| //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the NumericLiteralParser, CharLiteralParser, and |
| // StringLiteralParser interfaces. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/LexDiagnostic.h" |
| #include "clang/Lex/Lexer.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/Token.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <string> |
| |
| using namespace clang; |
| |
| static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { |
| switch (kind) { |
| default: llvm_unreachable("Unknown token type!"); |
| case tok::char_constant: |
| case tok::string_literal: |
| case tok::utf8_char_constant: |
| case tok::utf8_string_literal: |
| return Target.getCharWidth(); |
| case tok::wide_char_constant: |
| case tok::wide_string_literal: |
| return Target.getWCharWidth(); |
| case tok::utf16_char_constant: |
| case tok::utf16_string_literal: |
| return Target.getChar16Width(); |
| case tok::utf32_char_constant: |
| case tok::utf32_string_literal: |
| return Target.getChar32Width(); |
| } |
| } |
| |
| static CharSourceRange MakeCharSourceRange(const LangOptions &Features, |
| FullSourceLoc TokLoc, |
| const char *TokBegin, |
| const char *TokRangeBegin, |
| const char *TokRangeEnd) { |
| SourceLocation Begin = |
| Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, |
| TokLoc.getManager(), Features); |
| SourceLocation End = |
| Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, |
| TokLoc.getManager(), Features); |
| return CharSourceRange::getCharRange(Begin, End); |
| } |
| |
| /// Produce a diagnostic highlighting some portion of a literal. |
| /// |
| /// Emits the diagnostic \p DiagID, highlighting the range of characters from |
| /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be |
| /// a substring of a spelling buffer for the token beginning at \p TokBegin. |
| static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, |
| const LangOptions &Features, FullSourceLoc TokLoc, |
| const char *TokBegin, const char *TokRangeBegin, |
| const char *TokRangeEnd, unsigned DiagID) { |
| SourceLocation Begin = |
| Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, |
| TokLoc.getManager(), Features); |
| return Diags->Report(Begin, DiagID) << |
| MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); |
| } |
| |
| /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in |
| /// either a character or a string literal. |
| static unsigned ProcessCharEscape(const char *ThisTokBegin, |
| const char *&ThisTokBuf, |
| const char *ThisTokEnd, bool &HadError, |
| FullSourceLoc Loc, unsigned CharWidth, |
| DiagnosticsEngine *Diags, |
| const LangOptions &Features) { |
| const char *EscapeBegin = ThisTokBuf; |
| |
| // Skip the '\' char. |
| ++ThisTokBuf; |
| |
| // We know that this character can't be off the end of the buffer, because |
| // that would have been \", which would not have been the end of string. |
| unsigned ResultChar = *ThisTokBuf++; |
| switch (ResultChar) { |
| // These map to themselves. |
| case '\\': case '\'': case '"': case '?': break; |
| |
| // These have fixed mappings. |
| case 'a': |
| // TODO: K&R: the meaning of '\\a' is different in traditional C |
| ResultChar = 7; |
| break; |
| case 'b': |
| ResultChar = 8; |
| break; |
| case 'e': |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::ext_nonstandard_escape) << "e"; |
| ResultChar = 27; |
| break; |
| case 'E': |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::ext_nonstandard_escape) << "E"; |
| ResultChar = 27; |
| break; |
| case 'f': |
| ResultChar = 12; |
| break; |
| case 'n': |
| ResultChar = 10; |
| break; |
| case 'r': |
| ResultChar = 13; |
| break; |
| case 't': |
| ResultChar = 9; |
| break; |
| case 'v': |
| ResultChar = 11; |
| break; |
| case 'x': { // Hex escape. |
| ResultChar = 0; |
| if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::err_hex_escape_no_digits) << "x"; |
| HadError = true; |
| break; |
| } |
| |
| // Hex escapes are a maximal series of hex digits. |
| bool Overflow = false; |
| for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { |
| int CharVal = llvm::hexDigitValue(ThisTokBuf[0]); |
| if (CharVal == -1) break; |
| // About to shift out a digit? |
| if (ResultChar & 0xF0000000) |
| Overflow = true; |
| ResultChar <<= 4; |
| ResultChar |= CharVal; |
| } |
| |
| // See if any bits will be truncated when evaluated as a character. |
| if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { |
| Overflow = true; |
| ResultChar &= ~0U >> (32-CharWidth); |
| } |
| |
| // Check for overflow. |
| if (Overflow && Diags) // Too many digits to fit in |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::err_escape_too_large) << 0; |
| break; |
| } |
| case '0': case '1': case '2': case '3': |
| case '4': case '5': case '6': case '7': { |
| // Octal escapes. |
| --ThisTokBuf; |
| ResultChar = 0; |
| |
| // Octal escapes are a series of octal digits with maximum length 3. |
| // "\0123" is a two digit sequence equal to "\012" "3". |
| unsigned NumDigits = 0; |
| do { |
| ResultChar <<= 3; |
| ResultChar |= *ThisTokBuf++ - '0'; |
| ++NumDigits; |
| } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && |
| ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); |
| |
| // Check for overflow. Reject '\777', but not L'\777'. |
| if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::err_escape_too_large) << 1; |
| ResultChar &= ~0U >> (32-CharWidth); |
| } |
| break; |
| } |
| |
| // Otherwise, these are not valid escapes. |
| case '(': case '{': case '[': case '%': |
| // GCC accepts these as extensions. We warn about them as such though. |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::ext_nonstandard_escape) |
| << std::string(1, ResultChar); |
| break; |
| default: |
| if (!Diags) |
| break; |
| |
| if (isPrintable(ResultChar)) |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::ext_unknown_escape) |
| << std::string(1, ResultChar); |
| else |
| Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, |
| diag::ext_unknown_escape) |
| << "x" + llvm::utohexstr(ResultChar); |
| break; |
| } |
| |
| return ResultChar; |
| } |
| |
| static void appendCodePoint(unsigned Codepoint, |
| llvm::SmallVectorImpl<char> &Str) { |
| char ResultBuf[4]; |
| char *ResultPtr = ResultBuf; |
| bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr); |
| (void)Res; |
| assert(Res && "Unexpected conversion failure"); |
| Str.append(ResultBuf, ResultPtr); |
| } |
| |
| void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { |
| for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { |
| if (*I != '\\') { |
| Buf.push_back(*I); |
| continue; |
| } |
| |
| ++I; |
| assert(*I == 'u' || *I == 'U'); |
| |
| unsigned NumHexDigits; |
| if (*I == 'u') |
| NumHexDigits = 4; |
| else |
| NumHexDigits = 8; |
| |
| assert(I + NumHexDigits <= E); |
| |
| uint32_t CodePoint = 0; |
| for (++I; NumHexDigits != 0; ++I, --NumHexDigits) { |
| unsigned Value = llvm::hexDigitValue(*I); |
| assert(Value != -1U); |
| |
| CodePoint <<= 4; |
| CodePoint += Value; |
| } |
| |
| appendCodePoint(CodePoint, Buf); |
| --I; |
| } |
| } |
| |
| /// ProcessUCNEscape - Read the Universal Character Name, check constraints and |
| /// return the UTF32. |
| static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
| const char *ThisTokEnd, |
| uint32_t &UcnVal, unsigned short &UcnLen, |
| FullSourceLoc Loc, DiagnosticsEngine *Diags, |
| const LangOptions &Features, |
| bool in_char_string_literal = false) { |
| const char *UcnBegin = ThisTokBuf; |
| |
| // Skip the '\u' char's. |
| ThisTokBuf += 2; |
| |
| if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
| diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1); |
| return false; |
| } |
| UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); |
| unsigned short UcnLenSave = UcnLen; |
| for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) { |
| int CharVal = llvm::hexDigitValue(ThisTokBuf[0]); |
| if (CharVal == -1) break; |
| UcnVal <<= 4; |
| UcnVal |= CharVal; |
| } |
| // If we didn't consume the proper number of digits, there is a problem. |
| if (UcnLenSave) { |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
| diag::err_ucn_escape_incomplete); |
| return false; |
| } |
| |
| // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] |
| if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints |
| UcnVal > 0x10FFFF) { // maximum legal UTF32 value |
| if (Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
| diag::err_ucn_escape_invalid); |
| return false; |
| } |
| |
| // C++11 allows UCNs that refer to control characters and basic source |
| // characters inside character and string literals |
| if (UcnVal < 0xa0 && |
| (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, ` |
| bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal); |
| if (Diags) { |
| char BasicSCSChar = UcnVal; |
| if (UcnVal >= 0x20 && UcnVal < 0x7f) |
| Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
| IsError ? diag::err_ucn_escape_basic_scs : |
| diag::warn_cxx98_compat_literal_ucn_escape_basic_scs) |
| << StringRef(&BasicSCSChar, 1); |
| else |
| Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
| IsError ? diag::err_ucn_control_character : |
| diag::warn_cxx98_compat_literal_ucn_control_character); |
| } |
| if (IsError) |
| return false; |
| } |
| |
| if (!Features.CPlusPlus && !Features.C99 && Diags) |
| Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, |
| diag::warn_ucn_not_valid_in_c89_literal); |
| |
| return true; |
| } |
| |
| /// MeasureUCNEscape - Determine the number of bytes within the resulting string |
| /// which this UCN will occupy. |
| static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
| const char *ThisTokEnd, unsigned CharByteWidth, |
| const LangOptions &Features, bool &HadError) { |
| // UTF-32: 4 bytes per escape. |
| if (CharByteWidth == 4) |
| return 4; |
| |
| uint32_t UcnVal = 0; |
| unsigned short UcnLen = 0; |
| FullSourceLoc Loc; |
| |
| if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, |
| UcnLen, Loc, nullptr, Features, true)) { |
| HadError = true; |
| return 0; |
| } |
| |
| // UTF-16: 2 bytes for BMP, 4 bytes otherwise. |
| if (CharByteWidth == 2) |
| return UcnVal <= 0xFFFF ? 2 : 4; |
| |
| // UTF-8. |
| if (UcnVal < 0x80) |
| return 1; |
| if (UcnVal < 0x800) |
| return 2; |
| if (UcnVal < 0x10000) |
| return 3; |
| return 4; |
| } |
| |
| /// EncodeUCNEscape - Read the Universal Character Name, check constraints and |
| /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of |
| /// StringLiteralParser. When we decide to implement UCN's for identifiers, |
| /// we will likely rework our support for UCN's. |
| static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, |
| const char *ThisTokEnd, |
| char *&ResultBuf, bool &HadError, |
| FullSourceLoc Loc, unsigned CharByteWidth, |
| DiagnosticsEngine *Diags, |
| const LangOptions &Features) { |
| typedef uint32_t UTF32; |
| UTF32 UcnVal = 0; |
| unsigned short UcnLen = 0; |
| if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, |
| Loc, Diags, Features, true)) { |
| HadError = true; |
| return; |
| } |
| |
| assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && |
| "only character widths of 1, 2, or 4 bytes supported"); |
| |
| (void)UcnLen; |
| assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); |
| |
| if (CharByteWidth == 4) { |
| // FIXME: Make the type of the result buffer correct instead of |
| // using reinterpret_cast. |
| llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); |
| *ResultPtr = UcnVal; |
| ResultBuf += 4; |
| return; |
| } |
| |
| if (CharByteWidth == 2) { |
| // FIXME: Make the type of the result buffer correct instead of |
| // using reinterpret_cast. |
| llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); |
| |
| if (UcnVal <= (UTF32)0xFFFF) { |
| *ResultPtr = UcnVal; |
| ResultBuf += 2; |
| return; |
| } |
| |
| // Convert to UTF16. |
| UcnVal -= 0x10000; |
| *ResultPtr = 0xD800 + (UcnVal >> 10); |
| *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); |
| ResultBuf += 4; |
| return; |
| } |
| |
| assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); |
| |
| // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. |
| // The conversion below was inspired by: |
| // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c |
| // First, we determine how many bytes the result will require. |
| typedef uint8_t UTF8; |
| |
| unsigned short bytesToWrite = 0; |
| if (UcnVal < (UTF32)0x80) |
| bytesToWrite = 1; |
| else if (UcnVal < (UTF32)0x800) |
| bytesToWrite = 2; |
| else if (UcnVal < (UTF32)0x10000) |
| bytesToWrite = 3; |
| else |
| bytesToWrite = 4; |
| |
| const unsigned byteMask = 0xBF; |
| const unsigned byteMark = 0x80; |
| |
| // Once the bits are split out into bytes of UTF8, this is a mask OR-ed |
| // into the first byte, depending on how many bytes follow. |
| static const UTF8 firstByteMark[5] = { |
| 0x00, 0x00, 0xC0, 0xE0, 0xF0 |
| }; |
| // Finally, we write the bytes into ResultBuf. |
| ResultBuf += bytesToWrite; |
| switch (bytesToWrite) { // note: everything falls through. |
| case 4: |
| *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
| LLVM_FALLTHROUGH; |
| case 3: |
| *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
| LLVM_FALLTHROUGH; |
| case 2: |
| *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; |
| LLVM_FALLTHROUGH; |
| case 1: |
| *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); |
| } |
| // Update the buffer. |
| ResultBuf += bytesToWrite; |
| } |
| |
| /// integer-constant: [C99 6.4.4.1] |
| /// decimal-constant integer-suffix |
| /// octal-constant integer-suffix |
| /// hexadecimal-constant integer-suffix |
| /// binary-literal integer-suffix [GNU, C++1y] |
| /// user-defined-integer-literal: [C++11 lex.ext] |
| /// decimal-literal ud-suffix |
| /// octal-literal ud-suffix |
| /// hexadecimal-literal ud-suffix |
| /// binary-literal ud-suffix [GNU, C++1y] |
| /// decimal-constant: |
| /// nonzero-digit |
| /// decimal-constant digit |
| /// octal-constant: |
| /// 0 |
| /// octal-constant octal-digit |
| /// hexadecimal-constant: |
| /// hexadecimal-prefix hexadecimal-digit |
| /// hexadecimal-constant hexadecimal-digit |
| /// hexadecimal-prefix: one of |
| /// 0x 0X |
| /// binary-literal: |
| /// 0b binary-digit |
| /// 0B binary-digit |
| /// binary-literal binary-digit |
| /// integer-suffix: |
| /// unsigned-suffix [long-suffix] |
| /// unsigned-suffix [long-long-suffix] |
| /// long-suffix [unsigned-suffix] |
| /// long-long-suffix [unsigned-sufix] |
| /// nonzero-digit: |
| /// 1 2 3 4 5 6 7 8 9 |
| /// octal-digit: |
| /// 0 1 2 3 4 5 6 7 |
| /// hexadecimal-digit: |
| /// 0 1 2 3 4 5 6 7 8 9 |
| /// a b c d e f |
| /// A B C D E F |
| /// binary-digit: |
| /// 0 |
| /// 1 |
| /// unsigned-suffix: one of |
| /// u U |
| /// long-suffix: one of |
| /// l L |
| /// long-long-suffix: one of |
| /// ll LL |
| /// |
| /// floating-constant: [C99 6.4.4.2] |
| /// TODO: add rules... |
| /// |
| NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, |
| SourceLocation TokLoc, |
| Preprocessor &PP) |
| : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { |
| |
| // This routine assumes that the range begin/end matches the regex for integer |
| // and FP constants (specifically, the 'pp-number' regex), and assumes that |
| // the byte at "*end" is both valid and not part of the regex. Because of |
| // this, it doesn't have to check for 'overscan' in various places. |
| assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?"); |
| |
| s = DigitsBegin = ThisTokBegin; |
| saw_exponent = false; |
| saw_period = false; |
| saw_ud_suffix = false; |
| saw_fixed_point_suffix = false; |
| isLong = false; |
| isUnsigned = false; |
| isLongLong = false; |
| isHalf = false; |
| isFloat = false; |
| isImaginary = false; |
| isFloat16 = false; |
| isFloat128 = false; |
| MicrosoftInteger = 0; |
| isFract = false; |
| isAccum = false; |
| hadError = false; |
| |
| if (*s == '0') { // parse radix |
| ParseNumberStartingWithZero(TokLoc); |
| if (hadError) |
| return; |
| } else { // the first digit is non-zero |
| radix = 10; |
| s = SkipDigits(s); |
| if (s == ThisTokEnd) { |
| // Done. |
| } else { |
| ParseDecimalOrOctalCommon(TokLoc); |
| if (hadError) |
| return; |
| } |
| } |
| |
| SuffixBegin = s; |
| checkSeparator(TokLoc, s, CSK_AfterDigits); |
| |
| // Initial scan to lookahead for fixed point suffix. |
| if (PP.getLangOpts().FixedPoint) { |
| for (const char *c = s; c != ThisTokEnd; ++c) { |
| if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { |
| saw_fixed_point_suffix = true; |
| break; |
| } |
| } |
| } |
| |
| // Parse the suffix. At this point we can classify whether we have an FP or |
| // integer constant. |
| bool isFPConstant = isFloatingLiteral(); |
| |
| // Loop over all of the characters of the suffix. If we see something bad, |
| // we break out of the loop. |
| for (; s != ThisTokEnd; ++s) { |
| switch (*s) { |
| case 'R': |
| case 'r': |
| if (!PP.getLangOpts().FixedPoint) break; |
| if (isFract || isAccum) break; |
| if (!(saw_period || saw_exponent)) break; |
| isFract = true; |
| continue; |
| case 'K': |
| case 'k': |
| if (!PP.getLangOpts().FixedPoint) break; |
| if (isFract || isAccum) break; |
| if (!(saw_period || saw_exponent)) break; |
| isAccum = true; |
| continue; |
| case 'h': // FP Suffix for "half". |
| case 'H': |
| // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. |
| if (!(PP.getLangOpts().Half || PP.getLangOpts().FixedPoint)) break; |
| if (isIntegerLiteral()) break; // Error for integer constant. |
| if (isHalf || isFloat || isLong) break; // HH, FH, LH invalid. |
| isHalf = true; |
| continue; // Success. |
| case 'f': // FP Suffix for "float" |
| case 'F': |
| if (!isFPConstant) break; // Error for integer constant. |
| if (isHalf || isFloat || isLong || isFloat128) |
| break; // HF, FF, LF, QF invalid. |
| |
| // CUDA host and device may have different _Float16 support, therefore |
| // allows f16 literals to avoid false alarm. |
| // ToDo: more precise check for CUDA. |
| if ((PP.getTargetInfo().hasFloat16Type() || PP.getLangOpts().CUDA) && |
| s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') { |
| s += 2; // success, eat up 2 characters. |
| isFloat16 = true; |
| continue; |
| } |
| |
| isFloat = true; |
| continue; // Success. |
| case 'q': // FP Suffix for "__float128" |
| case 'Q': |
| if (!isFPConstant) break; // Error for integer constant. |
| if (isHalf || isFloat || isLong || isFloat128) |
| break; // HQ, FQ, LQ, QQ invalid. |
| isFloat128 = true; |
| continue; // Success. |
| case 'u': |
| case 'U': |
| if (isFPConstant) break; // Error for floating constant. |
| if (isUnsigned) break; // Cannot be repeated. |
| isUnsigned = true; |
| continue; // Success. |
| case 'l': |
| case 'L': |
| if (isLong || isLongLong) break; // Cannot be repeated. |
| if (isHalf || isFloat || isFloat128) break; // LH, LF, LQ invalid. |
| |
| // Check for long long. The L's need to be adjacent and the same case. |
| if (s[1] == s[0]) { |
| assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); |
| if (isFPConstant) break; // long long invalid for floats. |
| isLongLong = true; |
| ++s; // Eat both of them. |
| } else { |
| isLong = true; |
| } |
| continue; // Success. |
| case 'i': |
| case 'I': |
| if (PP.getLangOpts().MicrosoftExt) { |
| if (isLong || isLongLong || MicrosoftInteger) |
| break; |
| |
| if (!isFPConstant) { |
| // Allow i8, i16, i32, and i64. |
| switch (s[1]) { |
| case '8': |
| s += 2; // i8 suffix |
| MicrosoftInteger = 8; |
| break; |
| case '1': |
| if (s[2] == '6') { |
| s += 3; // i16 suffix |
| MicrosoftInteger = 16; |
| } |
| break; |
| case '3': |
| if (s[2] == '2') { |
| s += 3; // i32 suffix |
| MicrosoftInteger = 32; |
| } |
| break; |
| case '6': |
| if (s[2] == '4') { |
| s += 3; // i64 suffix |
| MicrosoftInteger = 64; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| if (MicrosoftInteger) { |
| assert(s <= ThisTokEnd && "didn't maximally munch?"); |
| break; |
| } |
| } |
| LLVM_FALLTHROUGH; |
| case 'j': |
| case 'J': |
| if (isImaginary) break; // Cannot be repeated. |
| isImaginary = true; |
| continue; // Success. |
| } |
| // If we reached here, there was an error or a ud-suffix. |
| break; |
| } |
| |
| // "i", "if", and "il" are user-defined suffixes in C++1y. |
| if (s != ThisTokEnd || isImaginary) { |
| // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). |
| expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); |
| if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) { |
| if (!isImaginary) { |
| // Any suffix pieces we might have parsed are actually part of the |
| // ud-suffix. |
| isLong = false; |
| isUnsigned = false; |
| isLongLong = false; |
| isFloat = false; |
| isFloat16 = false; |
| isHalf = false; |
| isImaginary = false; |
| MicrosoftInteger = 0; |
| saw_fixed_point_suffix = false; |
| isFract = false; |
| isAccum = false; |
| } |
| |
| saw_ud_suffix = true; |
| return; |
| } |
| |
| if (s != ThisTokEnd) { |
| // Report an error if there are any. |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin), |
| diag::err_invalid_suffix_constant) |
| << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) << isFPConstant; |
| hadError = true; |
| } |
| } |
| |
| if (!hadError && saw_fixed_point_suffix) { |
| assert(isFract || isAccum); |
| } |
| } |
| |
| /// ParseDecimalOrOctalCommon - This method is called for decimal or octal |
| /// numbers. It issues an error for illegal digits, and handles floating point |
| /// parsing. If it detects a floating point number, the radix is set to 10. |
| void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ |
| assert((radix == 8 || radix == 10) && "Unexpected radix"); |
| |
| // If we have a hex digit other than 'e' (which denotes a FP exponent) then |
| // the code is using an incorrect base. |
| if (isHexDigit(*s) && *s != 'e' && *s != 'E' && |
| !isValidUDSuffix(PP.getLangOpts(), StringRef(s, ThisTokEnd - s))) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin), |
| diag::err_invalid_digit) << StringRef(s, 1) << (radix == 8 ? 1 : 0); |
| hadError = true; |
| return; |
| } |
| |
| if (*s == '.') { |
| checkSeparator(TokLoc, s, CSK_AfterDigits); |
| s++; |
| radix = 10; |
| saw_period = true; |
| checkSeparator(TokLoc, s, CSK_BeforeDigits); |
| s = SkipDigits(s); // Skip suffix. |
| } |
| if (*s == 'e' || *s == 'E') { // exponent |
| checkSeparator(TokLoc, s, CSK_AfterDigits); |
| const char *Exponent = s; |
| s++; |
| radix = 10; |
| saw_exponent = true; |
| if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign |
| const char *first_non_digit = SkipDigits(s); |
| if (containsDigits(s, first_non_digit)) { |
| checkSeparator(TokLoc, s, CSK_BeforeDigits); |
| s = first_non_digit; |
| } else { |
| if (!hadError) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin), |
| diag::err_exponent_has_no_digits); |
| hadError = true; |
| } |
| return; |
| } |
| } |
| } |
| |
| /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved |
| /// suffixes as ud-suffixes, because the diagnostic experience is better if we |
| /// treat it as an invalid suffix. |
| bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, |
| StringRef Suffix) { |
| if (!LangOpts.CPlusPlus11 || Suffix.empty()) |
| return false; |
| |
| // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. |
| if (Suffix[0] == '_') |
| return true; |
| |
| // In C++11, there are no library suffixes. |
| if (!LangOpts.CPlusPlus14) |
| return false; |
| |
| // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. |
| // Per tweaked N3660, "il", "i", and "if" are also used in the library. |
| // In C++2a "d" and "y" are used in the library. |
| return llvm::StringSwitch<bool>(Suffix) |
| .Cases("h", "min", "s", true) |
| .Cases("ms", "us", "ns", true) |
| .Cases("il", "i", "if", true) |
| .Cases("d", "y", LangOpts.CPlusPlus2a) |
| .Default(false); |
| } |
| |
| void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, |
| const char *Pos, |
| CheckSeparatorKind IsAfterDigits) { |
| if (IsAfterDigits == CSK_AfterDigits) { |
| if (Pos == ThisTokBegin) |
| return; |
| --Pos; |
| } else if (Pos == ThisTokEnd) |
| return; |
| |
| if (isDigitSeparator(*Pos)) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin), |
| diag::err_digit_separator_not_between_digits) |
| << IsAfterDigits; |
| hadError = true; |
| } |
| } |
| |
| /// ParseNumberStartingWithZero - This method is called when the first character |
| /// of the number is found to be a zero. This means it is either an octal |
| /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or |
| /// a floating point number (01239.123e4). Eat the prefix, determining the |
| /// radix etc. |
| void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { |
| assert(s[0] == '0' && "Invalid method call"); |
| s++; |
| |
| int c1 = s[0]; |
| |
| // Handle a hex number like 0x1234. |
| if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { |
| s++; |
| assert(s < ThisTokEnd && "didn't maximally munch?"); |
| radix = 16; |
| DigitsBegin = s; |
| s = SkipHexDigits(s); |
| bool HasSignificandDigits = containsDigits(DigitsBegin, s); |
| if (s == ThisTokEnd) { |
| // Done. |
| } else if (*s == '.') { |
| s++; |
| saw_period = true; |
| const char *floatDigitsBegin = s; |
| s = SkipHexDigits(s); |
| if (containsDigits(floatDigitsBegin, s)) |
| HasSignificandDigits = true; |
| if (HasSignificandDigits) |
| checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); |
| } |
| |
| if (!HasSignificandDigits) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin), |
| diag::err_hex_constant_requires) |
| << PP.getLangOpts().CPlusPlus << 1; |
| hadError = true; |
| return; |
| } |
| |
| // A binary exponent can appear with or with a '.'. If dotted, the |
| // binary exponent is required. |
| if (*s == 'p' || *s == 'P') { |
| checkSeparator(TokLoc, s, CSK_AfterDigits); |
| const char *Exponent = s; |
| s++; |
| saw_exponent = true; |
| if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign |
| const char *first_non_digit = SkipDigits(s); |
| if (!containsDigits(s, first_non_digit)) { |
| if (!hadError) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin), |
| diag::err_exponent_has_no_digits); |
| hadError = true; |
| } |
| return; |
| } |
| checkSeparator(TokLoc, s, CSK_BeforeDigits); |
| s = first_non_digit; |
| |
| if (!PP.getLangOpts().HexFloats) |
| PP.Diag(TokLoc, PP.getLangOpts().CPlusPlus |
| ? diag::ext_hex_literal_invalid |
| : diag::ext_hex_constant_invalid); |
| else if (PP.getLangOpts().CPlusPlus17) |
| PP.Diag(TokLoc, diag::warn_cxx17_hex_literal); |
| } else if (saw_period) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin), |
| diag::err_hex_constant_requires) |
| << PP.getLangOpts().CPlusPlus << 0; |
| hadError = true; |
| } |
| return; |
| } |
| |
| // Handle simple binary numbers 0b01010 |
| if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { |
| // 0b101010 is a C++1y / GCC extension. |
| PP.Diag(TokLoc, |
| PP.getLangOpts().CPlusPlus14 |
| ? diag::warn_cxx11_compat_binary_literal |
| : PP.getLangOpts().CPlusPlus |
| ? diag::ext_binary_literal_cxx14 |
| : diag::ext_binary_literal); |
| ++s; |
| assert(s < ThisTokEnd && "didn't maximally munch?"); |
| radix = 2; |
| DigitsBegin = s; |
| s = SkipBinaryDigits(s); |
| if (s == ThisTokEnd) { |
| // Done. |
| } else if (isHexDigit(*s) && |
| !isValidUDSuffix(PP.getLangOpts(), |
| StringRef(s, ThisTokEnd - s))) { |
| PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin), |
| diag::err_invalid_digit) << StringRef(s, 1) << 2; |
| hadError = true; |
| } |
| // Other suffixes will be diagnosed by the caller. |
| return; |
| } |
| |
| // For now, the radix is set to 8. If we discover that we have a |
| // floating point constant, the radix will change to 10. Octal floating |
| // point constants are not permitted (only decimal and hexadecimal). |
| radix = 8; |
| DigitsBegin = s; |
| s = SkipOctalDigits(s); |
| if (s == ThisTokEnd) |
| return; // Done, simple octal number like 01234 |
| |
| // If we have some other non-octal digit that *is* a decimal digit, see if |
| // this is part of a floating point number like 094.123 or 09e1. |
| if (isDigit(*s)) { |
| const char *EndDecimal = SkipDigits(s); |
| if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { |
| s = EndDecimal; |
| radix = 10; |
| } |
| } |
| |
| ParseDecimalOrOctalCommon(TokLoc); |
| } |
| |
| static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { |
| switch (Radix) { |
| case 2: |
| return NumDigits <= 64; |
| case 8: |
| return NumDigits <= 64 / 3; // Digits are groups of 3 bits. |
| case 10: |
| return NumDigits <= 19; // floor(log10(2^64)) |
| case 16: |
| return NumDigits <= 64 / 4; // Digits are groups of 4 bits. |
| default: |
| llvm_unreachable("impossible Radix"); |
| } |
| } |
| |
| /// GetIntegerValue - Convert this numeric literal value to an APInt that |
| /// matches Val's input width. If there is an overflow, set Val to the low bits |
| /// of the result and return true. Otherwise, return false. |
| bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { |
| // Fast path: Compute a conservative bound on the maximum number of |
| // bits per digit in this radix. If we can't possibly overflow a |
| // uint64 based on that bound then do the simple conversion to |
| // integer. This avoids the expensive overflow checking below, and |
| // handles the common cases that matter (small decimal integers and |
| // hex/octal values which don't overflow). |
| const unsigned NumDigits = SuffixBegin - DigitsBegin; |
| if (alwaysFitsInto64Bits(radix, NumDigits)) { |
| uint64_t N = 0; |
| for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) |
| if (!isDigitSeparator(*Ptr)) |
| N = N * radix + llvm::hexDigitValue(*Ptr); |
| |
| // This will truncate the value to Val's input width. Simply check |
| // for overflow by comparing. |
| Val = N; |
| return Val.getZExtValue() != N; |
| } |
| |
| Val = 0; |
| const char *Ptr = DigitsBegin; |
| |
| llvm::APInt RadixVal(Val.getBitWidth(), radix); |
| llvm::APInt CharVal(Val.getBitWidth(), 0); |
| llvm::APInt OldVal = Val; |
| |
| bool OverflowOccurred = false; |
| while (Ptr < SuffixBegin) { |
| if (isDigitSeparator(*Ptr)) { |
| ++Ptr; |
| continue; |
| } |
| |
| unsigned C = llvm::hexDigitValue(*Ptr++); |
| |
| // If this letter is out of bound for this radix, reject it. |
| assert(C < radix && "NumericLiteralParser ctor should have rejected this"); |
| |
| CharVal = C; |
| |
| // Add the digit to the value in the appropriate radix. If adding in digits |
| // made the value smaller, then this overflowed. |
| OldVal = Val; |
| |
| // Multiply by radix, did overflow occur on the multiply? |
| Val *= RadixVal; |
| OverflowOccurred |= Val.udiv(RadixVal) != OldVal; |
| |
| // Add value, did overflow occur on the value? |
| // (a + b) ult b <=> overflow |
| Val += CharVal; |
| OverflowOccurred |= Val.ult(CharVal); |
| } |
| return OverflowOccurred; |
| } |
| |
| llvm::APFloat::opStatus |
| NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) { |
| using llvm::APFloat; |
| |
| unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); |
| |
| llvm::SmallString<16> Buffer; |
| StringRef Str(ThisTokBegin, n); |
| if (Str.find('\'') != StringRef::npos) { |
| Buffer.reserve(n); |
| std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), |
| &isDigitSeparator); |
| Str = Buffer; |
| } |
| |
| return Result.convertFromString(Str, APFloat::rmNearestTiesToEven); |
| } |
| |
| static inline bool IsExponentPart(char c) { |
| return c == 'p' || c == 'P' || c == 'e' || c == 'E'; |
| } |
| |
| bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { |
| assert(radix == 16 || radix == 10); |
| |
| // Find how many digits are needed to store the whole literal. |
| unsigned NumDigits = SuffixBegin - DigitsBegin; |
| if (saw_period) --NumDigits; |
| |
| // Initial scan of the exponent if it exists |
| bool ExpOverflowOccurred = false; |
| bool NegativeExponent = false; |
| const char *ExponentBegin; |
| uint64_t Exponent = 0; |
| int64_t BaseShift = 0; |
| if (saw_exponent) { |
| const char *Ptr = DigitsBegin; |
| |
| while (!IsExponentPart(*Ptr)) ++Ptr; |
| ExponentBegin = Ptr; |
| ++Ptr; |
| NegativeExponent = *Ptr == '-'; |
| if (NegativeExponent) ++Ptr; |
| |
| unsigned NumExpDigits = SuffixBegin - Ptr; |
| if (alwaysFitsInto64Bits(radix, NumExpDigits)) { |
| llvm::StringRef ExpStr(Ptr, NumExpDigits); |
| llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); |
| Exponent = ExpInt.getZExtValue(); |
| } else { |
| ExpOverflowOccurred = true; |
| } |
| |
| if (NegativeExponent) BaseShift -= Exponent; |
| else BaseShift += Exponent; |
| } |
| |
| // Number of bits needed for decimal literal is |
| // ceil(NumDigits * log2(10)) Integral part |
| // + Scale Fractional part |
| // + ceil(Exponent * log2(10)) Exponent |
| // -------------------------------------------------- |
| // ceil((NumDigits + Exponent) * log2(10)) + Scale |
| // |
| // But for simplicity in handling integers, we can round up log2(10) to 4, |
| // making: |
| // 4 * (NumDigits + Exponent) + Scale |
| // |
| // Number of digits needed for hexadecimal literal is |
| // 4 * NumDigits Integral part |
| // + Scale Fractional part |
| // + Exponent Exponent |
| // -------------------------------------------------- |
| // (4 * NumDigits) + Scale + Exponent |
| uint64_t NumBitsNeeded; |
| if (radix == 10) |
| NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; |
| else |
| NumBitsNeeded = 4 * NumDigits + Exponent + Scale; |
| |
| if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) |
| ExpOverflowOccurred = true; |
| llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); |
| |
| bool FoundDecimal = false; |
| |
| int64_t FractBaseShift = 0; |
| const char *End = saw_exponent ? ExponentBegin : SuffixBegin; |
| for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { |
| if (*Ptr == '.') { |
| FoundDecimal = true; |
| continue; |
| } |
| |
| // Normal reading of an integer |
| unsigned C = llvm::hexDigitValue(*Ptr); |
| assert(C < radix && "NumericLiteralParser ctor should have rejected this"); |
| |
| Val *= radix; |
| Val += C; |
| |
| if (FoundDecimal) |
| // Keep track of how much we will need to adjust this value by from the |
| // number of digits past the radix point. |
| --FractBaseShift; |
| } |
| |
| // For a radix of 16, we will be multiplying by 2 instead of 16. |
| if (radix == 16) FractBaseShift *= 4; |
| BaseShift += FractBaseShift; |
| |
| Val <<= Scale; |
| |
| uint64_t Base = (radix == 16) ? 2 : 10; |
| if (BaseShift > 0) { |
| for (int64_t i = 0; i < BaseShift; ++i) { |
| Val *= Base; |
| } |
| } else if (BaseShift < 0) { |
| for (int64_t i = BaseShift; i < 0 && !Val.isNullValue(); ++i) |
| Val = Val.udiv(Base); |
| } |
| |
| bool IntOverflowOccurred = false; |
| auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); |
| if (Val.getBitWidth() > StoreVal.getBitWidth()) { |
| IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); |
| StoreVal = Val.trunc(StoreVal.getBitWidth()); |
| } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { |
| IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); |
| StoreVal = Val.zext(StoreVal.getBitWidth()); |
| } else { |
| StoreVal = Val; |
| } |
| |
| return IntOverflowOccurred || ExpOverflowOccurred; |
| } |
| |
| /// \verbatim |
| /// user-defined-character-literal: [C++11 lex.ext] |
| /// character-literal ud-suffix |
| /// ud-suffix: |
| /// identifier |
| /// character-literal: [C++11 lex.ccon] |
| /// ' c-char-sequence ' |
| /// u' c-char-sequence ' |
| /// U' c-char-sequence ' |
| /// L' c-char-sequence ' |
| /// u8' c-char-sequence ' [C++1z lex.ccon] |
| /// c-char-sequence: |
| /// c-char |
| /// c-char-sequence c-char |
| /// c-char: |
| /// any member of the source character set except the single-quote ', |
| /// backslash \, or new-line character |
| /// escape-sequence |
| /// universal-character-name |
| /// escape-sequence: |
| /// simple-escape-sequence |
| /// octal-escape-sequence |
| /// hexadecimal-escape-sequence |
| /// simple-escape-sequence: |
| /// one of \' \" \? \\ \a \b \f \n \r \t \v |
| /// octal-escape-sequence: |
| /// \ octal-digit |
| /// \ octal-digit octal-digit |
| /// \ octal-digit octal-digit octal-digit |
| /// hexadecimal-escape-sequence: |
| /// \x hexadecimal-digit |
| /// hexadecimal-escape-sequence hexadecimal-digit |
| /// universal-character-name: [C++11 lex.charset] |
| /// \u hex-quad |
| /// \U hex-quad hex-quad |
| /// hex-quad: |
| /// hex-digit hex-digit hex-digit hex-digit |
| /// \endverbatim |
| /// |
| CharLiteralParser::CharLiteralParser(const char *begin, const char *end, |
| SourceLocation Loc, Preprocessor &PP, |
| tok::TokenKind kind) { |
| // At this point we know that the character matches the regex "(L|u|U)?'.*'". |
| HadError = false; |
| |
| Kind = kind; |
| |
| const char *TokBegin = begin; |
| |
| // Skip over wide character determinant. |
| if (Kind != tok::char_constant) |
| ++begin; |
| if (Kind == tok::utf8_char_constant) |
| ++begin; |
| |
| // Skip over the entry quote. |
| assert(begin[0] == '\'' && "Invalid token lexed"); |
| ++begin; |
| |
| // Remove an optional ud-suffix. |
| if (end[-1] != '\'') { |
| const char *UDSuffixEnd = end; |
| do { |
| --end; |
| } while (end[-1] != '\''); |
| // FIXME: Don't bother with this if !tok.hasUCN(). |
| expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); |
| UDSuffixOffset = end - TokBegin; |
| } |
| |
| // Trim the ending quote. |
| assert(end != begin && "Invalid token lexed"); |
| --end; |
| |
| // FIXME: The "Value" is an uint64_t so we can handle char literals of |
| // up to 64-bits. |
| // FIXME: This extensively assumes that 'char' is 8-bits. |
| assert(PP.getTargetInfo().getCharWidth() == 8 && |
| "Assumes char is 8 bits"); |
| assert(PP.getTargetInfo().getIntWidth() <= 64 && |
| (PP.getTargetInfo().getIntWidth() & 7) == 0 && |
| "Assumes sizeof(int) on target is <= 64 and a multiple of char"); |
| assert(PP.getTargetInfo().getWCharWidth() <= 64 && |
| "Assumes sizeof(wchar) on target is <= 64"); |
| |
| SmallVector<uint32_t, 4> codepoint_buffer; |
| codepoint_buffer.resize(end - begin); |
| uint32_t *buffer_begin = &codepoint_buffer.front(); |
| uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); |
| |
| // Unicode escapes representing characters that cannot be correctly |
| // represented in a single code unit are disallowed in character literals |
| // by this implementation. |
| uint32_t largest_character_for_kind; |
| if (tok::wide_char_constant == Kind) { |
| largest_character_for_kind = |
| 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); |
| } else if (tok::utf8_char_constant == Kind) { |
| largest_character_for_kind = 0x7F; |
| } else if (tok::utf16_char_constant == Kind) { |
| largest_character_for_kind = 0xFFFF; |
| } else if (tok::utf32_char_constant == Kind) { |
| largest_character_for_kind = 0x10FFFF; |
| } else { |
| largest_character_for_kind = 0x7Fu; |
| } |
| |
| while (begin != end) { |
| // Is this a span of non-escape characters? |
| if (begin[0] != '\\') { |
| char const *start = begin; |
| do { |
| ++begin; |
| } while (begin != end && *begin != '\\'); |
| |
| char const *tmp_in_start = start; |
| uint32_t *tmp_out_start = buffer_begin; |
| llvm::ConversionResult res = |
| llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), |
| reinterpret_cast<llvm::UTF8 const *>(begin), |
| &buffer_begin, buffer_end, llvm::strictConversion); |
| if (res != llvm::conversionOK) { |
| // If we see bad encoding for unprefixed character literals, warn and |
| // simply copy the byte values, for compatibility with gcc and |
| // older versions of clang. |
| bool NoErrorOnBadEncoding = isAscii(); |
| unsigned Msg = diag::err_bad_character_encoding; |
| if (NoErrorOnBadEncoding) |
| Msg = diag::warn_bad_character_encoding; |
| PP.Diag(Loc, Msg); |
| if (NoErrorOnBadEncoding) { |
| start = tmp_in_start; |
| buffer_begin = tmp_out_start; |
| for (; start != begin; ++start, ++buffer_begin) |
| *buffer_begin = static_cast<uint8_t>(*start); |
| } else { |
| HadError = true; |
| } |
| } else { |
| for (; tmp_out_start < buffer_begin; ++tmp_out_start) { |
| if (*tmp_out_start > largest_character_for_kind) { |
| HadError = true; |
| PP.Diag(Loc, diag::err_character_too_large); |
| } |
| } |
| } |
| |
| continue; |
| } |
| // Is this a Universal Character Name escape? |
| if (begin[1] == 'u' || begin[1] == 'U') { |
| unsigned short UcnLen = 0; |
| if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, |
| FullSourceLoc(Loc, PP.getSourceManager()), |
| &PP.getDiagnostics(), PP.getLangOpts(), true)) { |
| HadError = true; |
| } else if (*buffer_begin > largest_character_for_kind) { |
| HadError = true; |
| PP.Diag(Loc, diag::err_character_too_large); |
| } |
| |
| ++buffer_begin; |
| continue; |
| } |
| unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); |
| uint64_t result = |
| ProcessCharEscape(TokBegin, begin, end, HadError, |
| FullSourceLoc(Loc,PP.getSourceManager()), |
| CharWidth, &PP.getDiagnostics(), PP.getLangOpts()); |
| *buffer_begin++ = result; |
| } |
| |
| unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); |
| |
| if (NumCharsSoFar > 1) { |
| if (isWide()) |
| PP.Diag(Loc, diag::warn_extraneous_char_constant); |
| else if (isAscii() && NumCharsSoFar == 4) |
| PP.Diag(Loc, diag::ext_four_char_character_literal); |
| else if (isAscii()) |
| PP.Diag(Loc, diag::ext_multichar_character_literal); |
| else |
| PP.Diag(Loc, diag::err_multichar_utf_character_literal); |
| IsMultiChar = true; |
| } else { |
| IsMultiChar = false; |
| } |
| |
| llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); |
| |
| // Narrow character literals act as though their value is concatenated |
| // in this implementation, but warn on overflow. |
| bool multi_char_too_long = false; |
| if (isAscii() && isMultiChar()) { |
| LitVal = 0; |
| for (size_t i = 0; i < NumCharsSoFar; ++i) { |
| // check for enough leading zeros to shift into |
| multi_char_too_long |= (LitVal.countLeadingZeros() < 8); |
| LitVal <<= 8; |
| LitVal = LitVal + (codepoint_buffer[i] & 0xFF); |
| } |
| } else if (NumCharsSoFar > 0) { |
| // otherwise just take the last character |
| LitVal = buffer_begin[-1]; |
| } |
| |
| if (!HadError && multi_char_too_long) { |
| PP.Diag(Loc, diag::warn_char_constant_too_large); |
| } |
| |
| // Transfer the value from APInt to uint64_t |
| Value = LitVal.getZExtValue(); |
| |
| // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") |
| // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple |
| // character constants are not sign extended in the this implementation: |
| // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. |
| if (isAscii() && NumCharsSoFar == 1 && (Value & 128) && |
| PP.getLangOpts().CharIsSigned) |
| Value = (signed char)Value; |
| } |
| |
| /// \verbatim |
| /// string-literal: [C++0x lex.string] |
| /// encoding-prefix " [s-char-sequence] " |
| /// encoding-prefix R raw-string |
| /// encoding-prefix: |
| /// u8 |
| /// u |
| /// U |
| /// L |
| /// s-char-sequence: |
| /// s-char |
| /// s-char-sequence s-char |
| /// s-char: |
| /// any member of the source character set except the double-quote ", |
| /// backslash \, or new-line character |
| /// escape-sequence |
| /// universal-character-name |
| /// raw-string: |
| /// " d-char-sequence ( r-char-sequence ) d-char-sequence " |
| /// r-char-sequence: |
| /// r-char |
| /// r-char-sequence r-char |
| /// r-char: |
| /// any member of the source character set, except a right parenthesis ) |
| /// followed by the initial d-char-sequence (which may be empty) |
| /// followed by a double quote ". |
| /// d-char-sequence: |
| /// d-char |
| /// d-char-sequence d-char |
| /// d-char: |
| /// any member of the basic source character set except: |
| /// space, the left parenthesis (, the right parenthesis ), |
| /// the backslash \, and the control characters representing horizontal |
| /// tab, vertical tab, form feed, and newline. |
| /// escape-sequence: [C++0x lex.ccon] |
| /// simple-escape-sequence |
| /// octal-escape-sequence |
| /// hexadecimal-escape-sequence |
| /// simple-escape-sequence: |
| /// one of \' \" \? \\ \a \b \f \n \r \t \v |
| /// octal-escape-sequence: |
| /// \ octal-digit |
| /// \ octal-digit octal-digit |
| /// \ octal-digit octal-digit octal-digit |
| /// hexadecimal-escape-sequence: |
| /// \x hexadecimal-digit |
| /// hexadecimal-escape-sequence hexadecimal-digit |
| /// universal-character-name: |
| /// \u hex-quad |
| /// \U hex-quad hex-quad |
| /// hex-quad: |
| /// hex-digit hex-digit hex-digit hex-digit |
| /// \endverbatim |
| /// |
| StringLiteralParser:: |
| StringLiteralParser(ArrayRef<Token> StringToks, |
| Preprocessor &PP, bool Complain) |
| : SM(PP.getSourceManager()), Features(PP.getLangOpts()), |
| Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr), |
| MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), |
| ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) { |
| init(StringToks); |
| } |
| |
| void StringLiteralParser::init(ArrayRef<Token> StringToks){ |
| // The literal token may have come from an invalid source location (e.g. due |
| // to a PCH error), in which case the token length will be 0. |
| if (StringToks.empty() || StringToks[0].getLength() < 2) |
| return DiagnoseLexingError(SourceLocation()); |
| |
| // Scan all of the string portions, remember the max individual token length, |
| // computing a bound on the concatenated string length, and see whether any |
| // piece is a wide-string. If any of the string portions is a wide-string |
| // literal, the result is a wide-string literal [C99 6.4.5p4]. |
| assert(!StringToks.empty() && "expected at least one token"); |
| MaxTokenLength = StringToks[0].getLength(); |
| assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); |
| SizeBound = StringToks[0].getLength()-2; // -2 for "". |
| Kind = StringToks[0].getKind(); |
| |
| hadError = false; |
| |
| // Implement Translation Phase #6: concatenation of string literals |
| /// (C99 5.1.1.2p1). The common case is only one string fragment. |
| for (unsigned i = 1; i != StringToks.size(); ++i) { |
| if (StringToks[i].getLength() < 2) |
| return DiagnoseLexingError(StringToks[i].getLocation()); |
| |
| // The string could be shorter than this if it needs cleaning, but this is a |
| // reasonable bound, which is all we need. |
| assert(StringToks[i].getLength() >= 2 && "literal token is invalid!"); |
| SizeBound += StringToks[i].getLength()-2; // -2 for "". |
| |
| // Remember maximum string piece length. |
| if (StringToks[i].getLength() > MaxTokenLength) |
| MaxTokenLength = StringToks[i].getLength(); |
| |
| // Remember if we see any wide or utf-8/16/32 strings. |
| // Also check for illegal concatenations. |
| if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) { |
| if (isAscii()) { |
| Kind = StringToks[i].getKind(); |
| } else { |
| if (Diags) |
| Diags->Report(StringToks[i].getLocation(), |
| diag::err_unsupported_string_concat); |
| hadError = true; |
| } |
| } |
| } |
| |
| // Include space for the null terminator. |
| ++SizeBound; |
| |
| // TODO: K&R warning: "traditional C rejects string constant concatenation" |
| |
| // Get the width in bytes of char/wchar_t/char16_t/char32_t |
| CharByteWidth = getCharWidth(Kind, Target); |
| assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); |
| CharByteWidth /= 8; |
| |
| // The output buffer size needs to be large enough to hold wide characters. |
| // This is a worst-case assumption which basically corresponds to L"" "long". |
| SizeBound *= CharByteWidth; |
| |
| // Size the temporary buffer to hold the result string data. |
| ResultBuf.resize(SizeBound); |
| |
| // Likewise, but for each string piece. |
| SmallString<512> TokenBuf; |
| TokenBuf.resize(MaxTokenLength); |
| |
| // Loop over all the strings, getting their spelling, and expanding them to |
| // wide strings as appropriate. |
| ResultPtr = &ResultBuf[0]; // Next byte to fill in. |
| |
| Pascal = false; |
| |
| SourceLocation UDSuffixTokLoc; |
| |
| for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { |
| const char *ThisTokBuf = &TokenBuf[0]; |
| // Get the spelling of the token, which eliminates trigraphs, etc. We know |
| // that ThisTokBuf points to a buffer that is big enough for the whole token |
| // and 'spelled' tokens can only shrink. |
| bool StringInvalid = false; |
| unsigned ThisTokLen = |
| Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, |
| &StringInvalid); |
| if (StringInvalid) |
| return DiagnoseLexingError(StringToks[i].getLocation()); |
| |
| const char *ThisTokBegin = ThisTokBuf; |
| const char *ThisTokEnd = ThisTokBuf+ThisTokLen; |
| |
| // Remove an optional ud-suffix. |
| if (ThisTokEnd[-1] != '"') { |
| const char *UDSuffixEnd = ThisTokEnd; |
| do { |
| --ThisTokEnd; |
| } while (ThisTokEnd[-1] != '"'); |
| |
| StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); |
| |
| if (UDSuffixBuf.empty()) { |
| if (StringToks[i].hasUCN()) |
| expandUCNs(UDSuffixBuf, UDSuffix); |
| else |
| UDSuffixBuf.assign(UDSuffix); |
| UDSuffixToken = i; |
| UDSuffixOffset = ThisTokEnd - ThisTokBuf; |
| UDSuffixTokLoc = StringToks[i].getLocation(); |
| } else { |
| SmallString<32> ExpandedUDSuffix; |
| if (StringToks[i].hasUCN()) { |
| expandUCNs(ExpandedUDSuffix, UDSuffix); |
| UDSuffix = ExpandedUDSuffix; |
| } |
| |
| // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the |
| // result of a concatenation involving at least one user-defined-string- |
| // literal, all the participating user-defined-string-literals shall |
| // have the same ud-suffix. |
| if (UDSuffixBuf != UDSuffix) { |
| if (Diags) { |
| SourceLocation TokLoc = StringToks[i].getLocation(); |
| Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) |
| << UDSuffixBuf << UDSuffix |
| << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc) |
| << SourceRange(TokLoc, TokLoc); |
| } |
| hadError = true; |
| } |
| } |
| } |
| |
| // Strip the end quote. |
| --ThisTokEnd; |
| |
| // TODO: Input character set mapping support. |
| |
| // Skip marker for wide or unicode strings. |
| if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { |
| ++ThisTokBuf; |
| // Skip 8 of u8 marker for utf8 strings. |
| if (ThisTokBuf[0] == '8') |
| ++ThisTokBuf; |
| } |
| |
| // Check for raw string |
| if (ThisTokBuf[0] == 'R') { |
| ThisTokBuf += 2; // skip R" |
| |
| const char *Prefix = ThisTokBuf; |
| while (ThisTokBuf[0] != '(') |
| ++ThisTokBuf; |
| ++ThisTokBuf; // skip '(' |
| |
| // Remove same number of characters from the end |
| ThisTokEnd -= ThisTokBuf - Prefix; |
| assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal"); |
| |
| // C++14 [lex.string]p4: A source-file new-line in a raw string literal |
| // results in a new-line in the resulting execution string-literal. |
| StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); |
| while (!RemainingTokenSpan.empty()) { |
| // Split the string literal on \r\n boundaries. |
| size_t CRLFPos = RemainingTokenSpan.find("\r\n"); |
| StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); |
| StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); |
| |
| // Copy everything before the \r\n sequence into the string literal. |
| if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) |
| hadError = true; |
| |
| // Point into the \n inside the \r\n sequence and operate on the |
| // remaining portion of the literal. |
| RemainingTokenSpan = AfterCRLF.substr(1); |
| } |
| } else { |
| if (ThisTokBuf[0] != '"') { |
| // The file may have come from PCH and then changed after loading the |
| // PCH; Fail gracefully. |
| return DiagnoseLexingError(StringToks[i].getLocation()); |
| } |
| ++ThisTokBuf; // skip " |
| |
| // Check if this is a pascal string |
| if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd && |
| ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') { |
| |
| // If the \p sequence is found in the first token, we have a pascal string |
| // Otherwise, if we already have a pascal string, ignore the first \p |
| if (i == 0) { |
| ++ThisTokBuf; |
| Pascal = true; |
| } else if (Pascal) |
| ThisTokBuf += 2; |
| } |
| |
| while (ThisTokBuf != ThisTokEnd) { |
| // Is this a span of non-escape characters? |
| if (ThisTokBuf[0] != '\\') { |
| const char *InStart = ThisTokBuf; |
| do { |
| ++ThisTokBuf; |
| } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); |
| |
| // Copy the character span over. |
| if (CopyStringFragment(StringToks[i], ThisTokBegin, |
| StringRef(InStart, ThisTokBuf - InStart))) |
| hadError = true; |
| continue; |
| } |
| // Is this a Universal Character Name escape? |
| if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') { |
| EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, |
| ResultPtr, hadError, |
| FullSourceLoc(StringToks[i].getLocation(), SM), |
| CharByteWidth, Diags, Features); |
| continue; |
| } |
| // Otherwise, this is a non-UCN escape character. Process it. |
| unsigned ResultChar = |
| ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, |
| FullSourceLoc(StringToks[i].getLocation(), SM), |
| CharByteWidth*8, Diags, Features); |
| |
| if (CharByteWidth == 4) { |
| // FIXME: Make the type of the result buffer correct instead of |
| // using reinterpret_cast. |
| llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); |
| *ResultWidePtr = ResultChar; |
| ResultPtr += 4; |
| } else if (CharByteWidth == 2) { |
| // FIXME: Make the type of the result buffer correct instead of |
| // using reinterpret_cast. |
| llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); |
| *ResultWidePtr = ResultChar & 0xFFFF; |
| ResultPtr += 2; |
| } else { |
| assert(CharByteWidth == 1 && "Unexpected char width"); |
| *ResultPtr++ = ResultChar & 0xFF; |
| } |
| } |
| } |
| } |
| |
| if (Pascal) { |
| if (CharByteWidth == 4) { |
| // FIXME: Make the type of the result buffer correct instead of |
| // using reinterpret_cast. |
| llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); |
| ResultWidePtr[0] = GetNumStringChars() - 1; |
| } else if (CharByteWidth == 2) { |
| // FIXME: Make the type of the result buffer correct instead of |
| // using reinterpret_cast. |
| llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); |
| ResultWidePtr[0] = GetNumStringChars() - 1; |
| } else { |
| assert(CharByteWidth == 1 && "Unexpected char width"); |
| ResultBuf[0] = GetNumStringChars() - 1; |
| } |
| |
| // Verify that pascal strings aren't too large. |
| if (GetStringLength() > 256) { |
| if (Diags) |
| Diags->Report(StringToks.front().getLocation(), |
| diag::err_pascal_string_too_long) |
| << SourceRange(StringToks.front().getLocation(), |
| StringToks.back().getLocation()); |
| hadError = true; |
| return; |
| } |
| } else if (Diags) { |
| // Complain if this string literal has too many characters. |
| unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; |
| |
| if (GetNumStringChars() > MaxChars) |
| Diags->Report(StringToks.front().getLocation(), |
| diag::ext_string_too_long) |
| << GetNumStringChars() << MaxChars |
| << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) |
| << SourceRange(StringToks.front().getLocation(), |
| StringToks.back().getLocation()); |
| } |
| } |
| |
| static const char *resyncUTF8(const char *Err, const char *End) { |
| if (Err == End) |
| return End; |
| End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); |
| while (++Err != End && (*Err & 0xC0) == 0x80) |
| ; |
| return Err; |
| } |
| |
| /// This function copies from Fragment, which is a sequence of bytes |
| /// within Tok's contents (which begin at TokBegin) into ResultPtr. |
| /// Performs widening for multi-byte characters. |
| bool StringLiteralParser::CopyStringFragment(const Token &Tok, |
| const char *TokBegin, |
| StringRef Fragment) { |
| const llvm::UTF8 *ErrorPtrTmp; |
| if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) |
| return false; |
| |
| // If we see bad encoding for unprefixed string literals, warn and |
| // simply copy the byte values, for compatibility with gcc and older |
| // versions of clang. |
| bool NoErrorOnBadEncoding = isAscii(); |
| if (NoErrorOnBadEncoding) { |
| memcpy(ResultPtr, Fragment.data(), Fragment.size()); |
| ResultPtr += Fragment.size(); |
| } |
| |
| if (Diags) { |
| const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); |
| |
| FullSourceLoc SourceLoc(Tok.getLocation(), SM); |
| const DiagnosticBuilder &Builder = |
| Diag(Diags, Features, SourceLoc, TokBegin, |
| ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), |
| NoErrorOnBadEncoding ? diag::warn_bad_string_encoding |
| : diag::err_bad_string_encoding); |
| |
| const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); |
| StringRef NextFragment(NextStart, Fragment.end()-NextStart); |
| |
| // Decode into a dummy buffer. |
| SmallString<512> Dummy; |
| Dummy.reserve(Fragment.size() * CharByteWidth); |
| char *Ptr = Dummy.data(); |
| |
| while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { |
| const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); |
| NextStart = resyncUTF8(ErrorPtr, Fragment.end()); |
| Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, |
| ErrorPtr, NextStart); |
| NextFragment = StringRef(NextStart, Fragment.end()-NextStart); |
| } |
| } |
| return !NoErrorOnBadEncoding; |
| } |
| |
| void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { |
| hadError = true; |
| if (Diags) |
| Diags->Report(Loc, diag::err_lexing_string); |
| } |
| |
| /// getOffsetOfStringByte - This function returns the offset of the |
| /// specified byte of the string data represented by Token. This handles |
| /// advancing over escape sequences in the string. |
| unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, |
| unsigned ByteNo) const { |
| // Get the spelling of the token. |
| SmallString<32> SpellingBuffer; |
| SpellingBuffer.resize(Tok.getLength()); |
| |
| bool StringInvalid = false; |
| const char *SpellingPtr = &SpellingBuffer[0]; |
| unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, |
| &StringInvalid); |
| if (StringInvalid) |
| return 0; |
| |
| const char *SpellingStart = SpellingPtr; |
| const char *SpellingEnd = SpellingPtr+TokLen; |
| |
| // Handle UTF-8 strings just like narrow strings. |
| if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') |
| SpellingPtr += 2; |
| |
| assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && |
| SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); |
| |
| // For raw string literals, this is easy. |
| if (SpellingPtr[0] == 'R') { |
| assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); |
| // Skip 'R"'. |
| SpellingPtr += 2; |
| while (*SpellingPtr != '(') { |
| ++SpellingPtr; |
| assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); |
| } |
| // Skip '('. |
| ++SpellingPtr; |
| return SpellingPtr - SpellingStart + ByteNo; |
| } |
| |
| // Skip over the leading quote |
| assert(SpellingPtr[0] == '"' && "Should be a string literal!"); |
| ++SpellingPtr; |
| |
| // Skip over bytes until we find the offset we're looking for. |
| while (ByteNo) { |
| assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); |
| |
| // Step over non-escapes simply. |
| if (*SpellingPtr != '\\') { |
| ++SpellingPtr; |
| --ByteNo; |
| continue; |
| } |
| |
| // Otherwise, this is an escape character. Advance over it. |
| bool HadError = false; |
| if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') { |
| const char *EscapePtr = SpellingPtr; |
| unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, |
| 1, Features, HadError); |
| if (Len > ByteNo) { |
| // ByteNo is somewhere within the escape sequence. |
| SpellingPtr = EscapePtr; |
| break; |
| } |
| ByteNo -= Len; |
| } else { |
| ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, |
| FullSourceLoc(Tok.getLocation(), SM), |
| CharByteWidth*8, Diags, Features); |
| --ByteNo; |
| } |
| assert(!HadError && "This method isn't valid on erroneous strings"); |
| } |
| |
| return SpellingPtr-SpellingStart; |
| } |
| |
| /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved |
| /// suffixes as ud-suffixes, because the diagnostic experience is better if we |
| /// treat it as an invalid suffix. |
| bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, |
| StringRef Suffix) { |
| return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || |
| Suffix == "sv"; |
| } |