blob: af00c8d7e8ad80ad0085a10aeba72a26e1cfa9ad [file] [log] [blame]
//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the C++ Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLCXX_H
#define LLVM_CLANG_AST_DECLCXX_H
#include "clang/AST/Expr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/UnresolvedSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
namespace clang {
class ClassTemplateDecl;
class ClassTemplateSpecializationDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXConstructorDecl;
class CXXConversionDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CXXRecordDecl;
class CXXMemberLookupCriteria;
/// \brief Represents any kind of function declaration, whether it is a
/// concrete function or a function template.
class AnyFunctionDecl {
NamedDecl *Function;
AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
public:
AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
AnyFunctionDecl(FunctionTemplateDecl *FTD);
/// \brief Implicily converts any function or function template into a
/// named declaration.
operator NamedDecl *() const { return Function; }
/// \brief Retrieve the underlying function or function template.
NamedDecl *get() const { return Function; }
static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
return AnyFunctionDecl(ND);
}
};
} // end namespace clang
namespace llvm {
/// Implement simplify_type for AnyFunctionDecl, so that we can dyn_cast from
/// AnyFunctionDecl to any function or function template declaration.
template<> struct simplify_type<const ::clang::AnyFunctionDecl> {
typedef ::clang::NamedDecl* SimpleType;
static SimpleType getSimplifiedValue(const ::clang::AnyFunctionDecl &Val) {
return Val;
}
};
template<> struct simplify_type< ::clang::AnyFunctionDecl>
: public simplify_type<const ::clang::AnyFunctionDecl> {};
// Provide PointerLikeTypeTraits for non-cvr pointers.
template<>
class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
public:
static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
return F.get();
}
static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
return ::clang::AnyFunctionDecl::getFromNamedDecl(
static_cast< ::clang::NamedDecl*>(P));
}
enum { NumLowBitsAvailable = 2 };
};
} // end namespace llvm
namespace clang {
/// CXXBaseSpecifier - A base class of a C++ class.
///
/// Each CXXBaseSpecifier represents a single, direct base class (or
/// struct) of a C++ class (or struct). It specifies the type of that
/// base class, whether it is a virtual or non-virtual base, and what
/// level of access (public, protected, private) is used for the
/// derivation. For example:
///
/// @code
/// class A { };
/// class B { };
/// class C : public virtual A, protected B { };
/// @endcode
///
/// In this code, C will have two CXXBaseSpecifiers, one for "public
/// virtual A" and the other for "protected B".
class CXXBaseSpecifier {
/// Range - The source code range that covers the full base
/// specifier, including the "virtual" (if present) and access
/// specifier (if present).
// FIXME: Move over to a TypeLoc!
SourceRange Range;
/// Virtual - Whether this is a virtual base class or not.
bool Virtual : 1;
/// BaseOfClass - Whether this is the base of a class (true) or of a
/// struct (false). This determines the mapping from the access
/// specifier as written in the source code to the access specifier
/// used for semantic analysis.
bool BaseOfClass : 1;
/// Access - Access specifier as written in the source code (which
/// may be AS_none). The actual type of data stored here is an
/// AccessSpecifier, but we use "unsigned" here to work around a
/// VC++ bug.
unsigned Access : 2;
/// BaseType - The type of the base class. This will be a class or
/// struct (or a typedef of such).
QualType BaseType;
public:
CXXBaseSpecifier() { }
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, QualType T)
: Range(R), Virtual(V), BaseOfClass(BC), Access(A), BaseType(T) { }
/// getSourceRange - Retrieves the source range that contains the
/// entire base specifier.
SourceRange getSourceRange() const { return Range; }
/// isVirtual - Determines whether the base class is a virtual base
/// class (or not).
bool isVirtual() const { return Virtual; }
/// \brief Determine whether this base class if a base of a class declared
/// with the 'class' keyword (vs. one declared with the 'struct' keyword).
bool isBaseOfClass() const { return BaseOfClass; }
/// getAccessSpecifier - Returns the access specifier for this base
/// specifier. This is the actual base specifier as used for
/// semantic analysis, so the result can never be AS_none. To
/// retrieve the access specifier as written in the source code, use
/// getAccessSpecifierAsWritten().
AccessSpecifier getAccessSpecifier() const {
if ((AccessSpecifier)Access == AS_none)
return BaseOfClass? AS_private : AS_public;
else
return (AccessSpecifier)Access;
}
/// getAccessSpecifierAsWritten - Retrieves the access specifier as
/// written in the source code (which may mean that no access
/// specifier was explicitly written). Use getAccessSpecifier() to
/// retrieve the access specifier for use in semantic analysis.
AccessSpecifier getAccessSpecifierAsWritten() const {
return (AccessSpecifier)Access;
}
/// getType - Retrieves the type of the base class. This type will
/// always be an unqualified class type.
QualType getType() const { return BaseType; }
};
/// CXXRecordDecl - Represents a C++ struct/union/class.
/// FIXME: This class will disappear once we've properly taught RecordDecl
/// to deal with C++-specific things.
class CXXRecordDecl : public RecordDecl {
friend void TagDecl::startDefinition();
struct DefinitionData {
DefinitionData(CXXRecordDecl *D);
/// UserDeclaredConstructor - True when this class has a
/// user-declared constructor.
bool UserDeclaredConstructor : 1;
/// UserDeclaredCopyConstructor - True when this class has a
/// user-declared copy constructor.
bool UserDeclaredCopyConstructor : 1;
/// UserDeclaredCopyAssignment - True when this class has a
/// user-declared copy assignment operator.
bool UserDeclaredCopyAssignment : 1;
/// UserDeclaredDestructor - True when this class has a
/// user-declared destructor.
bool UserDeclaredDestructor : 1;
/// Aggregate - True when this class is an aggregate.
bool Aggregate : 1;
/// PlainOldData - True when this class is a POD-type.
bool PlainOldData : 1;
/// Empty - true when this class is empty for traits purposes,
/// i.e. has no data members other than 0-width bit-fields, has no
/// virtual function/base, and doesn't inherit from a non-empty
/// class. Doesn't take union-ness into account.
bool Empty : 1;
/// Polymorphic - True when this class is polymorphic, i.e. has at
/// least one virtual member or derives from a polymorphic class.
bool Polymorphic : 1;
/// Abstract - True when this class is abstract, i.e. has at least
/// one pure virtual function, (that can come from a base class).
bool Abstract : 1;
/// HasTrivialConstructor - True when this class has a trivial constructor.
///
/// C++ [class.ctor]p5. A constructor is trivial if it is an
/// implicitly-declared default constructor and if:
/// * its class has no virtual functions and no virtual base classes, and
/// * all the direct base classes of its class have trivial constructors, and
/// * for all the nonstatic data members of its class that are of class type
/// (or array thereof), each such class has a trivial constructor.
bool HasTrivialConstructor : 1;
/// HasTrivialCopyConstructor - True when this class has a trivial copy
/// constructor.
///
/// C++ [class.copy]p6. A copy constructor for class X is trivial
/// if it is implicitly declared and if
/// * class X has no virtual functions and no virtual base classes, and
/// * each direct base class of X has a trivial copy constructor, and
/// * for all the nonstatic data members of X that are of class type (or
/// array thereof), each such class type has a trivial copy constructor;
/// otherwise the copy constructor is non-trivial.
bool HasTrivialCopyConstructor : 1;
/// HasTrivialCopyAssignment - True when this class has a trivial copy
/// assignment operator.
///
/// C++ [class.copy]p11. A copy assignment operator for class X is
/// trivial if it is implicitly declared and if
/// * class X has no virtual functions and no virtual base classes, and
/// * each direct base class of X has a trivial copy assignment operator, and
/// * for all the nonstatic data members of X that are of class type (or
/// array thereof), each such class type has a trivial copy assignment
/// operator;
/// otherwise the copy assignment operator is non-trivial.
bool HasTrivialCopyAssignment : 1;
/// HasTrivialDestructor - True when this class has a trivial destructor.
///
/// C++ [class.dtor]p3. A destructor is trivial if it is an
/// implicitly-declared destructor and if:
/// * all of the direct base classes of its class have trivial destructors
/// and
/// * for all of the non-static data members of its class that are of class
/// type (or array thereof), each such class has a trivial destructor.
bool HasTrivialDestructor : 1;
/// ComputedVisibleConversions - True when visible conversion functions are
/// already computed and are available.
bool ComputedVisibleConversions : 1;
/// Bases - Base classes of this class.
/// FIXME: This is wasted space for a union.
CXXBaseSpecifier *Bases;
/// NumBases - The number of base class specifiers in Bases.
unsigned NumBases;
/// VBases - direct and indirect virtual base classes of this class.
CXXBaseSpecifier *VBases;
/// NumVBases - The number of virtual base class specifiers in VBases.
unsigned NumVBases;
/// Conversions - Overload set containing the conversion functions
/// of this C++ class (but not its inherited conversion
/// functions). Each of the entries in this overload set is a
/// CXXConversionDecl.
UnresolvedSet<4> Conversions;
/// VisibleConversions - Overload set containing the conversion
/// functions of this C++ class and all those inherited conversion
/// functions that are visible in this class. Each of the entries
/// in this overload set is a CXXConversionDecl or a
/// FunctionTemplateDecl.
UnresolvedSet<4> VisibleConversions;
/// Definition - The declaration which defines this record.
CXXRecordDecl *Definition;
} *DefinitionData;
struct DefinitionData &data() {
assert(DefinitionData && "queried property of class with no definition");
return *DefinitionData;
}
const struct DefinitionData &data() const {
assert(DefinitionData && "queried property of class with no definition");
return *DefinitionData;
}
/// \brief The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be NULL. For record
/// declarations that describe a class template, this will be a
/// pointer to a ClassTemplateDecl. For member
/// classes of class template specializations, this will be the
/// MemberSpecializationInfo referring to the member class that was
/// instantiated or specialized.
llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
TemplateOrInstantiation;
void getNestedVisibleConversionFunctions(CXXRecordDecl *RD,
const llvm::SmallPtrSet<CanQualType, 8> &TopConversionsTypeSet,
const llvm::SmallPtrSet<CanQualType, 8> &HiddenConversionTypes);
void collectConversionFunctions(
llvm::SmallPtrSet<CanQualType, 8>& ConversionsTypeSet) const;
protected:
CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
CXXRecordDecl *PrevDecl,
SourceLocation TKL = SourceLocation());
~CXXRecordDecl();
public:
/// base_class_iterator - Iterator that traverses the base classes
/// of a class.
typedef CXXBaseSpecifier* base_class_iterator;
/// base_class_const_iterator - Iterator that traverses the base
/// classes of a class.
typedef const CXXBaseSpecifier* base_class_const_iterator;
/// reverse_base_class_iterator = Iterator that traverses the base classes
/// of a class in reverse order.
typedef std::reverse_iterator<base_class_iterator>
reverse_base_class_iterator;
/// reverse_base_class_iterator = Iterator that traverses the base classes
/// of a class in reverse order.
typedef std::reverse_iterator<base_class_const_iterator>
reverse_base_class_const_iterator;
virtual CXXRecordDecl *getCanonicalDecl() {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
virtual const CXXRecordDecl *getCanonicalDecl() const {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
CXXRecordDecl *getDefinition() const {
if (!DefinitionData) return 0;
return data().Definition;
}
bool hasDefinition() const { return DefinitionData != 0; }
static CXXRecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL = SourceLocation(),
CXXRecordDecl* PrevDecl=0,
bool DelayTypeCreation = false);
virtual void Destroy(ASTContext& C);
bool isDynamicClass() const {
return data().Polymorphic || data().NumVBases != 0;
}
/// setBases - Sets the base classes of this struct or class.
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
/// getNumBases - Retrieves the number of base classes of this
/// class.
unsigned getNumBases() const { return data().NumBases; }
base_class_iterator bases_begin() { return data().Bases; }
base_class_const_iterator bases_begin() const { return data().Bases; }
base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
base_class_const_iterator bases_end() const {
return bases_begin() + data().NumBases;
}
reverse_base_class_iterator bases_rbegin() {
return reverse_base_class_iterator(bases_end());
}
reverse_base_class_const_iterator bases_rbegin() const {
return reverse_base_class_const_iterator(bases_end());
}
reverse_base_class_iterator bases_rend() {
return reverse_base_class_iterator(bases_begin());
}
reverse_base_class_const_iterator bases_rend() const {
return reverse_base_class_const_iterator(bases_begin());
}
/// getNumVBases - Retrieves the number of virtual base classes of this
/// class.
unsigned getNumVBases() const { return data().NumVBases; }
base_class_iterator vbases_begin() { return data().VBases; }
base_class_const_iterator vbases_begin() const { return data().VBases; }
base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
base_class_const_iterator vbases_end() const {
return vbases_begin() + data().NumVBases;
}
reverse_base_class_iterator vbases_rbegin() {
return reverse_base_class_iterator(vbases_end());
}
reverse_base_class_const_iterator vbases_rbegin() const {
return reverse_base_class_const_iterator(vbases_end());
}
reverse_base_class_iterator vbases_rend() {
return reverse_base_class_iterator(vbases_begin());
}
reverse_base_class_const_iterator vbases_rend() const {
return reverse_base_class_const_iterator(vbases_begin());
}
/// \brief Determine whether this class has any dependent base classes.
bool hasAnyDependentBases() const;
/// Iterator access to method members. The method iterator visits
/// all method members of the class, including non-instance methods,
/// special methods, etc.
typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
/// method_begin - Method begin iterator. Iterates in the order the methods
/// were declared.
method_iterator method_begin() const {
return method_iterator(decls_begin());
}
/// method_end - Method end iterator.
method_iterator method_end() const {
return method_iterator(decls_end());
}
/// Iterator access to constructor members.
typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
ctor_iterator ctor_begin() const {
return ctor_iterator(decls_begin());
}
ctor_iterator ctor_end() const {
return ctor_iterator(decls_end());
}
/// hasConstCopyConstructor - Determines whether this class has a
/// copy constructor that accepts a const-qualified argument.
bool hasConstCopyConstructor(ASTContext &Context) const;
/// getCopyConstructor - Returns the copy constructor for this class
CXXConstructorDecl *getCopyConstructor(ASTContext &Context,
unsigned TypeQuals) const;
/// hasConstCopyAssignment - Determines whether this class has a
/// copy assignment operator that accepts a const-qualified argument.
/// It returns its decl in MD if found.
bool hasConstCopyAssignment(ASTContext &Context,
const CXXMethodDecl *&MD) const;
/// addedConstructor - Notify the class that another constructor has
/// been added. This routine helps maintain information about the
/// class based on which constructors have been added.
void addedConstructor(ASTContext &Context, CXXConstructorDecl *ConDecl);
/// hasUserDeclaredConstructor - Whether this class has any
/// user-declared constructors. When true, a default constructor
/// will not be implicitly declared.
bool hasUserDeclaredConstructor() const {
return data().UserDeclaredConstructor;
}
/// hasUserDeclaredCopyConstructor - Whether this class has a
/// user-declared copy constructor. When false, a copy constructor
/// will be implicitly declared.
bool hasUserDeclaredCopyConstructor() const {
return data().UserDeclaredCopyConstructor;
}
/// addedAssignmentOperator - Notify the class that another assignment
/// operator has been added. This routine helps maintain information about the
/// class based on which operators have been added.
void addedAssignmentOperator(ASTContext &Context, CXXMethodDecl *OpDecl);
/// hasUserDeclaredCopyAssignment - Whether this class has a
/// user-declared copy assignment operator. When false, a copy
/// assigment operator will be implicitly declared.
bool hasUserDeclaredCopyAssignment() const {
return data().UserDeclaredCopyAssignment;
}
/// hasUserDeclaredDestructor - Whether this class has a
/// user-declared destructor. When false, a destructor will be
/// implicitly declared.
bool hasUserDeclaredDestructor() const {
return data().UserDeclaredDestructor;
}
/// setUserDeclaredDestructor - Set whether this class has a
/// user-declared destructor. If not set by the time the class is
/// fully defined, a destructor will be implicitly declared.
void setUserDeclaredDestructor(bool UCD) {
data().UserDeclaredDestructor = UCD;
}
/// getConversions - Retrieve the overload set containing all of the
/// conversion functions in this class.
UnresolvedSetImpl *getConversionFunctions() {
return &data().Conversions;
}
const UnresolvedSetImpl *getConversionFunctions() const {
return &data().Conversions;
}
typedef UnresolvedSetImpl::iterator conversion_iterator;
conversion_iterator conversion_begin() const {
return getConversionFunctions()->begin();
}
conversion_iterator conversion_end() const {
return getConversionFunctions()->end();
}
/// Replaces a conversion function with a new declaration.
///
/// Returns true if the old conversion was found.
bool replaceConversion(const NamedDecl* Old, NamedDecl *New) {
return getConversionFunctions()->replace(Old, New);
}
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
const UnresolvedSetImpl *getVisibleConversionFunctions();
/// addVisibleConversionFunction - Add a new conversion function to the
/// list of visible conversion functions.
void addVisibleConversionFunction(CXXConversionDecl *ConvDecl);
/// \brief Add a new conversion function template to the list of visible
/// conversion functions.
void addVisibleConversionFunction(FunctionTemplateDecl *ConvDecl);
/// addConversionFunction - Add a new conversion function to the
/// list of conversion functions.
void addConversionFunction(CXXConversionDecl *ConvDecl);
/// \brief Add a new conversion function template to the list of conversion
/// functions.
void addConversionFunction(FunctionTemplateDecl *ConvDecl);
/// isAggregate - Whether this class is an aggregate (C++
/// [dcl.init.aggr]), which is a class with no user-declared
/// constructors, no private or protected non-static data members,
/// no base classes, and no virtual functions (C++ [dcl.init.aggr]p1).
bool isAggregate() const { return data().Aggregate; }
/// setAggregate - Set whether this class is an aggregate (C++
/// [dcl.init.aggr]).
void setAggregate(bool Agg) { data().Aggregate = Agg; }
/// setMethodAsVirtual - Make input method virtual and set the necesssary
/// special function bits and other bits accordingly.
void setMethodAsVirtual(FunctionDecl *Method);
/// isPOD - Whether this class is a POD-type (C++ [class]p4), which is a class
/// that is an aggregate that has no non-static non-POD data members, no
/// reference data members, no user-defined copy assignment operator and no
/// user-defined destructor.
bool isPOD() const { return data().PlainOldData; }
/// setPOD - Set whether this class is a POD-type (C++ [class]p4).
void setPOD(bool POD) { data().PlainOldData = POD; }
/// isEmpty - Whether this class is empty (C++0x [meta.unary.prop]), which
/// means it has a virtual function, virtual base, data member (other than
/// 0-width bit-field) or inherits from a non-empty class. Does NOT include
/// a check for union-ness.
bool isEmpty() const { return data().Empty; }
/// Set whether this class is empty (C++0x [meta.unary.prop])
void setEmpty(bool Emp) { data().Empty = Emp; }
/// isPolymorphic - Whether this class is polymorphic (C++ [class.virtual]),
/// which means that the class contains or inherits a virtual function.
bool isPolymorphic() const { return data().Polymorphic; }
/// setPolymorphic - Set whether this class is polymorphic (C++
/// [class.virtual]).
void setPolymorphic(bool Poly) { data().Polymorphic = Poly; }
/// isAbstract - Whether this class is abstract (C++ [class.abstract]),
/// which means that the class contains or inherits a pure virtual function.
bool isAbstract() const { return data().Abstract; }
/// setAbstract - Set whether this class is abstract (C++ [class.abstract])
void setAbstract(bool Abs) { data().Abstract = Abs; }
// hasTrivialConstructor - Whether this class has a trivial constructor
// (C++ [class.ctor]p5)
bool hasTrivialConstructor() const { return data().HasTrivialConstructor; }
// setHasTrivialConstructor - Set whether this class has a trivial constructor
// (C++ [class.ctor]p5)
void setHasTrivialConstructor(bool TC) { data().HasTrivialConstructor = TC; }
// hasTrivialCopyConstructor - Whether this class has a trivial copy
// constructor (C++ [class.copy]p6)
bool hasTrivialCopyConstructor() const {
return data().HasTrivialCopyConstructor;
}
// setHasTrivialCopyConstructor - Set whether this class has a trivial
// copy constructor (C++ [class.copy]p6)
void setHasTrivialCopyConstructor(bool TC) {
data().HasTrivialCopyConstructor = TC;
}
// hasTrivialCopyAssignment - Whether this class has a trivial copy
// assignment operator (C++ [class.copy]p11)
bool hasTrivialCopyAssignment() const {
return data().HasTrivialCopyAssignment;
}
// setHasTrivialCopyAssignment - Set whether this class has a
// trivial copy assignment operator (C++ [class.copy]p11)
void setHasTrivialCopyAssignment(bool TC) {
data().HasTrivialCopyAssignment = TC;
}
// hasTrivialDestructor - Whether this class has a trivial destructor
// (C++ [class.dtor]p3)
bool hasTrivialDestructor() const { return data().HasTrivialDestructor; }
// setHasTrivialDestructor - Set whether this class has a trivial destructor
// (C++ [class.dtor]p3)
void setHasTrivialDestructor(bool TC) { data().HasTrivialDestructor = TC; }
/// \brief If this record is an instantiation of a member class,
/// retrieves the member class from which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// classes of class templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// struct A { };
/// };
/// \endcode
///
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromMemberClass() will return
/// the CXXRecordDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberClass().
CXXRecordDecl *getInstantiatedFromMemberClass() const;
/// \brief If this class is an instantiation of a member class of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief Specify that this record is an instantiation of the
/// member class RD.
void setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK);
/// \brief Retrieves the class template that is described by this
/// class declaration.
///
/// Every class template is represented as a ClassTemplateDecl and a
/// CXXRecordDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
/// CXXRecordDecl that from a ClassTemplateDecl, while
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
/// a CXXRecordDecl.
ClassTemplateDecl *getDescribedClassTemplate() const {
return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
}
void setDescribedClassTemplate(ClassTemplateDecl *Template) {
TemplateOrInstantiation = Template;
}
/// \brief Determine whether this particular class is a specialization or
/// instantiation of a class template or member class of a class template,
/// and how it was instantiated or specialized.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief Set the kind of specialization or template instantiation this is.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
/// getDefaultConstructor - Returns the default constructor for this class
CXXConstructorDecl *getDefaultConstructor(ASTContext &Context);
/// getDestructor - Returns the destructor decl for this class.
CXXDestructorDecl *getDestructor(ASTContext &Context) const;
/// isLocalClass - If the class is a local class [class.local], returns
/// the enclosing function declaration.
const FunctionDecl *isLocalClass() const {
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
return RD->isLocalClass();
return dyn_cast<FunctionDecl>(getDeclContext());
}
/// \brief Determine whether this class is derived from the class \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is derived from Base, false otherwise.
bool isDerivedFrom(CXXRecordDecl *Base) const;
/// \brief Determine whether this class is derived from the type \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \param Paths will contain the paths taken from the current class to the
/// given \p Base class.
///
/// \returns true if this class is derived from Base, false otherwise.
///
/// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
/// tangling input and output in \p Paths
bool isDerivedFrom(CXXRecordDecl *Base, CXXBasePaths &Paths) const;
/// \brief Determine whether this class is virtually derived from
/// the class \p Base.
///
/// This routine only determines whether this class is virtually
/// derived from \p Base, but does not account for factors that may
/// make a Derived -> Base class ill-formed, such as
/// private/protected inheritance or multiple, ambiguous base class
/// subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is virtually derived from Base,
/// false otherwise.
bool isVirtuallyDerivedFrom(CXXRecordDecl *Base) const;
/// \brief Determine whether this class is provably not derived from
/// the type \p Base.
bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
/// \brief Function type used by forallBases() as a callback.
///
/// \param Base the definition of the base class
///
/// \returns true if this base matched the search criteria
typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
void *UserData);
/// \brief Determines if the given callback holds for all the direct
/// or indirect base classes of this type.
///
/// The class itself does not count as a base class. This routine
/// returns false if the class has non-computable base classes.
///
/// \param AllowShortCircuit if false, forces the callback to be called
/// for every base class, even if a dependent or non-matching base was
/// found.
bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
bool AllowShortCircuit = true) const;
/// \brief Function type used by lookupInBases() to determine whether a
/// specific base class subobject matches the lookup criteria.
///
/// \param Specifier the base-class specifier that describes the inheritance
/// from the base class we are trying to match.
///
/// \param Path the current path, from the most-derived class down to the
/// base named by the \p Specifier.
///
/// \param UserData a single pointer to user-specified data, provided to
/// lookupInBases().
///
/// \returns true if this base matched the search criteria, false otherwise.
typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
void *UserData);
/// \brief Look for entities within the base classes of this C++ class,
/// transitively searching all base class subobjects.
///
/// This routine uses the callback function \p BaseMatches to find base
/// classes meeting some search criteria, walking all base class subobjects
/// and populating the given \p Paths structure with the paths through the
/// inheritance hierarchy that resulted in a match. On a successful search,
/// the \p Paths structure can be queried to retrieve the matching paths and
/// to determine if there were any ambiguities.
///
/// \param BaseMatches callback function used to determine whether a given
/// base matches the user-defined search criteria.
///
/// \param UserData user data pointer that will be provided to \p BaseMatches.
///
/// \param Paths used to record the paths from this class to its base class
/// subobjects that match the search criteria.
///
/// \returns true if there exists any path from this class to a base class
/// subobject that matches the search criteria.
bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
CXXBasePaths &Paths) const;
/// \brief Base-class lookup callback that determines whether the given
/// base class specifier refers to a specific class declaration.
///
/// This callback can be used with \c lookupInBases() to determine whether
/// a given derived class has is a base class subobject of a particular type.
/// The user data pointer should refer to the canonical CXXRecordDecl of the
/// base class that we are searching for.
static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *BaseRecord);
/// \brief Base-class lookup callback that determines whether the
/// given base class specifier refers to a specific class
/// declaration and describes virtual derivation.
///
/// This callback can be used with \c lookupInBases() to determine
/// whether a given derived class has is a virtual base class
/// subobject of a particular type. The user data pointer should
/// refer to the canonical CXXRecordDecl of the base class that we
/// are searching for.
static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *BaseRecord);
/// \brief Base-class lookup callback that determines whether there exists
/// a tag with the given name.
///
/// This callback can be used with \c lookupInBases() to find tag members
/// of the given name within a C++ class hierarchy. The user data pointer
/// is an opaque \c DeclarationName pointer.
static bool FindTagMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *Name);
/// \brief Base-class lookup callback that determines whether there exists
/// a member with the given name.
///
/// This callback can be used with \c lookupInBases() to find members
/// of the given name within a C++ class hierarchy. The user data pointer
/// is an opaque \c DeclarationName pointer.
static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *Name);
/// \brief Base-class lookup callback that determines whether there exists
/// a member with the given name that can be used in a nested-name-specifier.
///
/// This callback can be used with \c lookupInBases() to find membes of
/// the given name within a C++ class hierarchy that can occur within
/// nested-name-specifiers.
static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
void *UserData);
/// viewInheritance - Renders and displays an inheritance diagram
/// for this C++ class and all of its base classes (transitively) using
/// GraphViz.
void viewInheritance(ASTContext& Context) const;
/// MergeAccess - Calculates the access of a decl that is reached
/// along a path.
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
AccessSpecifier DeclAccess) {
assert(DeclAccess != AS_none);
if (DeclAccess == AS_private) return AS_none;
return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == CXXRecord ||
K == ClassTemplateSpecialization ||
K == ClassTemplatePartialSpecialization;
}
static bool classof(const CXXRecordDecl *D) { return true; }
static bool classof(const ClassTemplateSpecializationDecl *D) {
return true;
}
};
/// CXXMethodDecl - Represents a static or instance method of a
/// struct/union/class.
class CXXMethodDecl : public FunctionDecl {
protected:
CXXMethodDecl(Kind DK, CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
bool isStatic, bool isInline)
: FunctionDecl(DK, RD, L, N, T, TInfo, (isStatic ? Static : None),
isInline) {}
public:
static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo,
bool isStatic = false,
bool isInline = false);
bool isStatic() const { return getStorageClass() == Static; }
bool isInstance() const { return !isStatic(); }
bool isVirtual() const {
CXXMethodDecl *CD =
cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
if (CD->isVirtualAsWritten())
return true;
return (CD->begin_overridden_methods() != CD->end_overridden_methods());
}
/// \brief Determine whether this is a usual deallocation function
/// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
/// delete or delete[] operator with a particular signature.
bool isUsualDeallocationFunction() const;
const CXXMethodDecl *getCanonicalDecl() const {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
CXXMethodDecl *getCanonicalDecl() {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
///
void addOverriddenMethod(const CXXMethodDecl *MD);
typedef const CXXMethodDecl ** method_iterator;
method_iterator begin_overridden_methods() const;
method_iterator end_overridden_methods() const;
/// getParent - Returns the parent of this method declaration, which
/// is the class in which this method is defined.
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(FunctionDecl::getParent());
}
/// getParent - Returns the parent of this method declaration, which
/// is the class in which this method is defined.
CXXRecordDecl *getParent() {
return const_cast<CXXRecordDecl *>(
cast<CXXRecordDecl>(FunctionDecl::getParent()));
}
/// getThisType - Returns the type of 'this' pointer.
/// Should only be called for instance methods.
QualType getThisType(ASTContext &C) const;
unsigned getTypeQualifiers() const {
return getType()->getAs<FunctionProtoType>()->getTypeQuals();
}
bool hasInlineBody() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const CXXMethodDecl *D) { return true; }
static bool classofKind(Kind K) {
return K >= CXXMethod && K <= CXXConversion;
}
};
/// CXXBaseOrMemberInitializer - Represents a C++ base or member
/// initializer, which is part of a constructor initializer that
/// initializes one non-static member variable or one base class. For
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
/// initializers:
///
/// @code
/// class A { };
/// class B : public A {
/// float f;
/// public:
/// B(A& a) : A(a), f(3.14159) { }
/// };
/// @endcode
class CXXBaseOrMemberInitializer {
/// \brief Either the base class name (stored as a TypeSourceInfo*) or the
/// field being initialized.
llvm::PointerUnion<TypeSourceInfo *, FieldDecl *> BaseOrMember;
/// \brief The source location for the field name.
SourceLocation MemberLocation;
/// \brief The argument used to initialize the base or member, which may
/// end up constructing an object (when multiple arguments are involved).
Stmt *Init;
/// \brief Stores either the constructor to call to initialize this base or
/// member (a CXXConstructorDecl pointer), or stores the anonymous union of
/// which the initialized value is a member.
///
/// When the value is a FieldDecl pointer, 'BaseOrMember' is class's
/// anonymous union data member, this field holds the FieldDecl for the
/// member of the anonymous union being initialized.
/// @code
/// struct X {
/// X() : au_i1(123) {}
/// union {
/// int au_i1;
/// float au_f1;
/// };
/// };
/// @endcode
/// In above example, BaseOrMember holds the field decl. for anonymous union
/// and AnonUnionMember holds field decl for au_i1.
FieldDecl *AnonUnionMember;
/// LParenLoc - Location of the left paren of the ctor-initializer.
SourceLocation LParenLoc;
/// RParenLoc - Location of the right paren of the ctor-initializer.
SourceLocation RParenLoc;
public:
/// CXXBaseOrMemberInitializer - Creates a new base-class initializer.
explicit
CXXBaseOrMemberInitializer(ASTContext &Context,
TypeSourceInfo *TInfo,
SourceLocation L,
Expr *Init,
SourceLocation R);
/// CXXBaseOrMemberInitializer - Creates a new member initializer.
explicit
CXXBaseOrMemberInitializer(ASTContext &Context,
FieldDecl *Member, SourceLocation MemberLoc,
SourceLocation L,
Expr *Init,
SourceLocation R);
/// \brief Destroy the base or member initializer.
void Destroy(ASTContext &Context);
/// isBaseInitializer - Returns true when this initializer is
/// initializing a base class.
bool isBaseInitializer() const { return BaseOrMember.is<TypeSourceInfo*>(); }
/// isMemberInitializer - Returns true when this initializer is
/// initializing a non-static data member.
bool isMemberInitializer() const { return BaseOrMember.is<FieldDecl*>(); }
/// If this is a base class initializer, returns the type of the
/// base class with location information. Otherwise, returns an NULL
/// type location.
TypeLoc getBaseClassLoc() const;
/// If this is a base class initializer, returns the type of the base class.
/// Otherwise, returns NULL.
const Type *getBaseClass() const;
Type *getBaseClass();
/// \brief Returns the declarator information for a base class initializer.
TypeSourceInfo *getBaseClassInfo() const {
return BaseOrMember.dyn_cast<TypeSourceInfo *>();
}
/// getMember - If this is a member initializer, returns the
/// declaration of the non-static data member being
/// initialized. Otherwise, returns NULL.
FieldDecl *getMember() {
if (isMemberInitializer())
return BaseOrMember.get<FieldDecl*>();
else
return 0;
}
SourceLocation getMemberLocation() const {
return MemberLocation;
}
void setMember(FieldDecl *Member) {
assert(isMemberInitializer());
BaseOrMember = Member;
}
/// \brief Determine the source location of the initializer.
SourceLocation getSourceLocation() const;
/// \brief Determine the source range covering the entire initializer.
SourceRange getSourceRange() const;
FieldDecl *getAnonUnionMember() const {
return AnonUnionMember;
}
void setAnonUnionMember(FieldDecl *anonMember) {
AnonUnionMember = anonMember;
}
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
Expr *getInit() { return static_cast<Expr *>(Init); }
};
/// CXXConstructorDecl - Represents a C++ constructor within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// explicit X(int); // represented by a CXXConstructorDecl.
/// };
/// @endcode
class CXXConstructorDecl : public CXXMethodDecl {
/// IsExplicitSpecified - Whether this constructor declaration has the
/// 'explicit' keyword specified.
bool IsExplicitSpecified : 1;
/// ImplicitlyDefined - Whether this constructor was implicitly
/// defined by the compiler. When false, the constructor was defined
/// by the user. In C++03, this flag will have the same value as
/// Implicit. In C++0x, however, a constructor that is
/// explicitly defaulted (i.e., defined with " = default") will have
/// @c !Implicit && ImplicitlyDefined.
bool ImplicitlyDefined : 1;
/// Support for base and member initializers.
/// BaseOrMemberInitializers - The arguments used to initialize the base
/// or member.
CXXBaseOrMemberInitializer **BaseOrMemberInitializers;
unsigned NumBaseOrMemberInitializers;
CXXConstructorDecl(CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
bool isExplicitSpecified, bool isInline,
bool isImplicitlyDeclared)
: CXXMethodDecl(CXXConstructor, RD, L, N, T, TInfo, false, isInline),
IsExplicitSpecified(isExplicitSpecified), ImplicitlyDefined(false),
BaseOrMemberInitializers(0), NumBaseOrMemberInitializers(0) {
setImplicit(isImplicitlyDeclared);
}
virtual void Destroy(ASTContext& C);
public:
static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo,
bool isExplicit,
bool isInline, bool isImplicitlyDeclared);
/// isExplicitSpecified - Whether this constructor declaration has the
/// 'explicit' keyword specified.
bool isExplicitSpecified() const { return IsExplicitSpecified; }
/// isExplicit - Whether this constructor was marked "explicit" or not.
bool isExplicit() const {
return cast<CXXConstructorDecl>(getFirstDeclaration())
->isExplicitSpecified();
}
/// isImplicitlyDefined - Whether this constructor was implicitly
/// defined. If false, then this constructor was defined by the
/// user. This operation can only be invoked if the constructor has
/// already been defined.
bool isImplicitlyDefined(ASTContext &C) const {
assert(isThisDeclarationADefinition() &&
"Can only get the implicit-definition flag once the "
"constructor has been defined");
return ImplicitlyDefined;
}
/// setImplicitlyDefined - Set whether this constructor was
/// implicitly defined or not.
void setImplicitlyDefined(bool ID) {
assert(isThisDeclarationADefinition() &&
"Can only set the implicit-definition flag once the constructor "
"has been defined");
ImplicitlyDefined = ID;
}
/// init_iterator - Iterates through the member/base initializer list.
typedef CXXBaseOrMemberInitializer **init_iterator;
/// init_const_iterator - Iterates through the memberbase initializer list.
typedef CXXBaseOrMemberInitializer * const * init_const_iterator;
/// init_begin() - Retrieve an iterator to the first initializer.
init_iterator init_begin() { return BaseOrMemberInitializers; }
/// begin() - Retrieve an iterator to the first initializer.
init_const_iterator init_begin() const { return BaseOrMemberInitializers; }
/// init_end() - Retrieve an iterator past the last initializer.
init_iterator init_end() {
return BaseOrMemberInitializers + NumBaseOrMemberInitializers;
}
/// end() - Retrieve an iterator past the last initializer.
init_const_iterator init_end() const {
return BaseOrMemberInitializers + NumBaseOrMemberInitializers;
}
/// getNumArgs - Determine the number of arguments used to
/// initialize the member or base.
unsigned getNumBaseOrMemberInitializers() const {
return NumBaseOrMemberInitializers;
}
void setNumBaseOrMemberInitializers(unsigned numBaseOrMemberInitializers) {
NumBaseOrMemberInitializers = numBaseOrMemberInitializers;
}
void setBaseOrMemberInitializers(CXXBaseOrMemberInitializer ** initializers) {
BaseOrMemberInitializers = initializers;
}
/// isDefaultConstructor - Whether this constructor is a default
/// constructor (C++ [class.ctor]p5), which can be used to
/// default-initialize a class of this type.
bool isDefaultConstructor() const;
/// isCopyConstructor - Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class. @p TypeQuals will be set to the qualifiers on the
/// argument type. For example, @p TypeQuals would be set to @c
/// QualType::Const for the following copy constructor:
///
/// @code
/// class X {
/// public:
/// X(const X&);
/// };
/// @endcode
bool isCopyConstructor(unsigned &TypeQuals) const;
/// isCopyConstructor - Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class.
bool isCopyConstructor() const {
unsigned TypeQuals = 0;
return isCopyConstructor(TypeQuals);
}
/// isConvertingConstructor - Whether this constructor is a
/// converting constructor (C++ [class.conv.ctor]), which can be
/// used for user-defined conversions.
bool isConvertingConstructor(bool AllowExplicit) const;
/// \brief Determine whether this is a member template specialization that
/// looks like a copy constructor. Such constructors are never used to copy
/// an object.
bool isCopyConstructorLikeSpecialization() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const CXXConstructorDecl *D) { return true; }
static bool classofKind(Kind K) { return K == CXXConstructor; }
};
/// CXXDestructorDecl - Represents a C++ destructor within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// ~X(); // represented by a CXXDestructorDecl.
/// };
/// @endcode
class CXXDestructorDecl : public CXXMethodDecl {
/// ImplicitlyDefined - Whether this destructor was implicitly
/// defined by the compiler. When false, the destructor was defined
/// by the user. In C++03, this flag will have the same value as
/// Implicit. In C++0x, however, a destructor that is
/// explicitly defaulted (i.e., defined with " = default") will have
/// @c !Implicit && ImplicitlyDefined.
bool ImplicitlyDefined : 1;
FunctionDecl *OperatorDelete;
CXXDestructorDecl(CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T,
bool isInline, bool isImplicitlyDeclared)
: CXXMethodDecl(CXXDestructor, RD, L, N, T, /*TInfo=*/0, false, isInline),
ImplicitlyDefined(false), OperatorDelete(0) {
setImplicit(isImplicitlyDeclared);
}
public:
static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isInline,
bool isImplicitlyDeclared);
/// isImplicitlyDefined - Whether this destructor was implicitly
/// defined. If false, then this destructor was defined by the
/// user. This operation can only be invoked if the destructor has
/// already been defined.
bool isImplicitlyDefined() const {
assert(isThisDeclarationADefinition() &&
"Can only get the implicit-definition flag once the destructor has been defined");
return ImplicitlyDefined;
}
/// setImplicitlyDefined - Set whether this destructor was
/// implicitly defined or not.
void setImplicitlyDefined(bool ID) {
assert(isThisDeclarationADefinition() &&
"Can only set the implicit-definition flag once the destructor has been defined");
ImplicitlyDefined = ID;
}
void setOperatorDelete(FunctionDecl *OD) { OperatorDelete = OD; }
const FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const CXXDestructorDecl *D) { return true; }
static bool classofKind(Kind K) { return K == CXXDestructor; }
};
/// CXXConversionDecl - Represents a C++ conversion function within a
/// class. For example:
///
/// @code
/// class X {
/// public:
/// operator bool();
/// };
/// @endcode
class CXXConversionDecl : public CXXMethodDecl {
/// IsExplicitSpecified - Whether this conversion function declaration is
/// marked "explicit", meaning that it can only be applied when the user
/// explicitly wrote a cast. This is a C++0x feature.
bool IsExplicitSpecified : 1;
CXXConversionDecl(CXXRecordDecl *RD, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicitSpecified)
: CXXMethodDecl(CXXConversion, RD, L, N, T, TInfo, false, isInline),
IsExplicitSpecified(isExplicitSpecified) { }
public:
static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isExplicit);
/// IsExplicitSpecified - Whether this conversion function declaration is
/// marked "explicit", meaning that it can only be applied when the user
/// explicitly wrote a cast. This is a C++0x feature.
bool isExplicitSpecified() const { return IsExplicitSpecified; }
/// isExplicit - Whether this is an explicit conversion operator
/// (C++0x only). Explicit conversion operators are only considered
/// when the user has explicitly written a cast.
bool isExplicit() const {
return cast<CXXConversionDecl>(getFirstDeclaration())
->isExplicitSpecified();
}
/// getConversionType - Returns the type that this conversion
/// function is converting to.
QualType getConversionType() const {
return getType()->getAs<FunctionType>()->getResultType();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const CXXConversionDecl *D) { return true; }
static bool classofKind(Kind K) { return K == CXXConversion; }
};
/// FriendDecl - Represents the declaration of a friend entity,
/// which can be a function, a type, or a templated function or type.
// For example:
///
/// @code
/// template <typename T> class A {
/// friend int foo(T);
/// friend class B;
/// friend T; // only in C++0x
/// template <typename U> friend class C;
/// template <typename U> friend A& operator+=(A&, const U&) { ... }
/// };
/// @endcode
///
/// The semantic context of a friend decl is its declaring class.
class FriendDecl : public Decl {
public:
typedef llvm::PointerUnion<NamedDecl*,Type*> FriendUnion;
private:
// The declaration that's a friend of this class.
FriendUnion Friend;
// Location of the 'friend' specifier.
SourceLocation FriendLoc;
// FIXME: Hack to keep track of whether this was a friend function
// template specialization.
bool WasSpecialization;
FriendDecl(DeclContext *DC, SourceLocation L, FriendUnion Friend,
SourceLocation FriendL)
: Decl(Decl::Friend, DC, L),
Friend(Friend),
FriendLoc(FriendL),
WasSpecialization(false) {
}
public:
static FriendDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, FriendUnion Friend_,
SourceLocation FriendL);
/// If this friend declaration names an (untemplated but
/// possibly dependent) type, return the type; otherwise
/// return null. This is used only for C++0x's unelaborated
/// friend type declarations.
Type *getFriendType() const {
return Friend.dyn_cast<Type*>();
}
/// If this friend declaration doesn't name an unelaborated
/// type, return the inner declaration.
NamedDecl *getFriendDecl() const {
return Friend.dyn_cast<NamedDecl*>();
}
/// Retrieves the location of the 'friend' keyword.
SourceLocation getFriendLoc() const {
return FriendLoc;
}
bool wasSpecialization() const { return WasSpecialization; }
void setSpecialization(bool WS) { WasSpecialization = WS; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const FriendDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::Friend; }
};
/// LinkageSpecDecl - This represents a linkage specification. For example:
/// extern "C" void foo();
///
class LinkageSpecDecl : public Decl, public DeclContext {
public:
/// LanguageIDs - Used to represent the language in a linkage
/// specification. The values are part of the serialization abi for
/// ASTs and cannot be changed without altering that abi. To help
/// ensure a stable abi for this, we choose the DW_LANG_ encodings
/// from the dwarf standard.
enum LanguageIDs { lang_c = /* DW_LANG_C */ 0x0002,
lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 };
private:
/// Language - The language for this linkage specification.
LanguageIDs Language;
/// HadBraces - Whether this linkage specification had curly braces or not.
bool HadBraces : 1;
LinkageSpecDecl(DeclContext *DC, SourceLocation L, LanguageIDs lang,
bool Braces)
: Decl(LinkageSpec, DC, L),
DeclContext(LinkageSpec), Language(lang), HadBraces(Braces) { }
public:
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, LanguageIDs Lang,
bool Braces);
LanguageIDs getLanguage() const { return Language; }
/// hasBraces - Determines whether this linkage specification had
/// braces in its syntactic form.
bool hasBraces() const { return HadBraces; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const LinkageSpecDecl *D) { return true; }
static bool classofKind(Kind K) { return K == LinkageSpec; }
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
}
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
}
};
/// UsingDirectiveDecl - Represents C++ using-directive. For example:
///
/// using namespace std;
///
// NB: UsingDirectiveDecl should be Decl not NamedDecl, but we provide
// artificial name, for all using-directives in order to store
// them in DeclContext effectively.
class UsingDirectiveDecl : public NamedDecl {
/// SourceLocation - Location of 'namespace' token.
SourceLocation NamespaceLoc;
/// \brief The source range that covers the nested-name-specifier
/// preceding the namespace name.
SourceRange QualifierRange;
/// \brief The nested-name-specifier that precedes the namespace
/// name, if any.
NestedNameSpecifier *Qualifier;
/// IdentLoc - Location of nominated namespace-name identifier.
// FIXME: We don't store location of scope specifier.
SourceLocation IdentLoc;
/// NominatedNamespace - Namespace nominated by using-directive.
NamedDecl *NominatedNamespace;
/// Enclosing context containing both using-directive and nominated
/// namespace.
DeclContext *CommonAncestor;
/// getUsingDirectiveName - Returns special DeclarationName used by
/// using-directives. This is only used by DeclContext for storing
/// UsingDirectiveDecls in its lookup structure.
static DeclarationName getName() {
return DeclarationName::getUsingDirectiveName();
}
UsingDirectiveDecl(DeclContext *DC, SourceLocation L,
SourceLocation NamespcLoc,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor)
: NamedDecl(Decl::UsingDirective, DC, L, getName()),
NamespaceLoc(NamespcLoc), QualifierRange(QualifierRange),
Qualifier(Qualifier), IdentLoc(IdentLoc),
NominatedNamespace(Nominated),
CommonAncestor(CommonAncestor) {
}
public:
/// \brief Retrieve the source range of the nested-name-specifier
/// that qualifiers the namespace name.
SourceRange getQualifierRange() const { return QualifierRange; }
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const { return Qualifier; }
NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
const NamedDecl *getNominatedNamespaceAsWritten() const {
return NominatedNamespace;
}
/// getNominatedNamespace - Returns namespace nominated by using-directive.
NamespaceDecl *getNominatedNamespace();
const NamespaceDecl *getNominatedNamespace() const {
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
}
/// getCommonAncestor - returns common ancestor context of using-directive,
/// and nominated by it namespace.
DeclContext *getCommonAncestor() { return CommonAncestor; }
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
/// getNamespaceKeyLocation - Returns location of namespace keyword.
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
/// getIdentLocation - Returns location of identifier.
SourceLocation getIdentLocation() const { return IdentLoc; }
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const UsingDirectiveDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::UsingDirective; }
// Friend for getUsingDirectiveName.
friend class DeclContext;
};
/// NamespaceAliasDecl - Represents a C++ namespace alias. For example:
///
/// @code
/// namespace Foo = Bar;
/// @endcode
class NamespaceAliasDecl : public NamedDecl {
SourceLocation AliasLoc;
/// \brief The source range that covers the nested-name-specifier
/// preceding the namespace name.
SourceRange QualifierRange;
/// \brief The nested-name-specifier that precedes the namespace
/// name, if any.
NestedNameSpecifier *Qualifier;
/// IdentLoc - Location of namespace identifier.
SourceLocation IdentLoc;
/// Namespace - The Decl that this alias points to. Can either be a
/// NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *Namespace;
NamespaceAliasDecl(DeclContext *DC, SourceLocation L,
SourceLocation AliasLoc, IdentifierInfo *Alias,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc, NamedDecl *Namespace)
: NamedDecl(Decl::NamespaceAlias, DC, L, Alias), AliasLoc(AliasLoc),
QualifierRange(QualifierRange), Qualifier(Qualifier),
IdentLoc(IdentLoc), Namespace(Namespace) { }
public:
/// \brief Retrieve the source range of the nested-name-specifier
/// that qualifiers the namespace name.
SourceRange getQualifierRange() const { return QualifierRange; }
/// \brief Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const { return Qualifier; }
NamespaceDecl *getNamespace() {
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
return AD->getNamespace();
return cast<NamespaceDecl>(Namespace);
}
const NamespaceDecl *getNamespace() const {
return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
}
/// Returns the location of the alias name, i.e. 'foo' in
/// "namespace foo = ns::bar;".
SourceLocation getAliasLoc() const { return AliasLoc; }
/// Returns the location of the 'namespace' keyword.
SourceLocation getNamespaceLoc() const { return getLocation(); }
/// Returns the location of the identifier in the named namespace.
SourceLocation getTargetNameLoc() const { return IdentLoc; }
/// \brief Retrieve the namespace that this alias refers to, which
/// may either be a NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *getAliasedNamespace() const { return Namespace; }
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceRange QualifierRange,
NestedNameSpecifier *Qualifier,
SourceLocation IdentLoc,
NamedDecl *Namespace);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const NamespaceAliasDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::NamespaceAlias; }
};
/// UsingShadowDecl - Represents a shadow declaration introduced into
/// a scope by a (resolved) using declaration. For example,
///
/// namespace A {
/// void foo();
/// }
/// namespace B {
/// using A::foo(); // <- a UsingDecl
/// // Also creates a UsingShadowDecl for A::foo in B
/// }
///
class UsingShadowDecl : public NamedDecl {
/// The referenced declaration.
NamedDecl *Underlying;
/// The using declaration which introduced this decl.
UsingDecl *Using;
UsingShadowDecl(DeclContext *DC, SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target)
: NamedDecl(UsingShadow, DC, Loc, Target->getDeclName()),
Underlying(Target), Using(Using) {
IdentifierNamespace = Target->getIdentifierNamespace();
setImplicit();
}
public:
static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target) {
return new (C) UsingShadowDecl(DC, Loc, Using, Target);
}
/// Gets the underlying declaration which has been brought into the
/// local scope.
NamedDecl *getTargetDecl() const {
return Underlying;
}
/// Gets the using declaration to which this declaration is tied.
UsingDecl *getUsingDecl() const {
return Using;
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const UsingShadowDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
};
/// UsingDecl - Represents a C++ using-declaration. For example:
/// using someNameSpace::someIdentifier;
class UsingDecl : public NamedDecl {
/// \brief The source range that covers the nested-name-specifier
/// preceding the declaration name.
SourceRange NestedNameRange;
/// \brief The source location of the "using" location itself.
SourceLocation UsingLocation;
/// \brief Target nested name specifier.
NestedNameSpecifier* TargetNestedName;
/// \brief The collection of shadow declarations associated with
/// this using declaration. This set can change as a class is
/// processed.
llvm::SmallPtrSet<UsingShadowDecl*, 8> Shadows;
// \brief Has 'typename' keyword.
bool IsTypeName;
UsingDecl(DeclContext *DC, SourceLocation L, SourceRange NNR,
SourceLocation UL, NestedNameSpecifier* TargetNNS,
DeclarationName Name, bool IsTypeNameArg)
: NamedDecl(Decl::Using, DC, L, Name),
NestedNameRange(NNR), UsingLocation(UL), TargetNestedName(TargetNNS),
IsTypeName(IsTypeNameArg) {
}
public:
/// \brief Returns the source range that covers the nested-name-specifier
/// preceding the namespace name.
SourceRange getNestedNameRange() { return NestedNameRange; }
/// \brief Returns the source location of the "using" location itself.
SourceLocation getUsingLocation() { return UsingLocation; }
/// \brief Get target nested name declaration.
NestedNameSpecifier* getTargetNestedNameDecl() {
return TargetNestedName;
}
/// isTypeName - Return true if using decl has 'typename'.
bool isTypeName() const { return IsTypeName; }
typedef llvm::SmallPtrSet<UsingShadowDecl*,8>::const_iterator shadow_iterator;
shadow_iterator shadow_begin() const { return Shadows.begin(); }
shadow_iterator shadow_end() const { return Shadows.end(); }
void addShadowDecl(UsingShadowDecl *S) {
assert(S->getUsingDecl() == this);
if (!Shadows.insert(S)) {
assert(false && "declaration already in set");
}
}
void removeShadowDecl(UsingShadowDecl *S) {
assert(S->getUsingDecl() == this);
if (!Shadows.erase(S)) {
assert(false && "declaration not in set");
}
}
static UsingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, SourceRange NNR, SourceLocation UsingL,
NestedNameSpecifier* TargetNNS, DeclarationName Name, bool IsTypeNameArg);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const UsingDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::Using; }
};
/// UnresolvedUsingValueDecl - Represents a dependent using
/// declaration which was not marked with 'typename'. Unlike
/// non-dependent using declarations, these *only* bring through
/// non-types; otherwise they would break two-phase lookup.
///
/// template <class T> class A : public Base<T> {
/// using Base<T>::foo;
/// };
class UnresolvedUsingValueDecl : public ValueDecl {
/// \brief The source range that covers the nested-name-specifier
/// preceding the declaration name.
SourceRange TargetNestedNameRange;
/// \brief The source location of the 'using' keyword
SourceLocation UsingLocation;
NestedNameSpecifier *TargetNestedNameSpecifier;
UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
SourceLocation UsingLoc, SourceRange TargetNNR,
NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc,
DeclarationName TargetName)
: ValueDecl(Decl::UnresolvedUsingValue, DC, TargetNameLoc, TargetName, Ty),
TargetNestedNameRange(TargetNNR), UsingLocation(UsingLoc),
TargetNestedNameSpecifier(TargetNNS)
{ }
public:
/// \brief Returns the source range that covers the nested-name-specifier
/// preceding the namespace name.
SourceRange getTargetNestedNameRange() const { return TargetNestedNameRange; }
/// \brief Get target nested name declaration.
NestedNameSpecifier* getTargetNestedNameSpecifier() {
return TargetNestedNameSpecifier;
}
/// \brief Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
static UnresolvedUsingValueDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
SourceRange TargetNNR, NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc, DeclarationName TargetName);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const UnresolvedUsingValueDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingValue; }
};
/// UnresolvedUsingTypenameDecl - Represents a dependent using
/// declaration which was marked with 'typename'.
///
/// template <class T> class A : public Base<T> {
/// using typename Base<T>::foo;
/// };
///
/// The type associated with a unresolved using typename decl is
/// currently always a typename type.
class UnresolvedUsingTypenameDecl : public TypeDecl {
/// \brief The source range that covers the nested-name-specifier
/// preceding the declaration name.
SourceRange TargetNestedNameRange;
/// \brief The source location of the 'using' keyword
SourceLocation UsingLocation;
/// \brief The source location of the 'typename' keyword
SourceLocation TypenameLocation;
NestedNameSpecifier *TargetNestedNameSpecifier;
UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc,
SourceRange TargetNNR, NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc, IdentifierInfo *TargetName)
: TypeDecl(Decl::UnresolvedUsingTypename, DC, TargetNameLoc, TargetName),
TargetNestedNameRange(TargetNNR), UsingLocation(UsingLoc),
TypenameLocation(TypenameLoc), TargetNestedNameSpecifier(TargetNNS)
{ }
public:
/// \brief Returns the source range that covers the nested-name-specifier
/// preceding the namespace name.
SourceRange getTargetNestedNameRange() const { return TargetNestedNameRange; }
/// \brief Get target nested name declaration.
NestedNameSpecifier* getTargetNestedNameSpecifier() {
return TargetNestedNameSpecifier;
}
/// \brief Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// \brief Returns the source location of the 'typename' keyword.
SourceLocation getTypenameLoc() const { return TypenameLocation; }
static UnresolvedUsingTypenameDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc,
SourceRange TargetNNR, NestedNameSpecifier *TargetNNS,
SourceLocation TargetNameLoc, DeclarationName TargetName);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const UnresolvedUsingTypenameDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingTypename; }
};
/// StaticAssertDecl - Represents a C++0x static_assert declaration.
class StaticAssertDecl : public Decl {
Expr *AssertExpr;
StringLiteral *Message;
StaticAssertDecl(DeclContext *DC, SourceLocation L,
Expr *assertexpr, StringLiteral *message)
: Decl(StaticAssert, DC, L), AssertExpr(assertexpr), Message(message) { }
public:
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, Expr *AssertExpr,
StringLiteral *Message);
Expr *getAssertExpr() { return AssertExpr; }
const Expr *getAssertExpr() const { return AssertExpr; }
StringLiteral *getMessage() { return Message; }
const StringLiteral *getMessage() const { return Message; }
virtual ~StaticAssertDecl();
virtual void Destroy(ASTContext& C);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(StaticAssertDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Decl::StaticAssert; }
};
/// Insertion operator for diagnostics. This allows sending AccessSpecifier's
/// into a diagnostic with <<.
const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
AccessSpecifier AS);
} // end namespace clang
#endif