blob: 8347249a466bd595f3d14e0b23fe75e24d75ba7b [file] [log] [blame]
//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt class and statement subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Stmt.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/Type.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include <cstdio>
using namespace clang;
static struct StmtClassNameTable {
const char *Name;
unsigned Counter;
unsigned Size;
} StmtClassInfo[Stmt::lastExprConstant+1];
static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) {
static bool Initialized = false;
if (Initialized)
return StmtClassInfo[E];
// Intialize the table on the first use.
Initialized = true;
#define ABSTRACT_EXPR(CLASS, PARENT)
#define STMT(CLASS, PARENT) \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \
StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS);
#include "clang/AST/StmtNodes.def"
return StmtClassInfo[E];
}
const char *Stmt::getStmtClassName() const {
return getStmtInfoTableEntry((StmtClass)sClass).Name;
}
void Stmt::PrintStats() {
// Ensure the table is primed.
getStmtInfoTableEntry(Stmt::NullStmtClass);
unsigned sum = 0;
fprintf(stderr, "*** Stmt/Expr Stats:\n");
for (int i = 0; i != Stmt::lastExprConstant+1; i++) {
if (StmtClassInfo[i].Name == 0) continue;
sum += StmtClassInfo[i].Counter;
}
fprintf(stderr, " %d stmts/exprs total.\n", sum);
sum = 0;
for (int i = 0; i != Stmt::lastExprConstant+1; i++) {
if (StmtClassInfo[i].Name == 0) continue;
if (StmtClassInfo[i].Counter == 0) continue;
fprintf(stderr, " %d %s, %d each (%d bytes)\n",
StmtClassInfo[i].Counter, StmtClassInfo[i].Name,
StmtClassInfo[i].Size,
StmtClassInfo[i].Counter*StmtClassInfo[i].Size);
sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size;
}
fprintf(stderr, "Total bytes = %d\n", sum);
}
void Stmt::addStmtClass(StmtClass s) {
++getStmtInfoTableEntry(s).Counter;
}
static bool StatSwitch = false;
bool Stmt::CollectingStats(bool Enable) {
if (Enable) StatSwitch = true;
return StatSwitch;
}
void CompoundStmt::setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts) {
if (this->Body)
C.Deallocate(Body);
this->NumStmts = NumStmts;
Body = new (C) Stmt*[NumStmts];
memcpy(Body, Stmts, sizeof(Stmt *) * NumStmts);
}
const char *LabelStmt::getName() const {
return getID()->getNameStart();
}
// This is defined here to avoid polluting Stmt.h with importing Expr.h
SourceRange ReturnStmt::getSourceRange() const {
if (RetExpr)
return SourceRange(RetLoc, RetExpr->getLocEnd());
else
return SourceRange(RetLoc);
}
bool Stmt::hasImplicitControlFlow() const {
switch (sClass) {
default:
return false;
case CallExprClass:
case ConditionalOperatorClass:
case ChooseExprClass:
case StmtExprClass:
case DeclStmtClass:
return true;
case Stmt::BinaryOperatorClass: {
const BinaryOperator* B = cast<BinaryOperator>(this);
if (B->isLogicalOp() || B->getOpcode() == BinaryOperator::Comma)
return true;
else
return false;
}
}
}
Expr *AsmStmt::getOutputExpr(unsigned i) {
return cast<Expr>(Exprs[i]);
}
/// getOutputConstraint - Return the constraint string for the specified
/// output operand. All output constraints are known to be non-empty (either
/// '=' or '+').
llvm::StringRef AsmStmt::getOutputConstraint(unsigned i) const {
return getOutputConstraintLiteral(i)->getString();
}
/// getNumPlusOperands - Return the number of output operands that have a "+"
/// constraint.
unsigned AsmStmt::getNumPlusOperands() const {
unsigned Res = 0;
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i)
if (isOutputPlusConstraint(i))
++Res;
return Res;
}
Expr *AsmStmt::getInputExpr(unsigned i) {
return cast<Expr>(Exprs[i + NumOutputs]);
}
/// getInputConstraint - Return the specified input constraint. Unlike output
/// constraints, these can be empty.
llvm::StringRef AsmStmt::getInputConstraint(unsigned i) const {
return getInputConstraintLiteral(i)->getString();
}
void AsmStmt::setOutputsAndInputsAndClobbers(ASTContext &C,
IdentifierInfo **Names,
StringLiteral **Constraints,
Stmt **Exprs,
unsigned NumOutputs,
unsigned NumInputs,
StringLiteral **Clobbers,
unsigned NumClobbers) {
this->NumOutputs = NumOutputs;
this->NumInputs = NumInputs;
this->NumClobbers = NumClobbers;
unsigned NumExprs = NumOutputs + NumInputs;
C.Deallocate(this->Names);
this->Names = new (C) IdentifierInfo*[NumExprs];
std::copy(Names, Names + NumExprs, this->Names);
C.Deallocate(this->Exprs);
this->Exprs = new (C) Stmt*[NumExprs];
std::copy(Exprs, Exprs + NumExprs, this->Exprs);
C.Deallocate(this->Constraints);
this->Constraints = new (C) StringLiteral*[NumExprs];
std::copy(Constraints, Constraints + NumExprs, this->Constraints);
C.Deallocate(this->Clobbers);
this->Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers);
}
/// getNamedOperand - Given a symbolic operand reference like %[foo],
/// translate this into a numeric value needed to reference the same operand.
/// This returns -1 if the operand name is invalid.
int AsmStmt::getNamedOperand(llvm::StringRef SymbolicName) const {
unsigned NumPlusOperands = 0;
// Check if this is an output operand.
for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) {
if (getOutputName(i) == SymbolicName)
return i;
}
for (unsigned i = 0, e = getNumInputs(); i != e; ++i)
if (getInputName(i) == SymbolicName)
return getNumOutputs() + NumPlusOperands + i;
// Not found.
return -1;
}
/// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing
/// it into pieces. If the asm string is erroneous, emit errors and return
/// true, otherwise return false.
unsigned AsmStmt::AnalyzeAsmString(llvm::SmallVectorImpl<AsmStringPiece>&Pieces,
ASTContext &C, unsigned &DiagOffs) const {
const char *StrStart = getAsmString()->getStrData();
const char *StrEnd = StrStart + getAsmString()->getByteLength();
const char *CurPtr = StrStart;
// "Simple" inline asms have no constraints or operands, just convert the asm
// string to escape $'s.
if (isSimple()) {
std::string Result;
for (; CurPtr != StrEnd; ++CurPtr) {
switch (*CurPtr) {
case '$':
Result += "$$";
break;
default:
Result += *CurPtr;
break;
}
}
Pieces.push_back(AsmStringPiece(Result));
return 0;
}
// CurStringPiece - The current string that we are building up as we scan the
// asm string.
std::string CurStringPiece;
while (1) {
// Done with the string?
if (CurPtr == StrEnd) {
if (!CurStringPiece.empty())
Pieces.push_back(AsmStringPiece(CurStringPiece));
return 0;
}
char CurChar = *CurPtr++;
if (CurChar == '$') {
CurStringPiece += "$$";
continue;
} else if (CurChar != '%') {
CurStringPiece += CurChar;
continue;
}
// Escaped "%" character in asm string.
if (CurPtr == StrEnd) {
// % at end of string is invalid (no escape).
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
char EscapedChar = *CurPtr++;
if (EscapedChar == '%') { // %% -> %
// Escaped percentage sign.
CurStringPiece += '%';
continue;
}
if (EscapedChar == '=') { // %= -> Generate an unique ID.
CurStringPiece += "${:uid}";
continue;
}
// Otherwise, we have an operand. If we have accumulated a string so far,
// add it to the Pieces list.
if (!CurStringPiece.empty()) {
Pieces.push_back(AsmStringPiece(CurStringPiece));
CurStringPiece.clear();
}
// Handle %x4 and %x[foo] by capturing x as the modifier character.
char Modifier = '\0';
if (isalpha(EscapedChar)) {
Modifier = EscapedChar;
EscapedChar = *CurPtr++;
}
if (isdigit(EscapedChar)) {
// %n - Assembler operand n
unsigned N = 0;
--CurPtr;
while (CurPtr != StrEnd && isdigit(*CurPtr))
N = N*10 + ((*CurPtr++)-'0');
unsigned NumOperands =
getNumOutputs() + getNumPlusOperands() + getNumInputs();
if (N >= NumOperands) {
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_operand_number;
}
Pieces.push_back(AsmStringPiece(N, Modifier));
continue;
}
// Handle %[foo], a symbolic operand reference.
if (EscapedChar == '[') {
DiagOffs = CurPtr-StrStart-1;
// Find the ']'.
const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr);
if (NameEnd == 0)
return diag::err_asm_unterminated_symbolic_operand_name;
if (NameEnd == CurPtr)
return diag::err_asm_empty_symbolic_operand_name;
llvm::StringRef SymbolicName(CurPtr, NameEnd - CurPtr);
int N = getNamedOperand(SymbolicName);
if (N == -1) {
// Verify that an operand with that name exists.
DiagOffs = CurPtr-StrStart;
return diag::err_asm_unknown_symbolic_operand_name;
}
Pieces.push_back(AsmStringPiece(N, Modifier));
CurPtr = NameEnd+1;
continue;
}
DiagOffs = CurPtr-StrStart-1;
return diag::err_asm_invalid_escape;
}
}
QualType CXXCatchStmt::getCaughtType() const {
if (ExceptionDecl)
return ExceptionDecl->getType();
return QualType();
}
//===----------------------------------------------------------------------===//
// Constructors
//===----------------------------------------------------------------------===//
AsmStmt::AsmStmt(ASTContext &C, SourceLocation asmloc, bool issimple,
bool isvolatile, bool msasm,
unsigned numoutputs, unsigned numinputs,
IdentifierInfo **names, StringLiteral **constraints,
Expr **exprs, StringLiteral *asmstr, unsigned numclobbers,
StringLiteral **clobbers, SourceLocation rparenloc)
: Stmt(AsmStmtClass), AsmLoc(asmloc), RParenLoc(rparenloc), AsmStr(asmstr)
, IsSimple(issimple), IsVolatile(isvolatile), MSAsm(msasm)
, NumOutputs(numoutputs), NumInputs(numinputs), NumClobbers(numclobbers) {
unsigned NumExprs = NumOutputs +NumInputs;
Names = new (C) IdentifierInfo*[NumExprs];
std::copy(names, names + NumExprs, Names);
Exprs = new (C) Stmt*[NumExprs];
std::copy(exprs, exprs + NumExprs, Exprs);
Constraints = new (C) StringLiteral*[NumExprs];
std::copy(constraints, constraints + NumExprs, Constraints);
Clobbers = new (C) StringLiteral*[NumClobbers];
std::copy(clobbers, clobbers + NumClobbers, Clobbers);
}
ObjCForCollectionStmt::ObjCForCollectionStmt(Stmt *Elem, Expr *Collect,
Stmt *Body, SourceLocation FCL,
SourceLocation RPL)
: Stmt(ObjCForCollectionStmtClass) {
SubExprs[ELEM] = Elem;
SubExprs[COLLECTION] = reinterpret_cast<Stmt*>(Collect);
SubExprs[BODY] = Body;
ForLoc = FCL;
RParenLoc = RPL;
}
ObjCAtCatchStmt::ObjCAtCatchStmt(SourceLocation atCatchLoc,
SourceLocation rparenloc,
ParmVarDecl *catchVarDecl, Stmt *atCatchStmt,
Stmt *atCatchList)
: Stmt(ObjCAtCatchStmtClass) {
ExceptionDecl = catchVarDecl;
SubExprs[BODY] = atCatchStmt;
SubExprs[NEXT_CATCH] = NULL;
// FIXME: O(N^2) in number of catch blocks.
if (atCatchList) {
ObjCAtCatchStmt *AtCatchList = static_cast<ObjCAtCatchStmt*>(atCatchList);
while (ObjCAtCatchStmt* NextCatch = AtCatchList->getNextCatchStmt())
AtCatchList = NextCatch;
AtCatchList->SubExprs[NEXT_CATCH] = this;
}
AtCatchLoc = atCatchLoc;
RParenLoc = rparenloc;
}
CXXTryStmt *CXXTryStmt::Create(ASTContext &C, SourceLocation tryLoc,
Stmt *tryBlock, Stmt **handlers,
unsigned numHandlers) {
std::size_t Size = sizeof(CXXTryStmt);
Size += ((numHandlers + 1) * sizeof(Stmt));
void *Mem = C.Allocate(Size, llvm::alignof<CXXTryStmt>());
return new (Mem) CXXTryStmt(tryLoc, tryBlock, handlers, numHandlers);
}
CXXTryStmt::CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock,
Stmt **handlers, unsigned numHandlers)
: Stmt(CXXTryStmtClass), TryLoc(tryLoc), NumHandlers(numHandlers) {
Stmt **Stmts = reinterpret_cast<Stmt **>(this + 1);
Stmts[0] = tryBlock;
std::copy(handlers, handlers + NumHandlers, Stmts + 1);
}
//===----------------------------------------------------------------------===//
// AST Destruction.
//===----------------------------------------------------------------------===//
void Stmt::DestroyChildren(ASTContext &C) {
for (child_iterator I = child_begin(), E = child_end(); I !=E; )
if (Stmt* Child = *I++) Child->Destroy(C);
}
static void BranchDestroy(ASTContext &C, Stmt *S, Stmt **SubExprs,
unsigned NumExprs) {
// We do not use child_iterator here because that will include
// the expressions referenced by the condition variable.
for (Stmt **I = SubExprs, **E = SubExprs + NumExprs; I != E; ++I)
if (Stmt *Child = *I) Child->Destroy(C);
S->~Stmt();
C.Deallocate((void *) S);
}
void Stmt::DoDestroy(ASTContext &C) {
DestroyChildren(C);
this->~Stmt();
C.Deallocate((void *)this);
}
void CXXCatchStmt::DoDestroy(ASTContext& C) {
if (ExceptionDecl)
ExceptionDecl->Destroy(C);
Stmt::DoDestroy(C);
}
void DeclStmt::DoDestroy(ASTContext &C) {
// Don't use StmtIterator to iterate over the Decls, as that can recurse
// into VLA size expressions (which are owned by the VLA). Further, Decls
// are owned by the DeclContext, and will be destroyed with them.
if (DG.isDeclGroup())
DG.getDeclGroup().Destroy(C);
}
void IfStmt::DoDestroy(ASTContext &C) {
BranchDestroy(C, this, SubExprs, END_EXPR);
}
void ForStmt::DoDestroy(ASTContext &C) {
BranchDestroy(C, this, SubExprs, END_EXPR);
}
void SwitchStmt::DoDestroy(ASTContext &C) {
// Destroy the SwitchCase statements in this switch. In the normal
// case, this loop will merely decrement the reference counts from
// the Retain() calls in addSwitchCase();
SwitchCase *SC = FirstCase;
while (SC) {
SwitchCase *Next = SC->getNextSwitchCase();
SC->Destroy(C);
SC = Next;
}
BranchDestroy(C, this, SubExprs, END_EXPR);
}
void WhileStmt::DoDestroy(ASTContext &C) {
BranchDestroy(C, this, SubExprs, END_EXPR);
}
void AsmStmt::DoDestroy(ASTContext &C) {
DestroyChildren(C);
C.Deallocate(Names);
C.Deallocate(Constraints);
C.Deallocate(Exprs);
C.Deallocate(Clobbers);
this->~AsmStmt();
C.Deallocate((void *)this);
}
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// DeclStmt
Stmt::child_iterator DeclStmt::child_begin() {
return StmtIterator(DG.begin(), DG.end());
}
Stmt::child_iterator DeclStmt::child_end() {
return StmtIterator(DG.end(), DG.end());
}
// NullStmt
Stmt::child_iterator NullStmt::child_begin() { return child_iterator(); }
Stmt::child_iterator NullStmt::child_end() { return child_iterator(); }
// CompoundStmt
Stmt::child_iterator CompoundStmt::child_begin() { return &Body[0]; }
Stmt::child_iterator CompoundStmt::child_end() { return &Body[0]+NumStmts; }
// CaseStmt
Stmt::child_iterator CaseStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator CaseStmt::child_end() { return &SubExprs[END_EXPR]; }
// DefaultStmt
Stmt::child_iterator DefaultStmt::child_begin() { return &SubStmt; }
Stmt::child_iterator DefaultStmt::child_end() { return &SubStmt+1; }
// LabelStmt
Stmt::child_iterator LabelStmt::child_begin() { return &SubStmt; }
Stmt::child_iterator LabelStmt::child_end() { return &SubStmt+1; }
// IfStmt
Stmt::child_iterator IfStmt::child_begin() {
return child_iterator(Var, &SubExprs[0]);
}
Stmt::child_iterator IfStmt::child_end() {
return child_iterator(0, &SubExprs[0]+END_EXPR);
}
// SwitchStmt
Stmt::child_iterator SwitchStmt::child_begin() {
return child_iterator(Var, &SubExprs[0]);
}
Stmt::child_iterator SwitchStmt::child_end() {
return child_iterator(0, &SubExprs[0]+END_EXPR);
}
// WhileStmt
Stmt::child_iterator WhileStmt::child_begin() {
return child_iterator(Var, &SubExprs[0]);
}
Stmt::child_iterator WhileStmt::child_end() {
return child_iterator(0, &SubExprs[0]+END_EXPR);
}
// DoStmt
Stmt::child_iterator DoStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator DoStmt::child_end() { return &SubExprs[0]+END_EXPR; }
// ForStmt
Stmt::child_iterator ForStmt::child_begin() {
return child_iterator(CondVar, &SubExprs[0]);
}
Stmt::child_iterator ForStmt::child_end() {
return child_iterator(0, &SubExprs[0]+END_EXPR);
}
// ObjCForCollectionStmt
Stmt::child_iterator ObjCForCollectionStmt::child_begin() {
return &SubExprs[0];
}
Stmt::child_iterator ObjCForCollectionStmt::child_end() {
return &SubExprs[0]+END_EXPR;
}
// GotoStmt
Stmt::child_iterator GotoStmt::child_begin() { return child_iterator(); }
Stmt::child_iterator GotoStmt::child_end() { return child_iterator(); }
// IndirectGotoStmt
Expr* IndirectGotoStmt::getTarget() { return cast<Expr>(Target); }
const Expr* IndirectGotoStmt::getTarget() const { return cast<Expr>(Target); }
Stmt::child_iterator IndirectGotoStmt::child_begin() { return &Target; }
Stmt::child_iterator IndirectGotoStmt::child_end() { return &Target+1; }
// ContinueStmt
Stmt::child_iterator ContinueStmt::child_begin() { return child_iterator(); }
Stmt::child_iterator ContinueStmt::child_end() { return child_iterator(); }
// BreakStmt
Stmt::child_iterator BreakStmt::child_begin() { return child_iterator(); }
Stmt::child_iterator BreakStmt::child_end() { return child_iterator(); }
// ReturnStmt
const Expr* ReturnStmt::getRetValue() const {
return cast_or_null<Expr>(RetExpr);
}
Expr* ReturnStmt::getRetValue() {
return cast_or_null<Expr>(RetExpr);
}
Stmt::child_iterator ReturnStmt::child_begin() {
return &RetExpr;
}
Stmt::child_iterator ReturnStmt::child_end() {
return RetExpr ? &RetExpr+1 : &RetExpr;
}
// AsmStmt
Stmt::child_iterator AsmStmt::child_begin() {
return NumOutputs + NumInputs == 0 ? 0 : &Exprs[0];
}
Stmt::child_iterator AsmStmt::child_end() {
return NumOutputs + NumInputs == 0 ? 0 : &Exprs[0] + NumOutputs + NumInputs;
}
// ObjCAtCatchStmt
Stmt::child_iterator ObjCAtCatchStmt::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator ObjCAtCatchStmt::child_end() {
return &SubExprs[0]+END_EXPR;
}
// ObjCAtFinallyStmt
Stmt::child_iterator ObjCAtFinallyStmt::child_begin() { return &AtFinallyStmt; }
Stmt::child_iterator ObjCAtFinallyStmt::child_end() { return &AtFinallyStmt+1; }
// ObjCAtTryStmt
Stmt::child_iterator ObjCAtTryStmt::child_begin() { return &SubStmts[0]; }
Stmt::child_iterator ObjCAtTryStmt::child_end() {
return &SubStmts[0]+END_EXPR;
}
// ObjCAtThrowStmt
Stmt::child_iterator ObjCAtThrowStmt::child_begin() {
return &Throw;
}
Stmt::child_iterator ObjCAtThrowStmt::child_end() {
return &Throw+1;
}
// ObjCAtSynchronizedStmt
Stmt::child_iterator ObjCAtSynchronizedStmt::child_begin() {
return &SubStmts[0];
}
Stmt::child_iterator ObjCAtSynchronizedStmt::child_end() {
return &SubStmts[0]+END_EXPR;
}
// CXXCatchStmt
Stmt::child_iterator CXXCatchStmt::child_begin() {
return &HandlerBlock;
}
Stmt::child_iterator CXXCatchStmt::child_end() {
return &HandlerBlock + 1;
}
// CXXTryStmt
Stmt::child_iterator CXXTryStmt::child_begin() {
return reinterpret_cast<Stmt **>(this + 1);
}
Stmt::child_iterator CXXTryStmt::child_end() {
return reinterpret_cast<Stmt **>(this + 1) + NumHandlers + 1;
}