blob: 4322ac207112c6dcc19d4cb7ba5951870cf1a191 [file] [log] [blame]
//===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker tries to find nullability violations. There are several kinds of
// possible violations:
// * Null pointer is passed to a pointer which has a _Nonnull type.
// * Null pointer is returned from a function which has a _Nonnull return type.
// * Nullable pointer is passed to a pointer which has a _Nonnull type.
// * Nullable pointer is returned from a function which has a _Nonnull return
// type.
// * Nullable pointer is dereferenced.
//
// This checker propagates the nullability information of the pointers and looks
// for the patterns that are described above. Explicit casts are trusted and are
// considered a way to suppress false positives for this checker. The other way
// to suppress warnings would be to add asserts or guarding if statements to the
// code. In addition to the nullability propagation this checker also uses some
// heuristics to suppress potential false positives.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Path.h"
using namespace clang;
using namespace ento;
namespace {
/// Returns the most nullable nullability. This is used for message expressions
/// like [receiver method], where the nullability of this expression is either
/// the nullability of the receiver or the nullability of the return type of the
/// method, depending on which is more nullable. Contradicted is considered to
/// be the most nullable, to avoid false positive results.
Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
return static_cast<Nullability>(
std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
}
const char *getNullabilityString(Nullability Nullab) {
switch (Nullab) {
case Nullability::Contradicted:
return "contradicted";
case Nullability::Nullable:
return "nullable";
case Nullability::Unspecified:
return "unspecified";
case Nullability::Nonnull:
return "nonnull";
}
llvm_unreachable("Unexpected enumeration.");
return "";
}
// These enums are used as an index to ErrorMessages array.
enum class ErrorKind : int {
NilAssignedToNonnull,
NilPassedToNonnull,
NilReturnedToNonnull,
NullableAssignedToNonnull,
NullableReturnedToNonnull,
NullableDereferenced,
NullablePassedToNonnull
};
class NullabilityChecker
: public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
check::PostCall, check::PostStmt<ExplicitCastExpr>,
check::PostObjCMessage, check::DeadSymbols,
check::Event<ImplicitNullDerefEvent>> {
mutable std::unique_ptr<BugType> BT;
public:
// If true, the checker will not diagnose nullabilility issues for calls
// to system headers. This option is motivated by the observation that large
// projects may have many nullability warnings. These projects may
// find warnings about nullability annotations that they have explicitly
// added themselves higher priority to fix than warnings on calls to system
// libraries.
DefaultBool NoDiagnoseCallsToSystemHeaders;
void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
void checkEvent(ImplicitNullDerefEvent Event) const;
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
const char *Sep) const override;
struct NullabilityChecksFilter {
DefaultBool CheckNullPassedToNonnull;
DefaultBool CheckNullReturnedFromNonnull;
DefaultBool CheckNullableDereferenced;
DefaultBool CheckNullablePassedToNonnull;
DefaultBool CheckNullableReturnedFromNonnull;
CheckerNameRef CheckNameNullPassedToNonnull;
CheckerNameRef CheckNameNullReturnedFromNonnull;
CheckerNameRef CheckNameNullableDereferenced;
CheckerNameRef CheckNameNullablePassedToNonnull;
CheckerNameRef CheckNameNullableReturnedFromNonnull;
};
NullabilityChecksFilter Filter;
// When set to false no nullability information will be tracked in
// NullabilityMap. It is possible to catch errors like passing a null pointer
// to a callee that expects nonnull argument without the information that is
// stroed in the NullabilityMap. This is an optimization.
DefaultBool NeedTracking;
private:
class NullabilityBugVisitor : public BugReporterVisitor {
public:
NullabilityBugVisitor(const MemRegion *M) : Region(M) {}
void Profile(llvm::FoldingSetNodeID &ID) const override {
static int X = 0;
ID.AddPointer(&X);
ID.AddPointer(Region);
}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override;
private:
// The tracked region.
const MemRegion *Region;
};
/// When any of the nonnull arguments of the analyzed function is null, do not
/// report anything and turn off the check.
///
/// When \p SuppressPath is set to true, no more bugs will be reported on this
/// path by this checker.
void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error,
ExplodedNode *N, const MemRegion *Region,
CheckerContext &C,
const Stmt *ValueExpr = nullptr,
bool SuppressPath = false) const;
void reportBug(StringRef Msg, ErrorKind Error, ExplodedNode *N,
const MemRegion *Region, BugReporter &BR,
const Stmt *ValueExpr = nullptr) const {
if (!BT)
BT.reset(new BugType(this, "Nullability", categories::MemoryError));
auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
if (Region) {
R->markInteresting(Region);
R->addVisitor(std::make_unique<NullabilityBugVisitor>(Region));
}
if (ValueExpr) {
R->addRange(ValueExpr->getSourceRange());
if (Error == ErrorKind::NilAssignedToNonnull ||
Error == ErrorKind::NilPassedToNonnull ||
Error == ErrorKind::NilReturnedToNonnull)
if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
bugreporter::trackExpressionValue(N, Ex, *R);
}
BR.emitReport(std::move(R));
}
/// If an SVal wraps a region that should be tracked, it will return a pointer
/// to the wrapped region. Otherwise it will return a nullptr.
const SymbolicRegion *getTrackRegion(SVal Val,
bool CheckSuperRegion = false) const;
/// Returns true if the call is diagnosable in the current analyzer
/// configuration.
bool isDiagnosableCall(const CallEvent &Call) const {
if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
return false;
return true;
}
};
class NullabilityState {
public:
NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
: Nullab(Nullab), Source(Source) {}
const Stmt *getNullabilitySource() const { return Source; }
Nullability getValue() const { return Nullab; }
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(static_cast<char>(Nullab));
ID.AddPointer(Source);
}
void print(raw_ostream &Out) const {
Out << getNullabilityString(Nullab) << "\n";
}
private:
Nullability Nullab;
// Source is the expression which determined the nullability. For example in a
// message like [nullable nonnull_returning] has nullable nullability, because
// the receiver is nullable. Here the receiver will be the source of the
// nullability. This is useful information when the diagnostics are generated.
const Stmt *Source;
};
bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
return Lhs.getValue() == Rhs.getValue() &&
Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
}
} // end anonymous namespace
REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
NullabilityState)
// We say "the nullability type invariant is violated" when a location with a
// non-null type contains NULL or a function with a non-null return type returns
// NULL. Violations of the nullability type invariant can be detected either
// directly (for example, when NULL is passed as an argument to a nonnull
// parameter) or indirectly (for example, when, inside a function, the
// programmer defensively checks whether a nonnull parameter contains NULL and
// finds that it does).
//
// As a matter of policy, the nullability checker typically warns on direct
// violations of the nullability invariant (although it uses various
// heuristics to suppress warnings in some cases) but will not warn if the
// invariant has already been violated along the path (either directly or
// indirectly). As a practical matter, this prevents the analyzer from
// (1) warning on defensive code paths where a nullability precondition is
// determined to have been violated, (2) warning additional times after an
// initial direct violation has been discovered, and (3) warning after a direct
// violation that has been implicitly or explicitly suppressed (for
// example, with a cast of NULL to _Nonnull). In essence, once an invariant
// violation is detected on a path, this checker will be essentially turned off
// for the rest of the analysis
//
// The analyzer takes this approach (rather than generating a sink node) to
// ensure coverage of defensive paths, which may be important for backwards
// compatibility in codebases that were developed without nullability in mind.
REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)
enum class NullConstraint { IsNull, IsNotNull, Unknown };
static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
ProgramStateRef State) {
ConditionTruthVal Nullness = State->isNull(Val);
if (Nullness.isConstrainedFalse())
return NullConstraint::IsNotNull;
if (Nullness.isConstrainedTrue())
return NullConstraint::IsNull;
return NullConstraint::Unknown;
}
const SymbolicRegion *
NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
if (!NeedTracking)
return nullptr;
auto RegionSVal = Val.getAs<loc::MemRegionVal>();
if (!RegionSVal)
return nullptr;
const MemRegion *Region = RegionSVal->getRegion();
if (CheckSuperRegion) {
if (auto FieldReg = Region->getAs<FieldRegion>())
return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
if (auto ElementReg = Region->getAs<ElementRegion>())
return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
}
return dyn_cast<SymbolicRegion>(Region);
}
PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
const ExplodedNode *N, BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
ProgramStateRef State = N->getState();
ProgramStateRef StatePrev = N->getFirstPred()->getState();
const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
const NullabilityState *TrackedNullabPrev =
StatePrev->get<NullabilityMap>(Region);
if (!TrackedNullab)
return nullptr;
if (TrackedNullabPrev &&
TrackedNullabPrev->getValue() == TrackedNullab->getValue())
return nullptr;
// Retrieve the associated statement.
const Stmt *S = TrackedNullab->getNullabilitySource();
if (!S || S->getBeginLoc().isInvalid()) {
S = N->getStmtForDiagnostics();
}
if (!S)
return nullptr;
std::string InfoText =
(llvm::Twine("Nullability '") +
getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
.str();
// Generate the extra diagnostic.
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
N->getLocationContext());
return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
}
/// Returns true when the value stored at the given location has been
/// constrained to null after being passed through an object of nonnnull type.
static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
SVal LV, QualType T) {
if (getNullabilityAnnotation(T) != Nullability::Nonnull)
return false;
auto RegionVal = LV.getAs<loc::MemRegionVal>();
if (!RegionVal)
return false;
// If the value was constrained to null *after* it was passed through that
// location, it could not have been a concrete pointer *when* it was passed.
// In that case we would have handled the situation when the value was
// bound to that location, by emitting (or not emitting) a report.
// Therefore we are only interested in symbolic regions that can be either
// null or non-null depending on the value of their respective symbol.
auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
return false;
if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
return true;
return false;
}
static bool
checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
ProgramStateRef State,
const LocationContext *LocCtxt) {
for (const auto *ParamDecl : Params) {
if (ParamDecl->isParameterPack())
break;
SVal LV = State->getLValue(ParamDecl, LocCtxt);
if (checkValueAtLValForInvariantViolation(State, LV,
ParamDecl->getType())) {
return true;
}
}
return false;
}
static bool
checkSelfIvarsForInvariantViolation(ProgramStateRef State,
const LocationContext *LocCtxt) {
auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
if (!MD || !MD->isInstanceMethod())
return false;
const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
if (!SelfDecl)
return false;
SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));
const ObjCObjectPointerType *SelfType =
dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
if (!SelfType)
return false;
const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
if (!ID)
return false;
for (const auto *IvarDecl : ID->ivars()) {
SVal LV = State->getLValue(IvarDecl, SelfVal);
if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
return true;
}
}
return false;
}
static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
CheckerContext &C) {
if (State->get<InvariantViolated>())
return true;
const LocationContext *LocCtxt = C.getLocationContext();
const Decl *D = LocCtxt->getDecl();
if (!D)
return false;
ArrayRef<ParmVarDecl*> Params;
if (const auto *BD = dyn_cast<BlockDecl>(D))
Params = BD->parameters();
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
Params = FD->parameters();
else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
Params = MD->parameters();
else
return false;
if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
if (!N->isSink())
C.addTransition(State->set<InvariantViolated>(true), N);
return true;
}
return false;
}
void NullabilityChecker::reportBugIfInvariantHolds(StringRef Msg,
ErrorKind Error, ExplodedNode *N, const MemRegion *Region,
CheckerContext &C, const Stmt *ValueExpr, bool SuppressPath) const {
ProgramStateRef OriginalState = N->getState();
if (checkInvariantViolation(OriginalState, N, C))
return;
if (SuppressPath) {
OriginalState = OriginalState->set<InvariantViolated>(true);
N = C.addTransition(OriginalState, N);
}
reportBug(Msg, Error, N, Region, C.getBugReporter(), ValueExpr);
}
/// Cleaning up the program state.
void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
for (NullabilityMapTy::iterator I = Nullabilities.begin(),
E = Nullabilities.end();
I != E; ++I) {
const auto *Region = I->first->getAs<SymbolicRegion>();
assert(Region && "Non-symbolic region is tracked.");
if (SR.isDead(Region->getSymbol())) {
State = State->remove<NullabilityMap>(I->first);
}
}
// When one of the nonnull arguments are constrained to be null, nullability
// preconditions are violated. It is not enough to check this only when we
// actually report an error, because at that time interesting symbols might be
// reaped.
if (checkInvariantViolation(State, C.getPredecessor(), C))
return;
C.addTransition(State);
}
/// This callback triggers when a pointer is dereferenced and the analyzer does
/// not know anything about the value of that pointer. When that pointer is
/// nullable, this code emits a warning.
void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
if (Event.SinkNode->getState()->get<InvariantViolated>())
return;
const MemRegion *Region =
getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
if (!Region)
return;
ProgramStateRef State = Event.SinkNode->getState();
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (!TrackedNullability)
return;
if (Filter.CheckNullableDereferenced &&
TrackedNullability->getValue() == Nullability::Nullable) {
BugReporter &BR = *Event.BR;
// Do not suppress errors on defensive code paths, because dereferencing
// a nullable pointer is always an error.
if (Event.IsDirectDereference)
reportBug("Nullable pointer is dereferenced",
ErrorKind::NullableDereferenced, Event.SinkNode, Region, BR);
else {
reportBug("Nullable pointer is passed to a callee that requires a "
"non-null", ErrorKind::NullablePassedToNonnull,
Event.SinkNode, Region, BR);
}
}
}
/// Find the outermost subexpression of E that is not an implicit cast.
/// This looks through the implicit casts to _Nonnull that ARC adds to
/// return expressions of ObjC types when the return type of the function or
/// method is non-null but the express is not.
static const Expr *lookThroughImplicitCasts(const Expr *E) {
assert(E);
while (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
E = ICE->getSubExpr();
}
return E;
}
/// This method check when nullable pointer or null value is returned from a
/// function that has nonnull return type.
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
CheckerContext &C) const {
auto RetExpr = S->getRetValue();
if (!RetExpr)
return;
if (!RetExpr->getType()->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<InvariantViolated>())
return;
auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
if (!RetSVal)
return;
bool InSuppressedMethodFamily = false;
QualType RequiredRetType;
AnalysisDeclContext *DeclCtxt =
C.getLocationContext()->getAnalysisDeclContext();
const Decl *D = DeclCtxt->getDecl();
if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
// HACK: This is a big hammer to avoid warning when there are defensive
// nil checks in -init and -copy methods. We should add more sophisticated
// logic here to suppress on common defensive idioms but still
// warn when there is a likely problem.
ObjCMethodFamily Family = MD->getMethodFamily();
if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
InSuppressedMethodFamily = true;
RequiredRetType = MD->getReturnType();
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
RequiredRetType = FD->getReturnType();
} else {
return;
}
NullConstraint Nullness = getNullConstraint(*RetSVal, State);
Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);
// If the returned value is null but the type of the expression
// generating it is nonnull then we will suppress the diagnostic.
// This enables explicit suppression when returning a nil literal in a
// function with a _Nonnull return type:
// return (NSString * _Nonnull)0;
Nullability RetExprTypeLevelNullability =
getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());
bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
Nullness == NullConstraint::IsNull);
if (Filter.CheckNullReturnedFromNonnull &&
NullReturnedFromNonNull &&
RetExprTypeLevelNullability != Nullability::Nonnull &&
!InSuppressedMethodFamily &&
C.getLocationContext()->inTopFrame()) {
static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
ExplodedNode *N = C.generateErrorNode(State, &Tag);
if (!N)
return;
SmallString<256> SBuf;
llvm::raw_svector_ostream OS(SBuf);
OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
OS << " returned from a " << C.getDeclDescription(D) <<
" that is expected to return a non-null value";
reportBugIfInvariantHolds(OS.str(),
ErrorKind::NilReturnedToNonnull, N, nullptr, C,
RetExpr);
return;
}
// If null was returned from a non-null function, mark the nullability
// invariant as violated even if the diagnostic was suppressed.
if (NullReturnedFromNonNull) {
State = State->set<InvariantViolated>(true);
C.addTransition(State);
return;
}
const MemRegion *Region = getTrackRegion(*RetSVal);
if (!Region)
return;
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (TrackedNullability) {
Nullability TrackedNullabValue = TrackedNullability->getValue();
if (Filter.CheckNullableReturnedFromNonnull &&
Nullness != NullConstraint::IsNotNull &&
TrackedNullabValue == Nullability::Nullable &&
RequiredNullability == Nullability::Nonnull) {
static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
SmallString<256> SBuf;
llvm::raw_svector_ostream OS(SBuf);
OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
" that is expected to return a non-null value";
reportBugIfInvariantHolds(OS.str(),
ErrorKind::NullableReturnedToNonnull, N,
Region, C);
}
return;
}
if (RequiredNullability == Nullability::Nullable) {
State = State->set<NullabilityMap>(Region,
NullabilityState(RequiredNullability,
S));
C.addTransition(State);
}
}
/// This callback warns when a nullable pointer or a null value is passed to a
/// function that expects its argument to be nonnull.
void NullabilityChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (!Call.getDecl())
return;
ProgramStateRef State = C.getState();
if (State->get<InvariantViolated>())
return;
ProgramStateRef OrigState = State;
unsigned Idx = 0;
for (const ParmVarDecl *Param : Call.parameters()) {
if (Param->isParameterPack())
break;
if (Idx >= Call.getNumArgs())
break;
const Expr *ArgExpr = Call.getArgExpr(Idx);
auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
if (!ArgSVal)
continue;
if (!Param->getType()->isAnyPointerType() &&
!Param->getType()->isReferenceType())
continue;
NullConstraint Nullness = getNullConstraint(*ArgSVal, State);
Nullability RequiredNullability =
getNullabilityAnnotation(Param->getType());
Nullability ArgExprTypeLevelNullability =
getNullabilityAnnotation(ArgExpr->getType());
unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;
if (Filter.CheckNullPassedToNonnull && Nullness == NullConstraint::IsNull &&
ArgExprTypeLevelNullability != Nullability::Nonnull &&
RequiredNullability == Nullability::Nonnull &&
isDiagnosableCall(Call)) {
ExplodedNode *N = C.generateErrorNode(State);
if (!N)
return;
SmallString<256> SBuf;
llvm::raw_svector_ostream OS(SBuf);
OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
OS << " passed to a callee that requires a non-null " << ParamIdx
<< llvm::getOrdinalSuffix(ParamIdx) << " parameter";
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, N,
nullptr, C,
ArgExpr, /*SuppressPath=*/false);
return;
}
const MemRegion *Region = getTrackRegion(*ArgSVal);
if (!Region)
continue;
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (TrackedNullability) {
if (Nullness == NullConstraint::IsNotNull ||
TrackedNullability->getValue() != Nullability::Nullable)
continue;
if (Filter.CheckNullablePassedToNonnull &&
RequiredNullability == Nullability::Nonnull &&
isDiagnosableCall(Call)) {
ExplodedNode *N = C.addTransition(State);
SmallString<256> SBuf;
llvm::raw_svector_ostream OS(SBuf);
OS << "Nullable pointer is passed to a callee that requires a non-null "
<< ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
reportBugIfInvariantHolds(OS.str(),
ErrorKind::NullablePassedToNonnull, N,
Region, C, ArgExpr, /*SuppressPath=*/true);
return;
}
if (Filter.CheckNullableDereferenced &&
Param->getType()->isReferenceType()) {
ExplodedNode *N = C.addTransition(State);
reportBugIfInvariantHolds("Nullable pointer is dereferenced",
ErrorKind::NullableDereferenced, N, Region,
C, ArgExpr, /*SuppressPath=*/true);
return;
}
continue;
}
// No tracked nullability yet.
if (ArgExprTypeLevelNullability != Nullability::Nullable)
continue;
State = State->set<NullabilityMap>(
Region, NullabilityState(ArgExprTypeLevelNullability, ArgExpr));
}
if (State != OrigState)
C.addTransition(State);
}
/// Suppress the nullability warnings for some functions.
void NullabilityChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
auto Decl = Call.getDecl();
if (!Decl)
return;
// ObjC Messages handles in a different callback.
if (Call.getKind() == CE_ObjCMessage)
return;
const FunctionType *FuncType = Decl->getFunctionType();
if (!FuncType)
return;
QualType ReturnType = FuncType->getReturnType();
if (!ReturnType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<InvariantViolated>())
return;
const MemRegion *Region = getTrackRegion(Call.getReturnValue());
if (!Region)
return;
// CG headers are misannotated. Do not warn for symbols that are the results
// of CG calls.
const SourceManager &SM = C.getSourceManager();
StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
if (llvm::sys::path::filename(FilePath).startswith("CG")) {
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
C.addTransition(State);
return;
}
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (!TrackedNullability &&
getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
State = State->set<NullabilityMap>(Region, Nullability::Nullable);
C.addTransition(State);
}
}
static Nullability getReceiverNullability(const ObjCMethodCall &M,
ProgramStateRef State) {
if (M.isReceiverSelfOrSuper()) {
// For super and super class receivers we assume that the receiver is
// nonnull.
return Nullability::Nonnull;
}
// Otherwise look up nullability in the state.
SVal Receiver = M.getReceiverSVal();
if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
// If the receiver is constrained to be nonnull, assume that it is nonnull
// regardless of its type.
NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
if (Nullness == NullConstraint::IsNotNull)
return Nullability::Nonnull;
}
auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
if (ValueRegionSVal) {
const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
assert(SelfRegion);
const NullabilityState *TrackedSelfNullability =
State->get<NullabilityMap>(SelfRegion);
if (TrackedSelfNullability)
return TrackedSelfNullability->getValue();
}
return Nullability::Unspecified;
}
/// Calculate the nullability of the result of a message expr based on the
/// nullability of the receiver, the nullability of the return value, and the
/// constraints.
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
CheckerContext &C) const {
auto Decl = M.getDecl();
if (!Decl)
return;
QualType RetType = Decl->getReturnType();
if (!RetType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<InvariantViolated>())
return;
const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
if (!ReturnRegion)
return;
auto Interface = Decl->getClassInterface();
auto Name = Interface ? Interface->getName() : "";
// In order to reduce the noise in the diagnostics generated by this checker,
// some framework and programming style based heuristics are used. These
// heuristics are for Cocoa APIs which have NS prefix.
if (Name.startswith("NS")) {
// Developers rely on dynamic invariants such as an item should be available
// in a collection, or a collection is not empty often. Those invariants can
// not be inferred by any static analysis tool. To not to bother the users
// with too many false positives, every item retrieval function should be
// ignored for collections. The instance methods of dictionaries in Cocoa
// are either item retrieval related or not interesting nullability wise.
// Using this fact, to keep the code easier to read just ignore the return
// value of every instance method of dictionaries.
if (M.isInstanceMessage() && Name.contains("Dictionary")) {
State =
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
C.addTransition(State);
return;
}
// For similar reasons ignore some methods of Cocoa arrays.
StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
if (Name.contains("Array") &&
(FirstSelectorSlot == "firstObject" ||
FirstSelectorSlot == "lastObject")) {
State =
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
C.addTransition(State);
return;
}
// Encoding related methods of string should not fail when lossless
// encodings are used. Using lossless encodings is so frequent that ignoring
// this class of methods reduced the emitted diagnostics by about 30% on
// some projects (and all of that was false positives).
if (Name.contains("String")) {
for (auto Param : M.parameters()) {
if (Param->getName() == "encoding") {
State = State->set<NullabilityMap>(ReturnRegion,
Nullability::Contradicted);
C.addTransition(State);
return;
}
}
}
}
const ObjCMessageExpr *Message = M.getOriginExpr();
Nullability SelfNullability = getReceiverNullability(M, State);
const NullabilityState *NullabilityOfReturn =
State->get<NullabilityMap>(ReturnRegion);
if (NullabilityOfReturn) {
// When we have a nullability tracked for the return value, the nullability
// of the expression will be the most nullable of the receiver and the
// return value.
Nullability RetValTracked = NullabilityOfReturn->getValue();
Nullability ComputedNullab =
getMostNullable(RetValTracked, SelfNullability);
if (ComputedNullab != RetValTracked &&
ComputedNullab != Nullability::Unspecified) {
const Stmt *NullabilitySource =
ComputedNullab == RetValTracked
? NullabilityOfReturn->getNullabilitySource()
: Message->getInstanceReceiver();
State = State->set<NullabilityMap>(
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
C.addTransition(State);
}
return;
}
// No tracked information. Use static type information for return value.
Nullability RetNullability = getNullabilityAnnotation(RetType);
// Properties might be computed. For this reason the static analyzer creates a
// new symbol each time an unknown property is read. To avoid false pozitives
// do not treat unknown properties as nullable, even when they explicitly
// marked nullable.
if (M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined)
RetNullability = Nullability::Nonnull;
Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
if (ComputedNullab == Nullability::Nullable) {
const Stmt *NullabilitySource = ComputedNullab == RetNullability
? Message
: Message->getInstanceReceiver();
State = State->set<NullabilityMap>(
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
C.addTransition(State);
}
}
/// Explicit casts are trusted. If there is a disagreement in the nullability
/// annotations in the destination and the source or '0' is casted to nonnull
/// track the value as having contraditory nullability. This will allow users to
/// suppress warnings.
void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
CheckerContext &C) const {
QualType OriginType = CE->getSubExpr()->getType();
QualType DestType = CE->getType();
if (!OriginType->isAnyPointerType())
return;
if (!DestType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<InvariantViolated>())
return;
Nullability DestNullability = getNullabilityAnnotation(DestType);
// No explicit nullability in the destination type, so this cast does not
// change the nullability.
if (DestNullability == Nullability::Unspecified)
return;
auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
const MemRegion *Region = getTrackRegion(*RegionSVal);
if (!Region)
return;
// When 0 is converted to nonnull mark it as contradicted.
if (DestNullability == Nullability::Nonnull) {
NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
if (Nullness == NullConstraint::IsNull) {
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
C.addTransition(State);
return;
}
}
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(Region);
if (!TrackedNullability) {
if (DestNullability != Nullability::Nullable)
return;
State = State->set<NullabilityMap>(Region,
NullabilityState(DestNullability, CE));
C.addTransition(State);
return;
}
if (TrackedNullability->getValue() != DestNullability &&
TrackedNullability->getValue() != Nullability::Contradicted) {
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
C.addTransition(State);
}
}
/// For a given statement performing a bind, attempt to syntactically
/// match the expression resulting in the bound value.
static const Expr * matchValueExprForBind(const Stmt *S) {
// For `x = e` the value expression is the right-hand side.
if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
if (BinOp->getOpcode() == BO_Assign)
return BinOp->getRHS();
}
// For `int x = e` the value expression is the initializer.
if (auto *DS = dyn_cast<DeclStmt>(S)) {
if (DS->isSingleDecl()) {
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
if (!VD)
return nullptr;
if (const Expr *Init = VD->getInit())
return Init;
}
}
return nullptr;
}
/// Returns true if \param S is a DeclStmt for a local variable that
/// ObjC automated reference counting initialized with zero.
static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
// We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
// prevents false positives when a _Nonnull local variable cannot be
// initialized with an initialization expression:
// NSString * _Nonnull s; // no-warning
// @autoreleasepool {
// s = ...
// }
//
// FIXME: We should treat implicitly zero-initialized _Nonnull locals as
// uninitialized in Sema's UninitializedValues analysis to warn when a use of
// the zero-initialized definition will unexpectedly yield nil.
// Locals are only zero-initialized when automated reference counting
// is turned on.
if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
return false;
auto *DS = dyn_cast<DeclStmt>(S);
if (!DS || !DS->isSingleDecl())
return false;
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
if (!VD)
return false;
// Sema only zero-initializes locals with ObjCLifetimes.
if(!VD->getType().getQualifiers().hasObjCLifetime())
return false;
const Expr *Init = VD->getInit();
assert(Init && "ObjC local under ARC without initializer");
// Return false if the local is explicitly initialized (e.g., with '= nil').
if (!isa<ImplicitValueInitExpr>(Init))
return false;
return true;
}
/// Propagate the nullability information through binds and warn when nullable
/// pointer or null symbol is assigned to a pointer with a nonnull type.
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
CheckerContext &C) const {
const TypedValueRegion *TVR =
dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
if (!TVR)
return;
QualType LocType = TVR->getValueType();
if (!LocType->isAnyPointerType())
return;
ProgramStateRef State = C.getState();
if (State->get<InvariantViolated>())
return;
auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
if (!ValDefOrUnknown)
return;
NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);
Nullability ValNullability = Nullability::Unspecified;
if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
ValNullability = getNullabilityAnnotation(Sym->getType());
Nullability LocNullability = getNullabilityAnnotation(LocType);
// If the type of the RHS expression is nonnull, don't warn. This
// enables explicit suppression with a cast to nonnull.
Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
const Expr *ValueExpr = matchValueExprForBind(S);
if (ValueExpr) {
ValueExprTypeLevelNullability =
getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
}
bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
RhsNullness == NullConstraint::IsNull);
if (Filter.CheckNullPassedToNonnull &&
NullAssignedToNonNull &&
ValNullability != Nullability::Nonnull &&
ValueExprTypeLevelNullability != Nullability::Nonnull &&
!isARCNilInitializedLocal(C, S)) {
static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
ExplodedNode *N = C.generateErrorNode(State, &Tag);
if (!N)
return;
const Stmt *ValueStmt = S;
if (ValueExpr)
ValueStmt = ValueExpr;
SmallString<256> SBuf;
llvm::raw_svector_ostream OS(SBuf);
OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
OS << " assigned to a pointer which is expected to have non-null value";
reportBugIfInvariantHolds(OS.str(),
ErrorKind::NilAssignedToNonnull, N, nullptr, C,
ValueStmt);
return;
}
// If null was returned from a non-null function, mark the nullability
// invariant as violated even if the diagnostic was suppressed.
if (NullAssignedToNonNull) {
State = State->set<InvariantViolated>(true);
C.addTransition(State);
return;
}
// Intentionally missing case: '0' is bound to a reference. It is handled by
// the DereferenceChecker.
const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
if (!ValueRegion)
return;
const NullabilityState *TrackedNullability =
State->get<NullabilityMap>(ValueRegion);
if (TrackedNullability) {
if (RhsNullness == NullConstraint::IsNotNull ||
TrackedNullability->getValue() != Nullability::Nullable)
return;
if (Filter.CheckNullablePassedToNonnull &&
LocNullability == Nullability::Nonnull) {
static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
"which is expected to have non-null value",
ErrorKind::NullableAssignedToNonnull, N,
ValueRegion, C);
}
return;
}
const auto *BinOp = dyn_cast<BinaryOperator>(S);
if (ValNullability == Nullability::Nullable) {
// Trust the static information of the value more than the static
// information on the location.
const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
State = State->set<NullabilityMap>(
ValueRegion, NullabilityState(ValNullability, NullabilitySource));
C.addTransition(State);
return;
}
if (LocNullability == Nullability::Nullable) {
const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
State = State->set<NullabilityMap>(
ValueRegion, NullabilityState(LocNullability, NullabilitySource));
C.addTransition(State);
}
}
void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
NullabilityMapTy B = State->get<NullabilityMap>();
if (State->get<InvariantViolated>())
Out << Sep << NL
<< "Nullability invariant was violated, warnings suppressed." << NL;
if (B.isEmpty())
return;
if (!State->get<InvariantViolated>())
Out << Sep << NL;
for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
Out << I->first << " : ";
I->second.print(Out);
Out << NL;
}
}
void ento::registerNullabilityBase(CheckerManager &mgr) {
mgr.registerChecker<NullabilityChecker>();
}
bool ento::shouldRegisterNullabilityBase(const LangOptions &LO) {
return true;
}
#define REGISTER_CHECKER(name, trackingRequired) \
void ento::register##name##Checker(CheckerManager &mgr) { \
NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \
checker->Filter.Check##name = true; \
checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
checker->NeedTracking = checker->NeedTracking || trackingRequired; \
checker->NoDiagnoseCallsToSystemHeaders = \
checker->NoDiagnoseCallsToSystemHeaders || \
mgr.getAnalyzerOptions().getCheckerBooleanOption( \
checker, "NoDiagnoseCallsToSystemHeaders", true); \
} \
\
bool ento::shouldRegister##name##Checker(const LangOptions &LO) { \
return true; \
}
// The checks are likely to be turned on by default and it is possible to do
// them without tracking any nullability related information. As an optimization
// no nullability information will be tracked when only these two checks are
// enables.
REGISTER_CHECKER(NullPassedToNonnull, false)
REGISTER_CHECKER(NullReturnedFromNonnull, false)
REGISTER_CHECKER(NullableDereferenced, true)
REGISTER_CHECKER(NullablePassedToNonnull, true)
REGISTER_CHECKER(NullableReturnedFromNonnull, true)