&& r = ref(); // initializer is an ImplicitCastExpr
/// // to an xvalue of type Base
/// }
/// @endcode
class ImplicitCastExpr : public CastExpr {
private:
ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
unsigned BasePathLength, ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength) {
ValueKind = VK;
}
/// \brief Construct an empty implicit cast.
explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
: CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
public:
enum OnStack_t { OnStack };
ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
ExprValueKind VK)
: CastExpr(ImplicitCastExprClass, ty, kind, op, 0) {
ValueKind = VK;
}
static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind Cat);
static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
virtual SourceRange getSourceRange() const {
return getSubExpr()->getSourceRange();
}
/// getValueKind - The value kind that this cast produces.
ExprValueKind getValueKind() const {
return static_cast<ExprValueKind>(ValueKind);
}
/// setValueKind - Set the value kind this cast produces.
void setValueKind(ExprValueKind Cat) { ValueKind = Cat; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitCastExprClass;
}
static bool classof(const ImplicitCastExpr *) { return true; }
};
/// ExplicitCastExpr - An explicit cast written in the source
/// code.
///
/// This class is effectively an abstract class, because it provides
/// the basic representation of an explicitly-written cast without
/// specifying which kind of cast (C cast, functional cast, static
/// cast, etc.) was written; specific derived classes represent the
/// particular style of cast and its location information.
///
/// Unlike implicit casts, explicit cast nodes have two different
/// types: the type that was written into the source code, and the
/// actual type of the expression as determined by semantic
/// analysis. These types may differ slightly. For example, in C++ one
/// can cast to a reference type, which indicates that the resulting
/// expression will be an lvalue or xvalue. The reference type, however,
/// will not be used as the type of the expression.
class ExplicitCastExpr : public CastExpr {
/// TInfo - Source type info for the (written) type
/// this expression is casting to.
TypeSourceInfo *TInfo;
protected:
ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
: CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
/// \brief Construct an empty explicit cast.
ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
: CastExpr(SC, Shell, PathSize) { }
public:
/// getTypeInfoAsWritten - Returns the type source info for the type
/// that this expression is casting to.
TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
/// getTypeAsWritten - Returns the type that this expression is
/// casting to, as written in the source code.
QualType getTypeAsWritten() const { return TInfo->getType(); }
static bool classof(const Stmt *T) {
return T->getStmtClass() >= firstExplicitCastExprConstant &&
T->getStmtClass() <= lastExplicitCastExprConstant;
}
static bool classof(const ExplicitCastExpr *) { return true; }
};
/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
/// cast in C++ (C++ [expr.cast]), which uses the syntax
/// (Type)expr. For example: @c (int)f.
class CStyleCastExpr : public ExplicitCastExpr {
SourceLocation LPLoc; // the location of the left paren
SourceLocation RPLoc; // the location of the right paren
CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
unsigned PathSize, TypeSourceInfo *writtenTy,
SourceLocation l, SourceLocation r)
: ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
writtenTy), LPLoc(l), RPLoc(r) {}
/// \brief Construct an empty C-style explicit cast.
explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
: ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
public:
static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
Expr *Op, const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, SourceLocation L,
SourceLocation R);
static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
SourceLocation getLParenLoc() const { return LPLoc; }
void setLParenLoc(SourceLocation L) { LPLoc = L; }
SourceLocation getRParenLoc() const { return RPLoc; }
void setRParenLoc(SourceLocation L) { RPLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == CStyleCastExprClass;
}
static bool classof(const CStyleCastExpr *) { return true; }
};
/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
///
/// This expression node kind describes a builtin binary operation,
/// such as "x + y" for integer values "x" and "y". The operands will
/// already have been converted to appropriate types (e.g., by
/// performing promotions or conversions).
///
/// In C++, where operators may be overloaded, a different kind of
/// expression node (CXXOperatorCallExpr) is used to express the
/// invocation of an overloaded operator with operator syntax. Within
/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
/// used to store an expression "x + y" depends on the subexpressions
/// for x and y. If neither x or y is type-dependent, and the "+"
/// operator resolves to a built-in operation, BinaryOperator will be
/// used to express the computation (x and y may still be
/// value-dependent). If either x or y is type-dependent, or if the
/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
/// be used to express the computation.
class BinaryOperator : public Expr {
public:
typedef BinaryOperatorKind Opcode;
private:
unsigned Opc : 6;
SourceLocation OpLoc;
enum { LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR];
public:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
SourceLocation opLoc)
: Expr(BinaryOperatorClass, ResTy,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent()),
Opc(opc), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
assert(!isCompoundAssignmentOp() &&
"Use ArithAssignBinaryOperator for compound assignments");
}
/// \brief Construct an empty binary operator.
explicit BinaryOperator(EmptyShell Empty)
: Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
SourceLocation getOperatorLoc() const { return OpLoc; }
void setOperatorLoc(SourceLocation L) { OpLoc = L; }
Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
void setOpcode(Opcode O) { Opc = O; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
virtual SourceRange getSourceRange() const {
return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
static const char *getOpcodeStr(Opcode Op);
const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
/// \brief Retrieve the binary opcode that corresponds to the given
/// overloaded operator.
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
/// \brief Retrieve the overloaded operator kind that corresponds to
/// the given binary opcode.
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
/// predicates to categorize the respective opcodes.
bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
bool isShiftOp() const { return isShiftOp(getOpcode()); }
static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
bool isAssignmentOp() const { return Opc >= BO_Assign && Opc <= BO_OrAssign; }
bool isCompoundAssignmentOp() const {
return Opc > BO_Assign && Opc <= BO_OrAssign;
}
bool isShiftAssignOp() const {
return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
}
static bool classof(const Stmt *S) {
return S->getStmtClass() >= firstBinaryOperatorConstant &&
S->getStmtClass() <= lastBinaryOperatorConstant;
}
static bool classof(const BinaryOperator *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
protected:
BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
SourceLocation opLoc, bool dead)
: Expr(CompoundAssignOperatorClass, ResTy,
lhs->isTypeDependent() || rhs->isTypeDependent(),
lhs->isValueDependent() || rhs->isValueDependent()),
Opc(opc), OpLoc(opLoc) {
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
BinaryOperator(StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), Opc(BO_MulAssign) { }
};
/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
/// track of the type the operation is performed in. Due to the semantics of
/// these operators, the operands are promoted, the aritmetic performed, an
/// implicit conversion back to the result type done, then the assignment takes
/// place. This captures the intermediate type which the computation is done
/// in.
class CompoundAssignOperator : public BinaryOperator {
QualType ComputationLHSType;
QualType ComputationResultType;
public:
CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
QualType ResType, QualType CompLHSType,
QualType CompResultType,
SourceLocation OpLoc)
: BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
ComputationLHSType(CompLHSType),
ComputationResultType(CompResultType) {
assert(isCompoundAssignmentOp() &&
"Only should be used for compound assignments");
}
/// \brief Build an empty compound assignment operator expression.
explicit CompoundAssignOperator(EmptyShell Empty)
: BinaryOperator(CompoundAssignOperatorClass, Empty) { }
// The two computation types are the type the LHS is converted
// to for the computation and the type of the result; the two are
// distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
QualType getComputationLHSType() const { return ComputationLHSType; }
void setComputationLHSType(QualType T) { ComputationLHSType = T; }
QualType getComputationResultType() const { return ComputationResultType; }
void setComputationResultType(QualType T) { ComputationResultType = T; }
static bool classof(const CompoundAssignOperator *) { return true; }
static bool classof(const Stmt *S) {
return S->getStmtClass() == CompoundAssignOperatorClass;
}
};
/// ConditionalOperator - The ?: operator. Note that LHS may be null when the
/// GNU "missing LHS" extension is in use.
///
class ConditionalOperator : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
Stmt* Save;
SourceLocation QuestionLoc, ColonLoc;
public:
ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
SourceLocation CLoc, Expr *rhs, Expr *save, QualType t)
: Expr(ConditionalOperatorClass, t,
// FIXME: the type of the conditional operator doesn't
// depend on the type of the conditional, but the standard
// seems to imply that it could. File a bug!
((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
(cond->isValueDependent() ||
(lhs && lhs->isValueDependent()) ||
(rhs && rhs->isValueDependent()))),
QuestionLoc(QLoc),
ColonLoc(CLoc) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
Save = save;
}
/// \brief Build an empty conditional operator.
explicit ConditionalOperator(EmptyShell Empty)
: Expr(ConditionalOperatorClass, Empty) { }
// getCond - Return the expression representing the condition for
// the ?: operator.
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
void setCond(Expr *E) { SubExprs[COND] = E; }
// getTrueExpr - Return the subexpression representing the value of the ?:
// expression if the condition evaluates to true.
Expr *getTrueExpr() const {
return cast<Expr>(!Save ? SubExprs[LHS] : SubExprs[COND]);
}
// getFalseExpr - Return the subexpression representing the value of the ?:
// expression if the condition evaluates to false. This is the same as getRHS.
Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
// getSaveExpr - In most cases this value will be null. Except a GCC extension
// allows the left subexpression to be omitted, and instead of that condition
// be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
// expression "x" is only evaluated once. Under this senario, this function
// returns the original, non-converted condition expression for the ?:operator
Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
void setSAVE(Expr *E) { Save = E; }
SourceLocation getQuestionLoc() const { return QuestionLoc; }
void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
SourceLocation getColonLoc() const { return ColonLoc; }
void setColonLoc(SourceLocation L) { ColonLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ConditionalOperatorClass;
}
static bool classof(const ConditionalOperator *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// AddrLabelExpr - The GNU address of label extension, representing &&label.
class AddrLabelExpr : public Expr {
SourceLocation AmpAmpLoc, LabelLoc;
LabelStmt *Label;
public:
AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
QualType t)
: Expr(AddrLabelExprClass, t, false, false),
AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
/// \brief Build an empty address of a label expression.
explicit AddrLabelExpr(EmptyShell Empty)
: Expr(AddrLabelExprClass, Empty) { }
SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
SourceLocation getLabelLoc() const { return LabelLoc; }
void setLabelLoc(SourceLocation L) { LabelLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(AmpAmpLoc, LabelLoc);
}
LabelStmt *getLabel() const { return Label; }
void setLabel(LabelStmt *S) { Label = S; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == AddrLabelExprClass;
}
static bool classof(const AddrLabelExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
/// takes the value of the last subexpression.
class StmtExpr : public Expr {
Stmt *SubStmt;
SourceLocation LParenLoc, RParenLoc;
public:
// FIXME: Does type-dependence need to be computed differently?
StmtExpr(CompoundStmt *substmt, QualType T,
SourceLocation lp, SourceLocation rp) :
Expr(StmtExprClass, T, T->isDependentType(), false),
SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
/// \brief Build an empty statement expression.
explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
void setSubStmt(CompoundStmt *S) { SubStmt = S; }
virtual SourceRange getSourceRange() const {
return SourceRange(LParenLoc, RParenLoc);
}
SourceLocation getLParenLoc() const { return LParenLoc; }
void setLParenLoc(SourceLocation L) { LParenLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == StmtExprClass;
}
static bool classof(const StmtExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
/// This AST node represents a function that returns 1 if two *types* (not
/// expressions) are compatible. The result of this built-in function can be
/// used in integer constant expressions.
class TypesCompatibleExpr : public Expr {
TypeSourceInfo *TInfo1;
TypeSourceInfo *TInfo2;
SourceLocation BuiltinLoc, RParenLoc;
public:
TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
SourceLocation RP) :
Expr(TypesCompatibleExprClass, ReturnType, false, false),
TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
/// \brief Build an empty __builtin_type_compatible_p expression.
explicit TypesCompatibleExpr(EmptyShell Empty)
: Expr(TypesCompatibleExprClass, Empty) { }
TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
QualType getArgType1() const { return TInfo1->getType(); }
QualType getArgType2() const { return TInfo2->getType(); }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(BuiltinLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == TypesCompatibleExprClass;
}
static bool classof(const TypesCompatibleExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ShuffleVectorExpr - clang-specific builtin-in function
/// __builtin_shufflevector.
/// This AST node represents a operator that does a constant
/// shuffle, similar to LLVM's shufflevector instruction. It takes
/// two vectors and a variable number of constant indices,
/// and returns the appropriately shuffled vector.
class ShuffleVectorExpr : public Expr {
SourceLocation BuiltinLoc, RParenLoc;
// SubExprs - the list of values passed to the __builtin_shufflevector
// function. The first two are vectors, and the rest are constant
// indices. The number of values in this list is always
// 2+the number of indices in the vector type.
Stmt **SubExprs;
unsigned NumExprs;
public:
// FIXME: Can a shufflevector be value-dependent? Does type-dependence need
// to be computed differently?
ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
QualType Type, SourceLocation BLoc,
SourceLocation RP) :
Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
SubExprs = new (C) Stmt*[nexpr];
for (unsigned i = 0; i < nexpr; i++)
SubExprs[i] = args[i];
}
/// \brief Build an empty vector-shuffle expression.
explicit ShuffleVectorExpr(EmptyShell Empty)
: Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(BuiltinLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ShuffleVectorExprClass;
}
static bool classof(const ShuffleVectorExpr *) { return true; }
/// getNumSubExprs - Return the size of the SubExprs array. This includes the
/// constant expression, the actual arguments passed in, and the function
/// pointers.
unsigned getNumSubExprs() const { return NumExprs; }
/// getExpr - Return the Expr at the specified index.
Expr *getExpr(unsigned Index) {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
const Expr *getExpr(unsigned Index) const {
assert((Index < NumExprs) && "Arg access out of range!");
return cast<Expr>(SubExprs[Index]);
}
void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
assert((N < NumExprs - 2) && "Shuffle idx out of range!");
return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
}
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
/// This AST node is similar to the conditional operator (?:) in C, with
/// the following exceptions:
/// - the test expression must be a integer constant expression.
/// - the expression returned acts like the chosen subexpression in every
/// visible way: the type is the same as that of the chosen subexpression,
/// and all predicates (whether it's an l-value, whether it's an integer
/// constant expression, etc.) return the same result as for the chosen
/// sub-expression.
class ChooseExpr : public Expr {
enum { COND, LHS, RHS, END_EXPR };
Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
SourceLocation BuiltinLoc, RParenLoc;
public:
ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
SourceLocation RP, bool TypeDependent, bool ValueDependent)
: Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
BuiltinLoc(BLoc), RParenLoc(RP) {
SubExprs[COND] = cond;
SubExprs[LHS] = lhs;
SubExprs[RHS] = rhs;
}
/// \brief Build an empty __builtin_choose_expr.
explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
/// isConditionTrue - Return whether the condition is true (i.e. not
/// equal to zero).
bool isConditionTrue(ASTContext &C) const;
/// getChosenSubExpr - Return the subexpression chosen according to the
/// condition.
Expr *getChosenSubExpr(ASTContext &C) const {
return isConditionTrue(C) ? getLHS() : getRHS();
}
Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
void setCond(Expr *E) { SubExprs[COND] = E; }
Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
void setLHS(Expr *E) { SubExprs[LHS] = E; }
Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
void setRHS(Expr *E) { SubExprs[RHS] = E; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(BuiltinLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ChooseExprClass;
}
static bool classof(const ChooseExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// GNUNullExpr - Implements the GNU __null extension, which is a name
/// for a null pointer constant that has integral type (e.g., int or
/// long) and is the same size and alignment as a pointer. The __null
/// extension is typically only used by system headers, which define
/// NULL as __null in C++ rather than using 0 (which is an integer
/// that may not match the size of a pointer).
class GNUNullExpr : public Expr {
/// TokenLoc - The location of the __null keyword.
SourceLocation TokenLoc;
public:
GNUNullExpr(QualType Ty, SourceLocation Loc)
: Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
/// \brief Build an empty GNU __null expression.
explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
/// getTokenLocation - The location of the __null token.
SourceLocation getTokenLocation() const { return TokenLoc; }
void setTokenLocation(SourceLocation L) { TokenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(TokenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == GNUNullExprClass;
}
static bool classof(const GNUNullExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// VAArgExpr, used for the builtin function __builtin_va_arg.
class VAArgExpr : public Expr {
Stmt *Val;
TypeSourceInfo *TInfo;
SourceLocation BuiltinLoc, RParenLoc;
public:
VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
SourceLocation RPLoc, QualType t)
: Expr(VAArgExprClass, t, t->isDependentType(), false),
Val(e), TInfo(TInfo),
BuiltinLoc(BLoc),
RParenLoc(RPLoc) { }
/// \brief Create an empty __builtin_va_arg expression.
explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
const Expr *getSubExpr() const { return cast<Expr>(Val); }
Expr *getSubExpr() { return cast<Expr>(Val); }
void setSubExpr(Expr *E) { Val = E; }
TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
virtual SourceRange getSourceRange() const {
return SourceRange(BuiltinLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == VAArgExprClass;
}
static bool classof(const VAArgExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// @brief Describes an C or C++ initializer list.
///
/// InitListExpr describes an initializer list, which can be used to
/// initialize objects of different types, including
/// struct/class/union types, arrays, and vectors. For example:
///
/// @code
/// struct foo x = { 1, { 2, 3 } };
/// @endcode
///
/// Prior to semantic analysis, an initializer list will represent the
/// initializer list as written by the user, but will have the
/// placeholder type "void". This initializer list is called the
/// syntactic form of the initializer, and may contain C99 designated
/// initializers (represented as DesignatedInitExprs), initializations
/// of subobject members without explicit braces, and so on. Clients
/// interested in the original syntax of the initializer list should
/// use the syntactic form of the initializer list.
///
/// After semantic analysis, the initializer list will represent the
/// semantic form of the initializer, where the initializations of all
/// subobjects are made explicit with nested InitListExpr nodes and
/// C99 designators have been eliminated by placing the designated
/// initializations into the subobject they initialize. Additionally,
/// any "holes" in the initialization, where no initializer has been
/// specified for a particular subobject, will be replaced with
/// implicitly-generated ImplicitValueInitExpr expressions that
/// value-initialize the subobjects. Note, however, that the
/// initializer lists may still have fewer initializers than there are
/// elements to initialize within the object.
///
/// Given the semantic form of the initializer list, one can retrieve
/// the original syntactic form of that initializer list (if it
/// exists) using getSyntacticForm(). Since many initializer lists
/// have the same syntactic and semantic forms, getSyntacticForm() may
/// return NULL, indicating that the current initializer list also
/// serves as its syntactic form.
class InitListExpr : public Expr {
// FIXME: Eliminate this vector in favor of ASTContext allocation
typedef ASTVector<Stmt *> InitExprsTy;
InitExprsTy InitExprs;
SourceLocation LBraceLoc, RBraceLoc;
/// Contains the initializer list that describes the syntactic form
/// written in the source code.
InitListExpr *SyntacticForm;
/// If this initializer list initializes a union, specifies which
/// field within the union will be initialized.
FieldDecl *UnionFieldInit;
/// Whether this initializer list originally had a GNU array-range
/// designator in it. This is a temporary marker used by CodeGen.
bool HadArrayRangeDesignator;
public:
InitListExpr(ASTContext &C, SourceLocation lbraceloc,
Expr **initexprs, unsigned numinits,
SourceLocation rbraceloc);
/// \brief Build an empty initializer list.
explicit InitListExpr(ASTContext &C, EmptyShell Empty)
: Expr(InitListExprClass, Empty), InitExprs(C) { }
unsigned getNumInits() const { return InitExprs.size(); }
const Expr* getInit(unsigned Init) const {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
Expr* getInit(unsigned Init) {
assert(Init < getNumInits() && "Initializer access out of range!");
return cast_or_null<Expr>(InitExprs[Init]);
}
void setInit(unsigned Init, Expr *expr) {
assert(Init < getNumInits() && "Initializer access out of range!");
InitExprs[Init] = expr;
}
/// \brief Reserve space for some number of initializers.
void reserveInits(ASTContext &C, unsigned NumInits);
/// @brief Specify the number of initializers
///
/// If there are more than @p NumInits initializers, the remaining
/// initializers will be destroyed. If there are fewer than @p
/// NumInits initializers, NULL expressions will be added for the
/// unknown initializers.
void resizeInits(ASTContext &Context, unsigned NumInits);
/// @brief Updates the initializer at index @p Init with the new
/// expression @p expr, and returns the old expression at that
/// location.
///
/// When @p Init is out of range for this initializer list, the
/// initializer list will be extended with NULL expressions to
/// accomodate the new entry.
Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
/// \brief If this initializes a union, specifies which field in the
/// union to initialize.
///
/// Typically, this field is the first named field within the
/// union. However, a designated initializer can specify the
/// initialization of a different field within the union.
FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
// Explicit InitListExpr's originate from source code (and have valid source
// locations). Implicit InitListExpr's are created by the semantic analyzer.
bool isExplicit() {
return LBraceLoc.isValid() && RBraceLoc.isValid();
}
SourceLocation getLBraceLoc() const { return LBraceLoc; }
void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
/// @brief Retrieve the initializer list that describes the
/// syntactic form of the initializer.
///
///
InitListExpr *getSyntacticForm() const { return SyntacticForm; }
void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
void sawArrayRangeDesignator(bool ARD = true) {
HadArrayRangeDesignator = ARD;
}
virtual SourceRange getSourceRange() const {
return SourceRange(LBraceLoc, RBraceLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == InitListExprClass;
}
static bool classof(const InitListExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
typedef InitExprsTy::iterator iterator;
typedef InitExprsTy::const_iterator const_iterator;
typedef InitExprsTy::reverse_iterator reverse_iterator;
typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
iterator begin() { return InitExprs.begin(); }
const_iterator begin() const { return InitExprs.begin(); }
iterator end() { return InitExprs.end(); }
const_iterator end() const { return InitExprs.end(); }
reverse_iterator rbegin() { return InitExprs.rbegin(); }
const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
reverse_iterator rend() { return InitExprs.rend(); }
const_reverse_iterator rend() const { return InitExprs.rend(); }
};
/// @brief Represents a C99 designated initializer expression.
///
/// A designated initializer expression (C99 6.7.8) contains one or
/// more designators (which can be field designators, array
/// designators, or GNU array-range designators) followed by an
/// expression that initializes the field or element(s) that the
/// designators refer to. For example, given:
///
/// @code
/// struct point {
/// double x;
/// double y;
/// };
/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
/// @endcode
///
/// The InitListExpr contains three DesignatedInitExprs, the first of
/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
/// designators, one array designator for @c [2] followed by one field
/// designator for @c .y. The initalization expression will be 1.0.
class DesignatedInitExpr : public Expr {
public:
/// \brief Forward declaration of the Designator class.
class Designator;
private:
/// The location of the '=' or ':' prior to the actual initializer
/// expression.
SourceLocation EqualOrColonLoc;
/// Whether this designated initializer used the GNU deprecated
/// syntax rather than the C99 '=' syntax.
bool GNUSyntax : 1;
/// The number of designators in this initializer expression.
unsigned NumDesignators : 15;
/// \brief The designators in this designated initialization
/// expression.
Designator *Designators;
/// The number of subexpressions of this initializer expression,
/// which contains both the initializer and any additional
/// expressions used by array and array-range designators.
unsigned NumSubExprs : 16;
DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
const Designator *Designators,
SourceLocation EqualOrColonLoc, bool GNUSyntax,
Expr **IndexExprs, unsigned NumIndexExprs,
Expr *Init);
explicit DesignatedInitExpr(unsigned NumSubExprs)
: Expr(DesignatedInitExprClass, EmptyShell()),
NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
public:
/// A field designator, e.g., ".x".
struct FieldDesignator {
/// Refers to the field that is being initialized. The low bit
/// of this field determines whether this is actually a pointer
/// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
/// initially constructed, a field designator will store an
/// IdentifierInfo*. After semantic analysis has resolved that
/// name, the field designator will instead store a FieldDecl*.
uintptr_t NameOrField;
/// The location of the '.' in the designated initializer.
unsigned DotLoc;
/// The location of the field name in the designated initializer.
unsigned FieldLoc;
};
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator {
/// Location of the first index expression within the designated
/// initializer expression's list of subexpressions.
unsigned Index;
/// The location of the '[' starting the array range designator.
unsigned LBracketLoc;
/// The location of the ellipsis separating the start and end
/// indices. Only valid for GNU array-range designators.
unsigned EllipsisLoc;
/// The location of the ']' terminating the array range designator.
unsigned RBracketLoc;
};
/// @brief Represents a single C99 designator.
///
/// @todo This class is infuriatingly similar to clang::Designator,
/// but minor differences (storing indices vs. storing pointers)
/// keep us from reusing it. Try harder, later, to rectify these
/// differences.
class Designator {
/// @brief The kind of designator this describes.
enum {
FieldDesignator,
ArrayDesignator,
ArrayRangeDesignator
} Kind;
union {
/// A field designator, e.g., ".x".
struct FieldDesignator Field;
/// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
struct ArrayOrRangeDesignator ArrayOrRange;
};
friend class DesignatedInitExpr;
public:
Designator() {}
/// @brief Initializes a field designator.
Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
SourceLocation FieldLoc)
: Kind(FieldDesignator) {
Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
Field.DotLoc = DotLoc.getRawEncoding();
Field.FieldLoc = FieldLoc.getRawEncoding();
}
/// @brief Initializes an array designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation RBracketLoc)
: Kind(ArrayDesignator) {
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
}
/// @brief Initializes a GNU array-range designator.
Designator(unsigned Index, SourceLocation LBracketLoc,
SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
: Kind(ArrayRangeDesignator) {
ArrayOrRange.Index = Index;
ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
}
bool isFieldDesignator() const { return Kind == FieldDesignator; }
bool isArrayDesignator() const { return Kind == ArrayDesignator; }
bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
IdentifierInfo * getFieldName();
FieldDecl *getField() {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return 0;
else
return reinterpret_cast<FieldDecl *>(Field.NameOrField);
}
void setField(FieldDecl *FD) {
assert(Kind == FieldDesignator && "Only valid on a field designator");
Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
}
SourceLocation getDotLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return SourceLocation::getFromRawEncoding(Field.DotLoc);
}
SourceLocation getFieldLoc() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
return SourceLocation::getFromRawEncoding(Field.FieldLoc);
}
SourceLocation getLBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
}
SourceLocation getRBracketLoc() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
}
SourceLocation getEllipsisLoc() const {
assert(Kind == ArrayRangeDesignator &&
"Only valid on an array-range designator");
return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
}
unsigned getFirstExprIndex() const {
assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
"Only valid on an array or array-range designator");
return ArrayOrRange.Index;
}
SourceLocation getStartLocation() const {
if (Kind == FieldDesignator)
return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
else
return getLBracketLoc();
}
};
static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
unsigned NumDesignators,
Expr **IndexExprs, unsigned NumIndexExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax, Expr *Init);
static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
/// @brief Returns the number of designators in this initializer.
unsigned size() const { return NumDesignators; }
// Iterator access to the designators.
typedef Designator* designators_iterator;
designators_iterator designators_begin() { return Designators; }
designators_iterator designators_end() {
return Designators + NumDesignators;
}
Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
void setDesignators(ASTContext &C, const Designator *Desigs,
unsigned NumDesigs);
Expr *getArrayIndex(const Designator& D);
Expr *getArrayRangeStart(const Designator& D);
Expr *getArrayRangeEnd(const Designator& D);
/// @brief Retrieve the location of the '=' that precedes the
/// initializer value itself, if present.
SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
/// @brief Determines whether this designated initializer used the
/// deprecated GNU syntax for designated initializers.
bool usesGNUSyntax() const { return GNUSyntax; }
void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
/// @brief Retrieve the initializer value.
Expr *getInit() const {
return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
}
void setInit(Expr *init) {
*child_begin() = init;
}
/// \brief Retrieve the total number of subexpressions in this
/// designated initializer expression, including the actual
/// initialized value and any expressions that occur within array
/// and array-range designators.
unsigned getNumSubExprs() const { return NumSubExprs; }
Expr *getSubExpr(unsigned Idx) {
assert(Idx < NumSubExprs && "Subscript out of range");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
}
void setSubExpr(unsigned Idx, Expr *E) {
assert(Idx < NumSubExprs && "Subscript out of range");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
}
/// \brief Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
const Designator *Last);
virtual SourceRange getSourceRange() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == DesignatedInitExprClass;
}
static bool classof(const DesignatedInitExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// \brief Represents an implicitly-generated value initialization of
/// an object of a given type.
///
/// Implicit value initializations occur within semantic initializer
/// list expressions (InitListExpr) as placeholders for subobject
/// initializations not explicitly specified by the user.
///
/// \see InitListExpr
class ImplicitValueInitExpr : public Expr {
public:
explicit ImplicitValueInitExpr(QualType ty)
: Expr(ImplicitValueInitExprClass, ty, false, false) { }
/// \brief Construct an empty implicit value initialization.
explicit ImplicitValueInitExpr(EmptyShell Empty)
: Expr(ImplicitValueInitExprClass, Empty) { }
static bool classof(const Stmt *T) {
return T->getStmtClass() == ImplicitValueInitExprClass;
}
static bool classof(const ImplicitValueInitExpr *) { return true; }
virtual SourceRange getSourceRange() const {
return SourceRange();
}
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
class ParenListExpr : public Expr {
Stmt **Exprs;
unsigned NumExprs;
SourceLocation LParenLoc, RParenLoc;
public:
ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
unsigned numexprs, SourceLocation rparenloc);
/// \brief Build an empty paren list.
explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
unsigned getNumExprs() const { return NumExprs; }
const Expr* getExpr(unsigned Init) const {
assert(Init < getNumExprs() && "Initializer access out of range!");
return cast_or_null<Expr>(Exprs[Init]);
}
Expr* getExpr(unsigned Init) {
assert(Init < getNumExprs() && "Initializer access out of range!");
return cast_or_null<Expr>(Exprs[Init]);
}
Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
virtual SourceRange getSourceRange() const {
return SourceRange(LParenLoc, RParenLoc);
}
static bool classof(const Stmt *T) {
return T->getStmtClass() == ParenListExprClass;
}
static bool classof(const ParenListExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
friend class ASTStmtReader;
friend class ASTStmtWriter;
};
//===----------------------------------------------------------------------===//
// Clang Extensions
//===----------------------------------------------------------------------===//
/// ExtVectorElementExpr - This represents access to specific elements of a
/// vector, and may occur on the left hand side or right hand side. For example
/// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
///
/// Note that the base may have either vector or pointer to vector type, just
/// like a struct field reference.
///
class ExtVectorElementExpr : public Expr {
Stmt *Base;
IdentifierInfo *Accessor;
SourceLocation AccessorLoc;
public:
ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
SourceLocation loc)
: Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
base->isValueDependent()),
Base(base), Accessor(&accessor), AccessorLoc(loc) {}
/// \brief Build an empty vector element expression.
explicit ExtVectorElementExpr(EmptyShell Empty)
: Expr(ExtVectorElementExprClass, Empty) { }
const Expr *getBase() const { return cast<Expr>(Base); }
Expr *getBase() { return cast<Expr>(Base); }
void setBase(Expr *E) { Base = E; }
IdentifierInfo &getAccessor() const { return *Accessor; }
void setAccessor(IdentifierInfo *II) { Accessor = II; }
SourceLocation getAccessorLoc() const { return AccessorLoc; }
void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
/// getNumElements - Get the number of components being selected.
unsigned getNumElements() const;
/// containsDuplicateElements - Return true if any element access is
/// repeated.
bool containsDuplicateElements() const;
/// getEncodedElementAccess - Encode the elements accessed into an llvm
/// aggregate Constant of ConstantInt(s).
void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
virtual SourceRange getSourceRange() const {
return SourceRange(getBase()->getLocStart(), AccessorLoc);
}
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool isArrow() const;
static bool classof(const Stmt *T) {
return T->getStmtClass() == ExtVectorElementExprClass;
}
static bool classof(const ExtVectorElementExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
class BlockExpr : public Expr {
protected:
BlockDecl *TheBlock;
bool HasBlockDeclRefExprs;
public:
BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
: Expr(BlockExprClass, ty, ty->isDependentType(), false),
TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
/// \brief Build an empty block expression.
explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
const BlockDecl *getBlockDecl() const { return TheBlock; }
BlockDecl *getBlockDecl() { return TheBlock; }
void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
// Convenience functions for probing the underlying BlockDecl.
SourceLocation getCaretLocation() const;
const Stmt *getBody() const;
Stmt *getBody();
virtual SourceRange getSourceRange() const {
return SourceRange(getCaretLocation(), getBody()->getLocEnd());
}
/// getFunctionType - Return the underlying function type for this block.
const FunctionType *getFunctionType() const;
/// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
/// inside of the block that reference values outside the block.
bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == BlockExprClass;
}
static bool classof(const BlockExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
/// BlockDeclRefExpr - A reference to a declared variable, function,
/// enum, etc.
class BlockDeclRefExpr : public Expr {
ValueDecl *D;
SourceLocation Loc;
bool IsByRef : 1;
bool ConstQualAdded : 1;
Stmt *CopyConstructorVal;
public:
// FIXME: Fix type/value dependence!
BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
bool constAdded = false,
Stmt *copyConstructorVal = 0)
: Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
D(d), Loc(l), IsByRef(ByRef),
ConstQualAdded(constAdded), CopyConstructorVal(copyConstructorVal) {}
// \brief Build an empty reference to a declared variable in a
// block.
explicit BlockDeclRefExpr(EmptyShell Empty)
: Expr(BlockDeclRefExprClass, Empty) { }
ValueDecl *getDecl() { return D; }
const ValueDecl *getDecl() const { return D; }
void setDecl(ValueDecl *VD) { D = VD; }
SourceLocation getLocation() const { return Loc; }
void setLocation(SourceLocation L) { Loc = L; }
virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
bool isByRef() const { return IsByRef; }
void setByRef(bool BR) { IsByRef = BR; }
bool isConstQualAdded() const { return ConstQualAdded; }
void setConstQualAdded(bool C) { ConstQualAdded = C; }
const Expr *getCopyConstructorExpr() const
{ return cast_or_null<Expr>(CopyConstructorVal); }
Expr *getCopyConstructorExpr()
{ return cast_or_null<Expr>(CopyConstructorVal); }
void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
static bool classof(const Stmt *T) {
return T->getStmtClass() == BlockDeclRefExprClass;
}
static bool classof(const BlockDeclRefExpr *) { return true; }
// Iterators
virtual child_iterator child_begin();
virtual child_iterator child_end();
};
} // end namespace clang
#endif