| //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the top level handling of macro expansion for the |
| // preprocessor. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Basic/Attributes.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/ObjCRuntime.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/CodeCompletionHandler.h" |
| #include "clang/Lex/DirectoryLookup.h" |
| #include "clang/Lex/ExternalPreprocessorSource.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/LexDiagnostic.h" |
| #include "clang/Lex/MacroArgs.h" |
| #include "clang/Lex/MacroInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/PreprocessorLexer.h" |
| #include "clang/Lex/Token.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstring> |
| #include <ctime> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace clang; |
| |
| MacroDirective * |
| Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { |
| if (!II->hadMacroDefinition()) |
| return nullptr; |
| auto Pos = CurSubmoduleState->Macros.find(II); |
| return Pos == CurSubmoduleState->Macros.end() ? nullptr |
| : Pos->second.getLatest(); |
| } |
| |
| void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ |
| assert(MD && "MacroDirective should be non-zero!"); |
| assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); |
| |
| MacroState &StoredMD = CurSubmoduleState->Macros[II]; |
| auto *OldMD = StoredMD.getLatest(); |
| MD->setPrevious(OldMD); |
| StoredMD.setLatest(MD); |
| StoredMD.overrideActiveModuleMacros(*this, II); |
| |
| if (needModuleMacros()) { |
| // Track that we created a new macro directive, so we know we should |
| // consider building a ModuleMacro for it when we get to the end of |
| // the module. |
| PendingModuleMacroNames.push_back(II); |
| } |
| |
| // Set up the identifier as having associated macro history. |
| II->setHasMacroDefinition(true); |
| if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) |
| II->setHasMacroDefinition(false); |
| if (II->isFromAST()) |
| II->setChangedSinceDeserialization(); |
| } |
| |
| void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, |
| MacroDirective *ED, |
| MacroDirective *MD) { |
| // Normally, when a macro is defined, it goes through appendMacroDirective() |
| // above, which chains a macro to previous defines, undefs, etc. |
| // However, in a pch, the whole macro history up to the end of the pch is |
| // stored, so ASTReader goes through this function instead. |
| // However, built-in macros are already registered in the Preprocessor |
| // ctor, and ASTWriter stops writing the macro chain at built-in macros, |
| // so in that case the chain from the pch needs to be spliced to the existing |
| // built-in. |
| |
| assert(II && MD); |
| MacroState &StoredMD = CurSubmoduleState->Macros[II]; |
| |
| if (auto *OldMD = StoredMD.getLatest()) { |
| // shouldIgnoreMacro() in ASTWriter also stops at macros from the |
| // predefines buffer in module builds. However, in module builds, modules |
| // are loaded completely before predefines are processed, so StoredMD |
| // will be nullptr for them when they're loaded. StoredMD should only be |
| // non-nullptr for builtins read from a pch file. |
| assert(OldMD->getMacroInfo()->isBuiltinMacro() && |
| "only built-ins should have an entry here"); |
| assert(!OldMD->getPrevious() && "builtin should only have a single entry"); |
| ED->setPrevious(OldMD); |
| StoredMD.setLatest(MD); |
| } else { |
| StoredMD = MD; |
| } |
| |
| // Setup the identifier as having associated macro history. |
| II->setHasMacroDefinition(true); |
| if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) |
| II->setHasMacroDefinition(false); |
| } |
| |
| ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, |
| MacroInfo *Macro, |
| ArrayRef<ModuleMacro *> Overrides, |
| bool &New) { |
| llvm::FoldingSetNodeID ID; |
| ModuleMacro::Profile(ID, Mod, II); |
| |
| void *InsertPos; |
| if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { |
| New = false; |
| return MM; |
| } |
| |
| auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); |
| ModuleMacros.InsertNode(MM, InsertPos); |
| |
| // Each overridden macro is now overridden by one more macro. |
| bool HidAny = false; |
| for (auto *O : Overrides) { |
| HidAny |= (O->NumOverriddenBy == 0); |
| ++O->NumOverriddenBy; |
| } |
| |
| // If we were the first overrider for any macro, it's no longer a leaf. |
| auto &LeafMacros = LeafModuleMacros[II]; |
| if (HidAny) { |
| LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(), |
| [](ModuleMacro *MM) { |
| return MM->NumOverriddenBy != 0; |
| }), |
| LeafMacros.end()); |
| } |
| |
| // The new macro is always a leaf macro. |
| LeafMacros.push_back(MM); |
| // The identifier now has defined macros (that may or may not be visible). |
| II->setHasMacroDefinition(true); |
| |
| New = true; |
| return MM; |
| } |
| |
| ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) { |
| llvm::FoldingSetNodeID ID; |
| ModuleMacro::Profile(ID, Mod, II); |
| |
| void *InsertPos; |
| return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, |
| ModuleMacroInfo &Info) { |
| assert(Info.ActiveModuleMacrosGeneration != |
| CurSubmoduleState->VisibleModules.getGeneration() && |
| "don't need to update this macro name info"); |
| Info.ActiveModuleMacrosGeneration = |
| CurSubmoduleState->VisibleModules.getGeneration(); |
| |
| auto Leaf = LeafModuleMacros.find(II); |
| if (Leaf == LeafModuleMacros.end()) { |
| // No imported macros at all: nothing to do. |
| return; |
| } |
| |
| Info.ActiveModuleMacros.clear(); |
| |
| // Every macro that's locally overridden is overridden by a visible macro. |
| llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; |
| for (auto *O : Info.OverriddenMacros) |
| NumHiddenOverrides[O] = -1; |
| |
| // Collect all macros that are not overridden by a visible macro. |
| llvm::SmallVector<ModuleMacro *, 16> Worklist; |
| for (auto *LeafMM : Leaf->second) { |
| assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); |
| if (NumHiddenOverrides.lookup(LeafMM) == 0) |
| Worklist.push_back(LeafMM); |
| } |
| while (!Worklist.empty()) { |
| auto *MM = Worklist.pop_back_val(); |
| if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { |
| // We only care about collecting definitions; undefinitions only act |
| // to override other definitions. |
| if (MM->getMacroInfo()) |
| Info.ActiveModuleMacros.push_back(MM); |
| } else { |
| for (auto *O : MM->overrides()) |
| if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) |
| Worklist.push_back(O); |
| } |
| } |
| // Our reverse postorder walk found the macros in reverse order. |
| std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); |
| |
| // Determine whether the macro name is ambiguous. |
| MacroInfo *MI = nullptr; |
| bool IsSystemMacro = true; |
| bool IsAmbiguous = false; |
| if (auto *MD = Info.MD) { |
| while (MD && isa<VisibilityMacroDirective>(MD)) |
| MD = MD->getPrevious(); |
| if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { |
| MI = DMD->getInfo(); |
| IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); |
| } |
| } |
| for (auto *Active : Info.ActiveModuleMacros) { |
| auto *NewMI = Active->getMacroInfo(); |
| |
| // Before marking the macro as ambiguous, check if this is a case where |
| // both macros are in system headers. If so, we trust that the system |
| // did not get it wrong. This also handles cases where Clang's own |
| // headers have a different spelling of certain system macros: |
| // #define LONG_MAX __LONG_MAX__ (clang's limits.h) |
| // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) |
| // |
| // FIXME: Remove the defined-in-system-headers check. clang's limits.h |
| // overrides the system limits.h's macros, so there's no conflict here. |
| if (MI && NewMI != MI && |
| !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) |
| IsAmbiguous = true; |
| IsSystemMacro &= Active->getOwningModule()->IsSystem || |
| SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); |
| MI = NewMI; |
| } |
| Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; |
| } |
| |
| void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { |
| ArrayRef<ModuleMacro*> Leaf; |
| auto LeafIt = LeafModuleMacros.find(II); |
| if (LeafIt != LeafModuleMacros.end()) |
| Leaf = LeafIt->second; |
| const MacroState *State = nullptr; |
| auto Pos = CurSubmoduleState->Macros.find(II); |
| if (Pos != CurSubmoduleState->Macros.end()) |
| State = &Pos->second; |
| |
| llvm::errs() << "MacroState " << State << " " << II->getNameStart(); |
| if (State && State->isAmbiguous(*this, II)) |
| llvm::errs() << " ambiguous"; |
| if (State && !State->getOverriddenMacros().empty()) { |
| llvm::errs() << " overrides"; |
| for (auto *O : State->getOverriddenMacros()) |
| llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); |
| } |
| llvm::errs() << "\n"; |
| |
| // Dump local macro directives. |
| for (auto *MD = State ? State->getLatest() : nullptr; MD; |
| MD = MD->getPrevious()) { |
| llvm::errs() << " "; |
| MD->dump(); |
| } |
| |
| // Dump module macros. |
| llvm::DenseSet<ModuleMacro*> Active; |
| for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None) |
| Active.insert(MM); |
| llvm::DenseSet<ModuleMacro*> Visited; |
| llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); |
| while (!Worklist.empty()) { |
| auto *MM = Worklist.pop_back_val(); |
| llvm::errs() << " ModuleMacro " << MM << " " |
| << MM->getOwningModule()->getFullModuleName(); |
| if (!MM->getMacroInfo()) |
| llvm::errs() << " undef"; |
| |
| if (Active.count(MM)) |
| llvm::errs() << " active"; |
| else if (!CurSubmoduleState->VisibleModules.isVisible( |
| MM->getOwningModule())) |
| llvm::errs() << " hidden"; |
| else if (MM->getMacroInfo()) |
| llvm::errs() << " overridden"; |
| |
| if (!MM->overrides().empty()) { |
| llvm::errs() << " overrides"; |
| for (auto *O : MM->overrides()) { |
| llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); |
| if (Visited.insert(O).second) |
| Worklist.push_back(O); |
| } |
| } |
| llvm::errs() << "\n"; |
| if (auto *MI = MM->getMacroInfo()) { |
| llvm::errs() << " "; |
| MI->dump(); |
| llvm::errs() << "\n"; |
| } |
| } |
| } |
| |
| /// RegisterBuiltinMacro - Register the specified identifier in the identifier |
| /// table and mark it as a builtin macro to be expanded. |
| static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ |
| // Get the identifier. |
| IdentifierInfo *Id = PP.getIdentifierInfo(Name); |
| |
| // Mark it as being a macro that is builtin. |
| MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); |
| MI->setIsBuiltinMacro(); |
| PP.appendDefMacroDirective(Id, MI); |
| return Id; |
| } |
| |
| /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the |
| /// identifier table. |
| void Preprocessor::RegisterBuiltinMacros() { |
| Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); |
| Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); |
| Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); |
| Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); |
| Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); |
| Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); |
| |
| // C++ Standing Document Extensions. |
| if (LangOpts.CPlusPlus) |
| Ident__has_cpp_attribute = |
| RegisterBuiltinMacro(*this, "__has_cpp_attribute"); |
| else |
| Ident__has_cpp_attribute = nullptr; |
| |
| // GCC Extensions. |
| Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); |
| Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); |
| Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); |
| |
| // Microsoft Extensions. |
| if (LangOpts.MicrosoftExt) { |
| Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); |
| Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); |
| } else { |
| Ident__identifier = nullptr; |
| Ident__pragma = nullptr; |
| } |
| |
| // Clang Extensions. |
| Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); |
| Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); |
| Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); |
| Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); |
| Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); |
| Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); |
| Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); |
| Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); |
| Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); |
| Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); |
| Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); |
| Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); |
| Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); |
| Ident__is_target_environment = |
| RegisterBuiltinMacro(*this, "__is_target_environment"); |
| |
| // Modules. |
| Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); |
| if (!LangOpts.CurrentModule.empty()) |
| Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); |
| else |
| Ident__MODULE__ = nullptr; |
| } |
| |
| /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token |
| /// in its expansion, currently expands to that token literally. |
| static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, |
| const IdentifierInfo *MacroIdent, |
| Preprocessor &PP) { |
| IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); |
| |
| // If the token isn't an identifier, it's always literally expanded. |
| if (!II) return true; |
| |
| // If the information about this identifier is out of date, update it from |
| // the external source. |
| if (II->isOutOfDate()) |
| PP.getExternalSource()->updateOutOfDateIdentifier(*II); |
| |
| // If the identifier is a macro, and if that macro is enabled, it may be |
| // expanded so it's not a trivial expansion. |
| if (auto *ExpansionMI = PP.getMacroInfo(II)) |
| if (ExpansionMI->isEnabled() && |
| // Fast expanding "#define X X" is ok, because X would be disabled. |
| II != MacroIdent) |
| return false; |
| |
| // If this is an object-like macro invocation, it is safe to trivially expand |
| // it. |
| if (MI->isObjectLike()) return true; |
| |
| // If this is a function-like macro invocation, it's safe to trivially expand |
| // as long as the identifier is not a macro argument. |
| return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end(); |
| } |
| |
| /// isNextPPTokenLParen - Determine whether the next preprocessor token to be |
| /// lexed is a '('. If so, consume the token and return true, if not, this |
| /// method should have no observable side-effect on the lexed tokens. |
| bool Preprocessor::isNextPPTokenLParen() { |
| // Do some quick tests for rejection cases. |
| unsigned Val; |
| if (CurLexer) |
| Val = CurLexer->isNextPPTokenLParen(); |
| else |
| Val = CurTokenLexer->isNextTokenLParen(); |
| |
| if (Val == 2) { |
| // We have run off the end. If it's a source file we don't |
| // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the |
| // macro stack. |
| if (CurPPLexer) |
| return false; |
| for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { |
| if (Entry.TheLexer) |
| Val = Entry.TheLexer->isNextPPTokenLParen(); |
| else |
| Val = Entry.TheTokenLexer->isNextTokenLParen(); |
| |
| if (Val != 2) |
| break; |
| |
| // Ran off the end of a source file? |
| if (Entry.ThePPLexer) |
| return false; |
| } |
| } |
| |
| // Okay, if we know that the token is a '(', lex it and return. Otherwise we |
| // have found something that isn't a '(' or we found the end of the |
| // translation unit. In either case, return false. |
| return Val == 1; |
| } |
| |
| /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be |
| /// expanded as a macro, handle it and return the next token as 'Identifier'. |
| bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, |
| const MacroDefinition &M) { |
| MacroInfo *MI = M.getMacroInfo(); |
| |
| // If this is a macro expansion in the "#if !defined(x)" line for the file, |
| // then the macro could expand to different things in other contexts, we need |
| // to disable the optimization in this case. |
| if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); |
| |
| // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. |
| if (MI->isBuiltinMacro()) { |
| if (Callbacks) |
| Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), |
| /*Args=*/nullptr); |
| ExpandBuiltinMacro(Identifier); |
| return true; |
| } |
| |
| /// Args - If this is a function-like macro expansion, this contains, |
| /// for each macro argument, the list of tokens that were provided to the |
| /// invocation. |
| MacroArgs *Args = nullptr; |
| |
| // Remember where the end of the expansion occurred. For an object-like |
| // macro, this is the identifier. For a function-like macro, this is the ')'. |
| SourceLocation ExpansionEnd = Identifier.getLocation(); |
| |
| // If this is a function-like macro, read the arguments. |
| if (MI->isFunctionLike()) { |
| // Remember that we are now parsing the arguments to a macro invocation. |
| // Preprocessor directives used inside macro arguments are not portable, and |
| // this enables the warning. |
| InMacroArgs = true; |
| ArgMacro = &Identifier; |
| |
| Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); |
| |
| // Finished parsing args. |
| InMacroArgs = false; |
| ArgMacro = nullptr; |
| |
| // If there was an error parsing the arguments, bail out. |
| if (!Args) return true; |
| |
| ++NumFnMacroExpanded; |
| } else { |
| ++NumMacroExpanded; |
| } |
| |
| // Notice that this macro has been used. |
| markMacroAsUsed(MI); |
| |
| // Remember where the token is expanded. |
| SourceLocation ExpandLoc = Identifier.getLocation(); |
| SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); |
| |
| if (Callbacks) { |
| if (InMacroArgs) { |
| // We can have macro expansion inside a conditional directive while |
| // reading the function macro arguments. To ensure, in that case, that |
| // MacroExpands callbacks still happen in source order, queue this |
| // callback to have it happen after the function macro callback. |
| DelayedMacroExpandsCallbacks.push_back( |
| MacroExpandsInfo(Identifier, M, ExpansionRange)); |
| } else { |
| Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); |
| if (!DelayedMacroExpandsCallbacks.empty()) { |
| for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { |
| // FIXME: We lose macro args info with delayed callback. |
| Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, |
| /*Args=*/nullptr); |
| } |
| DelayedMacroExpandsCallbacks.clear(); |
| } |
| } |
| } |
| |
| // If the macro definition is ambiguous, complain. |
| if (M.isAmbiguous()) { |
| Diag(Identifier, diag::warn_pp_ambiguous_macro) |
| << Identifier.getIdentifierInfo(); |
| Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) |
| << Identifier.getIdentifierInfo(); |
| M.forAllDefinitions([&](const MacroInfo *OtherMI) { |
| if (OtherMI != MI) |
| Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) |
| << Identifier.getIdentifierInfo(); |
| }); |
| } |
| |
| // If we started lexing a macro, enter the macro expansion body. |
| |
| // If this macro expands to no tokens, don't bother to push it onto the |
| // expansion stack, only to take it right back off. |
| if (MI->getNumTokens() == 0) { |
| // No need for arg info. |
| if (Args) Args->destroy(*this); |
| |
| // Propagate whitespace info as if we had pushed, then popped, |
| // a macro context. |
| Identifier.setFlag(Token::LeadingEmptyMacro); |
| PropagateLineStartLeadingSpaceInfo(Identifier); |
| ++NumFastMacroExpanded; |
| return false; |
| } else if (MI->getNumTokens() == 1 && |
| isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), |
| *this)) { |
| // Otherwise, if this macro expands into a single trivially-expanded |
| // token: expand it now. This handles common cases like |
| // "#define VAL 42". |
| |
| // No need for arg info. |
| if (Args) Args->destroy(*this); |
| |
| // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro |
| // identifier to the expanded token. |
| bool isAtStartOfLine = Identifier.isAtStartOfLine(); |
| bool hasLeadingSpace = Identifier.hasLeadingSpace(); |
| |
| // Replace the result token. |
| Identifier = MI->getReplacementToken(0); |
| |
| // Restore the StartOfLine/LeadingSpace markers. |
| Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); |
| Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); |
| |
| // Update the tokens location to include both its expansion and physical |
| // locations. |
| SourceLocation Loc = |
| SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, |
| ExpansionEnd,Identifier.getLength()); |
| Identifier.setLocation(Loc); |
| |
| // If this is a disabled macro or #define X X, we must mark the result as |
| // unexpandable. |
| if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { |
| if (MacroInfo *NewMI = getMacroInfo(NewII)) |
| if (!NewMI->isEnabled() || NewMI == MI) { |
| Identifier.setFlag(Token::DisableExpand); |
| // Don't warn for "#define X X" like "#define bool bool" from |
| // stdbool.h. |
| if (NewMI != MI || MI->isFunctionLike()) |
| Diag(Identifier, diag::pp_disabled_macro_expansion); |
| } |
| } |
| |
| // Since this is not an identifier token, it can't be macro expanded, so |
| // we're done. |
| ++NumFastMacroExpanded; |
| return true; |
| } |
| |
| // Start expanding the macro. |
| EnterMacro(Identifier, ExpansionEnd, MI, Args); |
| return false; |
| } |
| |
| enum Bracket { |
| Brace, |
| Paren |
| }; |
| |
| /// CheckMatchedBrackets - Returns true if the braces and parentheses in the |
| /// token vector are properly nested. |
| static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { |
| SmallVector<Bracket, 8> Brackets; |
| for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), |
| E = Tokens.end(); |
| I != E; ++I) { |
| if (I->is(tok::l_paren)) { |
| Brackets.push_back(Paren); |
| } else if (I->is(tok::r_paren)) { |
| if (Brackets.empty() || Brackets.back() == Brace) |
| return false; |
| Brackets.pop_back(); |
| } else if (I->is(tok::l_brace)) { |
| Brackets.push_back(Brace); |
| } else if (I->is(tok::r_brace)) { |
| if (Brackets.empty() || Brackets.back() == Paren) |
| return false; |
| Brackets.pop_back(); |
| } |
| } |
| return Brackets.empty(); |
| } |
| |
| /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new |
| /// vector of tokens in NewTokens. The new number of arguments will be placed |
| /// in NumArgs and the ranges which need to surrounded in parentheses will be |
| /// in ParenHints. |
| /// Returns false if the token stream cannot be changed. If this is because |
| /// of an initializer list starting a macro argument, the range of those |
| /// initializer lists will be place in InitLists. |
| static bool GenerateNewArgTokens(Preprocessor &PP, |
| SmallVectorImpl<Token> &OldTokens, |
| SmallVectorImpl<Token> &NewTokens, |
| unsigned &NumArgs, |
| SmallVectorImpl<SourceRange> &ParenHints, |
| SmallVectorImpl<SourceRange> &InitLists) { |
| if (!CheckMatchedBrackets(OldTokens)) |
| return false; |
| |
| // Once it is known that the brackets are matched, only a simple count of the |
| // braces is needed. |
| unsigned Braces = 0; |
| |
| // First token of a new macro argument. |
| SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); |
| |
| // First closing brace in a new macro argument. Used to generate |
| // SourceRanges for InitLists. |
| SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); |
| NumArgs = 0; |
| Token TempToken; |
| // Set to true when a macro separator token is found inside a braced list. |
| // If true, the fixed argument spans multiple old arguments and ParenHints |
| // will be updated. |
| bool FoundSeparatorToken = false; |
| for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), |
| E = OldTokens.end(); |
| I != E; ++I) { |
| if (I->is(tok::l_brace)) { |
| ++Braces; |
| } else if (I->is(tok::r_brace)) { |
| --Braces; |
| if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) |
| ClosingBrace = I; |
| } else if (I->is(tok::eof)) { |
| // EOF token is used to separate macro arguments |
| if (Braces != 0) { |
| // Assume comma separator is actually braced list separator and change |
| // it back to a comma. |
| FoundSeparatorToken = true; |
| I->setKind(tok::comma); |
| I->setLength(1); |
| } else { // Braces == 0 |
| // Separator token still separates arguments. |
| ++NumArgs; |
| |
| // If the argument starts with a brace, it can't be fixed with |
| // parentheses. A different diagnostic will be given. |
| if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { |
| InitLists.push_back( |
| SourceRange(ArgStartIterator->getLocation(), |
| PP.getLocForEndOfToken(ClosingBrace->getLocation()))); |
| ClosingBrace = E; |
| } |
| |
| // Add left paren |
| if (FoundSeparatorToken) { |
| TempToken.startToken(); |
| TempToken.setKind(tok::l_paren); |
| TempToken.setLocation(ArgStartIterator->getLocation()); |
| TempToken.setLength(0); |
| NewTokens.push_back(TempToken); |
| } |
| |
| // Copy over argument tokens |
| NewTokens.insert(NewTokens.end(), ArgStartIterator, I); |
| |
| // Add right paren and store the paren locations in ParenHints |
| if (FoundSeparatorToken) { |
| SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); |
| TempToken.startToken(); |
| TempToken.setKind(tok::r_paren); |
| TempToken.setLocation(Loc); |
| TempToken.setLength(0); |
| NewTokens.push_back(TempToken); |
| ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), |
| Loc)); |
| } |
| |
| // Copy separator token |
| NewTokens.push_back(*I); |
| |
| // Reset values |
| ArgStartIterator = I + 1; |
| FoundSeparatorToken = false; |
| } |
| } |
| } |
| |
| return !ParenHints.empty() && InitLists.empty(); |
| } |
| |
| /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next |
| /// token is the '(' of the macro, this method is invoked to read all of the |
| /// actual arguments specified for the macro invocation. This returns null on |
| /// error. |
| MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, |
| MacroInfo *MI, |
| SourceLocation &MacroEnd) { |
| // The number of fixed arguments to parse. |
| unsigned NumFixedArgsLeft = MI->getNumParams(); |
| bool isVariadic = MI->isVariadic(); |
| |
| // Outer loop, while there are more arguments, keep reading them. |
| Token Tok; |
| |
| // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
| // an argument value in a macro could expand to ',' or '(' or ')'. |
| LexUnexpandedToken(Tok); |
| assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); |
| |
| // ArgTokens - Build up a list of tokens that make up each argument. Each |
| // argument is separated by an EOF token. Use a SmallVector so we can avoid |
| // heap allocations in the common case. |
| SmallVector<Token, 64> ArgTokens; |
| bool ContainsCodeCompletionTok = false; |
| bool FoundElidedComma = false; |
| |
| SourceLocation TooManyArgsLoc; |
| |
| unsigned NumActuals = 0; |
| while (Tok.isNot(tok::r_paren)) { |
| if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) |
| break; |
| |
| assert(Tok.isOneOf(tok::l_paren, tok::comma) && |
| "only expect argument separators here"); |
| |
| size_t ArgTokenStart = ArgTokens.size(); |
| SourceLocation ArgStartLoc = Tok.getLocation(); |
| |
| // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note |
| // that we already consumed the first one. |
| unsigned NumParens = 0; |
| |
| while (true) { |
| // Read arguments as unexpanded tokens. This avoids issues, e.g., where |
| // an argument value in a macro could expand to ',' or '(' or ')'. |
| LexUnexpandedToken(Tok); |
| |
| if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" |
| if (!ContainsCodeCompletionTok) { |
| Diag(MacroName, diag::err_unterm_macro_invoc); |
| Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
| << MacroName.getIdentifierInfo(); |
| // Do not lose the EOF/EOD. Return it to the client. |
| MacroName = Tok; |
| return nullptr; |
| } |
| // Do not lose the EOF/EOD. |
| auto Toks = llvm::make_unique<Token[]>(1); |
| Toks[0] = Tok; |
| EnterTokenStream(std::move(Toks), 1, true); |
| break; |
| } else if (Tok.is(tok::r_paren)) { |
| // If we found the ) token, the macro arg list is done. |
| if (NumParens-- == 0) { |
| MacroEnd = Tok.getLocation(); |
| if (!ArgTokens.empty() && |
| ArgTokens.back().commaAfterElided()) { |
| FoundElidedComma = true; |
| } |
| break; |
| } |
| } else if (Tok.is(tok::l_paren)) { |
| ++NumParens; |
| } else if (Tok.is(tok::comma) && NumParens == 0 && |
| !(Tok.getFlags() & Token::IgnoredComma)) { |
| // In Microsoft-compatibility mode, single commas from nested macro |
| // expansions should not be considered as argument separators. We test |
| // for this with the IgnoredComma token flag above. |
| |
| // Comma ends this argument if there are more fixed arguments expected. |
| // However, if this is a variadic macro, and this is part of the |
| // variadic part, then the comma is just an argument token. |
| if (!isVariadic) break; |
| if (NumFixedArgsLeft > 1) |
| break; |
| } else if (Tok.is(tok::comment) && !KeepMacroComments) { |
| // If this is a comment token in the argument list and we're just in |
| // -C mode (not -CC mode), discard the comment. |
| continue; |
| } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { |
| // Reading macro arguments can cause macros that we are currently |
| // expanding from to be popped off the expansion stack. Doing so causes |
| // them to be reenabled for expansion. Here we record whether any |
| // identifiers we lex as macro arguments correspond to disabled macros. |
| // If so, we mark the token as noexpand. This is a subtle aspect of |
| // C99 6.10.3.4p2. |
| if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) |
| if (!MI->isEnabled()) |
| Tok.setFlag(Token::DisableExpand); |
| } else if (Tok.is(tok::code_completion)) { |
| ContainsCodeCompletionTok = true; |
| if (CodeComplete) |
| CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), |
| MI, NumActuals); |
| // Don't mark that we reached the code-completion point because the |
| // parser is going to handle the token and there will be another |
| // code-completion callback. |
| } |
| |
| ArgTokens.push_back(Tok); |
| } |
| |
| // If this was an empty argument list foo(), don't add this as an empty |
| // argument. |
| if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) |
| break; |
| |
| // If this is not a variadic macro, and too many args were specified, emit |
| // an error. |
| if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { |
| if (ArgTokens.size() != ArgTokenStart) |
| TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); |
| else |
| TooManyArgsLoc = ArgStartLoc; |
| } |
| |
| // Empty arguments are standard in C99 and C++0x, and are supported as an |
| // extension in other modes. |
| if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) |
| Diag(Tok, LangOpts.CPlusPlus11 ? |
| diag::warn_cxx98_compat_empty_fnmacro_arg : |
| diag::ext_empty_fnmacro_arg); |
| |
| // Add a marker EOF token to the end of the token list for this argument. |
| Token EOFTok; |
| EOFTok.startToken(); |
| EOFTok.setKind(tok::eof); |
| EOFTok.setLocation(Tok.getLocation()); |
| EOFTok.setLength(0); |
| ArgTokens.push_back(EOFTok); |
| ++NumActuals; |
| if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) |
| --NumFixedArgsLeft; |
| } |
| |
| // Okay, we either found the r_paren. Check to see if we parsed too few |
| // arguments. |
| unsigned MinArgsExpected = MI->getNumParams(); |
| |
| // If this is not a variadic macro, and too many args were specified, emit |
| // an error. |
| if (!isVariadic && NumActuals > MinArgsExpected && |
| !ContainsCodeCompletionTok) { |
| // Emit the diagnostic at the macro name in case there is a missing ). |
| // Emitting it at the , could be far away from the macro name. |
| Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); |
| Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
| << MacroName.getIdentifierInfo(); |
| |
| // Commas from braced initializer lists will be treated as argument |
| // separators inside macros. Attempt to correct for this with parentheses. |
| // TODO: See if this can be generalized to angle brackets for templates |
| // inside macro arguments. |
| |
| SmallVector<Token, 4> FixedArgTokens; |
| unsigned FixedNumArgs = 0; |
| SmallVector<SourceRange, 4> ParenHints, InitLists; |
| if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, |
| ParenHints, InitLists)) { |
| if (!InitLists.empty()) { |
| DiagnosticBuilder DB = |
| Diag(MacroName, |
| diag::note_init_list_at_beginning_of_macro_argument); |
| for (SourceRange Range : InitLists) |
| DB << Range; |
| } |
| return nullptr; |
| } |
| if (FixedNumArgs != MinArgsExpected) |
| return nullptr; |
| |
| DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); |
| for (SourceRange ParenLocation : ParenHints) { |
| DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); |
| DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); |
| } |
| ArgTokens.swap(FixedArgTokens); |
| NumActuals = FixedNumArgs; |
| } |
| |
| // See MacroArgs instance var for description of this. |
| bool isVarargsElided = false; |
| |
| if (ContainsCodeCompletionTok) { |
| // Recover from not-fully-formed macro invocation during code-completion. |
| Token EOFTok; |
| EOFTok.startToken(); |
| EOFTok.setKind(tok::eof); |
| EOFTok.setLocation(Tok.getLocation()); |
| EOFTok.setLength(0); |
| for (; NumActuals < MinArgsExpected; ++NumActuals) |
| ArgTokens.push_back(EOFTok); |
| } |
| |
| if (NumActuals < MinArgsExpected) { |
| // There are several cases where too few arguments is ok, handle them now. |
| if (NumActuals == 0 && MinArgsExpected == 1) { |
| // #define A(X) or #define A(...) ---> A() |
| |
| // If there is exactly one argument, and that argument is missing, |
| // then we have an empty "()" argument empty list. This is fine, even if |
| // the macro expects one argument (the argument is just empty). |
| isVarargsElided = MI->isVariadic(); |
| } else if ((FoundElidedComma || MI->isVariadic()) && |
| (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) |
| (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() |
| // Varargs where the named vararg parameter is missing: OK as extension. |
| // #define A(x, ...) |
| // A("blah") |
| // |
| // If the macro contains the comma pasting extension, the diagnostic |
| // is suppressed; we know we'll get another diagnostic later. |
| if (!MI->hasCommaPasting()) { |
| Diag(Tok, diag::ext_missing_varargs_arg); |
| Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
| << MacroName.getIdentifierInfo(); |
| } |
| |
| // Remember this occurred, allowing us to elide the comma when used for |
| // cases like: |
| // #define A(x, foo...) blah(a, ## foo) |
| // #define B(x, ...) blah(a, ## __VA_ARGS__) |
| // #define C(...) blah(a, ## __VA_ARGS__) |
| // A(x) B(x) C() |
| isVarargsElided = true; |
| } else if (!ContainsCodeCompletionTok) { |
| // Otherwise, emit the error. |
| Diag(Tok, diag::err_too_few_args_in_macro_invoc); |
| Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
| << MacroName.getIdentifierInfo(); |
| return nullptr; |
| } |
| |
| // Add a marker EOF token to the end of the token list for this argument. |
| SourceLocation EndLoc = Tok.getLocation(); |
| Tok.startToken(); |
| Tok.setKind(tok::eof); |
| Tok.setLocation(EndLoc); |
| Tok.setLength(0); |
| ArgTokens.push_back(Tok); |
| |
| // If we expect two arguments, add both as empty. |
| if (NumActuals == 0 && MinArgsExpected == 2) |
| ArgTokens.push_back(Tok); |
| |
| } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && |
| !ContainsCodeCompletionTok) { |
| // Emit the diagnostic at the macro name in case there is a missing ). |
| // Emitting it at the , could be far away from the macro name. |
| Diag(MacroName, diag::err_too_many_args_in_macro_invoc); |
| Diag(MI->getDefinitionLoc(), diag::note_macro_here) |
| << MacroName.getIdentifierInfo(); |
| return nullptr; |
| } |
| |
| return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); |
| } |
| |
| /// Keeps macro expanded tokens for TokenLexers. |
| // |
| /// Works like a stack; a TokenLexer adds the macro expanded tokens that is |
| /// going to lex in the cache and when it finishes the tokens are removed |
| /// from the end of the cache. |
| Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, |
| ArrayRef<Token> tokens) { |
| assert(tokLexer); |
| if (tokens.empty()) |
| return nullptr; |
| |
| size_t newIndex = MacroExpandedTokens.size(); |
| bool cacheNeedsToGrow = tokens.size() > |
| MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); |
| MacroExpandedTokens.append(tokens.begin(), tokens.end()); |
| |
| if (cacheNeedsToGrow) { |
| // Go through all the TokenLexers whose 'Tokens' pointer points in the |
| // buffer and update the pointers to the (potential) new buffer array. |
| for (const auto &Lexer : MacroExpandingLexersStack) { |
| TokenLexer *prevLexer; |
| size_t tokIndex; |
| std::tie(prevLexer, tokIndex) = Lexer; |
| prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; |
| } |
| } |
| |
| MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); |
| return MacroExpandedTokens.data() + newIndex; |
| } |
| |
| void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { |
| assert(!MacroExpandingLexersStack.empty()); |
| size_t tokIndex = MacroExpandingLexersStack.back().second; |
| assert(tokIndex < MacroExpandedTokens.size()); |
| // Pop the cached macro expanded tokens from the end. |
| MacroExpandedTokens.resize(tokIndex); |
| MacroExpandingLexersStack.pop_back(); |
| } |
| |
| /// ComputeDATE_TIME - Compute the current time, enter it into the specified |
| /// scratch buffer, then return DATELoc/TIMELoc locations with the position of |
| /// the identifier tokens inserted. |
| static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, |
| Preprocessor &PP) { |
| time_t TT = time(nullptr); |
| struct tm *TM = localtime(&TT); |
| |
| static const char * const Months[] = { |
| "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" |
| }; |
| |
| { |
| SmallString<32> TmpBuffer; |
| llvm::raw_svector_ostream TmpStream(TmpBuffer); |
| TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], |
| TM->tm_mday, TM->tm_year + 1900); |
| Token TmpTok; |
| TmpTok.startToken(); |
| PP.CreateString(TmpStream.str(), TmpTok); |
| DATELoc = TmpTok.getLocation(); |
| } |
| |
| { |
| SmallString<32> TmpBuffer; |
| llvm::raw_svector_ostream TmpStream(TmpBuffer); |
| TmpStream << llvm::format("\"%02d:%02d:%02d\"", |
| TM->tm_hour, TM->tm_min, TM->tm_sec); |
| Token TmpTok; |
| TmpTok.startToken(); |
| PP.CreateString(TmpStream.str(), TmpTok); |
| TIMELoc = TmpTok.getLocation(); |
| } |
| } |
| |
| /// HasFeature - Return true if we recognize and implement the feature |
| /// specified by the identifier as a standard language feature. |
| static bool HasFeature(const Preprocessor &PP, StringRef Feature) { |
| const LangOptions &LangOpts = PP.getLangOpts(); |
| |
| // Normalize the feature name, __foo__ becomes foo. |
| if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) |
| Feature = Feature.substr(2, Feature.size() - 4); |
| |
| #define FEATURE(Name, Predicate) .Case(#Name, Predicate) |
| return llvm::StringSwitch<bool>(Feature) |
| #include "clang/Basic/Features.def" |
| .Default(false); |
| #undef FEATURE |
| } |
| |
| /// HasExtension - Return true if we recognize and implement the feature |
| /// specified by the identifier, either as an extension or a standard language |
| /// feature. |
| static bool HasExtension(const Preprocessor &PP, StringRef Extension) { |
| if (HasFeature(PP, Extension)) |
| return true; |
| |
| // If the use of an extension results in an error diagnostic, extensions are |
| // effectively unavailable, so just return false here. |
| if (PP.getDiagnostics().getExtensionHandlingBehavior() >= |
| diag::Severity::Error) |
| return false; |
| |
| const LangOptions &LangOpts = PP.getLangOpts(); |
| |
| // Normalize the extension name, __foo__ becomes foo. |
| if (Extension.startswith("__") && Extension.endswith("__") && |
| Extension.size() >= 4) |
| Extension = Extension.substr(2, Extension.size() - 4); |
| |
| // Because we inherit the feature list from HasFeature, this string switch |
| // must be less restrictive than HasFeature's. |
| #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) |
| return llvm::StringSwitch<bool>(Extension) |
| #include "clang/Basic/Features.def" |
| .Default(false); |
| #undef EXTENSION |
| } |
| |
| /// EvaluateHasIncludeCommon - Process a '__has_include("path")' |
| /// or '__has_include_next("path")' expression. |
| /// Returns true if successful. |
| static bool EvaluateHasIncludeCommon(Token &Tok, |
| IdentifierInfo *II, Preprocessor &PP, |
| const DirectoryLookup *LookupFrom, |
| const FileEntry *LookupFromFile) { |
| // Save the location of the current token. If a '(' is later found, use |
| // that location. If not, use the end of this location instead. |
| SourceLocation LParenLoc = Tok.getLocation(); |
| |
| // These expressions are only allowed within a preprocessor directive. |
| if (!PP.isParsingIfOrElifDirective()) { |
| PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; |
| // Return a valid identifier token. |
| assert(Tok.is(tok::identifier)); |
| Tok.setIdentifierInfo(II); |
| return false; |
| } |
| |
| // Get '('. If we don't have a '(', try to form a header-name token. |
| do { |
| if (PP.LexHeaderName(Tok)) |
| return false; |
| } while (Tok.getKind() == tok::comment); |
| |
| // Ensure we have a '('. |
| if (Tok.isNot(tok::l_paren)) { |
| // No '(', use end of last token. |
| LParenLoc = PP.getLocForEndOfToken(LParenLoc); |
| PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; |
| // If the next token looks like a filename or the start of one, |
| // assume it is and process it as such. |
| if (Tok.isNot(tok::header_name)) |
| return false; |
| } else { |
| // Save '(' location for possible missing ')' message. |
| LParenLoc = Tok.getLocation(); |
| if (PP.LexHeaderName(Tok)) |
| return false; |
| } |
| |
| if (Tok.isNot(tok::header_name)) { |
| PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); |
| return false; |
| } |
| |
| // Reserve a buffer to get the spelling. |
| SmallString<128> FilenameBuffer; |
| bool Invalid = false; |
| StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); |
| if (Invalid) |
| return false; |
| |
| SourceLocation FilenameLoc = Tok.getLocation(); |
| |
| // Get ')'. |
| PP.LexNonComment(Tok); |
| |
| // Ensure we have a trailing ). |
| if (Tok.isNot(tok::r_paren)) { |
| PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) |
| << II << tok::r_paren; |
| PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
| return false; |
| } |
| |
| bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); |
| // If GetIncludeFilenameSpelling set the start ptr to null, there was an |
| // error. |
| if (Filename.empty()) |
| return false; |
| |
| // Search include directories. |
| const DirectoryLookup *CurDir; |
| const FileEntry *File = |
| PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, |
| CurDir, nullptr, nullptr, nullptr, nullptr, nullptr); |
| |
| if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { |
| SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; |
| if (File) |
| FileType = PP.getHeaderSearchInfo().getFileDirFlavor(File); |
| Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); |
| } |
| |
| // Get the result value. A result of true means the file exists. |
| return File != nullptr; |
| } |
| |
| /// EvaluateHasInclude - Process a '__has_include("path")' expression. |
| /// Returns true if successful. |
| static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, |
| Preprocessor &PP) { |
| return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr); |
| } |
| |
| /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. |
| /// Returns true if successful. |
| static bool EvaluateHasIncludeNext(Token &Tok, |
| IdentifierInfo *II, Preprocessor &PP) { |
| // __has_include_next is like __has_include, except that we start |
| // searching after the current found directory. If we can't do this, |
| // issue a diagnostic. |
| // FIXME: Factor out duplication with |
| // Preprocessor::HandleIncludeNextDirective. |
| const DirectoryLookup *Lookup = PP.GetCurDirLookup(); |
| const FileEntry *LookupFromFile = nullptr; |
| if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) { |
| // If the main file is a header, then it's either for PCH/AST generation, |
| // or libclang opened it. Either way, handle it as a normal include below |
| // and do not complain about __has_include_next. |
| } else if (PP.isInPrimaryFile()) { |
| Lookup = nullptr; |
| PP.Diag(Tok, diag::pp_include_next_in_primary); |
| } else if (PP.getCurrentLexerSubmodule()) { |
| // Start looking up in the directory *after* the one in which the current |
| // file would be found, if any. |
| assert(PP.getCurrentLexer() && "#include_next directive in macro?"); |
| LookupFromFile = PP.getCurrentLexer()->getFileEntry(); |
| Lookup = nullptr; |
| } else if (!Lookup) { |
| PP.Diag(Tok, diag::pp_include_next_absolute_path); |
| } else { |
| // Start looking up in the next directory. |
| ++Lookup; |
| } |
| |
| return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile); |
| } |
| |
| /// Process single-argument builtin feature-like macros that return |
| /// integer values. |
| static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, |
| Token &Tok, IdentifierInfo *II, |
| Preprocessor &PP, |
| llvm::function_ref< |
| int(Token &Tok, |
| bool &HasLexedNextTok)> Op) { |
| // Parse the initial '('. |
| PP.LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::l_paren)) { |
| PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II |
| << tok::l_paren; |
| |
| // Provide a dummy '0' value on output stream to elide further errors. |
| if (!Tok.isOneOf(tok::eof, tok::eod)) { |
| OS << 0; |
| Tok.setKind(tok::numeric_constant); |
| } |
| return; |
| } |
| |
| unsigned ParenDepth = 1; |
| SourceLocation LParenLoc = Tok.getLocation(); |
| llvm::Optional<int> Result; |
| |
| Token ResultTok; |
| bool SuppressDiagnostic = false; |
| while (true) { |
| // Parse next token. |
| PP.LexUnexpandedToken(Tok); |
| |
| already_lexed: |
| switch (Tok.getKind()) { |
| case tok::eof: |
| case tok::eod: |
| // Don't provide even a dummy value if the eod or eof marker is |
| // reached. Simply provide a diagnostic. |
| PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); |
| return; |
| |
| case tok::comma: |
| if (!SuppressDiagnostic) { |
| PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); |
| SuppressDiagnostic = true; |
| } |
| continue; |
| |
| case tok::l_paren: |
| ++ParenDepth; |
| if (Result.hasValue()) |
| break; |
| if (!SuppressDiagnostic) { |
| PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; |
| SuppressDiagnostic = true; |
| } |
| continue; |
| |
| case tok::r_paren: |
| if (--ParenDepth > 0) |
| continue; |
| |
| // The last ')' has been reached; return the value if one found or |
| // a diagnostic and a dummy value. |
| if (Result.hasValue()) |
| OS << Result.getValue(); |
| else { |
| OS << 0; |
| if (!SuppressDiagnostic) |
| PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); |
| } |
| Tok.setKind(tok::numeric_constant); |
| return; |
| |
| default: { |
| // Parse the macro argument, if one not found so far. |
| if (Result.hasValue()) |
| break; |
| |
| bool HasLexedNextToken = false; |
| Result = Op(Tok, HasLexedNextToken); |
| ResultTok = Tok; |
| if (HasLexedNextToken) |
| goto already_lexed; |
| continue; |
| } |
| } |
| |
| // Diagnose missing ')'. |
| if (!SuppressDiagnostic) { |
| if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { |
| if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) |
| Diag << LastII; |
| else |
| Diag << ResultTok.getKind(); |
| Diag << tok::r_paren << ResultTok.getLocation(); |
| } |
| PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
| SuppressDiagnostic = true; |
| } |
| } |
| } |
| |
| /// Helper function to return the IdentifierInfo structure of a Token |
| /// or generate a diagnostic if none available. |
| static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, |
| Preprocessor &PP, |
| signed DiagID) { |
| IdentifierInfo *II; |
| if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) |
| return II; |
| |
| PP.Diag(Tok.getLocation(), DiagID); |
| return nullptr; |
| } |
| |
| /// Implements the __is_target_arch builtin macro. |
| static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { |
| std::string ArchName = II->getName().lower() + "--"; |
| llvm::Triple Arch(ArchName); |
| const llvm::Triple &TT = TI.getTriple(); |
| if (TT.isThumb()) { |
| // arm matches thumb or thumbv7. armv7 matches thumbv7. |
| if ((Arch.getSubArch() == llvm::Triple::NoSubArch || |
| Arch.getSubArch() == TT.getSubArch()) && |
| ((TT.getArch() == llvm::Triple::thumb && |
| Arch.getArch() == llvm::Triple::arm) || |
| (TT.getArch() == llvm::Triple::thumbeb && |
| Arch.getArch() == llvm::Triple::armeb))) |
| return true; |
| } |
| // Check the parsed arch when it has no sub arch to allow Clang to |
| // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. |
| return (Arch.getSubArch() == llvm::Triple::NoSubArch || |
| Arch.getSubArch() == TT.getSubArch()) && |
| Arch.getArch() == TT.getArch(); |
| } |
| |
| /// Implements the __is_target_vendor builtin macro. |
| static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { |
| StringRef VendorName = TI.getTriple().getVendorName(); |
| if (VendorName.empty()) |
| VendorName = "unknown"; |
| return VendorName.equals_lower(II->getName()); |
| } |
| |
| /// Implements the __is_target_os builtin macro. |
| static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { |
| std::string OSName = |
| (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); |
| llvm::Triple OS(OSName); |
| if (OS.getOS() == llvm::Triple::Darwin) { |
| // Darwin matches macos, ios, etc. |
| return TI.getTriple().isOSDarwin(); |
| } |
| return TI.getTriple().getOS() == OS.getOS(); |
| } |
| |
| /// Implements the __is_target_environment builtin macro. |
| static bool isTargetEnvironment(const TargetInfo &TI, |
| const IdentifierInfo *II) { |
| std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); |
| llvm::Triple Env(EnvName); |
| return TI.getTriple().getEnvironment() == Env.getEnvironment(); |
| } |
| |
| /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded |
| /// as a builtin macro, handle it and return the next token as 'Tok'. |
| void Preprocessor::ExpandBuiltinMacro(Token &Tok) { |
| // Figure out which token this is. |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| assert(II && "Can't be a macro without id info!"); |
| |
| // If this is an _Pragma or Microsoft __pragma directive, expand it, |
| // invoke the pragma handler, then lex the token after it. |
| if (II == Ident_Pragma) |
| return Handle_Pragma(Tok); |
| else if (II == Ident__pragma) // in non-MS mode this is null |
| return HandleMicrosoft__pragma(Tok); |
| |
| ++NumBuiltinMacroExpanded; |
| |
| SmallString<128> TmpBuffer; |
| llvm::raw_svector_ostream OS(TmpBuffer); |
| |
| // Set up the return result. |
| Tok.setIdentifierInfo(nullptr); |
| Tok.clearFlag(Token::NeedsCleaning); |
| |
| if (II == Ident__LINE__) { |
| // C99 6.10.8: "__LINE__: The presumed line number (within the current |
| // source file) of the current source line (an integer constant)". This can |
| // be affected by #line. |
| SourceLocation Loc = Tok.getLocation(); |
| |
| // Advance to the location of the first _, this might not be the first byte |
| // of the token if it starts with an escaped newline. |
| Loc = AdvanceToTokenCharacter(Loc, 0); |
| |
| // One wrinkle here is that GCC expands __LINE__ to location of the *end* of |
| // a macro expansion. This doesn't matter for object-like macros, but |
| // can matter for a function-like macro that expands to contain __LINE__. |
| // Skip down through expansion points until we find a file loc for the |
| // end of the expansion history. |
| Loc = SourceMgr.getExpansionRange(Loc).getEnd(); |
| PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); |
| |
| // __LINE__ expands to a simple numeric value. |
| OS << (PLoc.isValid()? PLoc.getLine() : 1); |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) { |
| // C99 6.10.8: "__FILE__: The presumed name of the current source file (a |
| // character string literal)". This can be affected by #line. |
| PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); |
| |
| // __BASE_FILE__ is a GNU extension that returns the top of the presumed |
| // #include stack instead of the current file. |
| if (II == Ident__BASE_FILE__ && PLoc.isValid()) { |
| SourceLocation NextLoc = PLoc.getIncludeLoc(); |
| while (NextLoc.isValid()) { |
| PLoc = SourceMgr.getPresumedLoc(NextLoc); |
| if (PLoc.isInvalid()) |
| break; |
| |
| NextLoc = PLoc.getIncludeLoc(); |
| } |
| } |
| |
| // Escape this filename. Turn '\' -> '\\' '"' -> '\"' |
| SmallString<128> FN; |
| if (PLoc.isValid()) { |
| FN += PLoc.getFilename(); |
| Lexer::Stringify(FN); |
| OS << '"' << FN << '"'; |
| } |
| Tok.setKind(tok::string_literal); |
| } else if (II == Ident__DATE__) { |
| Diag(Tok.getLocation(), diag::warn_pp_date_time); |
| if (!DATELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, *this); |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(strlen("\"Mmm dd yyyy\"")); |
| Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), |
| Tok.getLocation(), |
| Tok.getLength())); |
| return; |
| } else if (II == Ident__TIME__) { |
| Diag(Tok.getLocation(), diag::warn_pp_date_time); |
| if (!TIMELoc.isValid()) |
| ComputeDATE_TIME(DATELoc, TIMELoc, *this); |
| Tok.setKind(tok::string_literal); |
| Tok.setLength(strlen("\"hh:mm:ss\"")); |
| Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), |
| Tok.getLocation(), |
| Tok.getLength())); |
| return; |
| } else if (II == Ident__INCLUDE_LEVEL__) { |
| // Compute the presumed include depth of this token. This can be affected |
| // by GNU line markers. |
| unsigned Depth = 0; |
| |
| PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); |
| if (PLoc.isValid()) { |
| PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); |
| for (; PLoc.isValid(); ++Depth) |
| PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); |
| } |
| |
| // __INCLUDE_LEVEL__ expands to a simple numeric value. |
| OS << Depth; |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__TIMESTAMP__) { |
| Diag(Tok.getLocation(), diag::warn_pp_date_time); |
| // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be |
| // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. |
| |
| // Get the file that we are lexing out of. If we're currently lexing from |
| // a macro, dig into the include stack. |
| const FileEntry *CurFile = nullptr; |
| PreprocessorLexer *TheLexer = getCurrentFileLexer(); |
| |
| if (TheLexer) |
| CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); |
| |
| const char *Result; |
| if (CurFile) { |
| time_t TT = CurFile->getModificationTime(); |
| struct tm *TM = localtime(&TT); |
| Result = asctime(TM); |
| } else { |
| Result = "??? ??? ?? ??:??:?? ????\n"; |
| } |
| // Surround the string with " and strip the trailing newline. |
| OS << '"' << StringRef(Result).drop_back() << '"'; |
| Tok.setKind(tok::string_literal); |
| } else if (II == Ident__COUNTER__) { |
| // __COUNTER__ expands to a simple numeric value. |
| OS << CounterValue++; |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__has_feature) { |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_feature_check_malformed); |
| return II && HasFeature(*this, II->getName()); |
| }); |
| } else if (II == Ident__has_extension) { |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_feature_check_malformed); |
| return II && HasExtension(*this, II->getName()); |
| }); |
| } else if (II == Ident__has_builtin) { |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_feature_check_malformed); |
| const LangOptions &LangOpts = getLangOpts(); |
| if (!II) |
| return false; |
| else if (II->getBuiltinID() != 0) { |
| switch (II->getBuiltinID()) { |
| case Builtin::BI__builtin_operator_new: |
| case Builtin::BI__builtin_operator_delete: |
| // denotes date of behavior change to support calling arbitrary |
| // usual allocation and deallocation functions. Required by libc++ |
| return 201802; |
| default: |
| return true; |
| } |
| return true; |
| } else { |
| return llvm::StringSwitch<bool>(II->getName()) |
| .Case("__make_integer_seq", LangOpts.CPlusPlus) |
| .Case("__type_pack_element", LangOpts.CPlusPlus) |
| .Case("__builtin_available", true) |
| .Case("__is_target_arch", true) |
| .Case("__is_target_vendor", true) |
| .Case("__is_target_os", true) |
| .Case("__is_target_environment", true) |
| .Default(false); |
| } |
| }); |
| } else if (II == Ident__is_identifier) { |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [](Token &Tok, bool &HasLexedNextToken) -> int { |
| return Tok.is(tok::identifier); |
| }); |
| } else if (II == Ident__has_attribute) { |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_feature_check_malformed); |
| return II ? hasAttribute(AttrSyntax::GNU, nullptr, II, |
| getTargetInfo(), getLangOpts()) : 0; |
| }); |
| } else if (II == Ident__has_declspec) { |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_feature_check_malformed); |
| return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II, |
| getTargetInfo(), getLangOpts()) : 0; |
| }); |
| } else if (II == Ident__has_cpp_attribute || |
| II == Ident__has_c_attribute) { |
| bool IsCXX = II == Ident__has_cpp_attribute; |
| EvaluateFeatureLikeBuiltinMacro( |
| OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *ScopeII = nullptr; |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
| Tok, *this, diag::err_feature_check_malformed); |
| if (!II) |
| return false; |
| |
| // It is possible to receive a scope token. Read the "::", if it is |
| // available, and the subsequent identifier. |
| LexUnexpandedToken(Tok); |
| if (Tok.isNot(tok::coloncolon)) |
| HasLexedNextToken = true; |
| else { |
| ScopeII = II; |
| LexUnexpandedToken(Tok); |
| II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_feature_check_malformed); |
| } |
| |
| AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C; |
| return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), |
| getLangOpts()) |
| : 0; |
| }); |
| } else if (II == Ident__has_include || |
| II == Ident__has_include_next) { |
| // The argument to these two builtins should be a parenthesized |
| // file name string literal using angle brackets (<>) or |
| // double-quotes (""). |
| bool Value; |
| if (II == Ident__has_include) |
| Value = EvaluateHasInclude(Tok, II, *this); |
| else |
| Value = EvaluateHasIncludeNext(Tok, II, *this); |
| |
| if (Tok.isNot(tok::r_paren)) |
| return; |
| OS << (int)Value; |
| Tok.setKind(tok::numeric_constant); |
| } else if (II == Ident__has_warning) { |
| // The argument should be a parenthesized string literal. |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| std::string WarningName; |
| SourceLocation StrStartLoc = Tok.getLocation(); |
| |
| HasLexedNextToken = Tok.is(tok::string_literal); |
| if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", |
| /*MacroExpansion=*/false)) |
| return false; |
| |
| // FIXME: Should we accept "-R..." flags here, or should that be |
| // handled by a separate __has_remark? |
| if (WarningName.size() < 3 || WarningName[0] != '-' || |
| WarningName[1] != 'W') { |
| Diag(StrStartLoc, diag::warn_has_warning_invalid_option); |
| return false; |
| } |
| |
| // Finally, check if the warning flags maps to a diagnostic group. |
| // We construct a SmallVector here to talk to getDiagnosticIDs(). |
| // Although we don't use the result, this isn't a hot path, and not |
| // worth special casing. |
| SmallVector<diag::kind, 10> Diags; |
| return !getDiagnostics().getDiagnosticIDs()-> |
| getDiagnosticsInGroup(diag::Flavor::WarningOrError, |
| WarningName.substr(2), Diags); |
| }); |
| } else if (II == Ident__building_module) { |
| // The argument to this builtin should be an identifier. The |
| // builtin evaluates to 1 when that identifier names the module we are |
| // currently building. |
| EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, |
| [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, |
| diag::err_expected_id_building_module); |
| return getLangOpts().isCompilingModule() && II && |
| (II->getName() == getLangOpts().CurrentModule); |
| }); |
| } else if (II == Ident__MODULE__) { |
| // The current module as an identifier. |
| OS << getLangOpts().CurrentModule; |
| IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); |
| Tok.setIdentifierInfo(ModuleII); |
| Tok.setKind(ModuleII->getTokenID()); |
| } else if (II == Ident__identifier) { |
| SourceLocation Loc = Tok.getLocation(); |
| |
| // We're expecting '__identifier' '(' identifier ')'. Try to recover |
| // if the parens are missing. |
| LexNonComment(Tok); |
| if (Tok.isNot(tok::l_paren)) { |
| // No '(', use end of last token. |
| Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) |
| << II << tok::l_paren; |
| // If the next token isn't valid as our argument, we can't recover. |
| if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) |
| Tok.setKind(tok::identifier); |
| return; |
| } |
| |
| SourceLocation LParenLoc = Tok.getLocation(); |
| LexNonComment(Tok); |
| |
| if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) |
| Tok.setKind(tok::identifier); |
| else { |
| Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) |
| << Tok.getKind(); |
| // Don't walk past anything that's not a real token. |
| if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) |
| return; |
| } |
| |
| // Discard the ')', preserving 'Tok' as our result. |
| Token RParen; |
| LexNonComment(RParen); |
| if (RParen.isNot(tok::r_paren)) { |
| Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) |
| << Tok.getKind() << tok::r_paren; |
| Diag(LParenLoc, diag::note_matching) << tok::l_paren; |
| } |
| return; |
| } else if (II == Ident__is_target_arch) { |
| EvaluateFeatureLikeBuiltinMacro( |
| OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
| Tok, *this, diag::err_feature_check_malformed); |
| return II && isTargetArch(getTargetInfo(), II); |
| }); |
| } else if (II == Ident__is_target_vendor) { |
| EvaluateFeatureLikeBuiltinMacro( |
| OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
| Tok, *this, diag::err_feature_check_malformed); |
| return II && isTargetVendor(getTargetInfo(), II); |
| }); |
| } else if (II == Ident__is_target_os) { |
| EvaluateFeatureLikeBuiltinMacro( |
| OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
| Tok, *this, diag::err_feature_check_malformed); |
| return II && isTargetOS(getTargetInfo(), II); |
| }); |
| } else if (II == Ident__is_target_environment) { |
| EvaluateFeatureLikeBuiltinMacro( |
| OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { |
| IdentifierInfo *II = ExpectFeatureIdentifierInfo( |
| Tok, *this, diag::err_feature_check_malformed); |
| return II && isTargetEnvironment(getTargetInfo(), II); |
| }); |
| } else { |
| llvm_unreachable("Unknown identifier!"); |
| } |
| CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); |
| } |
| |
| void Preprocessor::markMacroAsUsed(MacroInfo *MI) { |
| // If the 'used' status changed, and the macro requires 'unused' warning, |
| // remove its SourceLocation from the warn-for-unused-macro locations. |
| if (MI->isWarnIfUnused() && !MI->isUsed()) |
| WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); |
| MI->setIsUsed(true); |
| } |