blob: 348917a7d034083a924e4a9363ab2d0024ba35e9 [file] [log] [blame]
//===---- CodeCompleteConsumer.h - Code Completion Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CodeCompleteConsumer class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_CODECOMPLETECONSUMER_H
#define LLVM_CLANG_SEMA_CODECOMPLETECONSUMER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include <memory>
#include <string>
namespace llvm {
class raw_ostream;
}
namespace clang {
class FunctionDecl;
class FunctionType;
class FunctionTemplateDecl;
class IdentifierInfo;
class NamedDecl;
class NestedNameSpecifier;
class Sema;
/// \brief A "string" used to describe how code completion can
/// be performed for an entity.
///
/// A code completion string typically shows how a particular entity can be
/// used. For example, the code completion string for a function would show
/// the syntax to call it, including the parentheses, placeholders for the
/// arguments, etc.
class CodeCompletionString {
public:
/// \brief The different kinds of "chunks" that can occur within a code
/// completion string.
enum ChunkKind {
/// \brief The piece of text that the user is expected to type to
/// match the code-completion string, typically a keyword or the name of a
/// declarator or macro.
CK_TypedText,
/// \brief A piece of text that should be placed in the buffer, e.g.,
/// parentheses or a comma in a function call.
CK_Text,
/// \brief A code completion string that is entirely optional. For example,
/// an optional code completion string that describes the default arguments
/// in a function call.
CK_Optional,
/// \brief A string that acts as a placeholder for, e.g., a function
/// call argument.
CK_Placeholder,
/// \brief A piece of text that describes something about the result but
/// should not be inserted into the buffer.
CK_Informative,
/// \brief A piece of text that describes the type of an entity or, for
/// functions and methods, the return type.
CK_ResultType,
/// \brief A piece of text that describes the parameter that corresponds
/// to the code-completion location within a function call, message send,
/// macro invocation, etc.
CK_CurrentParameter,
/// \brief A left parenthesis ('(').
CK_LeftParen,
/// \brief A right parenthesis (')').
CK_RightParen,
/// \brief A left bracket ('[').
CK_LeftBracket,
/// \brief A right bracket (']').
CK_RightBracket,
/// \brief A left brace ('{').
CK_LeftBrace,
/// \brief A right brace ('}').
CK_RightBrace,
/// \brief A left angle bracket ('<').
CK_LeftAngle,
/// \brief A right angle bracket ('>').
CK_RightAngle,
/// \brief A comma separator (',').
CK_Comma,
/// \brief A colon (':').
CK_Colon,
/// \brief A semicolon (';').
CK_SemiColon,
/// \brief An '=' sign.
CK_Equal,
/// \brief Horizontal whitespace (' ').
CK_HorizontalSpace,
/// \brief Verticle whitespace ('\n' or '\r\n', depending on the
/// platform).
CK_VerticalSpace
};
/// \brief One piece of the code completion string.
struct Chunk {
/// \brief The kind of data stored in this piece of the code completion
/// string.
ChunkKind Kind;
union {
/// \brief The text string associated with a CK_Text, CK_Placeholder,
/// CK_Informative, or CK_Comma chunk.
/// The string is owned by the chunk and will be deallocated
/// (with delete[]) when the chunk is destroyed.
const char *Text;
/// \brief The code completion string associated with a CK_Optional chunk.
/// The optional code completion string is owned by the chunk, and will
/// be deallocated (with delete) when the chunk is destroyed.
CodeCompletionString *Optional;
};
Chunk() : Kind(CK_Text), Text(0) { }
Chunk(ChunkKind Kind, llvm::StringRef Text = "");
/// \brief Create a new text chunk.
static Chunk CreateText(llvm::StringRef Text);
/// \brief Create a new optional chunk.
static Chunk CreateOptional(std::auto_ptr<CodeCompletionString> Optional);
/// \brief Create a new placeholder chunk.
static Chunk CreatePlaceholder(llvm::StringRef Placeholder);
/// \brief Create a new informative chunk.
static Chunk CreateInformative(llvm::StringRef Informative);
/// \brief Create a new result type chunk.
static Chunk CreateResultType(llvm::StringRef ResultType);
/// \brief Create a new current-parameter chunk.
static Chunk CreateCurrentParameter(llvm::StringRef CurrentParameter);
/// \brief Clone the given chunk.
Chunk Clone() const;
/// \brief Destroy this chunk, deallocating any memory it owns.
void Destroy();
};
private:
/// \brief The chunks stored in this string.
llvm::SmallVector<Chunk, 4> Chunks;
CodeCompletionString(const CodeCompletionString &); // DO NOT IMPLEMENT
CodeCompletionString &operator=(const CodeCompletionString &); // DITTO
public:
CodeCompletionString() { }
~CodeCompletionString();
typedef llvm::SmallVector<Chunk, 4>::const_iterator iterator;
iterator begin() const { return Chunks.begin(); }
iterator end() const { return Chunks.end(); }
bool empty() const { return Chunks.empty(); }
unsigned size() const { return Chunks.size(); }
Chunk &operator[](unsigned I) {
assert(I < size() && "Chunk index out-of-range");
return Chunks[I];
}
const Chunk &operator[](unsigned I) const {
assert(I < size() && "Chunk index out-of-range");
return Chunks[I];
}
/// \brief Add a new typed-text chunk.
/// The text string will be copied.
void AddTypedTextChunk(llvm::StringRef Text) {
Chunks.push_back(Chunk(CK_TypedText, Text));
}
/// \brief Add a new text chunk.
/// The text string will be copied.
void AddTextChunk(llvm::StringRef Text) {
Chunks.push_back(Chunk::CreateText(Text));
}
/// \brief Add a new optional chunk.
void AddOptionalChunk(std::auto_ptr<CodeCompletionString> Optional) {
Chunks.push_back(Chunk::CreateOptional(Optional));
}
/// \brief Add a new placeholder chunk.
/// The placeholder text will be copied.
void AddPlaceholderChunk(llvm::StringRef Placeholder) {
Chunks.push_back(Chunk::CreatePlaceholder(Placeholder));
}
/// \brief Add a new informative chunk.
/// The text will be copied.
void AddInformativeChunk(llvm::StringRef Text) {
Chunks.push_back(Chunk::CreateInformative(Text));
}
/// \brief Add a new result-type chunk.
/// The text will be copied.
void AddResultTypeChunk(llvm::StringRef ResultType) {
Chunks.push_back(Chunk::CreateResultType(ResultType));
}
/// \brief Add a new current-parameter chunk.
/// The text will be copied.
void AddCurrentParameterChunk(llvm::StringRef CurrentParameter) {
Chunks.push_back(Chunk::CreateCurrentParameter(CurrentParameter));
}
/// \brief Add a new chunk.
void AddChunk(Chunk C) { Chunks.push_back(C); }
/// \brief Returns the text in the TypedText chunk.
const char *getTypedText() const;
/// \brief Retrieve a string representation of the code completion string,
/// which is mainly useful for debugging.
std::string getAsString() const;
/// \brief Clone this code-completion string.
CodeCompletionString *Clone() const;
/// \brief Serialize this code-completion string to the given stream.
void Serialize(llvm::raw_ostream &OS) const;
/// \brief Deserialize a code-completion string from the given string.
static CodeCompletionString *Deserialize(const char *&Str,
const char *StrEnd);
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const CodeCompletionString &CCS);
/// \brief Abstract interface for a consumer of code-completion
/// information.
class CodeCompleteConsumer {
protected:
/// \brief Whether to include macros in the code-completion results.
bool IncludeMacros;
/// \brief Whether the output format for the code-completion consumer is
/// binary.
bool OutputIsBinary;
public:
/// \brief Captures a result of code completion.
struct Result {
/// \brief Describes the kind of result generated.
enum ResultKind {
RK_Declaration = 0, //< Refers to a declaration
RK_Keyword, //< Refers to a keyword or symbol.
RK_Macro, //< Refers to a macro
RK_Pattern //< Refers to a precomputed pattern.
};
/// \brief The kind of result stored here.
ResultKind Kind;
union {
/// \brief When Kind == RK_Declaration, the declaration we are referring
/// to.
NamedDecl *Declaration;
/// \brief When Kind == RK_Keyword, the string representing the keyword
/// or symbol's spelling.
const char *Keyword;
/// \brief When Kind == RK_Pattern, the code-completion string that
/// describes the completion text to insert.
CodeCompletionString *Pattern;
/// \brief When Kind == RK_Macro, the identifier that refers to a macro.
IdentifierInfo *Macro;
};
/// \brief Specifiers which parameter (of a function, Objective-C method,
/// macro, etc.) we should start with when formatting the result.
unsigned StartParameter;
/// \brief Whether this result is hidden by another name.
bool Hidden : 1;
/// \brief Whether this result was found via lookup into a base class.
bool QualifierIsInformative : 1;
/// \brief Whether this declaration is the beginning of a
/// nested-name-specifier and, therefore, should be followed by '::'.
bool StartsNestedNameSpecifier : 1;
/// \brief Whether all parameters (of a function, Objective-C
/// method, etc.) should be considered "informative".
bool AllParametersAreInformative : 1;
/// \brief If the result should have a nested-name-specifier, this is it.
/// When \c QualifierIsInformative, the nested-name-specifier is
/// informative rather than required.
NestedNameSpecifier *Qualifier;
/// \brief Build a result that refers to a declaration.
Result(NamedDecl *Declaration,
NestedNameSpecifier *Qualifier = 0,
bool QualifierIsInformative = false)
: Kind(RK_Declaration), Declaration(Declaration),
StartParameter(0), Hidden(false),
QualifierIsInformative(QualifierIsInformative),
StartsNestedNameSpecifier(false), AllParametersAreInformative(false),
Qualifier(Qualifier) { }
/// \brief Build a result that refers to a keyword or symbol.
Result(const char *Keyword)
: Kind(RK_Keyword), Keyword(Keyword), StartParameter(0),
Hidden(false), QualifierIsInformative(0),
StartsNestedNameSpecifier(false), AllParametersAreInformative(false),
Qualifier(0) { }
/// \brief Build a result that refers to a macro.
Result(IdentifierInfo *Macro)
: Kind(RK_Macro), Macro(Macro), StartParameter(0),
Hidden(false), QualifierIsInformative(0),
StartsNestedNameSpecifier(false), AllParametersAreInformative(false),
Qualifier(0) { }
/// \brief Build a result that refers to a pattern.
Result(CodeCompletionString *Pattern)
: Kind(RK_Pattern), Pattern(Pattern), StartParameter(0),
Hidden(false), QualifierIsInformative(0),
StartsNestedNameSpecifier(false), AllParametersAreInformative(false),
Qualifier(0) { }
/// \brief Retrieve the declaration stored in this result.
NamedDecl *getDeclaration() const {
assert(Kind == RK_Declaration && "Not a declaration result");
return Declaration;
}
/// \brief Retrieve the keyword stored in this result.
const char *getKeyword() const {
assert(Kind == RK_Keyword && "Not a keyword result");
return Keyword;
}
/// \brief Create a new code-completion string that describes how to insert
/// this result into a program.
CodeCompletionString *CreateCodeCompletionString(Sema &S);
void Destroy();
};
class OverloadCandidate {
public:
/// \brief Describes the type of overload candidate.
enum CandidateKind {
/// \brief The candidate is a function declaration.
CK_Function,
/// \brief The candidate is a function template.
CK_FunctionTemplate,
/// \brief The "candidate" is actually a variable, expression, or block
/// for which we only have a function prototype.
CK_FunctionType
};
private:
/// \brief The kind of overload candidate.
CandidateKind Kind;
union {
/// \brief The function overload candidate, available when
/// Kind == CK_Function.
FunctionDecl *Function;
/// \brief The function template overload candidate, available when
/// Kind == CK_FunctionTemplate.
FunctionTemplateDecl *FunctionTemplate;
/// \brief The function type that describes the entity being called,
/// when Kind == CK_FunctionType.
const FunctionType *Type;
};
public:
OverloadCandidate(FunctionDecl *Function)
: Kind(CK_Function), Function(Function) { }
OverloadCandidate(FunctionTemplateDecl *FunctionTemplateDecl)
: Kind(CK_FunctionTemplate), FunctionTemplate(FunctionTemplate) { }
OverloadCandidate(const FunctionType *Type)
: Kind(CK_FunctionType), Type(Type) { }
/// \brief Determine the kind of overload candidate.
CandidateKind getKind() const { return Kind; }
/// \brief Retrieve the function overload candidate or the templated
/// function declaration for a function template.
FunctionDecl *getFunction() const;
/// \brief Retrieve the function template overload candidate.
FunctionTemplateDecl *getFunctionTemplate() const {
assert(getKind() == CK_FunctionTemplate && "Not a function template");
return FunctionTemplate;
}
/// \brief Retrieve the function type of the entity, regardless of how the
/// function is stored.
const FunctionType *getFunctionType() const;
/// \brief Create a new code-completion string that describes the function
/// signature of this overload candidate.
CodeCompletionString *CreateSignatureString(unsigned CurrentArg,
Sema &S) const;
};
CodeCompleteConsumer() : IncludeMacros(false), OutputIsBinary(false) { }
CodeCompleteConsumer(bool IncludeMacros, bool OutputIsBinary)
: IncludeMacros(IncludeMacros), OutputIsBinary(OutputIsBinary) { }
/// \brief Whether the code-completion consumer wants to see macros.
bool includeMacros() const { return IncludeMacros; }
/// \brief Determine whether the output of this consumer is binary.
bool isOutputBinary() const { return OutputIsBinary; }
/// \brief Deregisters and destroys this code-completion consumer.
virtual ~CodeCompleteConsumer();
/// \name Code-completion callbacks
//@{
/// \brief Process the finalized code-completion results.
virtual void ProcessCodeCompleteResults(Sema &S, Result *Results,
unsigned NumResults) { }
/// \param S the semantic-analyzer object for which code-completion is being
/// done.
///
/// \param CurrentArg the index of the current argument.
///
/// \param Candidates an array of overload candidates.
///
/// \param NumCandidates the number of overload candidates
virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) { }
//@}
};
/// \brief A simple code-completion consumer that prints the results it
/// receives in a simple format.
class PrintingCodeCompleteConsumer : public CodeCompleteConsumer {
/// \brief The raw output stream.
llvm::raw_ostream &OS;
public:
/// \brief Create a new printing code-completion consumer that prints its
/// results to the given raw output stream.
PrintingCodeCompleteConsumer(bool IncludeMacros,
llvm::raw_ostream &OS)
: CodeCompleteConsumer(IncludeMacros, false), OS(OS) { }
/// \brief Prints the finalized code-completion results.
virtual void ProcessCodeCompleteResults(Sema &S, Result *Results,
unsigned NumResults);
virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates);
};
/// \brief A code-completion consumer that prints the results it receives
/// in a format that is parsable by the CIndex library.
class CIndexCodeCompleteConsumer : public CodeCompleteConsumer {
/// \brief The raw output stream.
llvm::raw_ostream &OS;
public:
/// \brief Create a new CIndex code-completion consumer that prints its
/// results to the given raw output stream in a format readable to the CIndex
/// library.
CIndexCodeCompleteConsumer(bool IncludeMacros, llvm::raw_ostream &OS)
: CodeCompleteConsumer(IncludeMacros, true), OS(OS) { }
/// \brief Prints the finalized code-completion results.
virtual void ProcessCodeCompleteResults(Sema &S, Result *Results,
unsigned NumResults);
virtual void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates);
};
} // end namespace clang
#endif // LLVM_CLANG_SEMA_CODECOMPLETECONSUMER_H